Journal of Algebraic Systems

Vol. 10, No. 1, (2022), pp 95-110

GRADED SEMIPRIME SUBMODULES OVER NON-COMMUTATIVE GRADED RINGS

P. GHIASVAND* AND F. FARZALIPOUR

Abstract

Let G be a group with identity e, R be an associative graded ring and M be a G-graded R-module. In this article, we introduce the concept of graded semiprime submodules over non-commutative graded rings. First, we study graded prime R modules over non-commutative graded rings and we get some properties of such graded modules. Second, we study graded semiprime and graded radical submodules of graded R-modules. For example, we give some equivalent conditions for a graded module to have zero graded radical submodule.

1. Introduction

The study of graded rings arises naturally out of the study of affine schemes and allows them to formalize and unify arguments by induction. However, this is not just an algebraic trick. The concept of grading in algebra, in particular graded modules is essential in the study of homological aspect of rings. Much of the modern development of the commutative algebra emphasizes graded rings. Graded rings play a central role in algebraic geometry and commutative algebra. Gradings appear in many circumstances, both in elementary and advanced level. In recent years, rings with a group-graded structure have become increasingly important and consequently, the graded analogues of different concepts are widely studied (see [1], [4], [9], [12] and

[^0][13]). Graded primary ideals of a commutative graded ring have been introduced and studied in [14]. Graded prime submodules of graded modules over commutative graded rings have been studied in [2], [3], [8] and [10]. Also graded prime submodules over non-commutative graded rings have been introduced and studied by R. Abu-Dawwas and M. Bataineh in [1]. Then graded 2-absorbing submodules over non-commutative graded rings have been studied in [6]. Here we introduce and study the concept of graded semiprime submodules of graded modules over non-commutative graded rings and give a number of its properties. First, we recall some basic properties of graded rings and graded modules which will be used in the sequel. Let G be a group with identity e and R be a ring. Then R is said to be G-graded if $R=\bigoplus_{g \in G} R_{g}$ such that $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$, where R_{g} is an additive subgroup of R for all $g \in G$. The elements of R_{g} are homogeneous of degree g. Consider $\operatorname{supp}(R, G)=\left\{g \in G \mid R_{g} \neq 0\right\}$. For simplicity, we will denote the graded ring (R, G) by R. If $r \in R$, then r can be written as $\sum_{g \in G} r_{g}$, where r_{g} is the component r in R_{g}. Moreover, R_{e} is a subring of R and $1_{R} \in R_{e}$. Furthermore, $h(R)=\bigcup_{g \in G} R_{g}$.

Let I be a left ideal of a graded ring R. Then I is said to be a graded left ideal of R, if $I=\bigoplus_{g \in G}\left(I \cap R_{g}\right)$, i.e., for $x \in I, x=\sum_{g \in G} x_{g}$, where $x_{g} \in I$ for all $g \in G$. The following example from [1] shows that a left ideal of a graded ring need not to be graded.

Example 1.1. Consider $R=M_{2}(K)$ (the ring of all 2×2 matrices with entries from a field K) and $G=\mathbb{Z}_{4}$ (the group of integers modulo $4)$. Then R is G-graded by

$$
R_{0}=\left(\begin{array}{cc}
K & 0 \\
0 & K
\end{array}\right), R_{2}=\left(\begin{array}{cc}
0 & K \\
K & 0
\end{array}\right) \text { and } R_{1}=R_{3}=\{0\} .
$$

Consider the left ideal $I=\left\langle\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\right\rangle$ of R. Note that $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right) \in I$ and $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. If I is a graded left ideal of R, then $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in I$ which is a contradiction. So I is not a graded left ideal of R.

A proper graded ideal I of a graded ring R is said to be graded prime if whenever J and K are graded ideals of R such that $J K \subseteq I$, then either $J \subseteq I$ or $K \subseteq I$ (see [1]). If R is commutative, this definition is equivalent to: a proper graded ideal I of a graded ring R is said to be graded prime if whenever $r_{g} s_{h} \in I$ for some $r_{g}, s_{h} \in h(R)$, then
$r_{g} \in I$ or $s_{h} \in I$ [14]. Assume that M is a left R-module. Then M is said to be G-graded if $M=\bigoplus_{g \in G} M_{g}$ with $R_{g} M_{h} \subseteq M_{g h}$ for all $g, h \in G$, where M_{g} is an additive subgroup of M for all $g \in G$. The elements of M_{g} are called homogeneous of degree g. Also, we consider $\operatorname{supp}(M, G)=\left\{g \in G \mid M_{g} \neq 0\right\}$. It is clear that M_{g} is an R_{e}-submodule of M for all $g \in G$. Moreover $h(M)=\bigcup_{g \in G} M_{g}$. Let N be an R-submodule of a graded R-module M. Then N is said to be a graded R-submodule if $N=\bigoplus_{g \in G}\left(N \cap M_{g}\right)$, i.e., for $m \in N$, $m=\sum_{g \in G} m_{g}$, where $m_{g} \in N$ for all $g \in G$. The following example shows that an R-submodule of a graded R-module need not be graded (see [1]).
Example 1.2. Consider $R=M=M_{2}(K)$ and $G=\mathbb{Z}_{4}$. Then R and M are G-graded as in Example 1.1 and similarly, $N=\left\langle\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\right\rangle$ is an R-submodule of M which is not graded.

A proper graded submodule N of a graded R-module M is said to be graded prime, if $I K \subseteq N$ for some graded ideal I of R and graded submodule K of M, then $K \subseteq N$ or $I \subseteq(N: M)$. It is easy to show that this definition is equivalent to: a proper graded submodule N of a graded R-module M is graded prime, if $r_{g} R m_{h} \subseteq N$ where $r_{g} \in h(R)$ and $m_{h} \in h(M)$, then $m_{h} \in N$ or $r_{g} \in(N: M)$. If N is a graded prime submodule of M, then $(N: M)=P$ is a graded prime ideal of R. In this case, we say that N is a P-graded prime submodule of M. If R is commutative, this definition is equivalent to: a proper graded submodule N of a graded R-module M is said to be graded prime, if $r_{g} m_{h} \in N$ where $r_{g} \in h(R)$ and $m_{h} \in h(M)$, then $m_{h} \in N$ or $r_{g} \in(N: M)$. A graded R-module M is called graded prime, if the zero graded submodule is graded prime in M. The graded radical of a graded submodule N of a graded R-module M, denoted by $\operatorname{Grad}(N)$, is defined to be the intersection of all graded prime submodules of M containing of N. If there is no such graded prime submodule of M, then we write $\operatorname{Grad}(M)=M$. For graded submodule N of M, if $\operatorname{Grad}(N)=N$, then we say that N is a graded radical submodule of M. A graded R-module M is called graded Noetherian, if it satisfies the ascending chain condition on graded submodules.

