Journal of Algebraic Systems

Vol. 10, No. 1, (2022), pp 79-93

H-SETS AND APPLICATIONS ON H_{v}-GROUPS

S. OSTADHADI-DEHKORDI*, T. VOUGIOUKLIS AND K. HILA

Abstract

In this paper, the notion of H-sets on H_{v}-groups is introduced and some related properties are investigated and some examples are given. In this regards, the concept of regular, strongly regular relations and homomorphism of H-sets are adopted. Also, the classical isomorphism theorems of groups are generalized to H sets on H_{v}-groups. Finally, by using these concepts tensor product on H_{v}-groups is introduced and proved that the tensor product exists and is unique up to isomorphism.

1. Introduction

The concept of hypergroup was introduced in 1934 by a French mathematician F. Marty [3], at the $8^{\text {th }}$ Congress of Scandinavian Mathematicians. He published some notes on hypergroups, using them in different contexts such as algebraic functions, rational fractions and non commutative groups. One of these hyperstructures is H_{v}-structure [1, 2, 9] which is the largest class of hyperstructures. This concept was introduced by Vougiouklis in 1990 [9] at the fourth AHA congress. The concept of an H_{v}-structure is a generalization of the well-known algebraic hyperstructures such as hypergroup, hyperring, hypermodule and so on. Also, some axioms concerning the hyperstructures are replaced by their corresponding weak axioms $[5,7,9,6,10,11,8]$.

[^0]The fundamental relations are main tools to study hyperstructures ($\beta^{*}, \gamma^{*}, \epsilon^{*}$ etc.), which are defined in H_{v}-structures, as the smallest equivalences so that the quotients would be ordinary structures. Motivation to introduce H_{v}-structures:
(1) The quotient of a group with respect to an invariant subgroup is a group.
(2) Marty construct, the quotient of a group with respect to any subgroup is a hypergroup.
(3) The quotient of a group with respect to any partition (or equivalently to any equivalence relation) is an H_{v}-group.
The notion of a group acting on a set is one which links abstract algebra to nearly branch of mathematics such as linear algebra, and differential equation. Another application of group actions, the Sylow Theorems, which are essential to the classification of groups. The motivation for such an investigation is to generalize the concept of group acting on a set. We will introduce the notion of H-sets on H_{v}-groups that is a new hyperstructure and we investigate some property of this hyperstructure. Also, by the concept H-set, we define tensor product on H_{v}-groups that is a non-additive classical construction such as ring and module theory. Finally, we prove that tensor product exists and is unique up to isomorphism.

2. H-SETS

In this section, we present some notions about the H_{v}-groups and new concept left(right)-set on H_{v}-groups. Also, we construct quotient left(right)-sets by regular(strongly) equivalence relation and isomorphism theorems.

Definition 2.1. Let H be a nonempty set and $\circ: H \times H \longrightarrow P^{*}(H)$ be a hyperoperation. Then, H is called a canonical H_{v}-group, when the following conditions hold:
(1) for every $x, y, z \in H, x \circ(y \circ z) \cap(x \circ y) \circ z \neq \emptyset$,
(2) there exists $e \in H$, called identity, such that $x \circ e=e \circ x=x$,
(3) for every $x \in H$ there exists a unique element $x^{\prime} \in H$ and is called inverse such that $e \in\left(x \circ x^{\prime}\right) \cap\left(x^{\prime} \circ x\right)$,
(4) $z \in x \circ y$, implies that $y \in x^{\prime} \circ z$ and $x \in z \circ y^{\prime}$.

A nonempty subset N of a canonical H_{v}-hypergroup (H, \circ) is called subcanonical H_{v}-group if (N, \circ) is a canonical H_{v}-group.

Let H be a canonical H_{v}-group and N be a subcanonical H_{v}-group of H. Then, we define the equivalence relation \equiv on H as follows:

$$
h_{1} \equiv h_{2} \Longleftrightarrow h_{1} \in h_{2}+N .
$$

This relation is denoted by N^{*} and $H^{*}(h)$ the equivalence class of the element h.

Definition 2.2 ([2], p.187). Let H be a nonempty set and ○ : H $\quad H \longrightarrow P^{*}(H)$ be a hyperoperation on H. Then, the hyperstructure (H, \circ) is called H_{v}-group if
(1) $x \circ(y \circ z) \cap(x \circ y) \circ z \neq \emptyset$,
(2) $x \circ H=H \circ x=H$,
where $x, y, z \in H$. An H_{v}-group (H, \circ) is called commutative, when $x \circ y=y \circ x$, for every x and y of H.

Example 2.3. Let \mathbb{R} be the set of real numbers and $M_{n}(\mathbb{R})$ be the set of all $n \times n$ matrices. Then, $M_{n}(\mathbb{R})$ is an $H_{v^{-}}$group by following hyperoperation:

$$
\left(a_{i j}\right) \oplus\left(b_{i j}\right)=\left\{\left(r a_{i j}+r b_{i j}\right): r \in[0,1]\right\}
$$

We have,

$$
\begin{aligned}
& \left(a_{i j}\right) \oplus\left(\left(b_{i j}\right) \oplus\left(c_{i j}\right)\right)=\left\{\left(r a_{i j}+r m b_{i j}+r m c_{i j}\right)_{1 \leq i, j \leq n}: r, m \in[0,1]\right\}, \\
& \left(\left(a_{i j}\right) \oplus\left(\left(b_{i j}\right)\right) \oplus\left(c_{i j}\right)=\left\{\left(t n a_{i j}+t n b_{i j}+t c_{i j}\right)_{1 \leq i, j \leq n}: t, n \in[0,1]\right\} .\right.
\end{aligned}
$$

If $r=t=0$, then

$$
\left(0_{i j}\right) \subseteq\left(a_{i j}\right) \oplus\left(\left(b_{i j}\right) \oplus\left(c_{i j}\right)\right) \cap\left(\left(a_{i j}\right) \oplus\left(\left(b_{i j}\right)\right) \oplus\left(c_{i j}\right)\right.
$$

Also, we have the reproduction axiom.
Definition 2.4. Let (H, \circ) be an $H_{v^{-}}$group with identity and X be a nonempty set. Then, we say that X is a left H-set, if there is a hyperoperation $\mu: H \times X \longrightarrow P^{*}(X)$ from $H \times X$ into $P^{*}(X)$ with the properties:
(1) $\mu\left(h_{1} \circ h_{2}, x\right) \cap \mu\left(h_{1}, \mu\left(h_{2}, x\right)\right) \neq \emptyset$,
(2) $x \in \mu(e, x)$,
where $x \in X$ and $h_{1}, h_{2} \in H$ and

$$
\mu\left(h_{1} \circ h_{2}, x\right)=\bigcup_{t \in h_{1} \circ h_{2}} \mu(t, x)
$$

Let e be a scalar identity of H and $x=\mu(e, x)$, for every $x \in X$. Then, we say that X is a left H-set with unit. An element $h \in H$ is called scalar, when for every $x \in X$, the set $\mu(h, x)$ has only one element.

