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VOLUNTARY GE-FILTERS AND FURTHER RESULTS
OF GE-FILTERS IN GE-ALGEBRAS

A. BORUMAND SAEID, A. REZAEI, R. K. BANDARU∗ AND Y. B. JUN

Abstract. Further properties on (belligerent) GE-filters are dis-
cussed, and the quotient GE-algebra via a GE-filter is established.
Conditions for the set →

c to be a belligerent GE-filter are pro-
vided. The extension property of belligerent GE-filter is composed.
The notions of a balanced element, a balanced GE-filter, an anti-
symmetric GE-algebra and a voluntary GE-filter are introduced,
and its properties are examined. The relationship between a GE-
subalgebra and a GE-filter is established. Conditions for every
element in a GE-algebra to be a balanced element are provided.
The conditions necessary for a GE-filter to be a voluntary GE-
filter are considered. The GE-filter generated by a given subset is
established, and its shape is identified.

1. Introduction

The notion of Hilbert algebra was introduced in early 50-ties by
L. Henkin and T. Skolem for some investigations of implication in
intuitionistic and other nonclassical logics. In mathematics, Hilbert
algebras occur in the theory of von Neumann algebras in: Commu-
tation theorem and Tomita–Takesaki theory. Hilbert algebras are an
important tool for certain investigations in algebraic logic since they
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can be considered as fragments of any propositional logic contain-
ing a logical connective implication (→) and the constant 1 which is
considered as the logical value “true”. As can be seen in references
[3, 4, 5, 6, 7, 8, 10, 11, 12], some researchers have studied various
things about Hilbert algebra. The study of generalization on a given
algebraic structure is also an important research process in algebra. As
a generalization of Hilbert algebras, R.K. Bandaru et al. [2] introduce
the notion of GE-algebras. They studied the various properties and
filter theory of Hilbert algebras. In [1], R.K. Bandaru et al. introduced
the concept of belligerent GE-filter of a GE-algebra and investigate its
properties. They studied the relation between GE-filter and belligerent
GE-filter of a GE-algebra.

In this paper, we consider further properties on (belligerent) GE-
filters. We make the quotient GE-algebra via a GE-filter. We take a
special set →

c := {x ∈ X | c ≤ x} for an element c in a GE-algebra X,
and provide conditions for the set →

c to be a belligerent GE-filter of X.
We discuss the extension property of belligerent GE-filter. We define a
balanced element and show that the set of all balanced elements forms a
GE-filter. We introduce the notion of balanced GE-filters and examine
its properties. We look into the relationship between a GE-subalgebra
and a GE-filter, and explore what conditions are necessary for a GE-
subalgebra to be a GE-filter. We introduce the concept of antisymmet-
ric GE-algebras and investigate related properties. We provide condi-
tions for every element in a GE-algebra X to be a balanced element.
We construct a subset F ◦ :=

∩
c∈F

c◦ where c◦ = {x ∈ X | x+̊c = 1}

and F is a subset of X, and we look at the several properties of this
set. We find the condition under which F ◦ is a GE-filter for any subset
F of a GE-algebra. We introduce the voluntary GE-filter and further
investigate the related properties. We discuss the conditions necessary
for a GE-filter to be a voluntary GE-filter. We construct a GE-filter
generated by a given subset, and identify its shape.

2. Preliminaries

Definition 2.1 ([2]). A GE-algebra is a non-empty set X with a con-
stant 1 and a binary operation ∗ satisfying the following axioms:

(GE1) u ∗ u = 1,
(GE2) 1 ∗ u = u,
(GE3) u ∗ (v ∗ w) = u ∗ (v ∗ (u ∗ w))

for all u, v, w ∈ X.
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In a GE-algebra X, an order relation “≤” is defined by
(∀x, y ∈ X) (x ≤ y ⇔ x ∗ y = 1) . (2.1)

Definition 2.2 ([2, 1]). A GE-algebra X is said to be
• transitive if it satisfies:

(∀x, y, z ∈ X) (x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)) . (2.2)
• commutative if it satisfies:

(∀x, y ∈ X) ((x ∗ y) ∗ y = (y ∗ x) ∗ x) . (2.3)
• left exchangeable if it satisfies:

(∀x, y, z ∈ X) (x ∗ (y ∗ z) = y ∗ (x ∗ z)) . (2.4)
• belligerent if it satisfies:

(∀x, y, z ∈ X) (x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)) . (2.5)

Note that every self-distributive BE-algebra is a GE-algebra (see [2]),
and every left exchangeable GE-algebra is a BE-algebra (see [9]).

Proposition 2.3 ([2]). Every GE-algebra X satisfies the following
items.