In the second section of this article, we discuss direct sums of graded prime submodules and give some of their properties. In the third section, we study on graded semiprime submodules. We investigate when a graded semiprime submodule of a particular graded module is a graded radical submodule. In the last section of our article, we consider graded modules over commutative graded rings and give a
characterization for graded semiprime submodules of graded Noetherian modules to be graded radical by using the notion of graded primary decomposition.

Throughout this work, all rings are assumed to be associative graded rings with identity, and all modules are unitary graded left R-modules.

2. Graded prime R-modules

In this section, we study graded prime modules over non-commutative graded rings.

We need the following lemma proved in [4, 14].
Lemma 2.1. Let M be a graded module over a graded ring R. Then the following hold:
(i) If I and J are graded ideals of R, then $I+J$ and $I \bigcap J$ are graded ideals of R.
(ii) If I is a graded ideal of R, N is a graded submodule of M and $x \in h(M)$, then $R x, I N$ are graded submodules of M.
(iii) If N and K are graded submodules of M, then $N+K$ and $N \bigcap K$ are also graded submodules of M and $(N: M)$ is a graded ideal of R.
(iv) Let $\left\{N_{\lambda}\right\}_{\lambda \in \Lambda}$ be a collection of graded submodules of M. Then $\sum_{\lambda} N_{\lambda}$ and $\bigcap_{\lambda} N_{\lambda}$ are graded submodues of M.
Lemma 2.2. Let R be a graded ring and M be a graded R-module. Let $\left\{N_{i}\right\}_{i \in I}$ be a family of graded prime R-modules contained in M with distinct annihilators in R. Then the sum $\sum_{i \in I} N_{i}$ is direct.
Proof. It is enough to show that for any finite collection $\left\{N_{1}, N_{2}, \ldots, N_{n}\right\}$ of graded prime R-modules in M with distinct annihilators the sum $N_{1}+\cdots+N_{n}$ is direct. To see this, we use induction on n. If $n=2$, and $N_{1} \cap N_{2} \neq 0$, then $\operatorname{ann}\left(N_{1}\right)=\operatorname{ann}\left(N_{1} \cap N_{2}\right)=\operatorname{ann}\left(N_{2}\right)$, a contradiction. Now assume that $n>2$ and the sum of graded prime modules in any proper subset of $\left\{N_{1}, N_{2}, \ldots, N_{n}\right\}$ is direct. We show that $N=N_{1} \cap\left(N_{2} \oplus \cdots \oplus N_{n}\right)=0$, and this will complete the proof. Suppose that $N_{1} \cap\left(N_{2} \oplus \cdots \oplus N_{n}\right) \neq 0$. By induction hypothesis, $N_{1} \cap\left(N_{3} \oplus \cdots \oplus N_{n}\right)=0$, and hence N can be embedded in N_{2}. Thus N is graded prime R-module with $\operatorname{ann}(N)=\operatorname{ann}\left(N_{2}\right)$. On the other hand, since N is a non-zero graded submodule of N_{1}, we also have $\operatorname{ann}(N)=\operatorname{ann}\left(N_{1}\right)$, a contradiction.
Lemma 2.3. Let M be a graded module over a graded ring R, P a graded prime ideal of R, and $\left\{N_{\alpha}\right\}_{\alpha \in I}$ a family of graded prime R modules contained in M such that ann $\left(N_{\alpha}\right)=P$ for any $\alpha \in I$. If
the sum $\sum_{\alpha \in I} N_{\alpha}$ is direct, then it is a graded prime R-module with annihilator P.

Proof. Let $N=\bigoplus_{\alpha \in I} N_{\alpha}$. It is clear that N is a graded R-module since for any $\alpha, \quad N_{\alpha}$ is a graded R-module and also, we get $\operatorname{ann}(N)=P$. Assume that there exist $r_{g} \in h(R)-P$ and $0 \neq n_{h} \in h(N)$ such that $r_{g} R n_{h}=0$. Now, we have $n_{h} \in N_{\alpha_{1}} \oplus \cdots \oplus N_{\alpha_{k}}$ for some $\alpha_{j} \in I(1 \leq j \leq k)$. Since $r_{g} \in h(R)-P$ and $r_{g}\left(N_{\alpha_{j}} \cap R n_{h}\right)=0$ $(1 \leq j \leq k)$, then $N_{\alpha_{j}} \cap R n_{h}=0$ for $1 \leq j \leq k$. In this case, $R n_{h}$ can be embedded in $N_{\alpha_{j}}$ for some $1 \leq j \leq k$. This gives $\operatorname{ann}\left(R n_{h}\right)=P$, a contradiction.

Lemma 2.4. Let R be a graded ring and $\left\{N_{\alpha}\right\}_{\alpha \in I}$ be a family of graded prime R-modules. If K is a graded prime R-module contained in $\bigoplus_{\alpha \in I} N_{\alpha}$, then $\operatorname{ann}(K)=\operatorname{ann}\left(N_{\beta}\right)$ for some $\beta \in I$.

Proof. Say $N=\bigoplus_{\alpha \in I} N_{\alpha}$. By Lemma 2.3, the direct sum N can be reduced to one whose terms are all graded prime R-modules with distinct annihilators. Since $N \cap K=K \neq 0$, by Lemma 2.2,

$$
\operatorname{ann}(K)=\operatorname{ann}(N \cap K)=\operatorname{ann}(N)=\bigcap_{\alpha \in I} \operatorname{ann}\left(N_{\alpha}\right) .
$$

Since $\operatorname{ann}(K)$ is a graded prime ideal of R, so $\operatorname{ann}(K)=\operatorname{ann}\left(N_{\beta}\right)$ for some $\beta \in I$.

