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NORMAL INJECTIVE RESOLUTION OF GENERAL
KRASNER HYPERMODULES

M. HAMIDI∗, F. FARAJI, R. AMERI AND KH. AHMADI AMOLI

Abstract. In this paper, we construct the concept of general
Krasner hyperring based on the ring structures and the left gen-
eral Krasner hypermodule based on the module structures. This
study introduces the trivial left general Krasner hypermodules and
proves that the trivial left general Krasner hypermodules are dif-
ferent from left Krasner hypermodules. We show that for any
given general Krasner hyperring R and trivial left general Kras-
ner hypermodules A,B,Rhom(A,B) is a left general Krasner hy-
permodule and Rhom(−, B), (Rhom(A,−)) is an exact covari-
ant functor (contravariant). Finally, we show that the category
RGKHmod (left trivial general Krasner hypermodules and all ho-
momorphisms) is an abelian category and trivial left general Kras-
ner hypermodules have a normal injective resolution.

1. Introduction

The hyperstructure theory as an extension of classical structures was
firstly introduced, by F. Marty in 1934 [12]. In hyperalgebraic system,
the hyperproduct of elements is a set and so any algebraic system is a
hyperalgebraic system. Marty extended the concept of groups to hy-
pergroups and other researchers presented the hyperalgebraic concepts
such as hyperring, hypermodule, hyperfield, hypergraph, polygroup,
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multiring, etc. Hyperstructures are applied in several branches of sci-
ences such as artificial intelligence, chemistry and (hyper) complex net-
work [6]. The foundations of the theory of hypermodules were provided
by Massouros in 1988, when he introduced the concept of free hyper-
modules and cyclic hypermodules [13]. Recently, based on various
types of morphisms, the authors introduced some categories consist-
ing of these R-hypermodules such as the categories Rhmod, Rshmod,
RHmod, and RsHmod [1, 2, 3, 5, 7, 9, 8, 11, 10, 14, 15, 16, 18].
Bordbar et al. initiateed the study of the chains of hypermodules
over a Krasner hyperring R, endowing first the set Homn

R(M,N) of
all normal homomorphisms between two R-hypermodules M and N
with a structure of R-hypermodule. They, studied on the concepts
of normal injectivity and projectivity of hypermodules over a Kras-
ner hyperring R, characterizing them by the mean of chains of R-
hypermodules [4]. Regarding these points, we introduce the concept
of trivial left general Krasner hypermodules, normal injective general
Krasner R-hypermodules and construct the trivial left general Kras-
ner hypermodules based on any given non-empty set. We extend the
concept of modules to (trivial) left general Krasner hypermodules and
investigate their properties. The main motivation of this work is to
show that the category of trivial left general Krasner hypermodules is
an abelian category. In this regard, we prove that any trivial general
Krasner R-hypermodule, where R is a commutative ring can be em-
bedded as a general Krasner R-subhypermodule of a normal injective
general Krasner R-hypermodule. Indeed, we show that every trivial
general Krasner R-hypermodule, where R is commutative has a normal
injective resolution. We investigate that under certain conditions for
any given general Krasner hyperring R and trivial left general Krasner
hypermodules A,B,Rhom(A,B) is a left general Krasner hypermodule
and Rhom(A,−) is an exact covariant functor. At the end, we present
fundamental strong R-isomorphism theorems in left general Krasner
hypermodules to construct the quotient of left general Krasner hyper-
module and seek the homological properties of left general Krasner
hypermodules.

2. Preliminaries

In what follows, we recall some results from [1, 6], that are needed
in our work.

Let R be a nonempty set and P∗(R) = {S | ∅ ̸= S ⊆ R}. Every map
+R : R×R −→ P∗(R), is said to be a hyperoperation, a hyperstructure
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(R,+R) is called a hypergroupoid and for all nonempty subsets A,B of
R, A +R B =

∪
a∈A,b∈B

(a +R b)(generally, the singleton {x} is identified

with its member x, so x +R B = {x} +R B, where x ∈ R). Re-
call that a hypergroupoid (R,+R) is called a semihypergroup, if for all
x, y, z ∈ R, (x +R y) +R z = x +R (y +R z) and a semihypergroup
(R,+R) is called a hypergroup, if for x ∈ R, x +R R = R +R x = R
(reproduction axiom). A commutative hypergroup (R,+R) (for all
x, y ∈ R, x +R y = y +R x) is called a canonical hypergroup provided
that

(i) there exists a unique element 0R ∈ R such that for all
x ∈ R, 0R +R x = x+R 0R = {x},

(ii) for all x ∈ R, there exists a unique element −x ∈ R such that
0R ∈

(
x+R (−x)

)
∩
(
(−x) +R x

)
,

(iii) for all x, y, z ∈ R, x ∈ y +R z implies y ∈ x +R (−z) and
z ∈ x+R (−y),

and we will denote it by (R,+R, 0R). A system (R,+R, 0R, ·R) is called
a general Krasner hyperring whenever

(i) (R,+R, 0R) is a canonical hypergroup,
(ii) (R, ·R) is a semihypergroup such that for all x ∈ R,

x ·R 0R = 0R ·R x = {0R},
(iii) for all x, y, z ∈ R, we have x ·R (y +

R
z) ⊆ (x ·R y) +R (x ·R z)

and (y +
R
z) ·R x ⊆ (y ·R x) +R (z ·R x).