(∀u ∈ X) (u ∗ 1 = 1) . (2.6)
(∀u, v ∈ X) (u ∗ (u ∗ v) = u ∗ v) . (2.7)
(∀u, v ∈ X) (u ≤ v ∗ u) . (2.8)

If X is transitive, then
(∀u, v, w ∈ X) (u ≤ v ⇒ w ∗ u ≤ w ∗ v, v ∗ w ≤ u ∗ w) . (2.9)
(∀u, v, w ∈ X) (u ∗ v ≤ (v ∗ w) ∗ (u ∗ w)) . (2.10)

Definition 2.4 ([2]). A subset F of a GE-algebra X is called a GE-
filter of X if it satisfies:

1 ∈ F, (2.11)
(∀x, y ∈ X)(x ∗ y ∈ F, x ∈ F ⇒ y ∈ F ). (2.12)

Lemma 2.5 ([2]). In a GE-algebra X, every filter F of X satisfies:
(∀x, y ∈ X) (x ≤ y, x ∈ F ⇒ y ∈ F ) . (2.13)

Definition 2.6 ([1]). A subset F of a GE-algebra X is called a bel-
ligerent GE-filter of X if it satisfies (2.11) and

(∀x, y, z ∈ X)(x ∗ (y ∗ z) ∈ F, x ∗ y ∈ F ⇒ x ∗ z ∈ F ). (2.14)
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Lemma 2.7 ([1]). If a GE-filter F of a GE-algebra X satisfies:

(∀x, y, z ∈ X) (x ∗ (y ∗ z) ∈ F ⇒ (x ∗ y) ∗ (x ∗ z) ∈ F ) , (2.15)

then F is a belligerent GE-filter of X.

3. Further properties on GE-filters

In this section, we first consider the quotient GE-algebra X/F of a
GE-algebra X by a GE-filter F .

For a given GE-filter F of a transitive GE-algebra X, let ∼F be a
binary relation on X defined by

(∀x, y ∈ X) (x ∼F y ⇔ x ∗ y ∈ F, y ∗ x ∈ F ) . (3.1)

Then ∼F is an equivalent relation on X. In fact, it is clear that ∼F

is reflexive and symmetry. Let x, y, z ∈ X be such that x ∼F y and
y ∼F z. Then x ∗ y ∈ F , y ∗ x ∈ F , y ∗ z ∈ F and z ∗ y ∈ F . Since
z ∗ y ≤ (y ∗ x) ∗ (z ∗ x) and x ∗ y ≤ (y ∗ z) ∗ (x ∗ z) by (2.10), it follows
from Lemma 2.5 that (y ∗ x) ∗ (z ∗ x) ∈ F and (y ∗ z) ∗ (x ∗ z) ∈ F .
Since F is a GE-filter of X, we have x ∗ z ∈ F and z ∗ x ∈ F , and so
x ∼F z. Therefore, X can be decomposed by the equivalence relation
∼F . The equivalence class of a in X under ∼F is denoted by Fa, that
is,

Fa = {x ∈ X | a ∼F x}.

The collection of all such equivalence classes is denoted by X/F , that
is,

X/∼F = {Fa | a ∈ X},

which is called the quotient set of X by ∼F .

Theorem 3.1. Let F be a GE-filter of a transitive GE-algebra X.
Given an element a ∈ X, let Fa be the equivalence relation on X which
is defined by (3.1). Then F = F1 and (X/∼F , ∗F , F1) is a GE-algebra
where ∗F is defined by Fx ∗F Fy = Fx∗y for every Fx, Fy ∈ X/∼F .
Moreover it is transitive.

We say that (X/∼F , ∗F , F1) is the quotient GE-algebra via F , and it
is also denoted by (X/F, ∗F , F1) because the relation ∼F was defined
using a given GE-filter F .

Proof. If x ∈ F , then 1 ∗ x = x ∈ F and x ∗ 1 = 1 ∈ F . Thus 1 ∼F x,
i.e., x ∈ F1. If x ∈ F1, then 1∗x ∈ F and so x ∈ F . Hence F = F1. Let
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Fx, Fy, Fz ∈ X/∼F Then Fx ∗F Fx = Fx∗x = F1, F1 ∗F Fx = F1∗x = Fx

and
Fx ∗F (Fy ∗F Fz) = Fx ∗F Fy∗z = Fx∗(y∗z)

= Fx∗(y∗(x∗z)) = Fx ∗F Fy∗(x∗z)

= Fx ∗F (Fy ∗F Fx∗z)

= Fx ∗F (Fy ∗F (Fx ∗F Fz)).

Hene (X/∼F , ∗F , F1) is a GE-algebra. Now we will prove:
(∀x, y ∈ X) (x ≤ y ⇒ Fx ≤F Fy) (3.2)

where Fx ≤F Fy means Fx ∗F Fy = F1. If x ≤ y for all x, y ∈ X, then
x ∗ y = 1 and hence Fx ∗F Fy = Fx∗y = F1, that is, Fx ≤F Fy. If X is
transitive, then x ∗ y ≤ (z ∗ x) ∗ (z ∗ y) for all x, y, z ∈ X. It follows
from (3.2) that

Fx∗F Fy = Fx∗y ≤F F(z∗x)∗(z∗y) = Fz∗x∗F Fz∗y = (Fz ∗F Fx)∗F (Fz ∗F Fy).

Therefore (X/∼F , ∗F , F1) is a transitive GE-algebra. □
The following example illustrates Theorem 3.1.