Theorem 2.5. Let R be a graded ring and let $\left\{N_{\alpha}\right\}_{\alpha \in I}$ be a family of graded prime R-modules with distinct annihilators . If $\left\{N_{\beta}^{\prime}\right\}_{\beta \in J}$ be another family of graded prime R-modules with distinct annihilators such that

$$
M=\bigoplus_{\alpha \in I} N_{\alpha}=\bigoplus_{\beta \in J} N_{\beta}^{\prime},
$$

then there is a one-to-one correspondence between these two families such that corresponding graded modules are isomorphic.
Proof. Take $\alpha_{0} \in I$. By Lemma 2.4, there exists $\beta_{0} \in J$ such that $\operatorname{ann}\left(N_{\alpha_{0}}\right)=\operatorname{ann}\left(N_{\beta_{0}}^{\prime}\right)$. Consider the composition

$$
N_{\alpha_{0}} \xrightarrow{\psi} N_{\beta_{0}}^{\prime} \xrightarrow{\phi} N_{\alpha_{0}}
$$

where ψ and ϕ denote restrictions of standard projections. Let $0 \neq x_{g} \in N_{\alpha_{0}}$. Then we have $x_{g}=y_{g}+y_{g}^{\prime}$ for some $y_{g} \in N_{\beta_{0}}^{\prime}$ and $y_{g}^{\prime} \in \bigoplus_{\beta \neq \beta_{0}} N_{\beta}^{\prime}$. If $y_{g}^{\prime}=0$, then clearly, $\phi \psi\left(x_{g}\right)=x_{g}$. Now, let $y_{g}^{\prime} \neq 0$. Then there exist finitely many $\beta_{1}, \ldots, \beta_{t} \in J-\left\{\beta_{0}\right\}$ such that y_{g}^{\prime} belongs to the direct sum $N_{\beta_{1}}^{\prime} \bigoplus \cdots \bigoplus N_{\beta_{t}}^{\prime}$ where $\left\{\beta_{1}, \ldots, \beta_{t}\right\}$ is minimal with respect to this property. Let $P_{\beta_{i}}^{\prime}=\operatorname{ann}\left(N_{\beta_{i}}^{\prime}\right)(1 \leq i \leq t)$ and $P_{\alpha_{0}}=\operatorname{ann}\left(N_{\alpha_{0}}\right)$. Then clearly $P_{\alpha_{0}} \subset P_{\beta_{1}}^{\prime} \cap \cdots \cap P_{\beta_{t}}^{\prime}$. Let

$$
r_{h} \in\left(P_{\beta_{1}}^{\prime} \cap \cdots \cap P_{\beta_{t}}^{\prime}\right) \cap\left(h(R)-P_{\alpha_{0}}\right) .
$$

Then $r_{h} R y_{g}^{\prime}=0 \subseteq \bigoplus_{\alpha \neq \alpha_{0}} N_{\alpha}$. Since $\bigoplus_{\alpha \neq \alpha_{0}} N_{\alpha}$ is a $P_{\alpha_{0}}$-graded prime submodule of M, we must have $y_{g}^{\prime} \in \bigoplus_{\alpha \neq \alpha_{0}} N_{\alpha}$. Therefore,

$$
\phi \psi\left(x_{g}\right)=\phi\left(\psi\left(y_{g}+y_{g}^{\prime}\right)\right)=\phi\left(y_{g}\right)=\phi\left(x_{g}-y_{g}^{\prime}\right)=x_{g}
$$

and so for any $x \in N_{\alpha_{0}}$, we write $x=x_{g_{1}}+\cdots+x_{g_{n}}$ where $x_{g_{i}} \in h\left(N_{\alpha_{0}}\right)$, then

$$
\begin{aligned}
\phi \psi(x) & =\phi \psi\left(x_{g_{1}}+\cdots+x_{g_{n}}\right) \\
& =\phi \psi\left(x_{g_{1}}\right)+\cdots+\phi \psi\left(x_{g_{n}}\right) \\
& =x_{g_{1}}+\cdots+x_{g_{n}} \\
& =x .
\end{aligned}
$$

Hence $\phi \psi=i d_{N_{\alpha_{0}}}$. Using symmetric arguments, we may also show that $\psi \phi=i d_{N_{\beta_{0}}^{\prime}}$. Thus $N_{\alpha_{0}} \cong N_{\beta_{0}}^{\prime}$.

Definition 2.6. A graded submodule N of a graded R-module M is said to be a graded essential submodule of M, if for every graded submodule K of $M, N \cap K=\{0\}$, then $K=\{0\}$.

Definition 2.7. Let M be a graded left R-module. We say that M is a graded uniform R-module, if for every non-zero graded submodules N and $K, N \cap K \neq 0$.

Definition 2.8. Let M be a graded R-module. We say that M has graded finite uniform dimension, if there exists a finite set of graded uniform submodules $U_{i}(1 \leq i \leq n)$ of M such that $\bigoplus_{i=1}^{n} U_{i}$ is a graded essential submodule of M.

Lemma 2.9. Let M be a graded module over a graded ring R. If the set $\{\operatorname{ann}(N) \mid 0 \neq N \leq M\}$ has a maximal element, say ann $\left(N_{0}\right)$, then N_{0} is a graded prime R-module.

Proof. Let $I K=\{0\}$ where I is a graded ideal of R and K a graded submodule of N_{0} and let $K \neq\{0\}$. So $I \subseteq \operatorname{ann}(K) \subseteq \operatorname{ann}\left(N_{0}\right)$ since $\operatorname{ann}\left(N_{0}\right)$ is a maximal member of $\{\operatorname{ann}(N) \mid 0 \neq N \leq M\}$. Hence N_{0} is a graded prime R-module.

Remark 2.10. If either R is a commutative graded ring and M is a graded Noetherian module or R has ascending chain condition (a.c.c) on its graded two-sided ideals, then every non-zero graded submodule of M contains a graded prime R-module, and in this case, every maximal independent family of graded prime submodules contained in M has essential sum in M.

We say that a graded ideal P of a graded ring R is an associated graded prime of a graded R-module M if there exists a graded prime submodule N of M such that $\operatorname{ann}(N)=P$. The set of all associated graded primes of M in R is denoted by $\operatorname{Gass}(M)$.

Proposition 2.11. Let R be a graded ring with a.c.c. on graded ideals, and let M be a graded module. Then M has graded finite uniform dimension if and only if $|\operatorname{Gass}(M)|<\infty$ and every graded prime R module contained in M has graded finite uniform dimension.