A general Krasner hyperring (R,+R, 0R, ·R) is called commutative (with
unit element), if for all x, y ∈ R, x·Ry = y·Rx (if there exists an element
1 ∈ R such that for all x ∈ R, 1 ·Rx = x ·R1 = {x}). For a given general
Krasner hyperring (R,+R, 0R, ·R), a canonical hypergroup (A,+A, 0A)
together with a left external multiplication ∗ : R × A −→ P∗(A),
is called a left general Krasner hypermodule over general Krasner R(
we say that it is a general Krasner R-hypermodule and denote it by
(A,+A, 0A, ∗)

)
, if for all r, s ∈ R and for all a, b ∈ A,

(i) r ∗ (a+A b) ⊆ (r ∗ a) +A (r ∗ b),
(ii) (r +R s) ∗ a ⊆ (r ∗ a) +A (s ∗ a),
(iii) (r ·R s) ∗ a ⊆ r ∗ (s ∗ a),
(iv) 0R ∗ a = {0A}.

A general Krasner R-hypermodule A is called unitary if there exists
1R ∈ R such that for all a ∈ A we have 1R ∗ a = {a}. A map
f : A→ A′ is called a (an inclusion) strong or good R-homomorphism
of general Krasner R-hypermodules if, for all x, y ∈ A and for all
r ∈ R, (f(x +A y) ⊆ f(x) +A′ f(y)) f(x +A y) = f(x) +A′ f(y) and
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(f(r ∗ x) ⊆ r ∗′ f(x)) f(r ∗ x) = r ∗′ f(x). A map f : A → A′ is called
a weak R-homomorphism of general Krasner R-hypermodules, if for
all x, y ∈ A and for all r ∈ R, f(x +A y) ∩ (f(x) +A′ f(y)) ̸= ∅ and
f(r ∗ x) ∩ (r ∗′ f(x)) ̸= ∅. A nonempty subset B of A is said to be an
R-subhypermodule of A (is denoted by B ≤ A), if for all x, y ∈ B and
for all r ∈ R, x+A (−y) ⊆ B and r ∗ x ⊆ B, also B is called a normal
general R-subhypermodule (is denote by B ⊴ A), if for all x ∈ A, we
have x+A B +A (−x) ⊆ B.

3. Construction of general Krasner hyperrings

We extend the concept of the ring to general Krasner hyperring and
construct general Krasner hyperring on any given non-empty set R,
where |R| ≥ 4. In what follows, we construct a general Krasner hyper-
ring using the concept of the ring structures.

Theorem 3.1. Assume (R,+, 0, ·) is a ring. Then there exist hyperop-
erations “+R” and “·R” on R such that (R,+R, 0, ·R) is a commutative
general Krasner hyperring.
Proof. Let x, y ∈ R. Define “+R” and “·R” on R by

x+Ry =


x, y = 0,

R, x = −y(x ̸= 0),

R \ {0}, otherwise,
x·Ry =

{
0, y = 0,

{x · y, 0}, otherwise
,

where x +R y = y +R x and x ·R y = y ·R x. Routine computations,
show that (R,+R, 0, ·R) is a general Krasner hyperring, while it is not
a Krasner hyperring. □

In what follows, we construct a canonical hypergroup on any given
non-empty set.

Theorem 3.2. Suppose R is a set with |R| ≥ 4. Then there exists
a hyperoperation “+R” on R and 0R ∈ R such that (R,+R, 0R) is a
canonical hypergroup.

Proof. Let R be an arbitrary set, with |R| ≥ 4, fixed a0 = 0R ∈ R and
C3 = {a1, a2, a3} ⊆ R. Now, for all ai, aj ∈ R, we define “+R” on R as
follows:

ai +R aj =


R \ C3 i = j ̸= 0,

R \ (C3 ∪ {0R}) i ̸= j ≥ 4,

C3 \ {ai, aj} 1 ≤ i ̸= j ≤ 3,

{ai} 1 ≤ i ≤ 3 and j ≥ 4,
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where, for all ai ∈ R, ai +R 0R = {ai}. It is easy to verify that
(R,+R, 0R) is a canonical hypergroup. □
Example 3.3. Consider R = {0R, a1, a2, a3, a4, a5} and

+R 0R a1 a2 a3 a4 a5
0R 0R a1 a2 a3 a4 a5
a1 a1 T a3 a2 a1 a1
a2 a2 a3 T a1 a2 a2
a3 a3 a2 a1 T a3 a3
a4 a4 a1 a2 a3 T T ′

a5 a5 a1 a2 a3 T ′ T

.

Then (R,+R, 0R) is a canonical hypergroup by Theorem 3.2, where
T = {0R, a4, a5} and T ′ = {a4, a5}.

