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A NOTE ON RELATIVE GENERALIZED
COHEN-MACAULAY MODULES

A. GHANBARI DOUST

Abstract. Let a be a proper ideal of a ring R. A finitely gen-
erated R-module M is said to be a-relative generalized Cohen-
Macaulay if fa(M) = cd(a,M). In this note, we introduce a
suitable notion of length of a module to characterize the above
mentioned modules. Also certain syzygy modules over a relative
Cohen-Macaulay ring are studied.

1. Introduction

Throughout this note, R is a commutative Noetherian ring with
identity and a is a proper ideal of R.

Suppose, for a moment, that (R,m) is local and M is a finitely gener-
ated R-module of dimension d > 0. Then M is said to be a generalized
Cohen-Macaulay module if l

(
Hi

m(M)
)
< ∞ for i = 0, . . . , d− 1, where

l denotes the length and Hi
m(M) is the i-th local cohomology module

of M with respect to m.
Clearly, the class of generalized Cohen-Macaulay modules contains

the class of Cohen-Macaulay modules. Indeed generalized Cohen-Mac-
aulay modules enjoy many interesting properties similar to the ones of
Cohen-Macaulay modules. As a generalization of the notion of Cohen-
Macaulay modules, relative Cohen-Macaulay modules were introduced
by Rahro Zargar and Zakeri in [11] and studied in [7], [8], [9], [10]. It
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could be of interest to establish a theory of relative generalized Cohen-
Macaulay modules. Indeed this is done already in [4].

In this note, we continue the study of a-relative generalized Cohen-
Macaulay modules and a-relative Cohen-Macaulay modules. First,
we provide a characterization of relative generalized Cohen-Macaulay
modules in terms of a suitable notion of length of a module which will
be given in Section 2. Next, in Section 3, some properties of syzygy
modules of a finitely generated module are established. Finally, the
relative Cohen-Macaulayness of certain syzygy modules over a relative
Cohen-Macaulay ring are presented.

2. Relative generalized Cohen-Macauly modules

Definitions and Remark 2.1. Let M be a non-zero finitely generated
R-module and let a be an ideal of R.

(i) Cohomological dimension of M with respect to a is defined as

cd(a,M) := sup{i ∈ Z : Hi
a(M) ̸= 0}.

(ii) If M ̸= aM , then M is said to be a-relative Cohen-Macaulay,
a-RCM, if grade(a,M) = cd(a,M).

We say that M is maximal a-RCM if M is a-RCM and
cd(a,M) = cd(a, R).

(iii) Following [1, Definition 9.1.3], the a-finiteness dimension of M ,
fa(M), is defined by

fa(M) = inf{i ∈ N| Hi
a(M) is not finitely generated}(

†
= inf{i ∈ N| a ⊈ Rad

(
AnnR

(
Hi

a(M)
))
}
)
.

(The equality † holds by Faltings’ Local-global Principle Theorem
[6, Satz 1].)

(iv) If c := cd(a,M) > 0, then by [3, Corollary 3.3(i)], the R-
module Hc

a(M) is not finitely generated. So in this case, one
has fa(M) ≤ cd(a,M).

Definition 2.2. Let a be an ideal of R and M be a finitely generated
R-module, we say that M is a-relative generalized Cohen-Macaulay if
cd(a,M) ≤ 0; or cd(a,M) = fa(M).

Definition 2.3. Let a be an ideal of R and M be an R-module. We
say that the length of M with respect to a is finite, if there is a chain
of submodules of M as

0 = M0 ⊆ M1 ⊆ . . . ⊆ Mn = M (∗)
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such that Mi/Mi−1 is a homomorphic image of R/a for all i = 1, . . . , n.
Set

l(a,M) := inf{n ∈ N0| there is a chain of length n as in (*) }.
We call l(a,M), a-relative lenght of M . Clearly, l(a,M) is nonnegative
or +∞.

Remark 2.4. Let l(a,M) = n, then there is a chain of submodules of
M as

0 = M0 ⊆ M1 ⊆ . . . ⊆ Mn = M

such that Mi/Mi−1 is a homomorphic image of R/a for all i = 1, . . . , n.
Thus for i = 1, . . . , n, Mi/Mi−1 is a finitely generated R-module. By
using the exact sequence

0 −→ Mi−1 −→ Mi −→ Mi/Mi−1 −→ 0

for all i = 1, . . . , n, we see that if l(a,M) < ∞ then M is a finitely
generated R-module.