Proof. If M has finite graded uniform dimension, then by Lemma 2.2, clearly, $|\operatorname{Gass}(M)|<\infty$. On the other hand, assume that $|\operatorname{Gass}(M)|<\infty$ and every graded prime module M has graded finite uniform dimension. Consider a maximal independent family of graded primes in M. By using Lemma 2.3, and the fact $|\operatorname{Gass}(M)|<\infty$, this direct sum can be written as a direct sum of finitely many graded prime modules in M with distinct annihilators. By Remark 2.10, this direct sum is essential in M. This completes the proof.

Definition 2.12. Let M be a graded R-module and L be a graded submodule of M. We say that a graded prime submodule N of L can be lifted to M if there exists a graded prime submodule K of M such that $N=K \cap L$.

Definition 2.13. Let M be a graded R-module. A graded submodule K of M is called a complement of a graded submodule N in M provided that K is a maximal with respect to the property $K \cap N=0$.

Lemma 2.14. Let M be a graded module over a graded ring R and L be a graded submodule of M such that L is graded prime R-module with $\operatorname{ann}(L)=P$. If $L \cap P M=0$, then any complement to L in M containing $P M$ is a graded P-prime submodule of M i.e., the zero graded submodule of L can be lifted to M.
Proof. Let K be a complement to L in M containing $P M$. Clearly, $K \neq M$. Let $I N \subseteq K$ for a graded ideal I of R and a graded submodule N of M such that $K \subset N$. Then $L \cap N \neq 0$ and $I(L \cap N) \subseteq L \cap K=0$. Since L is a graded prime module, $I \subseteq P$ and hence $I M \subseteq P M \subseteq K$, so K is a graded prime submodule of M.

Lemma 2.15. Let M be a graded R-module. If the zero graded submodule is a graded radical submodule of M, then the zero graded submodule of graded prime module contained in M can be lifted to M.

Proof. Let $\bigcap_{i \in I} K_{i}=0$ where K_{i} is a graded prime submodule of M for all $i \in I$. Let L be a graded prime R-module in M with $P=\operatorname{ann}(L)$.

Since $P L=0 \subseteq K_{i}(i \in I)$, we have $P M \subseteq K_{i}$ or $L \subseteq K_{i}(i \in I)$. Thus $L \cap P M \subseteq K_{i}(i \in I)$, and so $L \cap P M=0$. By Lemma 2.14, there exists a graded prime submodule K of M such that $L \cap K=0$. This completes the proof.

Theorem 2.16. Let M be a graded R-module. Suppose that M contains a graded essential submodule which is a direct sum of graded prime R-modules. Then the following statements are equivalent:
(i) The zero graded submodule is a graded radical submodule of M;
(ii) The zero graded submodule of every graded prime module contained in M can be lifted to M;
(iii) For every graded prime R-module L contained in M, $L \cap P M=0$, where $P=\operatorname{ann}(L)$;
(iv) For every graded prime R-module L contained in $M, L \nsubseteq P M$, where $P=\operatorname{ann}(L)$.

Proof. $(i) \Rightarrow$ (ii) Apply Lemma 2.15.
(ii) $\Rightarrow($ iii $)$ Let L be a graded prime R-module with $\operatorname{ann}(L)=P$, and K be a graded prime submodule of M such that $L \cap K=0$. Since $P L=0 \subseteq K$, then $P M \subseteq K$.
(iii) \Rightarrow (ii) Apply Lemma 2.14.
(iii) $\Rightarrow($ iv $)$ It is straightforward.
$(i v) \Rightarrow(i i i)$ Let L be a graded prime R-module contained in M such that $L \cap P M \neq 0$ where $\operatorname{ann}(L)=P$. Since L is graded prime and $L \cap P M$ is contained in $L, L \cap P M$ is again a graded prime R-module with the sum annihilator P. This contradicts (iv).
$(i i) \Rightarrow(i)$ It is similar to $(i i) \Rightarrow(i)$ of $[15$, Theorem 2.9] for nongraded case.

Corollary 2.17. Let M be a graded R-module. Suppose that either R has a.c.c. on graded ideals or R is commutative and M is graded Noetherian. Then the zero graded submodule is a graded radical submodule of M if and only if the zero graded submodule of every graded prime module contained in M can be lifted to M.

3. Graded semiprime submodules

In this section, we study graded semiprime submodules over noncommutative graded rings.

Definition 3.1. Let M be a graded R-module. A graded submodule N of M is said to be graded semiprime, if $N \neq M$ and whenever $r_{g} R r_{g} m_{h} \subseteq N$ for some $r_{g} \in h(R)$ and $m_{h} \in h(M)$, then $r_{g} m_{h} \in N$. A graded module M is called graded semiprime if the zero graded
submodule of M is graded semiprime. It can easily be seen that, for a proper graded left ideal I of R, I is graded semiprime submodule of ${ }_{R} R$ if and only if $r_{g} R r_{g} \subseteq I$ implies $r_{g} \in I$ for every $r_{g} \in h(R)$ if and only if $J^{2} \subseteq I$, then $J \subseteq I$ for every graded left ideal J of R. We call such a proper graded left ideal a graded semiprime left ideal of R.
Example 3.2. Consider the ring $R=\left\{\left.\left(\begin{array}{ll}a & b \\ b & a\end{array}\right) \right\rvert\, a, b \in K\right\}$ where K is a field and $G=\mathbb{Z}_{4}$ (the group of integers modulo 4). Then R is G-graded by $R_{0}=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right) \right\rvert\, a \in K\right\}$ and $R_{2}=\left\{\left.\left(\begin{array}{ll}0 & b \\ b & 0\end{array}\right) \right\rvert\, b \in K\right\}$ and $R_{1}=R_{3}=\{0\}$. Let $M=R$, then M is G-graded by $M_{g}=R_{g}$. Then M is a graded semiprime R-module.
Proof. Let $r_{g} R r_{g}=\{0\}$ where $r_{g} \in h(R)=R_{0} \cup R_{3}$. We show that $r_{g}=\{0\}$. We have either $r_{g}=\left(\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right)$ or $r_{g}=\left(\begin{array}{ll}0 & y \\ y & 0\end{array}\right)$ where $x, y \in K$. In the first case, since R has identity,

$$
r_{g}^{2}=\left(\begin{array}{ll}
x & 0 \\
0 & x
\end{array}\right)\left(\begin{array}{ll}
x & 0 \\
0 & x
\end{array}\right)=\left(\begin{array}{cc}
x^{2} & 0 \\
0 & x^{2}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

and so $x^{2}=0$, then $x=0$ since K is a field. Hence $r_{g}=0$. Similarly, in the second case, we get $r_{g}=0$ and so M is a graded semiprime R-module.