Example 3.2. Let X = {1, a, b, c, d} be a set with a binary operation
∗ in the following table:

∗ 1 a b c d
1 1 a b c d
a 1 1 b b 1
b 1 d 1 1 d
c 1 a 1 1 a
d 1 1 b b 1

Then (X, ∗, 1) is a transitive GE-algebra and F = {1, a, d} is a GE-filter
of X. Let

∼F = {(1, 1), (a, a), (b, b), (c, c), (d, d), (1, a), (1, d), (a, 1), (a, d),
(b, c), (c, b), (d, 1), (d, a)}.

Then ∼F is an equivalence relation on X. Also,
F1 = {1, a, d} = Fa = Fd

and Fb = {b, c} = Fc. Hence F1 = F and X/∼F = {F1, Fb}. Then
(X/∼F , ∗F , F1) is a transitive GE-algebra where ∗F is given in the
following table:

∗F F1 Fb

F1 F1 Fb

Fb F1 F1
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Theorem 3.3. Let F be a GE-filter of a transitive GE-algebra X. If
X is commutative, then so is the quotient GE-algebra.

Proof. Straightforward. □

Given an element c of X, consider the set →
c := {x ∈ X | c ≤ x}. In

general, the set →
c is not a GE-filter of X (see [1]), and so it is not a

belligerent GE-filter of X.
In the following theorem, we provide conditions for the set →

c to be
a belligerent GE-filter of X.

Theorem 3.4. Given an element c in a GE-algebra X, the following
are equivalent.

(i) The set →
c := {x ∈ X | c ≤ x} is a belligerent GE-filter of X.

(ii) X satisfies:

(∀x, y, z ∈ X) (c ≤ x ∗ (y ∗ z), c ≤ x ∗ y ⇒ c ≤ x ∗ z) . (3.3)

Proof. Assume that →
c := {x ∈ X | c ≤ x} is a belligerent GE-filter of

X. Let x, y, z ∈ X be such that c ≤ x ∗ (y ∗ z) and c ≤ x ∗ y. Then
x ∗ (y ∗ z) ∈ →

c and x ∗ y ∈ →
c . Since →

c is a belligerent GE-filter of X,
it follows from (2.14) that x ∗ z ∈ →

c . Hence c ≤ x ∗ z.
Conversely, suppose that X satisfies (3.3). Clearly 1 ∈ →

c . Let
x, y, z ∈ X be such that x∗(y∗z) ∈ →

c and x∗y ∈ →
c . Then c ≤ x∗(y∗z)

and c ≤ x ∗ y, which imply from (3.3) that c ≤ x ∗ z. Thus x ∗ z ∈ →
c ,

and therefore →
c is a belligerent GE-filter of X. □

Theorem 3.5. (Extension property for the belligerent GE-filter) Let
F and G be GE-filters of a left exchangeable GE-algebra X such that
F ⊆ G. If F is a belligerent GE-filter of X, then so is G.

Proof. Let x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ G. Using (2.4) and
(GE1) induces

x ∗ (y ∗ ((x ∗ (y ∗ z)) ∗ z)) = (x ∗ (y ∗ z)) ∗ (x ∗ (y ∗ z)) = 1 ∈ F.

Since F is a belligerent GE-filter of X, it follows from (2.4) and Lemma
2.7 that

(x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)) = (x ∗ y) ∗ ((x ∗ (y ∗ z)) ∗ (x ∗ z))
= (x ∗ y) ∗ (x ∗ ((x ∗ (y ∗ z)) ∗ z)) ∈ F ⊆ G.

Since G is a GE-filter of X, we have (x ∗ y) ∗ (x ∗ z) ∈ G. Therefore G
is a belligerent GE-filter of X by Lemma 2.7. □
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Corollary 3.6. In a left exchangeable GE-algebra, the trivial GE-filter
{1} is a belligerent GE-filter if and only if every GE-filter is a belligerent
GE-filter.
Definition 3.7. An element b of a GE-algebra X is said to be balanced
if it satisfies:

(∀x ∈ X) (b ̸= x ⇒ b ∗ x = x, x ∗ b = b) . (3.4)
Let B(X) denote the set of all balanced elements of a GE-algebra X,

and it is called the balanced part of X.
It is obvious that 1 ∈ B(X) for every GE-algebra X.

Example 3.8. Consider a GE-algebra (X, ∗, 1), where
X = {1, a, b, c, d, e}

and the binary operation ∗ is given by the following Cayley table.
∗ 1 a b c d e
1 1 a b c d e
a 1 1 b c c e
b 1 a 1 d d e
c 1 1 b 1 1 e
d 1 1 1 1 1 e
e 1 a b c d 1

It is routine to calculate that 1 and e are balanced elements of X.
Theorem 3.9. The balanced part of a GE-algebra X is a GE-filter of
X.
Proof. Let B(X) be the balanced part of a GE-algebra X. Clearly,
1 ∈ B(X) as mentioned in the above. Let x, y ∈ X be such that
x ∗ y ∈ B(X) and x ∈ B(X). If y ̸= x, then y = x ∗ y since x ∈ B(X),
and so y ∈ B(X). If y = x, then y = x ∈ B(X). Hence B(X) is a
GE-filter of X. □
Definition 3.10. A GE-algebra X is said to be balanced if its balanced
part is X itself.
Example 3.11. Let X = {1, 2, a, b, c} be a set with the following
Cayley table:

∗ 1 2 a b c
1 1 2 a b c
2 1 1 a b c
a 1 2 1 b c
b 1 2 a 1 c
c 1 2 a b 1

It is routine to verify that X is a balanced GE-algebra.
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Definition 3.12. A (belligerent) GE-filter F of a GE-algebra X is said
to be balanced if F contains the balanced part of X.
Example 3.13. Consider the GE-algebra X in Example 3.8. Then
F := {1, a, b, e} is a GE-filter of X and B(X) = {1, e} ⊆ F . Thus F is
a balanced GE-filter of X.

By Definitions 3.10 and 3.12, we know that there does not exist a
proper balanced GE-filter in a balanced GE-algebra.
Theorem 3.14. The intersection of balanced (belligerent) GE-filters
of a GE-algebra is also a balanced (belligerent) GE-filter.
Proof. Let {Fi | i ∈ Λ} be a family of balanced (belligerent) GE-filters
of a GE-algebra X where Λ is any index set. Then B(X) ⊆ Fi for all
i ∈ Λ, and so B(X) ⊆

∩
i∈Λ

Fi. Obviously 1 ∈
∩
i∈Λ

Fi. Let x, y ∈ X be

such that x ∗ y ∈
∩
i∈Λ

Fi and x ∈
∩
i∈Λ

Fi. Then x ∗ y ∈ Fi and x ∈ Fi for

all i ∈ Λ, which imply from (2.12) that y ∈ Fi for all i ∈ Λ. Hence
y ∈

∩
i∈Λ

Fi, and therefore
∩
i∈Λ

Fi is a balanced GE-filter of X. Now, let

x, y, z ∈ X be such that x ∗ (y ∗ z) ∈
∩
i∈Λ

Fi and x ∗ y ∈
∩
i∈Λ

Fi. Then

x ∗ (y ∗ z) ∈ Fi and x ∗ y ∈ Fi for all i ∈ Λ. Since Fi is belligerent, it
follows that x ∗ z ∈ Fi for all i ∈ Λ. Thus x ∗ z ∈

∩
i∈Λ

Fi and hence
∩
i∈Λ

Fi

is a balanced belligerent GE-filter of X. □
The following example shows that the union of balanced GE-filters

of a GE-algebra is not a balanced GE-filter.
Example 3.15. Let X = {1, a, b, c, d, e, f, g} and the binary operation
∗ is given by the following Cayley table.

∗ 1 a b c d e f g
1 1 a b c d e f g
a 1 1 1 c e e 1 1
b 1 a 1 d d d g g
c 1 1 1 1 1 1 1 1
d 1 1 1 1 1 1 1 1
e 1 1 1 1 1 1 1 1
f 1 a 1 e e e 1 1
g 1 a b d d d b 1

Then (X, ∗, 1) is a GE-algebra. Let F1 = {1, b} and F2 = {1, g}. Then
F1 and F2 are GE-filters of X and B(X) = {1}. Hence F1 and F2

are balanced GE-filters of X. But F1 ∪F2 = {1, b, g} is not a balanced
GE-filter of X since g∗f = b ∈ F1∪F2 and g ∈ F1∪F2 but f /∈ F1∪F2.



VOLUNTARY GE-FILTERS IN GE-ALGEBRAS 39

In the following example, we know that any GE-subalgebra F of a
GE-algebra X, that is, x ∗ y ∈ F for all x, y ∈ F , is not a GE-filter of
X.

Example 3.16. Let X = {1, a, b, c, d} and the binary operation ∗ is
given by the following Cayley table.

∗ 1 a b c d
1 1 a b c d
a 1 1 b c c
b 1 a 1 d d
c 1 a 1 1 1
d 1 1 1 1 1

Then (X, ∗, 1) is a GE-algebra and F = {1, b, d} is a GE-subalgebra of
X. But F is not a GE-filter of X since b ∗ c = d ∈ F and b ∈ F but
c /∈ F .

We provide conditions for a GE-subalgebra to be a GE-filter.

Theorem 3.17. Every GE-subalgebra of a balanced GE-algebra is a
GE-filter.

Proof. Let F be a GE-subalgebra of a balanced GE-algebra X. Then
1 = x ∗ x ∈ F for all x ∈ F . Let x, y ∈ X be such that x ∗ y ∈ F and
x ∈ F . Since x is balanced, we have y = x ∗ y ∈ F . Therefore F is a
GE-filter of X. □

We define a binary operation “+̊” on a GE-algebra X as follows:

+̊ : X ×X → X, (x, y) 7→ (x ∗ y) ∗ y. (3.5)

For every subset F of a GE-algebra X, we define a new subset F ◦ of
X as follows:

F ◦ :=
∩
c∈F

c◦ (3.6)

where c◦ := {x ∈ X | x+̊c = 1}.
It is clear that 1 ∈ F ◦, 1◦ = X, X◦ = {1} and 1, x ∈ x◦ for all

x ∈ X.