Example 2.5. Let S be a nonempty set and $\left\{A_{x}\right\}_{x \in H}$ be a partition of S, where (H, \circ) is an H_{v}-group. Then, S is an H_{v}-group by following hyperoperation:

$$
a \otimes b=\bigcup_{t \in x \circ y} A_{t}
$$

where $a \in A_{x}$ and $b \in A_{y}$. Also, H is a left S-set by following hyperoperation:

$$
\begin{aligned}
\mu: S \times H & \longrightarrow P^{*}(H) \\
(a, h) & \longrightarrow x \otimes h .
\end{aligned}
$$

Example 2.6. Let (H, \circ) be a canonical H_{v}-group. Then, H is a H-set as follows:

$$
\begin{aligned}
\mu: H \times H & \longrightarrow P^{*}(H) \\
(x, h) & \longrightarrow x \circ h \circ x^{\prime},
\end{aligned}
$$

where x^{\prime} is an inverse of x.
Example 2.7. Let (H, \circ) be an H_{v}-group and ρ be a regular relation on H. Then, H / ρ is a left H-set as follows:

$$
\begin{aligned}
\mu: H \times H / \rho & \longrightarrow P^{*}(H / \rho) \\
(h, \rho(x)) & \longrightarrow\{\rho(t): t \in h \circ x\} .
\end{aligned}
$$

Example 2.8. Let $(H,+)$ be a canonical H_{v}-group and N be a sub H_{v}-group of H. Then, we define the relation \equiv on H as follows:

$$
x \equiv y \Longleftrightarrow(x-y) \cap N \neq \emptyset .
$$

This relation is equivalence on H. We define the equivalence class $x \in H$ by $N^{*}(x)$. Hence $H / N^{*}=\left\{N^{*}(x): x \in H\right\}$ is a left H-set by following hypeoperation:

$$
\begin{array}{r}
\mu: H \times H / N^{*} \longrightarrow P^{*}\left(H / N^{*}\right) \\
\left(h, N^{*}(x)\right) \longrightarrow\left\{N^{*}(t): t \in h+x\right\} .
\end{array}
$$

In the same way, we can construct a right H-set. Also, we say that X is an $\left(H_{1}, H_{2}\right)$-set, when it is a left H_{1}-set and a right H_{2}-set and

$$
\mu_{2}\left(\mu_{1}\left(h_{1}, x\right), h_{2}\right)=\mu_{1}\left(h_{1}, \mu\left(x, h_{2}\right)\right),
$$

where $h_{1} \in H_{1}, h_{2} \in H_{2}$ and $x \in X$.
If H be a commutative H_{v}-group, then there is no distinction between a left and right H-sets.

It is clear that the cartesian product $X \times Y$ of a left H_{1}-set X and a right H_{2}-set Y is an $\left(H_{1}, H_{2}\right)$-set by the following hyperoperations:

$$
\begin{aligned}
& \bar{\mu}_{1}\left(h_{1},(x, y)\right)=\left\{(t, y): t \in \mu_{1}\left(h_{1}, x\right)\right\}, \\
& \bar{\mu}_{2}\left((x, y), h_{2}\right)=\left\{(x, t): t \in \mu_{2}\left(y, h_{2}\right)\right\} .
\end{aligned}
$$

Definition 2.9. Let X and Y be left H-sets and $\varphi: X \longrightarrow Y$ be a map. Then, we say that φ is a morphism, when

$$
\varphi\left(\mu_{1}(h, x)\right)=\mu_{2}(h, \varphi(x)),
$$

where $x \in X$ and $h \in H$.
Let ρ be an equivalence relation on X and A and B be nonempty subset of X. Then, we define

$$
(A, B) \in \bar{\rho} \Longleftrightarrow \forall a \in A \exists b \in B:(a, b) \in \rho
$$

and

$$
\forall b \in B \exists a \in A:(a, b) \in \rho
$$

Also,

$$
(A, B) \in \overline{\bar{\rho}} \Longleftrightarrow(a, b) \in \rho, \text { for all } a \in A, b \in B
$$

Definition 2.10. Let X be a left H-set and ρ be an equivalence relation on X. Then, we say that ρ is regular on X, when

$$
(x, y) \in \rho \Longrightarrow\left(\mu\left(h_{1}, x\right), \mu\left(h_{2}, x\right)\right) \in \bar{\rho},
$$

and is called strongly regular, when

$$
(x, y) \in \rho \Longrightarrow\left(\mu\left(h_{1}, x\right), \mu\left(h_{2}, x\right)\right) \in \overline{\bar{\rho}} .
$$

By using a certain type of equivalence relations, we can construct quotient left H-sets as follows:

Theorem 2.11. Let X be a left H-set and ρ be a regular relation on X. Then, X / ρ is a left H-set by following hyperoperation:

$$
\widehat{\mu}(h, \rho(x))=\{\rho(t): t \in \mu(h, x)\} .
$$

and $\pi: X \longrightarrow X / \rho$ is a morphism
Proof. Suppose that $\rho\left(x_{1}\right)=\rho\left(x_{2}\right)$. Let $\left(x_{1}, x_{2}\right) \in \rho$ and since ρ is regular, we have $\left(\mu\left(h, x_{1}\right), \mu\left(h, x_{2}\right)\right) \in \bar{\rho}$. This implies that for every $t_{1} \in \mu\left(h, x_{1}\right)$, there exists $t_{2} \in \mu\left(h, x_{2}\right)$ such that $\left(t_{1}, t_{2}\right) \in \rho$. Hence $\widehat{\mu}\left(h, \rho\left(x_{1}\right)\right) \subseteq \widehat{\mu}\left(h, \rho\left(x_{2}\right)\right)$. In the same way, $\widehat{\mu}\left(h, \rho\left(x_{2}\right)\right) \subseteq \widehat{\mu}\left(h, \rho\left(x_{1}\right)\right)$. Thus, the hyperoperation defined on X / ρ is well-defined. Also,

$$
\begin{aligned}
\widehat{\mu}\left(h_{1}, \widehat{\mu}\left(h_{2}, \rho(x)\right)=\widehat{\mu}\left(h_{1},\left\{\rho(t): t \in \mu\left(h_{2}, x\right)\right\}\right)\right. & =\bigcup_{t \in \mu\left(h_{2}, x\right)} \widehat{\mu}\left(h_{1}, \rho(t)\right) \\
& =\bigcup_{t \in \mu\left(h_{2}, x\right), t_{1} \in \mu\left(h_{1}, t\right)} \rho\left(t_{1}\right) \\
& =\bigcup_{t_{1} \in \mu\left(h_{1}, \mu\left(h_{2}, x\right)\right)} \rho\left(t_{1}\right) .
\end{aligned}
$$

By a similar argument, we have

$$
\widehat{\mu}\left(h_{1} \circ h_{2}, \rho(x)\right)=\bigcup_{t_{1} \in \mu\left(h_{1} \circ h_{2}, x\right)} \rho\left(t_{1}\right) .
$$