Lemma 3.3. Let M be a graded R-module and N be a graded submodule of M. The following statements are equivalent:
(i) N is a graded semiprime submodule of M;
(ii) For every graded left ideal I of R and $m_{g} \in h(M)$, if $I^{2} m_{g} \subseteq N$, then $I m_{g} \subseteq N$;
(iii) For every $m_{g} \in h(M)-N,\left(N: m_{g}\right)=\left\{r \in R \mid r m_{g} \in N\right\}$ is a graded semiprime left ideal of R.

Proof. (i) \Rightarrow (ii) Let $a \in I$. Then we can write $a=\sum_{h \in G} a_{h}$ where $a_{h} \in I \cap h(R)$. Thus for any $h \in G ; a_{h} m_{g} \in I m_{g}$. So

$$
a_{h} R a_{h} m_{g} \subseteq I^{2} m_{g} \subseteq N
$$

and hence $a_{h} m_{g} \in N$ since N is graded semiprime. Therefore $a m_{g}=\sum_{h \in G} a_{h} m_{g} \in N$, and so $I m_{g} \subseteq N$.
$(i i) \Rightarrow(i i i)\left(N: m_{g}\right) \neq R$ since $m_{g} \notin N$. Let $I^{2} \subseteq\left(N: m_{g}\right)$ where I is a graded ideal of R. Hence $I^{2} m_{g} \subseteq N$, so by hypothesis, $I m_{g} \subseteq N$. Thus $I \subseteq\left(N: m_{g}\right)$, as needed.
(iii) $\Rightarrow(i)$ Let $r_{g} R r_{g} m_{h} \subseteq N$ where $r_{g} \in h(R)$ and $m_{g} \in h(M)$. So $r_{g} R r_{g} \subseteq\left(N: m_{h}\right)$, hence $r_{g} \in\left(N: m_{h}\right)$ since $\left(N: m_{h}\right)$ is a graded
semiprime ideal of R. Therefore $r_{g} m_{h} \in N$, so N is a graded semiprime submodule of M.

Let R be a graded ring and M be a graded R-module. For a graded submodule N of M and a graded ideal I of R, the set $\{m \in M \mid I m \subseteq N\}$ is denoted by $\left(N:_{M} I\right)$ or $(N: I)$. It can easy to see that $\left(N:_{M} I\right)$ is a graded submodule of M.

Lemma 3.4. Let M be a graded R-module and I be a graded ideal of R. If N is a graded semiprime submodule of M, then either $I M \subseteq N$ or else $\left(N:_{M} I\right)$ is a graded semiprime submodule of M.

Proof. Let $I M \nsubseteq N$. Then $\left(N:_{M} I\right) \neq M$. Now we show that $\left(N:_{M} I\right)$ is a graded semiprime submodule of M. Let $r_{g} R r_{g} m_{g^{\prime}} \subseteq\left(N:_{M} I\right)$ where $r_{g} \in h(R)$ and $m_{g^{\prime}} \in h(M)$, hence $I\left(r_{g} R r_{g} m_{g^{\prime}}\right) \subseteq N$. Let $a \in I$, so $a=\sum_{h \in G} a_{h}$ where $a_{h} \in I \cap h(R)$. We have $\left(a_{h} r_{g}\right) R\left(a_{h} a_{g}\right) m_{g^{\prime}} \subseteq N$ for every $h \in G$, so $a_{h} a_{g} m_{g^{\prime}} \in N$ for any $h \in G$. Therefore, $a r_{g} m_{g^{\prime}} \in N$, so $r_{g} m_{g^{\prime}} \in\left(N:_{M} I\right)$. Hence $\left(N:_{M} I\right)$ is a graded semiprime submodule of M.

Let M be a graded uniform R-module. We may construct a subset $P=\{r \in R: r N=0$ for some graded submodule N of $M\}$ of R. It is clear that P is a graded ideal of R, and we call it the assassinator of M.

Lemma 3.5. Let M be a graded uniform R-module and P be an assassinator of M. If $P K=0$, for some non-zero graded submodule K of M, then P is a graded prime ideal of R.
Proof. Let $I J \subseteq P$ for some graded ideals I and J of R and let $I \nsubseteq P$, so there exists $a \in I$ such that $a \notin P$. Let $b \in J$. Thus $a b \in I J$, hence $a b \in P$. Therefore $a(b N)=(a b) N=0$ for some non-zero graded submodule N of M. Then $b N=0$ since $a \notin P$, so $b \in P$, as required.

Lemma 3.6. Let M be a graded uniform R-module. Then M is a graded prime R-module if and only if M is a graded semiprime R module.

Proof. It is clear that every graded prime R-module is a graded semiprime R-module. Let M be a graded semiprime R-module. Let $r_{g} R m_{h}=0$ for some $r_{g} \in h(R)$ and $m_{h} \in h(M)$. Suppose that $r_{g} M \neq 0$ and $0 \neq m_{h}$. Then $R r_{g} M \cap R m_{h} \neq 0$ since M is a graded uniform R-module. Hence there exist $s_{g^{\prime}}, t_{g^{\prime \prime}} \in h(R)$ and $n_{h^{\prime}} \in h(M)$ such that $0 \neq s_{g^{\prime}} r_{g} n_{h^{\prime}}=t_{g^{\prime \prime}} m_{h}$. Thus $R s_{g^{\prime}} r_{g} n_{h^{\prime}}=R t_{g^{\prime \prime}} m_{h} \subseteq R m_{h}$, and so $s_{g^{\prime}} r_{g} R s_{g^{\prime}} r_{g} n_{h^{\prime}} \subseteq s_{g^{\prime}} r_{g} R m_{h}=0$. As M is graded semiprime,
$s_{g^{\prime}} r_{g} n_{h^{\prime}}=0$, a contradiction. Hence M is a graded prime R-module.

Theorem 3.7. Let L be a graded semiprime submodule of a graded R-module M. If M / L has finite uniform dimension then the following statements are equivalent:
(i) L is a graded radical submodule of M;
(ii) L can be lifted to M whenever it is contained as a graded prime submodule in a graded submodule of M;
(iii) For every graded uniform submodule U / L of M / L, there exists a graded prime submodule K of M such that $U \cap K=L$;
(iv) For every graded uniform submodule U / L of M / L with assassinator $P, U \cap P M \subseteq L$;
(iv) For every graded uniform submodule U / L of M / L with assassinator $P, U \nsubseteq L+P M$.