Lemma 2.5. Let L be a submodule of an R-module M . Then
(i) l(a,M) ≤ l(a, L) + l(a,M/L).
(ii) l(a,M/L) ≤ l(a,M).

Proof. (i) Obviously, we may and do assume that t := l(a, L) < ∞ and
k := l(a,M/L) < ∞. Then there is a chain of submodules of L as

0 = L0 ⊆ L1 ⊆ . . . ⊆ Lt = L

such that for all i = 1, . . . , t, Li/Li−1 is a homomorphic image of R/a.
Also, there is a chain of submodules of M/L as

L/L = N0 ⊆ N1 = M1/L ⊆ . . . ⊆ Nk = Mk/L = M/L

such that for all i = 1, . . . , k, Ni/Ni−1 is a homomorphic image of R/a.
Now, using the above two chains yield the chain

0 = L0 ⊆ L1 ⊆ . . . ⊆ Lt = L ⊆ M1 ⊆ . . . ⊆ Mk = M

and hence l(a,M) ≤ t+ k.
(ii) Obviously, we may and do assume that n := l(a,M) < ∞. Then

there is a chain of submodules of M as
0 = M0 ⊆ M1 ⊆ . . . ⊆ Mn = M

such that for all i = 1, . . . , n, Mi/Mi−1 is a homomorphic image of R/a.
Above chain yields the chain

0 ⊆ M1 + L

L
⊆ . . . ⊆ Mn + L

L
=

M

L
.
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Since Mi+L
Mi−1+L

is a homomorphic image of Mi/Mi−1, it follows that
Mi+L

Mi−1+L
is a homomorphic image of R/a. Thus l(a,M/L) ≤ n. □

Lemma 2.6. Let a be an ideal of R and M be an R-module. Consider
the following statements:

(i) There is t ∈ N such that atM = 0.
(ii) l(a,M) < ∞.
(iii) Rad (a+AnnR M) = Rad (AnnR M).

Then (iii) ⇐⇒ (i) and (ii) =⇒ (i). Furthermore, if M is finitely
generated, then (i) =⇒ (ii).

Proof. (i) =⇒ (ii) Let t = 1. If 0 ̸= x ∈ M , then ax = 0 and there is
an epimorphism

R/a −→ R/AnnR(x) ∼= Rx.

Set M1 := Rx. Since a(M/M1) = 0, there is a submodule M2/M1 of
M/M1 and an epimorphism

R/a −→ M2/M1.

Proceeding in this way, we get the following chain of submodules of M

0 = M0 ⊆ M1 ⊆ . . . ⊆ Mn ⊆ . . .

such that the map R/a −→ Mi/Mi−1 is surjective for all i = 1, . . . , n.
Since M is Noetherian, the above chain stops somewhere.

Let t > 1 and assume that the result has been proved for t − 1.
Since at−1(aM) = 0 and a(M/aM) = 0, it follows from the inductive
hypothesis and Lemma 2.5(i) that l(a,M) < ∞.
(ii) =⇒ (i) Let l(a,M) = n. Then there is a chain of submodules of

M as
0 = M1 ⊆ M2 ⊆ . . . ⊆ Mn−1 ⊆ Mn = M,

such that for all i = 1, . . . , n, Mi/Mi−1 is a homomorphic image of R/a.
Since M1 is a homomorphic image of R/a, one has aM1 = 0. Using

the epimorphism R/a −→ Mi/Mi−1 we get

0 = a(
M2

M1

) =
aM2 +M1

M1

.

Thus aM2 ⊆ M1. So a2M2 = 0. continuing this way, yields that
anM = anMn = 0.
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(i) =⇒ (iii) Since atM = 0, we have at ⊆ AnnR M . The following
display

Rad (AnnR M) ⊆ Rad (a+AnnR M)

= Rad (Rad(a) + Rad(AnnR M))

= Rad
(
Rad(at) + Rad(AnnR M)

)
= Rad

(
at +AnnR M

)
= Rad (AnnR M) ,

shows that Rad (a+AnnR M) = Rad (AnnR M).
(iii) =⇒ (i) It is clear. ���� ��� □

Corollary 2.7. Let L be a submodule of an R-module M . If
l(a,M) < ∞, then l(a, L) < ∞.