Also, $\mu\left(h_{1}, \mu\left(h_{2}, x\right)\right) \cap \mu\left(h_{1} \circ h_{2}, x\right) \neq \emptyset$, implies that

$$
\widehat{\mu}\left(h_{1}, \widehat{\mu}\left(h_{2}, \rho(x)\right) \cap \widehat{\mu}\left(h_{1} \circ h_{2}, \rho(x)\right) \neq \emptyset .\right.
$$

Also,

$$
\rho(x) \in \widehat{\mu}(e, \rho(x))=\{\rho(t): t \in \mu(e, x)\}
$$

Therefore, X / ρ is a left H-set. Also,

$$
\begin{aligned}
\pi(\mu(h, x))=\{\rho(t): t \in \mu(h, x)\} & =\widehat{\mu}(t, \rho(x)) \\
& =\widehat{\mu}(t, \pi(x))
\end{aligned}
$$

Hence, π is a morphism and this completes the proof.
Theorem 2.12. Let X and Y be left H-sets and $\varphi: X \longrightarrow Y$ be a morphism. Then, the relation

$$
\operatorname{ker} \varphi=\left\{\left(x_{1}, x_{2}\right) \in X \times X: \varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)\right\}
$$

is a regular relation on X and there is a monomorphism $\widehat{\varphi}: X / \operatorname{ker} \varphi \longrightarrow Y$ such that $\operatorname{im} \widehat{\varphi}=i m \varphi$ and $\widehat{\varphi} \circ \pi=\varphi$, where $\pi: X \longrightarrow X /$ ker φ is a natural map.

Proof. Suppose that $\left(x_{1}, x_{2}\right) \in \operatorname{ker} \varphi$. Hence $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)$. This implies that for every $h \in H$,

$$
\varphi\left(\mu\left(h, x_{1}\right)\right)=\mu\left(h, \varphi\left(x_{1}\right)\right)=\mu\left(h, \varphi\left(x_{2}\right)\right)=\varphi\left(\mu\left(h, x_{2}\right)\right),
$$

and for every $t_{1} \in \mu\left(h, x_{1}\right)$, there exists $t_{2} \in \mu\left(h, x_{2}\right)$ such that $\varphi\left(t_{1}\right)=\varphi\left(t_{2}\right)$. Also, for every $t_{2} \in \mu\left(h, x_{2}\right)$ there exists $t_{1} \in \mu\left(h, x_{1}\right)$ such that $\left(t_{1}, t_{2}\right) \in \operatorname{ker} \varphi$. Thus, the relation $\operatorname{ker} \varphi$ is regular. Let us denote ker φ by k. We define $\widehat{\varphi}: X / \operatorname{ker} \varphi \longrightarrow Y$ defined by $\widehat{\varphi}(k(x))=\varphi(x)$, where $x \in X$. Then, $\widehat{\varphi}$ is both well-defined and one to one, since

$$
k\left(x_{1}\right)=k\left(x_{2}\right) \Longleftrightarrow\left(x_{1}, x_{2}\right) \in k \Longleftrightarrow \varphi\left(x_{1}\right)=\varphi\left(x_{2}\right) .
$$

Also, for every $x \in X$ and $h \in H$,

$$
\begin{aligned}
\widehat{\varphi}(\widehat{\mu}(h, k(x))=\widehat{\varphi}(\{k(t): t \in \mu(h, x)\}) & =\{\varphi(t): t \in \mu(h, x)\} \\
& =\varphi(\mu(h, x)) \\
& =\mu(h, \varphi(x)) \\
& =\mu(h, \widehat{\varphi}(k(x)) .
\end{aligned}
$$

Hence $\widehat{\varphi}$ is a morphism. Clearly, $\operatorname{im}(\widehat{\varphi})=i m \varphi$ and $\widehat{\varphi} \circ \pi=\varphi$.
Let X be a left H-set, σ_{1} and σ_{2} be regular relations on X such that $\sigma_{1} \subseteq \sigma_{2}$. Then, there is a morphism α from X / σ_{1} onto X / σ_{2} such that $\alpha \circ \pi_{1}=\pi_{2}$, where $\pi_{1}: X \longrightarrow X / \sigma_{1}$ and $\pi: X \longrightarrow X / \sigma_{2}$ are natural morphisms. The morphism α given by

$$
\alpha\left(\sigma_{1}(x)\right)=\sigma_{2}(x), x \in X
$$

and the regular relation ker α on X / σ_{1} given by

$$
\operatorname{ker} \alpha=\left\{\left(\sigma_{1}(a), \sigma_{1}(b)\right):(a, b) \in \sigma_{2}\right\} .
$$

We write ker α by σ_{1} / σ_{2}.
Theorem 2.13. Let X be a left H-set, σ_{1}, σ_{2} be regular relations such that $\sigma_{1} \subseteq \sigma_{2}$. Then, σ_{1} / σ_{2} is a regular relation on X / σ_{2} and

$$
\left(X / \sigma_{2}\right) /\left(\sigma_{1} / \sigma_{2}\right) \cong\left(X / \sigma_{1}\right)
$$

Proof. The proof is straightforward.
Definition 2.14. Let X be a left H-set on a canonical $H_{v^{-}}$-group H. Then, X is called invertible, when

$$
x \in \mu(h, y) \Longrightarrow y \in \mu\left(h^{\prime}, x\right)
$$

where $x, y \in X$.
Let X be an invertible left H-set. Then, we define an equivalence relation \sim on X as follows:

$$
x \sim y \Longleftrightarrow \exists h \in H: x \in \mu(h, y) .
$$

The equivalence class $x \in X$ is called orbital and denoted by $\operatorname{orb}(x)$. Hence $X=\bigcup_{x \in X} \operatorname{orb}(x)$ and when X is a finite set $|X|=\sum_{x \in X}|\operatorname{orb}(x)|$. Also, the stabilizer $x \in X$ is defined as follows:

$$
\operatorname{stab}(x)=\{g \in H: g \in \mu(g, x)\}
$$

Example 2.15. Let X be a left H-set and ρ be a strongly regular relation on X. Then, X / ρ is a H-set as follows:

$$
\begin{aligned}
\widehat{\mu}: H \times X / \rho & \longrightarrow P^{*}(X / \rho) \\
(h, \rho(x)) & \longrightarrow\{\rho(t): t \in \mu(h, x)\},
\end{aligned}
$$

where $\rho(x) \in X / \rho$ and $h \in H$. Since ρ is a strongly regular relation, $|\widehat{\mu}(h, \rho(x))|=1$. Hence,

$$
\begin{aligned}
\operatorname{orb}(\rho(x)) & =\{\rho(t): t \in \mu(h, x), h \in H\} \\
\operatorname{stab}(\rho(x)) & =\{h \in H: \rho(x)=\widehat{\mu}(h, \rho(x))\} .
\end{aligned}
$$