Proof. Without loss of generality, we may assume that $L=0$. Thus M is a graded semiprime R-module having finite uniform dimension. Since any graded uniform submodule of M is graded prime by Lemma 3.6, then the implications $(i) \Rightarrow(i i) \Rightarrow(i i i) \Leftrightarrow(i v) \Leftrightarrow(v)$ hold by Theorem 2.16.
$(i v) \Rightarrow(i)$ Since M has graded finite uniform dimension, so by Lemma 3.6, there exist a (finite) direct sum of graded prime modules which is essential in M. Let L be a graded prime R-module contained in M with annihilator P. Suppose that $L \cap P M \neq 0$. As M has graded finite uniform dimension, $L \cap P M$ contains a graded uniform module U. Clearly, P is the assassinator of U. By (iv), $U \cap P M=0$, which is impossible, because $U \subseteq P M$. Hence every graded prime R-module L contained in M with $\operatorname{ann}(L)=P$, we must have $L \cap P M=0$. Then by Theorem 2.16, the proof holds.

4. Graded modules over commutative graded Rings

Throughout this section, R will denote a commutative G-graded ring with identity. In this section, we study graded semiprime submodules of graded modules over commutative graded rings.

Lemma 4.1. Let R be a commutative graded ring with identity and M be a graded R-module. Then N is a graded semiprime submodule of M if and only if $r_{g}^{2} m_{h} \in N$, where $r_{g} \in h(R)$ and $m_{h} \in h(M)$, then $r_{g} m_{h} \in N$.

Proof. The proof is completely straightforward.

We know that every graded prime submodule is a graded semiprime submodule, but the converse is not true in general. Consider the following example.

Example 4.2. Let R be a commutative domain which is not a field. Consider $M=R \oplus R$ and $G=\mathbb{Z}_{2}$ the group of integers modulo 2 . Then R is G-graded by $R_{0}=R$ and $R_{1}=\{0\}$ and M is a G-graded R-module by $M_{0}=R \oplus\{0\}$ and $M_{1}=\{0\} \oplus R$. Let P be a non-zero graded prime ideal of R. Then $N=P \oplus\langle 0\rangle$ is a graded semiprime submodule of M which is not a graded prime submodule of M.

Proof. Let

$$
r_{g}^{2} m_{h} \in N=P \oplus\langle 0\rangle,
$$

where $r_{g} \in h(R)$ and $m_{h} \in h(M)=M_{0} \cup M_{1}$. So $m_{h}=(x, 0)$ or $m_{h}=(0, y)$ for some $x, y \in R$. If $r_{g}^{2}(x, 0) \in P \oplus\langle 0\rangle$, then $r_{g}^{2} x \in P$, so $r_{g} \in P$ or $x \in P$, therefore in any case, $r_{g}(x, 0) \in P \oplus\langle 0\rangle$. If $r_{g}^{2}(0, y) \in P \oplus\langle 0\rangle$, then $r_{g}^{2} y=0$, then $r_{g}=0$ or $y=0$, and so in any case, $r_{g}(0, y) \in P \oplus\langle 0\rangle$. Thus $N=P \oplus\langle 0\rangle$ is a graded semiprime submodule of M. But it is not a graded prime submodule of M. Since $P \neq\{0\}$, so there exists $0 \neq x \in P$. Hence $x(1,0) \in P \oplus\langle 0\rangle$, but $(1,0) \notin P \oplus\langle 0\rangle$ and $x \notin(P \oplus\langle 0\rangle: M)$.
Definition 4.3. Let G be a group with identity e. A proper $R_{e^{-}}$ submodule N of a G-graded R-module M is said to be semiprime $R_{e^{-}}$ submodule of M if whenever $r_{e}^{2} m \in N$ for some $r_{e} \in R_{e}$ and $m \in M$, then $r_{e} m \in N$.

Theorem 4.4. Let $G=\{e, g\}$ and M be a G-graded R-module. Then the following hold:
(i) If N is a semiprime R_{e}-submodule of M, then $N \oplus M_{g}$ is a semiprime R_{e}-submodule of M.
(ii) If N is a semiprime R_{e}-submodule of M_{g}, then $M_{e} \oplus N$ is a semiprime R_{e}-submodule of M.

Proof. (i) Since M_{g} is a R_{e}-module, so $N \oplus M_{g}$ is an R_{e}-submodule of M. Let $r_{e} \in R_{e}$ and $m \in M$ be such that $r_{e}^{2} m \in N \oplus M_{g}$. As $m \in M=M_{e} \oplus M_{g}$, so $m=m_{e}+m_{g}$ for some $m_{e} \in M_{e}$ and $m_{g} \in M_{g}$ and since $r_{e}^{2} m=r_{e}^{2}\left(m_{e}+m_{g}\right)=r_{e}^{2} m_{e}+r_{e}^{2} m_{g} \in N \oplus M_{g}$, then $r_{e}^{2} m_{e} \in N$. Therefore $r_{e} m_{g} \in N$ since N is a semiprime R_{e}-submodule of M_{e}. Then $r_{e}\left(m_{e}+m_{g}\right) \in N \oplus M_{g}$ and so $r_{e} m \in N \oplus M_{g}$, as needed.
(ii) The proof is similar to (i).

A proper graded submodule Q of a graded R-module M is said to be graded primary, if whenever $r_{g} m_{h} \in Q$ for some $r_{g} \in h(R)$ and
$m_{h} \in h(M)$, then $m_{h} \in Q$ or there exists a positive integer k such that $r_{g}^{k} \in(Q: M)$. We know that if Q is a graded primary submodule of a graded R-module M, then $P=\operatorname{Grad}(Q: M)$, the graded prime radical of the graded ideal $(Q: M)$, is a graded prime ideal of R (see [14, Lemma 1.8]). In this case, we say that Q is a P-graded primary submodule of M.