Proof. Remark 2.4 yields that M is finitely generated. Since
l(a,M) < ∞, by Lemma 2.6, there is t ∈ N such that atM = 0.
Since L ⊆ M , we have atL = 0. So by Lemma 2.6, l(a, L) < ∞. □
Theorem 2.8. Let a be an ideal of R and M be a finitely generated
R-module with c := cd(a,M) > 0. Then the following are equivalent:

(i) M is a-relative generalized Cohen-Macaulay.
(ii) l

(
a,Hi

a(M)
)
< ∞ for all i < c.

Proof. (i) =⇒ (ii) By assumption fa(M) = c. Hence
a ⊆ Rad

(
AnnR

(
Hi

a(M)
))

for all i < c. So there is n ∈ N such that anHi
a(M) = 0 for all i < c.

By Lemma 2.6, l
(
a,Hi

a(M)
)
< ∞ for all i < c.

(ii) =⇒ (i) By Lemma 2.6, there is n ∈ N such that anHi
a(M) = 0

for all i < c. Hence, fa(M) ≥ c. As fa(M) ≤ c, we deduce that
fa(M) = c. □

3. Special relative generalized Cohen-Macaulay modules

Let
F• : . . . Fi

φi−→ Fi−1 −→ . . . −→ F1
φ1−→ F0

φ0−→ M
φ−1−→ 0

be a free resolution of M and Ωi
R(M) := kerφi−1 be the i-th syzygy

module of M for all i ∈ N0.

Lemma 3.1. Let M be a finitely R-module, n a positive integer and
Ωn

R(M) the n-th syzygy of M . Then
grade(a,Ωn

R(M)) ≥ min{n, grade(a, R)}.
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Proof. We do induction on n. If n = 0, it is trivial. If n = 1, consider
the exact sequence

0 → Ω1
R(M) → F0 → M → 0.

By [2, Proposition 1.2.9],

grade(a,Ω1
R(M)) ≥ min{grade(a, F0), grade(a,M) + 1}

≥ min{grade(a, R), 0 + 1}.

Next, assume that the result has been proved for n− 1. Consider the
exact sequence

0 → Ωn
R(M) → Fn−1 → Ωn−1

R (M) → 0.

By [2, Proposition 1.2.9] and induction hypothesis, one has

grade(a,Ωn
R(M)) ≥ min{grade(a, Fn−1), grade(a,Ω

n−1
R (M)) + 1}

≥ min{grade(a, R),min{grade(a, R), n− 1}+ 1}.

Case1: If grade(a, R) ≥ n− 1, then

min{grade(a, R),min{grade(a, R), n− 1}+ 1} = min{grade(a, R), n}.

Case 2: If grade(a,R) < n− 1, then

min{grade(a, R),min{grade(a, R), n− 1}+ 1} = grade(a, R)

= min{grade(a, R), n}.

This completes the inductive step. □

Let a be an ideal of R and M , N be two finitely generated R-
modules such that SuppR N ⊆ SuppR M . Then, by [5, Theorem 2.2],
cd(a, N) ≤ cd(a,M). In particular if SuppR N = SuppR M , then
cd(a, N) = cd(a,M). In the rest of the paper, we shall use this several
times without any further comment.

Lemma 3.2. Let R be an a-RCM ring with cd(a, R) = c and M be a
finitely generated R-module. Then for every i ≥ c, either
Ωi

R(M) = aΩi
R(M) or Ωi

R(M) is maximal a-RCM.

Proof. Let i ≥ c and assume that Ωi
R(M) ̸= aΩi

R(M). Then,

grade(a,Ωi
R(M)) ≤ cd(a,Ωi

R(M)).
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By Lemma 3.1,
grade(a,Ωi

R(M))

≥ min{i, grade(a, R)}
= cd(a, R)

≥ cd(a,Ωi
R(M))

≥ grade(a,Ωi
R(M)).

Thus cd(a, R) = cd(a,Ωi
R(M)) = grade(a,Ωi

R(M)). □
Remark 3.3. Let N be an a-RCM R-module and M a finitely gener-
ated R-module. If M ̸= aM and SuppR M ⊆ SuppR N , then

grade(a,M) ≤ grade(a, N).