Definition 3.18. A GE-algebra X is said to be antisymmetric if the
binary relation “≤” is antisymmetric.
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Example 3.19. Let X = {1, a, b, c} be a set with binary operation ∗
given in the next Cayley table.

∗ 1 a b c
1 1 a b c
a 1 1 1 1
b 1 a 1 c
c 1 a 1 1

It is routine verify that (X, ∗, 1) is an antisymmetric GE-algebra.

Proposition 3.20. Every GE-algebra X satisfies:
(∀x ∈ X)

(
1+̊x = x+̊1 = 1, x+̊x = x

)
. (3.7)

(∀x, y ∈ X)
(
x+̊(x ∗ y) = 1, x+̊(y ∗ x) = y ∗ x

)
. (3.8)

(∀x, y, z ∈ X)(x ≤ y ⇒ x+̊z ≤ y+̊z). (3.9)

If X is antisymmetric, then

(∀a, b ∈ X)(a ≤ b ⇒
→
b ⊆ →

a). (3.10)

If X is commutative, then
(∀x, y ∈ X)(x+̊y = y+̊x). (3.11)

If X is a left exchangeable, then
(∀x, y ∈ X) (3.12)(
x ∗ (x+̊y) = x ∗ (y+̊x) = 1, x+̊(x+̊y) = x+̊y, x+̊(y+̊x) = y+̊x

)
.

Proof. Using (GE1), (GE2) and (2.8) induces the results (3.7) and
(3.8). Let x, y, z ∈ X be such that x ≤ y. Then y ∗ z ≤ x ∗ z by
(2.9), and so x+̊z = (x ∗ z) ∗ z ≤ (y ∗ z) ∗ z = y+̊z. Thus (3.9) is
valid. Assume that X is antisymmetric and a ≤ b for a, b ∈ X. Let
x ∈

→
b . Then 1 = b ∗ x ≤ a ∗ x by (2.9), and thus a ∗ x = 1, that is,

a ≤ x. Hence x ∈ →
a , and therefore

→
b ⊆ →

a which proves (3.10). (3.11)
is straightforward. (3.12) can be induced by using (GE1), (2.4) and
(2.6). □

Proposition 3.21. If X is commutative and antisymmetric GE-algebra,
then every element a ∈ c◦ with a ̸= c is a balanced element of X.

Proof. Let a be an element of c◦ that is a ̸= c. Then 1 = a+̊c = (a∗c)∗c,
i.e., a ∗ c ≤ c. Since X is antisymmetric, it follows fom (2.8) that
a ∗ c = c. Since X is commutative, we have c ∗ a = a. Hence a is a
balanced element of X. □
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In a GE-algebra X, the set F ◦ is not a GE-filter of X for any subset
F of X as shown in the following example.
Example 3.22. Consider the GE-algebra X in Example 3.16 and let
F = {1, a, b}. Then b̊ = {1, a} is a GE-filter of X, but å = {1, b, c} is
not a GE-filter of X since c ∈ å and c ∗ d = 1 ∈ å while d ̸∈ å. Also, if
we take F = {1, a}, then F̊ = 1̊∩ å = X ∩ {1, b, c} = {1, b, c}, which is
not a GE-filter of X.

We find the condition under which F ◦ is a GE-filter for any subset
F of a GE-algebra.
Theorem 3.23. For every subset F of an antisymmetric transitive
GE-algebra X, the set F ◦ is a GE-filter of X.
Proof. Let F be a subset of an antisymmetric transitive GE-algebra X.
Obviously, 1 ∈ F ◦. We first show that

x ∈ F ◦ ⇔ (∀c ∈ F )(x ∗ c = c). (3.13)
If x ∈ F ◦, then x ∈ c◦, i.e., (x ∗ c) ∗ c = x+̊c = 1 for all c ∈ F . Hence
x ∗ c ≤ c. Also, c ≤ x ∗ c by (2.8). Since X is antisymmetric, it follows
that x ∗ c = c for all c ∈ F . Conversely, if x ∗ c = c for all c ∈ F ,
then x+̊c = (x ∗ c) ∗ c = 1, that is, x ∈ c◦ for all c ∈ F . Therefore
x ∈

∩
c∈F

c◦ = F ◦. Let x, y ∈ X be such that x ∗ y ∈ F ◦ and x ∈ F ◦.