Given a graded submodule N of a graded R-module M has a decomposition $N=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$ where for all i, Q_{i} is a graded submodule of M, is called irredundant if $N \neq Q_{1} \cap \cdots \cap Q_{i-1} \cap Q_{i+1} \cap \cdots \cap Q_{n}$ for all $1 \leq i \leq n$. A graded submodule N of M is said to have a graded primary decomposition if N is the intersection of a finite collection of graded primary submodules of M. By [14, Corollary 2.16], every proper graded submodule of a graded Noetherian module over a commutative graded ring has a graded primary decomposition.
A graded submodule N of a graded R-module M is said to have a normal graded primary decomposition, if there exists a positive integer n, distinct graded prime ideals $P_{i}(1 \leq i \leq n)$ of R and P_{i}-graded primary submodules $Q_{i}(1 \leq i \leq n)$ of M such that $N=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$ is an irredundant decomposition. It is clear any graded primary decomposition of a graded submodule can be reduced to a normal one.

Lemma 4.5. Let N be a graded semiprime submodule of a graded R-module M. Let $N=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$ be a normal graded primary decomposition of N in M, where $\operatorname{Grad}\left(Q_{i}: M\right)=P_{i}$ for all $i=1, \ldots, n$. Set $N_{i}=Q_{1} \cap \cdots \cap Q_{i-1} \cap Q_{i+1} \cap \cdots \cap Q_{n}(1 \leq i \leq n)$. Then the following hold:
(i) $P_{i} N_{i} \subseteq N$ for every $i=1, \ldots, n$;
(ii) $\left(N_{i}:_{M} P_{i}\right)=N$ if P_{i} is a maximal member of the set $\left\{P_{1}, \ldots, P_{n}\right\}$;
(iii) N is a graded P_{i}-prime submodule of N_{i} for all $i=1, \ldots, n$;
(iv) If P_{i} is a minimal member of the set $\left\{P_{1}, \ldots, P_{n}\right\}$, then Q_{i} is a P_{i}-prime submodule of M.

Proof. (i) Let $r=\sum_{g \in G} r_{g} \in P_{i}$ and $m=\sum_{h \in G} m_{h} \in N_{i} \backslash Q_{i}$. There exists $n \in \mathbb{N}$ such that $r_{g}^{n} M \subseteq Q_{i}$ for all $g \in G$. Hence for all $g \in G$ and $h \in G, r_{g}^{n} m_{h} \in Q_{i}$, then $r_{g}^{n} m_{h} \in Q_{i} \cap N_{i}=N$, so for all $g \in G$ and $h \in G, r_{g} m_{h} \in N$ because N is graded semiprime. Therefore $r m \in N$, as required.
(ii) Let P_{i} be maximal among $P_{1}, P_{2}, \ldots, P_{n}$. By part (i,

$$
N_{i} \subseteq\left(N:_{M} P_{i}\right) .
$$

Now we show $\left(N:_{M} P_{i}\right) \subseteq N_{i}$. Let $m=\sum_{h \in G} m_{h} \in M$ with $P_{i} m \subseteq N$, so $P_{i} m_{h} \subseteq N$ for any $h \in G$. By [5, Theorem 2], and since P_{i} is maximal among $P_{1}, P_{2}, \ldots, P_{n}$, we get

$$
P_{i} \nsubseteq P_{1} \cup \cdots \cup P_{i-1} \cup P_{i+1} \cup \cdots \cup P_{n}
$$

Hence there exists $r_{g} \in P_{i} \cap h(R)$ such that

$$
r_{g} \notin P_{1} \cup \cdots \cup P_{i-1} \cup P_{i+1} \cup \cdots \cup P_{n} .
$$

Then for any $h \in G, r_{g} m_{h} \in N=N_{i} \cap Q_{i}$. Therefore since Q_{i} is a P_{i}-graded primary $(1 \leq i \leq n)$, we have for any $h \in G, m_{h} \in Q_{i}$ and so for any $h \in G, m_{h} \in N_{i}$. Thus $m=\sum_{h \in G} m_{h} \in N_{i}$.
(iii) By normality of the graded primary decomposition, $N \neq N_{i}$, and by part $(i), P_{i} \subseteq\left(N:_{M} N_{i}\right)$. Let $r_{g} \in h(R)-P_{i}$ and $m_{h} \in h\left(N_{i}\right)$ such that $r_{g} m_{h} \in N$. Then $r_{g} m_{h} \in Q_{i}$ and so $m_{h} \in Q_{i}$. This gives that $m_{h} \in N_{i} \cap Q_{i}=N$.
(iv) Let P_{i} be a minimal element of the set $\left\{P_{1}, \ldots, P_{n}\right\}$. It is enough to show that $\left(Q_{i}:_{R} M\right)=P_{i}$. Let $r=\sum_{g \in G} r_{g}$. Then there exists $t \in \mathbb{N}$ such that $r_{g}^{t} M \subseteq Q_{i}$. Choose

$$
s_{g^{\prime}} \in\left(P_{1} \cap \cdots \cap P_{i-1} \cap P_{i+1} \cap \cdots \cap P_{n}\right) \bigcap\left(h(R)-P_{i}\right) .
$$

Thus $s_{g^{\prime}}^{k} M \subseteq N_{i}$ for some $k \in \mathbb{N}$. Therefore

$$
s_{g^{\prime}}^{k} r_{g}^{t} M \subseteq Q_{i} \cap N_{i}=N
$$

and since N is graded semiprime, $s_{g^{\prime}} r_{g} M \subseteq N$. Now, we have $s_{g^{\prime}} r_{g} M \subseteq Q_{i} \cap N_{i}=N$ and $s_{g^{\prime}} \in h(R)-P_{i}$. It follows that $r_{g} M \subseteq Q_{i}$ for all $g \in G$, so $r M \subseteq Q_{i}$.

Theorem 4.6. Let N be a graded semiprime submodule of a graded Noetherian R-module M, with the notation of the previous lemma, the following statements are equivalent:
(i) N is a graded radical submodule of M;
(ii) N can be lifted to M whenever it is contained as a P_{i}-graded prime submodule $(1 \leq i \leq n)$ in a graded submodule of M;
(iii) For every $i=1, \ldots, n$, there exists a P_{i}-graded prime submodule K_{i} of M such that $N=N_{i} \cap K_{i}$.