Proposition 2.16. Let X be a left H-set on canonical H_{v}-group H and ρ be a strongly regular relation on X. Then, $\operatorname{stab}(\rho(x))$ is a H_{v}-subgroup of H.
Proof. Suppose that $h_{1}, h_{2} \in \operatorname{stab}(\rho(x))$. Hence, $\rho(x)=\widehat{\mu}\left(h_{1}, \rho(x)\right)$ and $\rho(x)=\widehat{\mu}\left(h_{2}, \rho(x)\right)$. This implies that

$$
\widehat{\mu}\left(h_{1} \circ h_{2}, \rho(x)\right) \cap \widehat{\mu}\left(h_{1}, \widehat{\mu}\left(h_{2}, \rho(x)\right) \neq \emptyset .\right.
$$

Thus,

$$
\widehat{\mu}\left(h_{1} \circ h_{2}, \rho(x)\right)=\widehat{\mu}\left(h_{1}, \widehat{\mu}\left(h_{2}, \rho(x)\right)=\widehat{\mu}\left(h_{1}, \rho(x)\right)=\rho(x) .\right.
$$

Then, for every $h \in h_{1} \circ h_{2}, \widehat{\mu}(h, \rho(x))=\rho(x)$ and $h_{1} \circ h_{2} \subseteq \operatorname{stab}(\rho(x))$. Also, we can see $\operatorname{stab}(\rho(x))$ is closed with respect to the inverse.
Theorem 2.17. Let X be a left H-set on commutative canonical $H_{v^{-}}$ group $(H,+)$ and ρ be a strongly regular relation on X. Then,

$$
|\operatorname{orb}(\rho(x))|=\left|H / S^{*}\right|,
$$

where $S=\operatorname{stab}(\rho(x))$.
Proof. Suppose that $\varphi: H / S^{*} \longrightarrow \operatorname{orb}(\rho(x))$ defined by

$$
\varphi\left(S^{*}(h)\right)=\widehat{\mu}(h, \rho(x)) .
$$

Let $S^{*}\left(h_{1}\right)=S^{*}\left(h_{2}\right)$. Then, $h_{1} \in h_{2}+s$, for some $s \in \operatorname{stab}(\rho(x))$ and

$$
\left.\widehat{\mu}\left(h_{1}, \rho(x)\right)\right) \subseteq \widehat{\mu}\left(h_{2}+s, \rho(x)\right)=\widehat{\mu}\left(h_{2}, \widehat{\mu}(s, \rho(x))=\widehat{\mu}\left(h_{2}, \rho(x)\right) .\right.
$$

Hence $\left.\widehat{\mu}\left(h_{1}, \rho(x)\right)\right)=\widehat{\mu}\left(h_{2}, \rho(x)\right)$ and φ is well-defined. Also, $\varphi\left(S^{*}\left(h_{1}\right)\right)=\varphi\left(S^{*}\left(h_{2}\right)\right)$, implies that

$$
\begin{aligned}
\rho(x)=\widehat{\mu}(0, \rho(x)) \subseteq \widehat{\mu}\left(h_{1}-h_{1}, \rho(x)\right) & =\widehat{\mu}\left(-h_{1}, \widehat{\mu}\left(h_{1}, \rho(x)\right)\right. \\
& =\widehat{\mu}\left(-h_{1}, \widehat{\mu}\left(h_{2}, \rho(x)\right)\right. \\
& =\widehat{\mu}\left(h_{2}-h_{1}, \rho(x)\right) .
\end{aligned}
$$

Hence, for some $s \in h_{2}-h_{1}$ such that $\rho(x)=\widehat{\mu}(s, \rho(x))$. Thus, $s \in \operatorname{stab}(\rho(x))$ and $S^{*}\left(h_{1}\right)=S^{*}\left(h_{2}\right)$ and the map φ is one to one.

Corollary 2.18. Let X be a left H-set and ρ be a strongly regular relation on X such that $\left|H / S^{*}\right|$ is finite. Then, the order H / S^{*} divide $|X / \rho|$.

Definition 2.19 ([2], p. 188). Let $\left(H_{1}, o\right)$ and $\left(H_{2}, *\right)$ be H_{v}-groups. Then, a $\operatorname{map} \varphi: H_{1} \longrightarrow H_{2}$ is called a strong homomorphism, when

$$
\varphi\left(x_{1} \circ x_{2}\right)=\varphi\left(x_{1}\right) * \varphi\left(x_{2}\right),
$$

for every $x_{1}, x_{2} \in H_{1}$. An injective and onto strong homomorphism is called an isomorphism.
Definition 2.20. Let X_{1} and X_{2} be left H_{1} and H_{2}-sets, respectively, $\varphi: H_{1} \longrightarrow H_{2}$ be an isomorphism and $\lambda: X_{1} \longrightarrow X_{2}$ be a bijective morphism. Then, we say that X_{1} and X_{2} are equivalent when, $\lambda\left(\mu_{1}\left(h_{1}, x_{1}\right)\right)=\mu_{2}\left(\varphi\left(h_{1}\right), \lambda\left(x_{1}\right)\right), \lambda^{-1}\left(\mu_{2}\left(h_{2}, x_{2}\right)\right)=\mu_{1}\left(\varphi^{-1}\left(h_{2}\right), \lambda^{-1}\left(x_{2}\right)\right)$, where $h_{1} \in H_{1}, h_{2} \in H_{2}$ and $x_{1} \in X_{1}, x_{2} \in X_{2}$. We write $X_{1} \sim X_{2}$, when X_{1} and X_{2} are equivalent. When X_{1} and X_{2} are $\left(H_{1}, H_{2}\right)$-sets, we say that X_{1} and X_{2} are equivalent, if X_{1} and X_{2} are equivalent as left H_{1}-set and right H_{2}-set.

Proposition 2.21. Let X_{1} and X_{2} be equivalent left H_{1} - and H_{2}-sets and $x_{1} \in X_{1}$. Then,

$$
\operatorname{stab}\left(x_{1}\right) \simeq \operatorname{stab}\left(\lambda\left(x_{1}\right)\right)
$$

Proof. The proof is straightforward.

3. Tensor Product

In this section by left(right) H-sets we introduce a new type of superstructures that will be called tensor product.

Definition 3.1. Let X, Y and Z be $\left(H_{1}, H_{2}\right)-,\left(H_{2}, H_{3}\right)$ - and $\left(H_{1}, H_{3}\right)-$ sets, respectively. Then, a map $\varphi: X \times Y \longrightarrow Z$ is called bimap, if for every $x \in X, y \in Y$ and h_{2} of H_{2},

$$
\varphi\left(\mu_{1}\left(x, h_{2}\right), y\right)=\varphi\left(x, \mu_{2}\left(h_{2}, y\right)\right)
$$

Definition 3.2. Let X, Y and T be $\left(H_{1}, H_{2}\right)-,\left(H_{2}, H_{3}\right)$ - and $\left(H_{1}, H_{3}\right)$ sets, respectively, and $\psi: X \times Y \longrightarrow T$ be a bimap. Then, a pair (T, ψ) is called tensor product of X and Y over H_{2}, if for every $\left(H_{1}, H_{3}\right)$-set \underline{C} and every bimap $\beta: X \times Y \longrightarrow C$ there exists a unique bimap $\bar{\beta}: T \longrightarrow C$ such that $\bar{\beta} \circ \psi=\beta$.