In the following theorem, we construct a commutative general Kras-
ner hyperring on any given finite set |R| ≥ 4.
Theorem 3.4. Assume R is a set and 4 ≤ |R| ≤ n. Then there exist
hyperoperations “+R”, “·R” on R, and 0R ∈ R such that (R,+R, 0R, ·R)
is a commutative general Krasner hyperring.
Proof. Let R = {a0, a1, . . . , an} be an arbitrary set, n ≥ 4, fixed
a0 = 0R ∈ R and C3 = {a1, a2, a3} ⊆ R. By Theorem 3.2, there
exists a hyperoperation “+R” on R and 0R ∈ R such that (R,+R, 0R)
is a canonical hypergroup. Now for any ai, aj ∈ R, we define “·R” on
R as follows:

ai ·R aj =



0 i = 0,

aj i = 1,

ai i = j ̸= n,

a4 i = k, j ≥ k + 1, 2 ≤ k,

{a4, an} i = j = n,

and for each 0 ≤ i ̸= j, ai·Raj = aj ·Rai. One can see that (R,+R, 0R, ·R)
satisfies in the definition of commutative general Krasner hyperring.
conclude that (R,+,−, 0, ·, 1) is not a . □
Example 3.5. Consider R = {0, 1, a2, a3, a4, a5, a6} and
+R 0 1 a2 a3 a4 a5 a6
0 0 1 a2 a3 a4 a5 a6
1 1 T a3 a2 1 1 1
a2 a2 a3 T 1 a2 a2 a2
a3 a3 a2 1 T a3 a3 a3
a4 a4 1 a2 a3 T T ′ T ′

a5 a5 1 a2 a3 T ′ T T ′

a6 a6 1 a2 a3 T ′ T ′ T

,

·R 0 1 a2 a3 a4 a5 a6
0 0 0 0 0 0 0 0
1 0 1 a2 a3 a4 a5 a6
a2 0 a2 a2 a4 a4 a4 a4
a3 0 a3 a4 a3 a4 a4 a4
a4 0 a4 a4 a4 a4 a4 a4
a5 0 a5 a4 a4 a4 a5 a4
a6 0 a6 a4 a4 a4 a4 {a6, a4}

.
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Then (R,+, 0, ·, 1) is a commutative general Krasner hyperring (while it
is not a general Krasner hyperring), by Theorem 3.4, where
T = {0, a4, a5, a6} and T ′ = {a4, a5, a6}.

Theorem 3.6. Suppose (R,+R, 0R, ·R, 1R) is a general Krasner hyper-
ring with unit and A,B ⊆ R. Then

(i) −A = {−a | a ∈ A}
(ii) 0R ∈ A− A;
(iii) C ⊆ A+R B if and only if A ∩ (C −B) ̸= ∅;
(iv) −(−A) = A;
(v) 0R +R A = A = A+R 0;
(vi) if 0R ∈ A+R B, then A ∩ (−B) ̸= ∅, and (−A) ∩B ≠ ∅;
(vii) 0R·RA = A ·R 0R = 0R and 1R ·R A = A ·R 1R = A;
(viii) 0R − A = −A and A− 0R = A;
(ix) A ⊆ B if and only if −A ⊆ −B.

Proof. (i) Let B = −A. Then 0R ∈ A +R B and so there exists a ∈ A
and b ∈ B such that 0R ∈ a+R b. It follows that b ∈ −a+R 0R = {−a}
or −a = b.

(ii) By definition, we have A− A =
∪
a,b∈A

(a− b) =
∪
a,b∈A

(a+R (−b)),

so 0R ∈ A− A.
(iii) Since C ⊆ A +R B, for all c ∈ C, there exist a ∈ A and b ∈ B

such that c ∈ a+R b. It concludes that a ∈ c−b and so A∩(C−B) ̸= ∅.
The converse part is similar to.

(iv) By definition, −(−A) =
∪
a∈A

(−(−a)), so we get that −(−A) = A.

(v) It is clear.
(vi) Sine 0R ∈ A +R B, there exist a ∈ A and b ∈ B in such a way

that 0R ∈ a+R b. It implies that a = −b and so A ∩ (−B) ̸= ∅.
(vii), (viii), and (ix) are immediate consequences of the definition.

□

4. Construction of general Krasner R-hypermodule

In this section, we are ready to construct (general) KrasnerR-hyperm
odule based on any given non-empty set and so extend ring-modules
to (general) Krasner R-hypermodules. Moreover, we introduce the
quotient of general Krasner R-hypermodules and prove the strong R-
Isomorphism Theorems.

Definition 4.1. Let (A,+A, ∗) be a (general) Krasner R-hypermodule.
(A,+A, ∗) is called
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(i) an associative (general) Krasner R-hypermodule, if for all
r, s ∈ R, a ∈ A, (r ·R s) ∗ a = r ∗ (s ∗ a).

(ii) a trivial general Krasner R-hypermodule, if for all r ∈ R and for
all a ∈ A, we have |r ∗a| = 1, otherwise it is called a non-trivial
general Krasner R-hypermodule.