Then (x ∗ y) ∗ c = c and x ∗ c = c for all c ∈ F by (3.13). Hence
y ∗ c ≤ (x ∗ y) ∗ (x ∗ c) = (x ∗ y) ∗ c = c. It follows from (2.8) and the
antisymmetry of X that y ∗ c = c for all c ∈ F . Thus y ∈ F ◦, and
therefore F ◦ is a GE-filter of X. □

The following example illustrates Theorem 3.23.
Example 3.24. Consider the GE-algebra X in Example 3.19. It is
routine to verify that X is an antisymmetric transitive GE-algebra.
Then 1◦ = {1, a, b, c}, a◦ = {1, b, c}, b◦ = {1} and c◦ = {1, b}. It can
be easily observed that F ◦ is a GE-filter of X for every subset F of X.
Proposition 3.25. For two subsets F and G of an antisymmetric
transitive GE-algebra X, we have

(i) If F ⊆ G, then G◦ ⊆ F ◦.
(ii) F ⊆ (F ◦)◦.
(iii) F = ((F ◦)◦)◦.
(iv) (F ∪G)◦ = F ◦ ∩G◦.
(v) If F is a GE-filter of X, then F ∩ F ◦ = {1}.
(vi) If F and G are GE-filters of X, then F ∩G = {1} if and only

if F ⊆ G◦.
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Proof. (i) If x ∈ G◦, then x ∈ d◦ and so x+̊d = 1 for all d ∈ G. Since
F ⊆ G, it follows that x+̊d = 1 for all d ∈ F . Hence x ∈ d◦ for all
d ∈ F . Thus x ∈

∩
d∈F

d◦ = F ◦. Therefore G◦ ⊆ F ◦.

(ii) First, (3.6) is equivalent to

F ◦ = {x ∈ X | x+̊c = 1 for all c ∈ F}.

Let a ∈ F . Then x+̊a = 1 for all x ∈ F ◦, and so a ∈ (F ◦)◦ which
shows that (ii) is valid.

(iii) This is straightforward by (i) and (ii).
(iv) Using (i), we have (F ∪ G)◦ ⊆ F ◦ and (F ∪ G)◦ ⊆ G◦. Hence

(F ∪ G)◦ ⊆ F ◦ ∩ G◦. Let x ∈ F ◦ ∩ G◦. Then x ∈ F ◦ and x ∈ G◦

which imply that x+̊c = 1 and x+̊d = 1 for all c ∈ F and d ∈ G. It
follows that x+̊e = 1 for all e ∈ F ∪ G, that is, x ∈ (F ∪ G)◦. Hence
F ◦ ∩G◦ ⊆ (F ∪G)◦. This shows that (iv) is valid.

(v) Suppose that F is a GE-filter of X and let x ∈ F ∩ F ◦. Then
x ∈ F and x ∈ F ◦. Hence x = 1 ∗ x = (x ∗ x) ∗ x = x+̊x = 1, and
therefore F ∩ F ◦ = {1}.

(vi) Assume that F and G are GE-filters of X. If F ∩G = {1}, then
F ⊆ G◦ by the definition of G◦. If F ⊆ G◦, then F ∩G ⊆ G◦∩G = {1}
and thus F ∩G = {1}. □

Question 3.26. In an antisymmetric transitive GE-algebra X, if F is a
GE-filter of X, is F = (F ◦)◦?

The following example shows that the answer to Question 3.26 is
negative.

Example 3.27. Consider the GE-algebra X in Example 3.19. It is
routine to verify that X is an antisymmetric transitive GE-algebra and
F := {1, b} is a GE-filter of X. Then F ◦ = {1} and (F ◦)◦ = {1, a, b, c}.
Hence F ̸= (F ◦)◦.

Definition 3.28. Let X be an antisymmetric transitive GE-algebra.
A GE-filter F of X is said to be voluntary if F = (F ◦)◦.

Example 3.29. (1) {1} and X are voluntary GE-filters in every anti-
symmetric transitive GE-algebra X.
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(2) Let X = {1, a, b, c, d} and the binary operation ∗ is given by the
following Cayley table.

∗ 1 a b c d
1 1 a b c d
a 1 1 b c d
b 1 a 1 1 1
c 1 a b 1 d
d 1 a b c 1

It is routine to verify that X is an antisymmetric transitive GE-algebra
and F = {1, a} is a GE-filter of X. Then F ◦ = {1, b, c, d} and
(F ◦)◦ = {1, a}. Hence F = F ◦◦, and so F is a proper voluntary
GE-filter of X.

In Example 3.27, we examined that any GE-filter may not be a
voluntary GE-filter. So we need to find conditions in which a GE-filter
can be a voluntary GE-filter.

For every elements x and a in a GE-algebra X, we denote
an ∗ x := a ∗ (· · · ∗ (a ∗ (a ∗ x)) · · · ) (3.14)

where a occurs n times.
We discuss the conditions necessary for a GE-filter to be a voluntary

GE-filter.

Theorem 3.30. Let X be an antisymmetric commutative and transi-
tive GE-algebra in which if

x ≤ a ∗ x ≤ a2 ∗ x ≤ · · · ≤ an−a ∗ x ≤ an ∗ x ≤ · · · ,
then there exists a natural number k such that ak−1 ∗ x = ak ∗ x. Then
every GE-filter is a voluntary GE-filter.