Let X and Y be $\left(H_{1}, H_{2}\right)$ and $\left(H_{2}, H_{3}\right)$-sets, respectively. Then, we define the relation ρ on $X \times Y$ as follows:

$$
\rho=\left\{\left(\left(t_{1}, t_{2}\right),\left(t_{3}, t_{4}\right)\right): t_{1}=\mu_{1}\left(t_{3}, h_{2}\right) t_{4}=\mu_{2}\left(h_{2}, t_{2}\right)\right\},
$$

where h_{2} is a scalar element of H_{2}. The relation ρ is reflexive and symmetric. Let ρ^{*} be transitive closure of ρ and we denote a typical element $\rho^{*}(x, y)$ of $X \otimes Y$ by $x \otimes y$. For any two nonempty subsets A of X and B of Y, we define

$$
A \otimes B=\bigcup_{a \in A, b \in B} a \otimes b
$$

We note that by definition of ρ for every scalar element $h_{2} \in H_{2}$,

$$
\mu_{1}\left(x, h_{2}\right) \otimes y=x \otimes \mu_{2}\left(h_{2}, y\right)
$$

Proposition 3.3. Let X and Y be $\left(H_{1}, H_{2}\right)$ - and $\left(H_{2}, H_{3}\right)$-sets, respectively. Then, $x_{1} \otimes y_{1}=x_{2} \otimes y_{2}$ if and only if there exist $a_{1}, a_{2}, \ldots, a_{n-1}$ in $X, b_{1}, b_{2}, \ldots, b_{n-1}$ in Y and scalar elements $s_{1}, s_{2}, \ldots, s_{n}, t_{1}, t_{2}, \ldots, t_{n-1}$ in H_{2} such that

$$
\begin{aligned}
x_{1}=\mu_{1}\left(a_{1}, s_{1}\right), \mu_{1}\left(a_{1}, t_{1}\right)=\mu_{1}\left(a_{2}, s_{2}\right), \ldots \mu_{1}\left(a_{i}, t_{i}\right) & =\mu_{1}\left(a_{i+1}, s_{i+1}\right) \\
& \vdots \\
\mu_{1}\left(a_{n-1}, t_{n-1}\right) & =\mu_{1}\left(x_{2}, s_{n}\right)(*) .
\end{aligned}
$$

$$
\begin{aligned}
\mu_{2}\left(s_{1}, y_{1}\right)=\mu_{2}\left(t_{1}, b_{1}\right), \mu_{2}\left(s_{2}, b_{1}\right) & =\mu_{2}\left(t_{2}, b_{2}\right), \ldots, \mu_{2}\left(s_{i+1}, b_{i}\right) \\
& =\mu_{2}\left(t_{i+1}, b_{i+1}\right) \\
& \vdots \\
\mu_{2}\left(s_{n}, b_{n-1}\right) & =y_{2} \quad(* *) .
\end{aligned}
$$

Proof. Suppose that we have ($*$) and ($* *$). Then,

$$
\begin{aligned}
x_{1} \otimes y_{1}=\mu_{1}\left(a_{1}, s_{1}\right) \otimes y_{1}=a_{1} \otimes \mu_{2}\left(s_{1}, y_{1}\right) & =a_{1} \otimes \mu_{2}\left(t_{1}, b_{1}\right) \\
& \vdots \\
& =\mu_{1}\left(x_{2}, s_{n}\right) \otimes b_{1} \\
& =x_{2} \otimes \mu_{2}\left(s_{n}, b_{n-1}\right) \\
& =x_{2} \otimes y_{2} .
\end{aligned}
$$

Conversely, assume that $x_{1} \otimes y_{1}=x_{2} \otimes y_{2}$. By definition there are $\left(t_{i}, s_{i}\right) \in X \times Y, 1 \leq i \leq n$ such that

$$
\left(t_{1}, s_{1}\right)=\left(x_{1}, y_{1}\right),\left(t_{n}, s_{n}\right)=\left(x_{2}, y_{2}\right)
$$

and $\left(\left(t_{i}, s_{i}\right),\left(t_{i+1}, s_{i+1}\right)\right) \in \rho$. By definition of ρ, we have $(*)$ and $(* *)$.

Proposition 3.4. Let X and Y be $\left(H_{1}, H_{2}\right)$ - and $\left(H_{2}, H_{3}\right)$-sets, respectively. Then, $X \otimes Y$ is an $\left(H_{1}, H_{3}\right)$-set by following hyperoperations:

$$
\begin{aligned}
\bar{\mu}_{1}: H_{1} \times X \otimes Y & \longrightarrow P^{*}(X \otimes Y) \\
h_{1} \cdot(x \otimes y) & =\left\{t \otimes y: t \in \mu_{1}\left(h_{1}, x\right)\right\}, \\
\bar{\mu}_{2}: X \otimes Y \times H_{3} & \longrightarrow P^{*}(X \otimes Y) \\
(x \otimes y) \cdot h_{3} & =\left\{x \otimes t: t \in \mu_{2}\left(y, h_{3}\right)\right\},
\end{aligned}
$$

where $x \otimes y \in X \otimes Y, h_{1} \in H_{1}$ and $h_{3} \in H_{3}$.
Proof. Let $x_{1} \otimes y_{1}=x_{2} \otimes y_{2}$. Then, by Proposition 3.3,

$$
\begin{aligned}
& x_{1}=\mu_{1}\left(a_{1}, s_{1}\right), \mu_{1}\left(a_{1}, t_{1}\right)=\mu_{1}\left(a_{2}, s_{2}\right), \ldots, \mu_{1}\left(a_{i}, t_{i}\right) \\
&=\mu_{1}\left(a_{i+1}, s_{i+1}\right) \\
& \vdots \\
& \mu_{1}\left(a_{n-1}, t_{n-1}\right) \\
&=\mu_{1}\left(x_{2}, s_{n}\right) . \\
& \mu_{2}\left(s_{1}, y_{1}\right)=\mu_{2}\left(t_{1}, b_{1}\right), \mu_{2}\left(s_{2}, b_{1}\right)=\mu_{2}\left(t_{2}, b_{2}\right), \ldots, \mu_{2}\left(s_{i+1}, b_{i}\right) \\
&=\mu_{2}\left(t_{i+1}, b_{i+1}\right) \\
& \vdots \\
& \mu_{2}\left(s_{n}, b_{n-1}\right)=y_{2} .
\end{aligned}
$$