Theorem 4.2. Assume (A,+A, ∗) is a general Krasner R-hypermodule.
Then for all r ∈ R and a ∈ A:

(i) 0A ∈ r ∗ 0A;
(ii) −(r ∗ a) ∩ (−r ∗ a) ̸= ∅;
(iii) if (A,+A, ∗) is a trivial general Krasner R-hypermodule, then

−(r ∗ a) = (−r) ∗ a;
(iv) −(r ∗ a) ∩ (r ∗ (−a)) ̸= ∅;
(v) if (A,+A, ∗) is a trivial general Krasner R-hypermodule, then

−(r ∗ a) = r ∗ (−a);
(vi) if (A,+A, ∗) is a trivial general Krasner R-hypermodule, then

0A = r ∗ 0A.

Proof. (i) Let r ∈ R. Then (r ·R 0R)∗0A ⊆ r ∗ (0R ∗0A). It follows that
{0A} = 0R ∗ 0A ⊆ r ∗ 0A.
(ii) Let r ∈ R and a ∈ A. Then

0A ∈ 0R ∗ a = (r − r) ∗ a ⊆ (r ∗ a) +A (−r ∗ a).

Using Theorem 3.6, we get that −(r ∗ a) ∩ ((−r) ∗ a) ̸= ∅.
(iii) Let r ∈ R and a ∈ A. Since |− (r ∗a)| = |(−r)∗a| = 1, by item

(ii),we get that −(r ∗ a) = (−r) ∗ a.
(iv), (v) and (vi) are proved similarly.

□

Example 4.3. Set R = {0, 1, a}. Then (R,+R, ·R) is a commutative
general Krasner hyperring and (R,+R, ∗) is an associative non-trivial
general Krasner R-hypermodule.

+R 0 1 a
0 0 1 a
1 1 {0, a} 1
a a 1 {0, a}

,

·R 0 1 a
0 0 0 0
1 0 1 a
a 0 a {0, a}

and

∗ 0 1 a
0 0 0 0
1 0 1 a
a 0 a {0, a}

.

Example 4.4. (i) Let R = {0, 1, 2, 3}. Then (R,+R, ·R) is a com-
mutative general Krasner hyperring with unit, (R,+′

R) is a canonical
hypergroup and so it is a non-trivial general Krasner R-hypermodule
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as follows.

+R 0 1 2 3
0 0 1 2 3
1 1 1 R {1, 3}
2 2 R 2 {2, 3}
3 3 {1, 3} {2, 3} R

,

·R 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 R R
3 0 3 R R

and

+′
R 0 1 2 3

0 0 1 2 3
1 1 R {1, 2, 3} {1, 2, 3}
2 2 {1, 2, 3} R {1, 2, 3}
3 3 {1, 2, 3} {1, 2, 3} R

,

where for all x ∈ R, 0 ∗ x = x ∗ 0 = {0}, and for all x, y ∈ R \ {0},
x ∗ y = R.

(ii) Let R = {0, 1, a, b}. Then (R,+R, ·R) is a commutative general
Krasner hyperring with unit, (R,+′

R) is a canonical hypergroup and so
it is a non-trivial general Krasner R-hypermodule as follows.

+R 0 1 a b
0 0 1 a b
1 1 R {1, b} {1, a}
a a {1, b} {0, a} 1
b b {1, a} 1 {0, b}

,

·R 0 1 a b
0 0 0 0 0
1 0 1 {1, a} {1, b}
a 0 {1, a} a R
b 0 {1, b} R b

and

+′
R 0 1 a b

0 0 1 a b
1 1 {1, 0} {a, b} {a, b}
a a {a, b} R \ {0} R
b b {a, b} R R \ {0}

,

where for all x ∈ R, 0 ∗ x = x ∗ 0 = {0} and for all x, y ∈ R \ {0},
x ∗ y = R.
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Example 4.5. Consider the ring (Z,+, .) and A = {π, e, a, b, c}. Then
(A,+A, ∗) is a non-trivial general Krasner R-hypermodule as follows.

+A π e a b c
π {π, e} π a b c
e π e a b c
a a a {π, e} c b
b b b c {π, e} a
c c c b a {π, e}

and

∗ e a b c π
... ... ... ... ... ...
−2 {e, π} {e, π} {e, π} {e, π} {e, π}
−1 {e, π} {a, π} {b, π} {c, π} {e, π}
0 e e e e e
1 {e, π} {a, π} {b, π} {c, π} {e, π}
2 {e, π} {e, π} {e, π} {e, π} {e, π}
... ... ... ...

.

Remark 4.6. Suppose (R,+R, 0R, ·R) is a general Krasner hyperring and
(A,+A, ∗) is a general Krasner R-hypermodule. Example 4.5, shows
that for any given r ∈ R, necessarily r ∗ 0A ̸= 0A.

The following theorem shows the existence of general Krasner R-
hypermodule.