Proof. Let F be a GE-filter of X. Then F ⊆ (F ◦)◦ by Proposition
3.25(ii). Let x ∈ X be such that x /∈ F . If there exists a ∈ F such
that a ∗ x ∈ F , then x ∈ F since F is a GE-filter of X. This is a
contradiction, and so a∗x /∈ F for all a ∈ F . If there exists a ∈ F such
that a2∗x ∈ F , then x ∈ F since F is a GE-filter of X. Hence a2∗x /∈ F
for all a ∈ F . By repeating this process, we obtain a sequence {an ∗ x}
with an ∗ x /∈ F . Then

x ≤ a ∗ x ≤ a2 ∗ x ≤ · · · ≤ an−a ∗ x ≤ an ∗ x ≤ · · · ,
and so ak−1 ∗ x = ak ∗ x for some natural number k. It follows that
a∗(ak−1∗x) = ak∗x = ak−1∗x for all a ∈ F . Hence ak−1∗x ∈ F ◦. Since
F ◦∩ (F ◦)◦ = {1}, we know that a∗ (ak−2 ∗x) = ak−1 ∗x /∈ (F ◦)◦. Since
a ∈ F ⊆ (F ◦)◦ and (F ◦)◦ is a GE-filter of X, we get ak−2 ∗ x /∈ (F ◦)◦.
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Repeated implementation of this process induces x /∈ (F ◦)◦. Hence
(F ◦)◦ ⊆ F , and therefore F is a voluntary GE-filter of X. □

Definition 3.31. Let F be a subset of a GE-algebra X. The GE-
filter of X generated by F is denoted by ⟨F ⟩ and is defined to be the
intersection of all GE-filters of X containing F .

Example 3.32. Let X = {1, a, b, c, d, e, f} be a set with the binary
operation “∗” in the following Cayley Table.

∗ 1 a b c d e f
1 1 a b c d e f
a 1 1 1 c e e 1
b 1 a 1 d d d f
c 1 1 b 1 1 1 1
d 1 a 1 1 1 1 f
e 1 a b 1 1 1 1
f 1 a b e d e 1

Then (X, ∗, 1) is a GE-algebra. If we take a subset G = {1, a} of X,
then the GE-filter of X generated by G is ⟨G⟩ = {1, a, b, f}.

The following theorem shows how ⟨F ⟩ is constructed.

Theorem 3.33. If F is a non-empty subset of an antisymmetric left
exchangeable GE-algebra X, then ⟨F ⟩ consists of x’s that satisfy the
following condition:

(∃a1, a2, · · · , an ∈ F ) (an ∗ (· · · ∗ (a2 ∗ (a1 ∗ x)) · · · ) = 1) , (3.15)
that is,
⟨F ⟩ = {x ∈ X | an∗(· · ·∗(a2∗(a1∗x)) · · · ) = 1 for some a1, a2, · · · , an ∈ F}.

Proof. Let
G := {x ∈ X | an ∗ (· · · ∗ (a2 ∗ (a1 ∗x)) · · · ) = 1 for some a1, a2, · · · , an ∈ F}.

Obviously, 1 ∈ G. Let x, y ∈ X be such that x ∗ y ∈ G and x ∈ G.
Then there exist a1, a2, · · · , am, b1, b2, · · · , bn ∈ F such that

am ∗ (· · · ∗ (a2 ∗ (a1 ∗ (x ∗ y))) · · · ) = 1, (3.16)
bn ∗ (· · · ∗ (b2 ∗ (b1 ∗ x)) · · · ) = 1. (3.17)

If (2.4) is used repeatedly, (3.16) changes as follows.
x ∗ (am ∗ (· · · ∗ (a2 ∗ (a1 ∗ y)) · · · )) = 1,

that is,
x ≤ am ∗ (· · · ∗ (a2 ∗ (a1 ∗ y)) · · · ). (3.18)
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If we multiply both sides of (3.18) by b1 from the left, then
b1 ∗ x ≤ b1 ∗ (am ∗ (· · · ∗ (a2 ∗ (a1 ∗ y)) · · · )). (3.19)

If we repeat this process n times, we have
1 = bn ∗ (· · · ∗ (b2 ∗ (b1 ∗ x)) · · · )
≤ bn ∗ (· · · ∗ (b1 ∗ (am ∗ (· · · ∗ (a2 ∗ (a1 ∗ y)) · · · ))) · · · ).

Since X is antisymmetric and x ≤ 1 for all x ∈ X, it follows that
bn ∗ (· · · ∗ (b1 ∗ (am ∗ (· · · ∗ (a2 ∗ (a1 ∗ y)) · · · ))) · · · ) = 1.

Hence y ∈ G, and therefore G is a GE-filter of X. It is clear that
F ⊆ G. Let H be a GE-filter of X containing F . If x ∈ G, then
cn ∗ (· · · ∗ (c2 ∗ (c1 ∗ x)) · · · ) = 1 ∈ H for some c1, c2, · · · , cn ∈ F ⊆ H.
It follows that x ∈ H. Hence G ⊆ H. This shows that G = ⟨F ⟩. □

For any GE-filters F and G of an antisymmetric transitive GE-
algebra X, F ◦ ∪ G◦ may not be a GE-filter of X as shown in the
next example.
Example 3.34. Let X = {1, a, b, c, d, e} and the binary operation ∗ is
given by the following Cayley table.