We have,

$$
\begin{aligned}
\mu_{1}\left(h_{1}, x_{1}\right) & =\mu_{1}\left(\mu_{1}\left(\left(h_{1}, a_{1}\right), s_{1}\right), \mu_{1}\left(\mu_{1}\left(\left(h_{1}, a_{1}\right), t_{1}\right)\right.\right. \\
& =\mu_{1}\left(\left(\mu_{1}\left(h_{1}, a_{2}\right), s_{2}\right)\right. \\
& \vdots \\
\mu_{1}\left(\mu_{1}\left(h_{1}, a_{i}\right), t_{i}\right) & \left.=\mu_{1}\left(\mu_{1}\left(h_{1}, a_{i+1}\right), s_{i+1}\right)\right) \\
& \vdots \\
\left.\mu_{1}\left(h_{1} a_{n-1}\right), t_{n-1}\right) & =\mu_{1}\left(\mu_{1}\left(h_{1}, x_{2}\right), s_{n}\right) .
\end{aligned}
$$

Assume that $w \in \mu_{1}\left(h_{1}, x_{1}\right)$. Since s_{1} is a scalar element, then there exists $w_{1} \in \mu_{1}\left(h_{1}, a_{1}\right)$ such that $w=\mu_{1}\left(w_{1}, s_{1}\right)$. Also, since s_{2} is a scalar element, then there exists $w_{2} \in \mu_{1}\left(h_{1}, a_{2}\right)$ such that

$$
\mu_{1}\left(w_{1}, t_{1}\right)=\mu_{1}\left(w_{2}, s_{2}\right)
$$

After a finite process, we have $w_{1}, w_{2}, \ldots, w_{n} \in X$ such that

$$
\begin{aligned}
w=\mu_{1}\left(w_{1}, s_{1}\right), \mu_{1}\left(w_{1}, t_{1}\right)=\mu_{1}\left(w_{2}, s_{2}\right), \ldots, \mu_{1}\left(w_{i}, t_{i}\right) & =\mu_{1}\left(w_{i+1}, s_{i+1}\right) \\
& \vdots \\
& =\mu_{1}\left(w_{n-1}, t_{n-1}\right) \\
& =w_{n} s_{n}
\end{aligned}
$$

Hence, $w \otimes y_{1}=w_{n} \otimes y_{1} \in h_{1} x_{2} \otimes y_{2}$. Thus,

$$
\widehat{\mu}\left(h_{1}, x_{1} \otimes y_{1}\right) \subseteq \widehat{\mu}\left(h_{2}, x_{2} \otimes y_{2}\right)
$$

In the same way, we can see that $\widehat{\mu}\left(h_{2}, x_{2} \otimes y_{2}\right) \subseteq \widehat{\mu}\left(h_{1},\left(x_{1} \otimes y_{1}\right)\right.$. Therefore, the hyperoperation $\widehat{\mu}$ defined on $X \otimes Y$ is well-defined. Also,

$$
\widehat{\mu}\left(h_{1}, \widehat{\mu}\left(h_{2},(x \otimes y)\right) \cap \widehat{\mu}\left(h_{1} h_{2},(x \otimes y) \neq \emptyset .\right.\right.
$$

Corollary 3.5. Let X and Y be $\left(H_{1}, H_{2}\right)$ - and $\left(H_{2}, H_{3}\right)$-sets, respectively. Then, a map $\pi: X \times Y \longrightarrow X \otimes Y$ is a bimap.

Example 3.6. Let (H, \circ) be a commutative H_{v}-group and ρ be a strongly regular relation on H. Then, $X=H / \rho$ is a left H-set as follows:

$$
\begin{aligned}
\mu: H \times H / \rho & \longrightarrow P^{*}(H) \\
(h, \rho(x)) & \longrightarrow\{\rho(t): t \in h \circ x\} .
\end{aligned}
$$

Since ρ is a strongly regular relation on H, every element of H is a scalar element of X. Thus,

$$
\rho(a) \otimes \rho(b)=\{(\rho(x), \rho(y)): x \in h \circ a, b \in h \circ y\} .
$$

Also,

$$
\operatorname{orb}(\rho(x))=\{\rho(t): t \in h \circ x, h \in H\} .
$$

Theorem 3.7. Let X and Y be $\left(H_{1}, H_{2}\right)$ - and $\left(H_{2}, H_{3}\right)$ - sets, respectively. Then, $(X \otimes Y, \pi)$ is a tensor product over H_{2}.

Proof. Suppose that Z is an $\left(H_{1}, H_{2}\right)$-set and $\beta: X \times Y \longrightarrow Z$ be a bimap. We define $\bar{\beta}: X \otimes Y \longrightarrow Z$ by

$$
\bar{\beta}(x \otimes y)=\beta(x, y)
$$

where $x \in X$ and $y \in Y$. Let $x_{1} \otimes y_{1}=x_{2} \otimes y_{2}$. Then, by Proposition 3.3, we have

$$
\begin{aligned}
\beta\left(x_{1}, y_{1}\right)=\beta\left(\mu_{1}\left(a_{1}, s_{1}\right), y_{1}\right) & =\beta\left(a_{1}, \mu_{2}\left(s_{1}, y_{1}\right)\right) \\
& \vdots \\
& =\beta\left(\mu_{1}\left(x_{2}, s_{2}\right), b_{n-1}\right) \\
& =\beta\left(x_{2}, \mu_{2}\left(s, b_{n-1}\right)\right) \\
& =\beta\left(x_{2}, y_{2}\right) .
\end{aligned}
$$

Hence, $\bar{\beta}\left(x_{1} \otimes y_{1}\right)=\beta\left(x_{2} \otimes y_{2}\right)$ and $\bar{\beta}$ is well-defined. Also,

$$
\begin{aligned}
\bar{\beta}\left(\widehat{\mu}_{1}\left(h_{1}, x \otimes y\right)\right)=\beta\left(\mu_{1}\left(h_{1}, x\right) \otimes y\right) & =\beta\left(\mu_{1}\left(h_{1}, x\right), y\right) \\
& =\mu_{3}\left(h_{1}, \beta(x, y)\right) \\
& =\mu_{3}\left(h_{1}, \beta(x \otimes y)\right),
\end{aligned}
$$

where $h_{1} \in H_{1}, x \otimes y \in X \otimes Y$. In the same way, we can see that $\bar{\beta}\left(\widehat{\mu}_{3}\left(x \otimes y, h_{3}\right)\right)=\mu_{3}\left(\beta(x \otimes y), h_{3}\right)$. Thus, $\bar{\beta}$ is a morphism. Also,

$$
\bar{\beta} \circ \pi(x, y)=\beta(x \otimes y)=\beta(x, y),
$$

implies that $\bar{\beta} \circ \pi=\beta$. If $\beta_{1}: X \otimes Y \longrightarrow Z$ be an another morphism such that $\beta_{1} \circ \pi=\beta$, then we have

$$
\beta_{1}(x \otimes y)=\beta_{1}(\pi(x, y))=\beta_{1} \circ \pi(x, y)=\bar{\beta} \circ \pi(x, y)=\bar{\beta}(x \otimes y)
$$

Therefore, $\bar{\beta}$ is unique with respect to this properties.
Theorem 3.8. Let X_{1}, X_{2} and Y_{1}, Y_{2} be $\left(H_{1}, H_{2}\right)$ - and $\left(H_{2}, H_{3}\right)$-sets, respectively such that $X_{1} \sim X_{2}$ and $Y_{1} \sim Y_{2}$. Then, $X_{1} \otimes Y_{1} \sim X_{2} \otimes Y_{2}$.