Theorem 4.7. Assume (R,+R, ·R) is a general Krasner hyperring
(wiyh unit). Then there exists a left external multiplication
∗ : R × R −→ P∗(R) such that (R,+R, ∗) is a non-trivial (unitary)
general Krasner R-hypermodule.

Proof. For any r, a ∈ R, define ∗ : R × R → P∗(R) by r ∗ a = r ·R a.
One can see that (R,+R, ∗) is a general Krasner R-hypermodule. □

Remark 4.8. Since (R,+R, 0, ·R) is a general Krasner hyperring, it is
clear that trivial general Krasner R-hypermodules are not isomorphic
to Krasner R-hypermodules, necessarily.

In the following, we introduce some general Krasner R-hypermodules
differently from Theorem 4.7.

Example 4.9. (i) Let R = {0, 1, a}. Then (R,+R, ·R) is a commuta-
tive general Krasner hyperring with unit, so it is a unitary non-trivial
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general Krasner R-hypermodule as follows.

+R 0 1 a
0 0 1 a
1 1 1 R
a a R a

,

·R 0 1 a
0 0 0 0
1 0 1 a
a 0 a {1, 0}

and

∗ 0 1 a
0 0 0 0
1 0 1 a
a 0 a R

.

(ii) Let R = {0, 1, a}. Then (R,+R, ·R) is a commutative general
Krasner hyperring with unit, so it is a unitary non-trivial general Kras-
ner R-hypermodule as follows.

+R 0 1 a
0 0 1 a
1 1 R {1, a}
a a {1, a} R

,

·R 0 1 a
0 0 0 0
1 0 1 a
a 0 a {0, 1}

and

∗ 0 1 a
0 0 0 0
1 0 1 a
a 0 a R

.

(iii) Let R = {0, 1, a}. Then (R,+R, ·R) is a commutative general
Krasner hyperring with unit, so it is a unitary non-trivial general Kras-
ner R-hypermodule as follows.

+R 0 1 a
0 0 1 a
1 1 R {1, a}
a a {1, a} R

,

·R 0 1 a
0 0 0 0
1 0 1 a
a 0 a {0, 1}

and

∗ 0 1 a
0 0 0 0
1 0 {0, 1} {0, a}
a 0 {0, a} {0, 1}

.

(iv) Let R = {0, 1, a, b}. Then (R,+R, ·R) is a commutative general
Krasner hyperring with unit, (R,+R) is a canonical hypergroup and so
it is a unitary non-trivial general Krasner R-hypermodule as follows.

+R 0 1 a b
0 0 1 a b
1 1 R {1, a} {1, b}
a a {1, a} R {a, b}
b b {b, 1} {a, b} R

,

·R 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a R
b 0 b R b

and

∗ 0 1 a b
0 0 0 0 0
1 0 {0, 1} {0, a} {0, b}
a 0 {0, a} {a, b} R
b 0 {0, b} R {a, b}

.

(v) Let R = {0, 1, a, b}. Then (R,+R, ·R) is a commutative general
Krasner hyperring with unit, (R,+) is a canonical hypergroup and so
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it is a unitary non-trivial general Krasner R-hypermodule as follows.

+R 0 1 a b
0 0 1 a b
1 1 R {1, b} {1, a}
a a {1, b} {0, a} 1
b b {1, a} 1 {0, b}

,

·R 0 1 a b
0 0 0 0 0
1 0 1 {1, a} {1, b}
a 0 {1, a} a R
b 0 {1, b} R b

and

∗ 0 1 a b
0 0 0 0 0
1 0 {0, 1} R \ {0} R \ {0}
a 0 R \ {0} R R
b 0 R \ {0} R R

.

In what follows, we construct non-trivial general Krasner
R-hypermodule on any given non-empty set.

Theorem 4.10. Suppose R is a nonempty set and 4 ≤ |R| ≤ n. Then
there exist hyperoperations “+R”, “·R”, on R and 0R ∈ R and a left
external multiplication ∗ : R × R −→ P∗(R) such that (R,+R, ∗) is a
general Krasner R-hypermodule.

Proof. Applying Theorem 3.4, there exist hyperoperations “+R” and
“·R”, on R and 0R ∈ R such that (R,+R, 0R, ·R) is a general Krasner
hyperring. Now by Theorem 4.7, there exists a left external multipli-
cation ∗ : R×R → P∗(R) by r∗a = r ·R a. One can see that (R,+R, ∗)
is a general Krasner R-hypermodule. □

In the following theorem, using the concept of class of ring-modules,
construct a class of arbitrary general Krasner R-hypermodules and for
any ring-module (R,A), the associated non-trivial general Krasner hy-
permodule, will denote by general Krasner R↑-hypermodule.

Theorem 4.11. Assume (R,+R, ·R) is a ring and (A,+′
A, ·′A) is an

R-module. Then there exist a left external multiplication
∗ : R× A −→ P∗(A)

such that (A,+′
A, ∗) is a general Krasner R↑-hypermodule.