Proof. One has
grade(a,M) ≤ cd(a,M) ≤ cd(a, N) = grade(a, N).

□
Proposition 3.4. Let a be a proper ideal of R and M be a non-zero
finitely generated R-module. If r = grade(a,M) ≤ grade(a, R) = s,
then grade(a,Ωi

R(M)) = r + i for all 0 ≤ i ≤ s − r. In particular,
pdR M ≥ grade(a, R)− grade(a,M).
Proof. The exact sequence 0 −→ Ωi+1

R (M) −→ Fi −→ Ωi
R(M) −→ 0

implies the following exact sequences:

0 −→ Exts−1
R (

R

a
,Ωi

R(M)) −→ ExtsR(
R

a
,Ωi+1

R (M)), (1)

and

0 −→ Extj−1
R (

R

a
,Ωi

R(M)) −→ ExtjR(
R

a
,Ωi+1

R (M)) −→ 0 (j < s).

(2)
We use induction on i. If i = 0, the claim is trivial because
Ω0

R(M) = M . Assume that 0 < i + 1 ≤ s − r and the result has
been proved for i. If j < r + i + 1 ≤ s, then j − 1 < r + i, and so
by the induction hypothesis, Extj−1

R (R
a
,Ωi

R(M)) = 0. Thus the exact
sequence (2) implies that ExtjR(Ra ,Ω

i+1
R (M)) = 0.

Now, we prove that Extr+i+1
R (R

a
,Ωi+1

R (M)) ̸= 0. If r + i + 1 < s, by
the induction hypothesis Extr+i

R (R
a
,Ωi

R(M)) ̸= 0. So the exact sequence
(2) implies that Extr+i+1

R (R
a
,Ωi+1

R (M)) ̸= 0. If r+ i+1 = s, then by the
induction hypothesis Extr+i

R (R
a
,Ωi

R(M)) = Exts−1
R (R

a
,Ωi

R(M)) ̸= 0. So
the exact sequence (1) implies that Extr+i+1

R (R
a
,Ωi+1

R (M)) ̸= 0. Hence
grade(a,Ωi+1

R (M)) = r + i+ 1. □
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Corollary 3.5. Let M be a non-zero finitely generated R-module. If
M is a-torsion, then grade(a,Ωi

R(M)) = i for all 0 ≤ i ≤ grade(a, R).
In particular, pdR M ≥ grade(a, R).

Proof. Note that 0 = grade(a,M) ≤ grade(a, R), so the claim follows
by Proposition 3.4. □
Theorem 3.6. Let R be an a-RCM ring and M an a-torsion R-module.
Assume that c := cd(a, R) > 0 and

F• : ... → F1 → F0 → M → 0

be a free resolution of M , then
(i) For every i < c, one has

Hi
a(Ω

j
R(M)) =

{
M (if i = j)

0 (if i ̸= j)

(ii) For every 1 ≤ j ≤ c− 1, the sequence
0 → Hc

a(Ω
j
R(M)) → Hc

a(Fj−1) → Hc
a(Ω

j−1
R (M)) → 0

is exact. Also the sequence
0 −→ M → Hc

a(Ω
c
R(M)) → Hc

a(Fc−1) → Hc
a(Ω

c−1
R (M)) → 0

is exact.

(iii) for every 1 ≤ j ≤ c− 1 the sequences
0 → Hc

a(Ω
j
R(M)) → Hc

a(Fj−1) → ... → Hc
a(F0) → 0

and
0 → M → Hc

a(Ω
c
R(M)) → Hc

a(Fc−1) → ... → Hc
a(F0) → 0

are exact.

Proof. (i) Let i < c. Note that since R is a-RCM, Hi
a(Fj) = 0 for all

j ∈ N0.
We use induction on j. For j = 0, the claim is trivial. Now, Let

j = 1. The exact sequence
0 → Ω1

R(M) → F0 → M → 0

implies exact sequences
0 −→ H0

a

(
Ω1

R(M)
)
−→ H0

a(F0) = 0

0 = H0
a(F0) −→ H0

a(M) −→ H1
a(Ω

1
R(M)) −→ H1

a(F0) = 0

and
0 = Hi−1

a (M) −→ Hi
a(Ω

1
R(M)) −→ Hi

a(F0) = 0
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for all 1 < i < c. The above exact sequences show that
H1

a

(
Ω1

R(M)
) ∼= H0

a(M) = M

and for all 1 < i < c, Hi
a(Ω

1
R(M)) = 0.

Let j > 1 and the result has been proved for j − 1. The exact
sequence

0 → Ωj
R(M) → Fj−1 → Ωj−1

R (M) → 0

implies the exact sequence
0 = Hi−1

a (Fj−1) −→ Hi−1
a (Ωj−1

R (M)) −→ Hi
a(Ω

j
R(M)) −→ Hi

a(Fj−1) = 0.