Proof. Suppose that $X_{1} \sim X_{2}$ and $Y_{1} \sim Y_{2}$. By definition, there exist isomorphisms $\varphi_{i}: H_{i} \longrightarrow H_{i+1}$ for $1 \leq i \leq 3$ and $\lambda_{1}: X_{1} \longrightarrow X_{2}$ and $\lambda_{2}: Y_{1} \longrightarrow Y_{2}$ such that

$$
\begin{aligned}
\lambda_{1}\left(\mu_{1}\left(h_{1}, x_{1}\right)\right) & =\mu_{2}\left(\varphi_{1}\left(h_{1}\right), \lambda_{1}\left(x_{1}\right)\right), \lambda_{1}^{-1}\left(\mu_{2}\left(h_{2}, x_{2}\right)\right) \\
& =\mu_{1}\left(\varphi_{1}^{-1}\left(h_{2}\right), \lambda_{1}^{-1}\left(x_{2}\right)\right),
\end{aligned}
$$

where $x_{1} \in X_{1}, x_{2} \in X_{2}$ and $h_{1} \in H_{1}, h_{2} \in H_{2}$.

$$
\begin{aligned}
\lambda_{2}\left(\mu_{2}\left(h_{2}, y_{1}\right)\right) & =\mu_{3}\left(\varphi_{2}\left(h_{2}\right), \lambda_{2}\left(y_{1}\right)\right) \\
\lambda_{2}^{-1}\left(\mu_{2}\left(h_{3}, y_{2}\right)\right) & =\mu_{2}\left(\varphi^{-1}\left(h_{3}\right), \lambda_{2}^{-1}\left(y_{2}\right)\right),
\end{aligned}
$$

where $y_{1} \in Y_{1}, y_{2} \in Y_{2}$ and $h_{2} \in H_{2}, h_{3} \in H_{3}$.
We define $\lambda: X_{1} \otimes Y_{1} \longrightarrow X_{2} \otimes Y_{2}$, by $\lambda(x \otimes y)=\lambda_{1}(x) \otimes \lambda_{2}(y)$, where $x \in X_{1}$ and $y \in Y_{1}$. Let $x_{1} \otimes y_{1}=x_{2} \otimes y_{2}$, where $x_{1}, x_{2} \in X_{1}$ and $y_{1}, y_{2} \in Y_{1}$. Then,

$$
\begin{aligned}
& x_{1}=\mu_{1}\left(a_{1}, s_{1}\right), \mu_{1}\left(a_{1}, t_{1}\right)=\mu_{1}\left(a_{2}, s_{2}\right),, \ldots \mu_{1}\left(a_{i}, t_{i}\right)=\mu_{1}\left(a_{i+1}, s_{i+1}\right) \\
& \vdots \\
& \mu_{1}\left(a_{n-1}, t_{n-1}\right)=\mu_{1}\left(x_{2}, s_{n}\right) . \\
& \mu_{2}\left(s_{1}, y_{1}\right)=\mu_{2}\left(t_{1}, b_{1}\right), \mu_{2}\left(s_{2}, b_{1}\right)=\mu_{2}\left(t_{2}, b_{2}\right) \\
& \vdots \\
& \mu_{2}\left(s_{i+1}, b_{i}\right)=\mu_{2}\left(t_{i+1}, b_{i+1}\right) \\
& \vdots \\
& \mu_{2}\left(s_{n}, b_{n-1}\right)=y_{2} .
\end{aligned}
$$

where $s_{1}, s_{2}, \ldots, s_{n}, t_{1}, t_{2}, \ldots, t_{n-1}$ are scalar elements in H_{2} and $a_{i} \in X_{1}, b_{i} \in Y_{1}, 1 \leq i \leq n-1$. This implies that

$$
\begin{aligned}
& \lambda_{1}\left(x_{1}\right)=\lambda_{1}\left(\mu_{1}\left(a_{1}, s_{1}\right)\right), \lambda_{1}\left(\mu_{1}\left(a_{1}, t_{1}\right)\right)=\lambda_{1}\left(\mu_{1}\left(a_{2}, s_{2}\right)\right) \\
& \vdots \\
& \lambda_{1}\left(\mu_{1}\left(a_{i}, t_{i}\right)\right)=\lambda_{1}\left(\mu_{1}\left(a_{i+1}, s_{i+1}\right)\right) \\
& \vdots \\
& \lambda_{1}\left(\mu_{1}\left(a_{n-1}, t_{n-1}\right)\right)= \lambda_{1}\left(\mu_{1}\left(x_{2}, s_{n}\right)\right) . \\
& \lambda_{2}\left(\mu_{2}\left(s_{1}, y_{1}\right)\right)=\lambda_{2}\left(\mu_{2}\left(t_{1}, b_{1}\right)\right), \lambda_{2}\left(\mu_{2}\left(s_{2}, b_{1}\right)\right)=\lambda_{2}\left(\mu_{2}\left(t_{2}, b_{2}\right)\right) \\
& \vdots \\
& \lambda_{2}\left(\mu_{2}\left(s_{i+1}, b_{i}\right)\right)=\lambda_{2}\left(\mu_{2}\left(t_{i+1}, b_{i+1}\right)\right) \\
& \vdots \\
& \lambda_{2}\left(\mu_{2}\left(s_{n}, b_{n-1}\right)\right)=\lambda_{2}\left(y_{2}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\lambda_{1}\left(x_{1}\right)=\mu_{1}^{\prime}\left(\lambda_{1}\left(a_{1}\right), \varphi_{2}\left(s_{1}\right)\right), \mu_{1}^{\prime}\left(\lambda_{1}\left(a_{1}\right), \varphi_{2}\left(t_{1}\right)\right) & =\mu_{1}^{\prime}\left(\lambda_{1}\left(a_{2}\right), \varphi_{2}\left(s_{2}\right)\right) \\
& \vdots \\
\mu_{1}^{\prime}\left(\lambda_{1}\left(a_{i}\right), \varphi_{2}\left(t_{i}\right)\right) & =\mu_{1}^{\prime}\left(\lambda_{1}\left(a_{i+1}\right), \varphi_{2}\left(s_{i+1}\right)\right) \\
& \vdots \\
\mu_{1}^{\prime}\left(\lambda_{1}\left(a_{n-1}\right), \varphi_{2}\left(t_{n-1}\right)\right) & =\mu_{1}^{\prime}\left(\lambda_{1}\left(x_{2}\right), \varphi_{2}\left(s_{n}\right)\right) .
\end{aligned}
$$