Proof. $(i) \Rightarrow(i i)$ follows from Lemma 2.15 and $(i i) \Rightarrow(i i i)$ holds by Lemma 4.5(iii).
$($ iii $) \Rightarrow(i)$ We use induction on n. Let $n=1$. Then by part (iv) of Lemma 4.5, N is a graded prime submodule and so a graded radical submodule of M. Now, let $n>1$ and assume that our claim is true for $n-1$. Without loss of generality, assume that P_{n} is a maximal member of the set $\left\{P_{1}, \ldots, P_{n}\right\}$. If $n=2$, then by part (iii) of assumption and the part (iv) of Lemma 4.5, we have N is an intersection of two graded prime submodules of M. Hence we can take $n>2$. By part (ii) of Lemma 4.5, $\left(N:_{M} P_{n}\right)=N_{n}=Q_{1} \cap \cdots \cap Q_{n-1}$. It is easy to see that
N_{n} is a graded semiprime submodule of M. We show that N_{n} satisfies the condition of (iii), that is, for every $j=1,2, \ldots, n-1$, there exists a P_{i}-prime submodule K_{j} of M such that

$$
N_{n}=Q_{1} \cap \cdots \cap Q_{j-1} \cap Q_{j+1} \cap \cdots \cap Q_{n-1} \cap K_{j} .
$$

It is enough to take $j=n-1$. By assumption (iii), there exists a P_{n-1}-graded prime submodule K of M such that $N=N_{n-1} \cap K$. Let $m=\sum_{g \in G} m_{g} \in N_{n}$, so $m_{g} \in N_{n}$ for any $g \in G$. Then $P_{n} m_{g} \subseteq N$. By maximality of $P_{n}, P_{n} \nsubseteq P_{1} \cap \cdots \cap P_{n-1}$, and so $m_{g} \in Q_{1} \cap \cdots \cap Q_{n-2} \cap K$. Hence $m \in Q_{1} \cap \cdots \cap Q_{n-2} \cap K$. This shows that

$$
N_{n} \subseteq Q_{1} \cap \cdots \cap Q_{n-2} \cap K
$$

Conversely, let $m=\sum_{g \in G} m_{g} \in Q_{1} \cap \cdots \cap Q_{n-2} \cap K$. Hence for all $g \in G$, $m_{g} \in Q_{1} \cap \cdots \cap Q_{n-2} \cap K$. Since M is graded Noetherian, $P_{n}^{k} M \subseteq Q_{n}$ for some positive integer k. Thus $P_{n}^{k} m_{g} \subseteq N_{n-1} \cap K=N$. As N is graded semiprime, we have $P_{n} m_{g} \subseteq N$. Therefore, $N_{n}=Q_{1} \cap \cdots \cap Q_{n-2} \cap K$. By induction hypothesis, N_{n} is a graded radical submodule of M. On the other hand, by $(i i i)$, there exists a P_{n}-graded prime submodule K^{\prime} of M such that $N=N_{n} \cap K^{\prime}$. Hence N is a graded radical submodule of M.

5. Conclusions

The concepts of graded prime R-modules over non-commutative graded rings, graded semiprime and graded radical submodules of graded R-modules over non-commutative graded rings have been studied and some results where established. In fact, some of the results concerning of prime and semiprime submodules are not hold for graded prime and graded semiprime submodules. The notion of graded semiprime submodules was proposed and basic properties of them based on their formations were introduced. We also explored some equivalent conditions for a graded module to have zero graded radical submodule. In future works, we will focus our research on other generalizations of graded prime submodules over non-commutative graded rings.

Acknowledgements

The authors would like to thank the referees for valuable suggestions and comments which improved the present article.

References

1. R. Abu-Dawwas and M. Bataineh, Graded prime submodules over noncommutative rings, Vietnam J. Math., 46(3) (2018), 681-692.
2. S. Ebrahimi Atani, On graded prime submodules, Chiang Mai J. Sci., 33(1) (2006), 3-7.
3. S. Ebrahimi Atani and F. Farzalipour, Notes on the graded prime submodules, Int. Math. Forum, 38(1) (2006), 1871-1880.
4. S. Ebrahimi Atani and F. Farzalipour, On graded secondary modules, Turk. J. Math., 31 (2007), 371-378.
5. S. Ebrahimi Atani and Ü. Tekir, On the graded primary avoidance theorem, Chiang Mai J. Sci., 34(2) (2007), 161-164.
6. F. Farzalipour and P. Ghiasvand, A generalization of graded prime submodules over non-commutative graded rings, J. Algebra and Related Topics, 8(1) (2020), 39-50.
7. F. Farzalipour and P. Ghiasvand, On graded semiprime and graded weakly semiprime ideals, Int. Electronic J. Algebra, 13 (2013), 15-22.
8. F. Farzalipour and P. Ghiasvand, On the union of graded prime submodules, Thai. J. Math., 9(1) (2011), 49-55.
9. F. Farzalipour, P. Ghiasvand and M. Adlifar, On graded weakly semiprime submodules, Thai. J. Math., 12(1) (2014), 167-174.
10. P. Ghiasvand and F. Farzalipour, On graded weak multiplication modules, Tamkang J. Math., 43(2) (2012), 171-177.
11. P. Ghiasvand and F. Farzalipour, On the graded primary radical of graded submodules, Advances and Appl. Math. Sci., 10(1) (2011), 1-7.
12. N. Nastasescu and F. Van Oystaeyen, Graded Rings Theory, Mathematical Library 28, North Holland, Amsterdam, 1937.
13. N. Nastasescu and F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Mathematics, vol. 1836. Springer, Berlin, 2004.
14. M. Refaei and K. Alzobi, On graded primary ideals, Turk. J. Math., 28(3) (2004), 217-229.
15. B. Saraç, On semiprime submodules, Comm. Algebra, 37 (2009), 2485-2495.

Peyman Ghiasvand

Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.
Email: p_ghiasvand@pnu.ac.ir

Farkhonde Farzalipour

Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.
Email: f_farzalipour@pnu.ac.ir

Journal of Algebraic Systems

GRADED SEMIPRIME SUBMODULES OVER NON-COMMUTATIVE GRADED RINGS

P. GHIASVAND AND F. FARZALIPOUR

$$
\begin{aligned}
& \text { زيرمدولهاى نيمهاول مدرج روى حلقههاى مدرج ناجابجايى } \\
& \text { پپيمان غياثوند' و فرخنده فرضعلى پور「 }
\end{aligned}
$$

اينكه يك مدول مدرج داراى زيرمدول راديكال مدرج صفر باشد را بددست مىآوريم.

[^0]: DOI: 10.22044/JAS.2021.9102.1442.
 MSC(2010): Primary: 13A02; Secondary: 16W50.
 Keywords: Graded prime module, Graded radical submodule, Graded semiprime submodule.
 Received: 11 November 2019, Accepted: 25 August 2021.

 * Corresponding author.