Hence Hi−1
a (Ωj−1

R (M)) ∼= Hi
a(Ω

j
R(M)). The result follows by induction

hypothesis.
(ii) The exact sequence

0 → Ωj
R(M) → Fj−1 → Ωj−1

R (M) → 0

implies the exact sequence
Hc−1

a (Ωj−1
R (M)) −→ Hc

a(Ω
j
R(M)) −→ Hc

a(Fj−1)

−→ Hc
a(Ω

j−1
R (M)) −→ Hc+1

a (Ωj
R(M)).

By (i), Hc−1
a (Ωj−1

R (M)) = 0 = Hc+1
a (Ωj−1

R (M)) which yields the asser-
tion.

The last assertion follows by applying the functor Hi
a(−) on the exact

sequence
0 → Ωc

R(M) → Fc−1 → Ωc−1
R (M) → 0.

(iii) It follows by (ii). □

Corollary 3.7. Let R be an a-RCM ring with c := cd(a, R) > 0, and
M a non-zero finitely generated a-torsion R-module. Then for every
i ≥ 0, either Ωi

R(M) = aΩi
R(M) or cd(a,Ωi

R(M)) = c.

Proof. We may and do assume that Ωi
R(M) ̸= aΩi

R(M). If i ≥ c, then
by Lemma 3.2, Ωi

R(M) is maximal a-RCM and so the assertion follows
in this case. Therefore we may assume that 0 < i < c.

By Theorem 3.6, Hj
a (Ω

i
R(M)) is finitely generated for j < c. So

c ≤ fa (Ω
i
R(M)). By Lemma 3.1 and Definitions and Remark 2.1, we

have
c ≤ fa

(
Ωi

R(M)
)
≤ cd

(
a,Ωi

R(M)
)
≤ c

Hence cd (a,Ωi
R(M)) = c. □

It is clear that every a-RCM module is a-relative generalized Cohen-
Macaulay. But the converse is not true.
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Example 3.8. Let R be an a-RCM ring with c := cd(a,R) > 0 and
M a non-zero finitely generated a-torsion R-module. Then

Ω1
R(M),Ω2

R(M), . . . ,Ωc−1
R (M)

are not a-RCM but they are a-relative generalized Cohen-Macaulay.
Proof. Let 1 ≤ i < c. By Corollary 3.5, grade (a,Ωi

R(M)) = i and by
Corollary 3.7 cd (a,Ωi

R(M)) = c. So Ωi
R(M) is not a-RCM. But by

Theorem 3.6, c ≤ fa (Ω
i
R(M)) ≤ cd(a,Ωi

R(M)) ≤ c. Hence Ωi
R(M) is

a-relative generalized Cohen-Macaulay. □
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نسبی تعميم يافته كوهن-مكالی مدول های درباره يادداشتی

دوست قنبری اكرم

ایران تهران، خوارزمی، دانشگاه كامپيوتر، و رياضی علوم دانشكده

را M متناهی مولد R-مدول باشد. R جابه جايی و نوتری حلقه از سره ايده آل يك a كنيم فرض
به fa(M) و cd(a,M) كه ،fa(M) = cd(a,M) اگر می ناميم نسبی تعميم يافته كوهن-مكالی
كوهن-مكالی مدول های نسبی، طول مفهوم معرفی با هستند. بعد متناهی و بعدكو همولوژی بيانگر ترتيب
مدول های سی زی جی  مدول های از ويژگی هايی ادامه در می كنيم. مشخص سازی را نسبی تعميم يافته

می دهيم. قرار مطالعه مورد نسبی كوهن-مكالی حلقه روی را خاصی

نسبی. تعميم                 يافته كوهن-مكالی بعد متناهی، بعد كوهمولوژی، کلیدی: کلمات
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