Proof. Since every ring is a general Krasner hyperring and every abelian
group is a canonical hypergroup, for all r ∈ R and a ∈ A, define a map
∗ : R×A→ P∗(A) by r ∗ a = {r ·′A a, 0A}. One can see that (A,+′

A, ∗)
is a general Krasner R-hypermodule. □

“·′R” on R and a left external multiplication ∗ : R × A −→ P∗(R)
such that (A,+′, ∗) is a non-trivial general Krasner R↑-hypermodule.
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Example 4.12. Consider the ring (Z,+, ·) and the Klein four-group
(A = {e, a, b, c},+A).

∗ e a b c
... ... ... ... ...
−2 e e e e
−1 e {e, a} {e, b} {e, c}
0 e e e e
1 e {e, a} {e, b} {e, c}
2 e e e e
... ... ... ... ...

Then by Theorem 4.11, (A,+A, ∗) is a non-trivial general Krasner
Z↑

5-hypermodule.

Theorem 4.13. [17] Suppose (A,+A) is a canonical hypergroup and
B is an arbitrary canonical subhypergroup of A (B ≤ A). Then
(A/B,+A/B) is a canonical hypergroup, where A/B = {a+AB | a ∈ A}
and (a+A B) +A/B (a′ +A B) = {t+A B | t ∈ a+A a

′}.

Let (A,+A, ∗) be a general Krasner R-hypermodule and B ≤ A.
Define ∗ : R× A/B −→ P∗(A/B) by r ∗ (a+A B) = (r ∗ a) +A B.

Theorem 4.14. Assume (A,+A, ∗) is a general Krasner R-hypermodule
and B ≤ A. Then (A/B,+A/B, ∗) is a general Krasner R-hypermodule.

Proof. It is trivial. □

Let (A,+, ∗) and (B,+, ∗) be general Krasner R-hypermodules and
f : A −→ B be a strong R-homomorphism. Define

Ker(f) := {x ∈ A | f(x) = 0B}
and Im(f) := {y ∈ B | ∃ x ∈ A : y = f(x)}. A strong R-
homomorphism f : A −→ B is called a strong R-monomorphism, if
f is a one to one map, a strong R-epimorphism, if f is an onto map
and a strong R-isomorphism, if f is a bijective map. Let S ≤ A and
x, y ∈ A. Define x S∼ y ⇔ (x+A (−y)) ∩ S ̸= ∅.

Lemma 4.15. Assume f : (A,+A, ∗) → (B,+B, ∗) is a strong homo-
morphism and x, y ∈ A. Then

(i) f(0A) = 0B and for all a ∈ A, f(−a) = −f(a);
(ii) Im(f) ≤ B and Ker(f) is a canonical subhypergroup of A;
(iii) f(x) = f(y) if and only if x Ker(f)∼ y.
(iv) f is a strong R-monomorphism if and only if Ker(f) = {0A}.
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(v) if (B,+B, ∗) is a trivial general Krasner R-hypermodule, then
Ker(f) ≤ A;

Proof. (i) Let a ∈ A. Then f(0A) = f(0R ∗ a) = 0R ∗ f(a) = 0B.
In addition, 0B ∈ f(0A) ∈ f(a +A (−a)) = f(a) +B f(−a). Hence
f(−a) = −f(a).

(ii) Let a ∈ Ker(f). Since 0A ∈ a +A (−a), we get that
0B = f(0A) ∈ f(a+A (−a)) = f(a)+B f(−a) = 0B+B f(−a) = f(−a),
so for all a ∈ Ker(f) we have −a ∈ Ker(f). It follows that Ker(f) is
a canonical subhypergroup of A. Clearly Im(f) ≤ B.
(iii) Let x, y ∈ A. Then we have f(x) = f(y) if and only if

0B ∈ f(x) +B (−f(y)) if and only if 0B ∈ f(x +A (−y)) if and only if
∃ t ∈ x+A (−y) such that 0B = f(t) if and only if

(x+A (−y)) ∩Ker(f) ̸= ∅.
(iv) It is clear by (ii), (iii).
(v) Immediate by Theorem 4.2 (vi). □

Theorem 4.16. (First Strong R-isomorphism Theorem) Let
f : (A,+A, ∗) → (B,+B, ∗)

be a strong homomorphism. If (B,+B, ∗) is a trivial general Krasner
R-hypermodule, then A/Ker(f) ∼= Img(f).
Proof. Define φ : A/Ker(f) → Im(f) by φ(a +A Ker(f)) = f(a).
Clearly φ is a strong R-isomorphism and so A/Ker(f) ∼= Img(f). □
Theorem 4.17. (Second Strong R-isomorphism Theorem) Let
(A,+A, ∗) be a general Krasner R-hypermodule, B1 ≤ A and B2 ≤ A,
where (B1 +B2)/B2 is trivial. Then (B1 +B2)/B2

∼= B1/(B1 ∩B2).
Proof. Define φ : B1 → ((B1 +B2)/B2), by φ(b1) = b1 +B2. Clearly φ
is a strong R-homomorphism and so (B1+B2)/B2