∗ 1 a b c d e
1 1 a b c d e
a 1 1 b c d e
b 1 a 1 c d d
c 1 1 b 1 1 b
d 1 a b c 1 b
e 1 a 1 c 1 1

Then (X, ∗, 1) is an antisymmetric transitive GE-algebra, and we have
1◦ = X, a◦ = {1, b, d, e}, b◦ = {1, a, c, d}, c◦ = {1, a, b, d, e},
d◦ = {1, a, b}, e◦ = {1, a}. Let F = {1, b} and G = {1, a, c, d}. Then F
and G are GE-filters of X. Now F ◦ = {1, a, c, d} and G◦ = {1, b}. But
F ◦∪G◦ = {1, a, b, c, d} is not a GE-filter of X since d∗e = b ∈ F ◦∪G◦

and d ∈ F ◦ ∪G◦ but e /∈ F ◦ ∪G◦.
Theorem 3.35. Let X be a left exchangeable GE-algebra which is
antisymmetric and transitive in which every GE-filter is voluntary. If
F and G are GE-filters of X, then (F ∩G)◦ = ⟨F ◦ ∪G◦⟩.
Proof. Since F ∩G ⊆ F and F ∩G ⊆ G, we have F ◦ ⊆ (F ∩G)◦ and
G◦ ⊆ (F ∩G)◦ by Proposition 3.25(i). Hence F ◦ ∪G◦ ⊆ (F ∩G)◦, and
so ⟨F ◦ ∪ G◦⟩ ⊆ (F ∩ G)◦. Note that F ◦ ⊆ F ◦ ∪ G◦ ⊆ ⟨F ◦ ∪ G◦⟩ and
G◦ ⊆ F ◦ ∪ G◦ ⊆ ⟨F ◦ ∪ G◦⟩. It follows from Proposition 3.25(i) and
assumption that ⟨F ◦∪G◦⟩◦ ⊆ (F ◦)◦ = F and ⟨F ◦∪G◦⟩◦ ⊆ (G◦)◦ = G.
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Thus ⟨F ◦∪G◦⟩◦ ⊆ F ∩G, and so (F ∩G)◦ ⊆ (⟨F ◦∪G◦⟩◦)◦ = ⟨F ◦∪G◦⟩
by Proposition 3.25(i) and assumption. Therefore

(F ∩G)◦ = ⟨F ◦ ∪G◦⟩.

□
Theorem 3.36. Let X be a left exchangeable GE-algebra which is
antisymmetric and transitive in which every GE-filter is voluntary.
Then ⟨F ⟩ = (F ◦)◦ for every subset F of X.

Proof. Let F be a subset of X. Then F ⊆ (F ◦)◦ by Proposition 3.25(ii).
Since (F ◦)◦ is a GE-filter of X, it follows that ⟨F ⟩ ⊆ (F ◦)◦. Since
F ⊆ ⟨F ⟩, we have ⟨F ⟩◦ ⊆ F ◦ by Proposition 3.25(i). It follows from
the hypothesis and Proposition 3.25(i) that (F ◦)◦ ⊆ (⟨F ⟩◦)◦ = ⟨F ⟩.
Therefore ⟨F ⟩ = (F ◦)◦. □
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VOLUNTARY GE-FILTERS AND FURTHER RESULTS OF
GE-FILTERS IN GE-ALGEBRAS

A. BORUMAND SAEID, A. REZAEI, R. K. BANDARU AND Y. B. JUN

-جبرها GE در -فیلترها GE بیشتر نتایج و داوطلب -فیلترهای GE

جون۴ بای یوانگ بندرو٣، راوی کومار ، رضایی٢ اکبر سعید١، برومند آرشام

ایران کرمان، کرمان، باهنر شهید دانشگاه کامپیوتر، و ریاضی دانشکده محض، ریاضی گروه ١

ایران تهران، نور، پیام دانشگاه ریاضی، گروه ٢

هند تلنگانا، ایالت ،GITM ریاضی، گروه ٣

کره جین جو، سانگ، جیونگ ملی دانشگاه ریاضی، آموزش گروه ۴

GE از استفاده با خارج قسمتی -جبر GE و بررسی جنگجو -فیلترهای GE روی بیشتری خواص
آورده بشود، -فیلتر GE یک مجموعه ی یک این که برای شرایطی همچنین است. شده ساخته -فیلتر
GE متوازن، عنصر مفاهیم است. شده تشریح جنگجو -فیلترهای GE برای توسیع خاصیت است. شده
و شده اند بررسی آن ها خواص و معرفی داوطلب -فیلتر GE و پادمتقارن -جبر GE متوازن، -فیلتر
GE در عنصر یک این که برای شرایطی است. شده ارائه -فیلتر GE یک و -زیرجبر GE یک بین رابطه
-فیلتر GE یک -فیلتر GE یک این که برای لازم شرایط است. شده آورده بشود متوازن عنصر یک -جبر
شرح شده داده مجموعه زیر یک توسط شده تولید -فیلتر GE است. شده گرفته نظر در بشود داوطلب

است. شده مشخص آن شکل و داده

-جبر GE متوازن)، پادمتقارن، چپ، تعویض پذیر تعدی، (جابجایی، -جبر GE کلیدی: کلمات
متوازن. عنصر داوطلب)، متوازن، (جنگجو، -فیلتر GE خارج قسمتی،
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