$$
\begin{aligned}
\mu_{2}^{\prime}\left(\varphi_{2}\left(s_{1}\right), \lambda_{2}\left(y_{1}\right)\right) & =\mu_{2}^{\prime}\left(\varphi_{2}\left(t_{1}\right), \lambda_{2}\left(b_{1}\right)\right) \\
\mu_{2}^{\prime}\left(\varphi_{2}\left(s_{2}\right), \lambda_{2}\left(b_{1}\right)\right) & =\mu_{2}^{\prime}\left(\varphi_{2}\left(t_{2}\right), \lambda_{2}\left(b_{2}\right)\right) \\
\vdots & \\
\mu_{2}^{\prime}\left(\varphi_{2}\left(s_{i+1}\right), \lambda_{2}\left(b_{i}\right)\right) & =\mu_{2}^{\prime}\left(\varphi_{2}\left(t_{i+1}\right), \lambda_{2}\left(b_{i+1}\right)\right) \\
\vdots & \\
\mu_{2}^{\prime}\left(\varphi_{2}\left(s_{n}\right), \lambda_{2}\left(b_{n-1}\right)\right) & =\lambda_{2}\left(y_{2}\right) .
\end{aligned}
$$

Thus, $\lambda_{1}\left(x_{1}\right) \otimes \lambda_{2}\left(y_{1}\right)=\lambda_{1}\left(x_{2}\right) \otimes \lambda_{2}\left(y_{2}\right)$ and the map λ is well-defined. Also,

$$
\begin{aligned}
\left.\lambda\left(\bar{\mu}_{1}\left(h_{1}, x_{1} \otimes y_{1}\right)\right)=\lambda\left(\mu_{1}\left(h_{1}, x_{1}\right) \otimes y_{1}\right)\right) & =\lambda_{1}\left(\mu_{1}\left(h_{1}, x_{1}\right) \otimes \lambda_{2}\left(y_{1}\right)\right. \\
& =\mu_{1}^{\prime}\left(\varphi\left(h_{1}\right), \lambda_{1}\left(x_{1}\right)\right) \otimes \lambda_{2}\left(y_{1}\right) \\
& =\bar{\mu}_{1}^{\prime}\left(\varphi\left(h_{1}\right), \lambda_{1}\left(x_{1}\right) \otimes \lambda_{2}\left(y_{1}\right)\right) \\
& =\bar{\mu}_{1}^{\prime}\left(\varphi\left(h_{1}\right), \lambda\left(x_{1} \otimes y_{1}\right)\right) .
\end{aligned}
$$

We can see for $\bar{\lambda}$ other properties holds.

4. Conclusion

The concept of H_{v}-structures were introduced by Vougiouklis at the fourth AHA congress (1990)[10]. The concept of an H_{v}-structure constitutes a generalization of the well-known algebraic hyperstructures. Numerous applications of hyperstructures are presented, especially those that were found and studied in the last fifteen years. By this hyperstructure, we can study chemical reactions as mathematical models [4]. In this paper, we introduce H-sets on H_{v}-groups and tensor products on H_{v}-groups that is crucially important in homological algebra. In a future study, by the concept $H_{v^{-}}$group we will consider and classify mathematical and chemical properties of these H_{v}-groups.

Acknowledgments

The authors are deeply grateful to the referee for many valuable suggestions.

References

[1] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics, Kluwer Acad. Publ., 2003.
[2] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, Int. Acad. Press, USA, 2007.
[3] F. Marty, Sur une generalization de la notion de group, $8^{\text {th }}$ Congres Math. Scandinaves, (1934), 45-49.
[4] S. Ostadhadi-Dehkordi, S. Abdizadeh and F. Hamrahzadeh, F. Hamrahzadeh, A hyperstructural Approach to Chemical Reactions as Mathematical Models, submitted.
[5] S. Spartalis, Quotients of $P-H_{v}$-rings, New frontiers in hyperstructures (Molise, 1995), 167-177, Ser. New Front. Adv. Math. Ist. Ric. Base, Hadronic Press, Palm Harbor, FL, 1996.
[6] T. Vougiouklis, Cyclicity in a special class of hypergroups, Acta Un. Car. Math. Et Ph., 22 (1981), 3-6.
[7] T. Vougiouklis, Generalization of P-hypergroups, Rent. de Circolo Math, di Palermo, S. II, 36 (1987), 114-121.
[8] T. Vougiouklis, Hyperstructures and their Representations, Monographs in Mathematics, Hadronic, 1994.
[9] T. Vougiouklis, Isomorphisms on P-hypergroups and cyclicity, Ars Combinatoria., 29 (1990), 241-245.
[10] T. Vougiouklis, The fundamental relation in hyperrings, The general hyperfield, $4^{\text {th }}$ AHA Congress, World Scientific, (1991), 203-211.
[11] T. Vougiouklis and A. Dramalidis, H_{v}-modulus with external P hyperoperations, Proc. of the $5^{\text {th }}$ AHA, Iasi, Romania, (1993), 191-197.

Sohrab Ostadhadi-Dehkordi

Department of Mathematics, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
Email:Ostadhadi@hormozgan.ac.ir,
Ostadhadi-Dehkordi@hotmail.com

Thomas Vougiouklis

School of Science of Education, Democritus University of Thrace, P.O. Box 68100, Alexandroupolis, Greece.
Email:tvougiou@eled.duth.gr

Kostaq Hila

Department of Mathematics Engineering, Polytechnic University of Tirana, Tirana, P.O. Box 1001, Albania.

Email:kostaq_hila@yahoo.com,
k.hila@fimif.edu.al

Journal of Algebraic Systems

H－SETS AND APPLICATIONS ON H_{v}－GROUPS

S．OSTADHADI－DEHKORDI，T．VOUGIOUKLIS AND K．HILA

$$
\begin{aligned}
& \text { H- مجموعهها و كاربردشان در H - كروهها } \\
& \text { سهراب استادهادى دهكردى'، توماس وجيوكليس 「 و كوستاك هيلاّ「 } \\
& \text { ’گروه رياضى، دانشكده علوم پايه، دانشگاه هرمزگان، هرمزگان، ايران } \\
& \text { 「「دانشكده علوم تربيتى، دانشگاه دموكريتوس تراكيه، الكساندرويوليس يونان، يونان } \\
& \text { 「 }{ }^{\text {「 }}
\end{aligned}
$$

 منظم قوى و همريختى معرفى مى مرار

 يكريختى منحصربهفرد است．

كلمات كليدى：H قوى．

[^0]: DOI: 10.22044/JAS.2021.10501.1518.
 MSC(2010): Primary: 20N15; Secondary: 16Y99.
 Keywords: H_{v}-group, Left (right) H-set, Tensor product, Regular relation, Strongly regular relation.
 Received: 25 January 2021, Accepted: 2 August 2021.

 * Corresponding author.