∼= B1/(B1∩B2). □
Theorem 4.18. (Third Strong R-isomorphism Theorem) Let (A,+A, ∗)
be a general Krasner R-hypermodule, B1 ≤ A and B2 ≤ A, where
B1 ⊆ B2 and A/B2 is trivial. Then (A/B1)/(B2/B1) ∼= (A/B2).
Proof. Define φ : (A/B1) → (A/B2), by φ(a+AB1) = a+AB2. Clearly
φ is a strong R-homomorphism and so (A/B1)/(B2/B1) ∼= (A/B2). □

5. Homological general Krasner R-hypermodules

In this section, we define the category of general KrasnerR-hypermod
ules and investigate some of its properties. In addition, we prove that
the class of all inclusion R-homomorphisms, under some of conditions
are general Krasner R-hypermodules. Finally, we introduce two func-
tors on the class of all inclusion R-homomorphisms.
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5.1. Hom-functor. The category whose objects are all general Kras-
ner R-hypermodules and whose morphisms are all R-homomorphisms
is denoted by RGKHmod. The class of all strong R-homomorphisms
from (A,+A, ∗) into (B,+B, ∗) is denoted by Rhoms(A,B), the class of
all weak R-homomorphisms from A into B is denoted by Rhomw(A,B)
and the class of all inclusion R-homomorphisms from A into B is
denoted by Rhom(A,B). For all f, g ∈ Rhom(A,B) and a ∈ A, define
“+” on Rhom(A,B) by

f + g = {h ∈ Rhom(A,B) | h(a) ∈ f(a) +B g(a)},
0A,B : A→ B by 0A,B(a) = 0B and 1A : A→ A by 1A(a) = a.

From now on, (R,+R, ·R) is a general Krasner hyperring, unless
otherwise specified. So we have the following results.
Theorem 5.1. Assume (A,+A, ∗) and (B,+B, ∗) are two general
Krasner R-hypermodules. Then

(i) 0A,B ∈ Rhom(A,B);
(ii) if (B,+B, ∗) is a trivial general Krasner R-hypermodule, then

0A,B ∈ Rhoms(A,B);
(iii) for all f ∈ Rhom(A,B), we have −f ∈ Rhomw(A,B);

−f ∈ Rhom(A,B);
(iv) if (A,+A, ∗) is a trivial general Krasner R-hypermodule, then

for all f ∈ Rhom(A,B), we have −f ∈ Rhom(A,B);
(v) for all f ∈ Rhom(A,B), we have 0B ∈ f(0A).

Proof. (i) Let a, a′ ∈ A. Then

0A,B(a+A a
′) =

∪
t∈a+Aa′

0A,B(t) =
∪

{0B} = {0B} = 0B +B 0B

= 0A,B(a) +B 0A,B(a
′).

Let r ∈ R. Since 0B ∈ r ∗ 0B, we get that 0A,B(r ∗ a) ⊆ r ∗ 0A,B(a), so
0A,B ∈ Rhom(A,B).

(ii) It is obtained from part (i).
(iii) Let x, y ∈ R. Then by Lemma 4.15,

(−f)(x+A y) = f(−(x+A y))

= f(−x− y)

⊆ f(−x) +B f(−y)
= (−f)(x) +A (−f)(y).

Let r ∈ R and a ∈ A. By Theorem 4.2, −(r ∗ a) ∩ (r ∗ (−a)) ̸= ∅, so
f(−(r∗a))∩f(r∗(−a)) ̸= ∅. It concludes that f(−(r∗a))∩r∗f(−a) ̸= ∅
and so (−f)(r ∗ a)) ∩ (r ∗ (−f)(a)) ̸= ∅ and so −f ∈ Rhomw(A,B).

(iv) It is obtained from part (iii).
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(v) It is clear by Lemma 4.15. □
Corollary 5.2. Assume (A,+A, ∗) and (B,+B, ∗) are two general
Krasner R-hypermodules. If (A,+A, ∗) is a trivial general Krasner
R-hyper
module, then (Rhom(A,B),+) is a canonical hypergroup.

From now on, we consider R to be a commutative general Krasner
hyperring, unless otherwise specified.

Theorem 5.3. Assume (A,+A, ∗) and (B,+B, ∗) are associative and
trivial general Krasner R-hypermodules and r ∈ R. Then there exists a
left external multiplication ∗ : R × Rhom(A,B) −→ P∗(Rhom(A,B))
such that (Rhom(A,B),+, ∗) is a general Krasner R-hypermodule.

Proof. For all r ∈ R and all a ∈ A, define
∗ : R× Rhom(A,B) −→ P∗(Rhom(A,B))

by r ∗ f = fr, such that for all a ∈ A, fr(a) = r ∗ f(a). Clearly for
all r ∈ R, fr ∈ Rhom(A,B). By Corollary 5.2, (Rhom(A,B),+) is
a canonical hypergroup. We claim that (Rhom(A,B),+) is a general
Krasner R-hypermodule.
(1)(f + g)r(a) = (r ∗ (f + g))(a) ⊆ r ∗ (f(a) + g(a))

⊆ r ∗ f(a) + r ∗ g(a) = fr(a) + gr(a).

(2)(r + s)(a) = (r + s) ∗ f(a) ⊆ (r ∗ f(a) + s ∗ f(a)) = fr(a) + fs(a).

(3) fr.s(a) = (r.s) ∗ f(a) ⊆ r ∗ (s ∗ f(a)) = r ∗ fs(a).

(4) f0R(a) = 0R ∗ f(a) = 0B.

Thus (Rhom(A,B),+, ∗) is a general Krasner R-hypermodule. □
From now on, we consider general Krasner R-hypermodules A,B,B′

that satisfy the conditions in Theorem 5.3, unless otherwise specified.
Let g ∈ Rhom(B,B′). Then it can be extend to a map

Rhom(A, g) :Rhom(A,B) −→ Rhom(A,B′),

(f : A −→ B) 7−→ (g ◦ f : A −→ B′).

Theorem 5.4. Suppose A is a general Krasner R-hypermodule. Then
Rhom(A,−) : RGKHmod −→ RGKHmod is a covariant functor.

Proof. Let A,B,C,D ∈ RGKHmod and f ∈ Rhom(A,B). Then by
Theorem 5.3, Rhom(A,B) ∈ RGKHmod. In addition, for all
r ∈ R, f, f ′ ∈ Rhom(A,B) and g ∈ Rhom(B,B′), one can see that
Rhom(A, g)(f + f ′) ⊆ Rhom(A, g)(f) + Rhom(A, g)(f ′) and



136 HAMIDI, FARAJI, AMERI AND AHMADI AMOLI

Rhom(A, g)(r ∗ f) ⊆ r ∗ Rhom(A, g)(f),

so Rhom(A,−) : RGKHmod −→ RGKHmod is well defined. More-
over, Rhom(A, 1B)(f) = 1B ◦ f = f . Now, if h ∈ Rhom(C,D),
g ∈ Rhom(B,C), then

Rhom(A, h ◦ g)(f) = (h ◦ g) ◦ f
= h ◦ (g ◦ f)
=

(
Rhom(A, h) ◦ Rhom(A, g)

)
(f).

It follows that Rhom(A,−) : RGKHmod −→ RGKHmod is a covari-
ant functor. □
Theorem 5.5. Assume A is a general Krasner R-hypermodule. Then
Rhom(−, B) : RGKHmod −→ RGKHmod is a contravariant functor.
Proof. It is similar to Theorem 5.4. □
5.2. Category of general Krasner R-hypermodules.
In this subsection, we show that RGKHmod is an abelian category.
Definition 5.6. A complex (abbreviating chain complex) in RGKHmod

is a sequence of general KrasnerR-hypermodules and strongR-homomor
phisms

(C, d) : ... −→ Ci+1
di+1−→ Ci

di−→ Ci−1
di−1−→ Ci−1 −→ ...

if for every i ∈ N, Im(di+1) ⊆ Ker(di). The complex (C, d) is exact
if for every i ∈ N, Im(di+1) = Ker(di). By Lemma 4.15, for all n, we
consider Cn as a trivial general Krasner R-hypermodule and dn as a
strong R-homomorphism. If C is an abelian category, then the category
of all complexes in C is denoted by Comp(C).

In Corollary 5.21, we will show that RGKHmod is an abelian cate-
gory.
Definition 5.7. Suppose (C, d) is a complex in the Comp(RGKHmod)
and n ∈ Z. Then its n-th homology of general Krasner R-hypermodule
is Hn(C) = Ker(dn)/Im(dn+1). It is clear that a complex C is exact
if and only if Hn(C) = 0.
Theorem 5.8. Assume n ∈ Z. Then

Hn : Comp(RGKHmod) −→ RGKHmod

is an inclusion additive functor.
Proof. Let n ∈ Z, f = (fn) : (C, d) → (C′, d′) be a chain map, define
by Hn(f)(x + Im(dn+1)) = fn(x) + Im(d′n+1). Let x, y ∈ Cn and
x + Im(dn+1) = y + Im(dn+1). Then by the following commutative
diagram, there exists c ∈ Cn+1 such that
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fn(x) ∈ fn(y)+fn(dn+1)(c) ⊆ fn(y)+d
′
n+1(fn+1(c)) ⊆ fn(y)+Im(d′n+1).

In a similar way, we have fn(y) + Im(d′n+1) ⊆ fn(x) + Im(dn+1) so
Hn(f) is well defined. It is clear that Hn(f) is an inclusion additive
functor.

Cn+1 Cn Cn−1

C ′
n+1 C ′

n C ′
n−1

dn+1 dn

d′n+1 d′n

fn+1 fn fn−1

□
Theorem 5.9. Assume (A,+A, ∗) and (B,+B, ∗) are general Krasner
R-hypermodules and f : A −→ B is a strong R-homomorphism.

(i) A sequence 0 −→ A
f−→ B is exact if and only if f is a strong

R-monomorphism.
(ii) A sequence B g−→ C −→ 0 is exact if and only if g is a strong

R-epimorphism.
(iii) A sequence 0 −→ A

h−→ B −→ 0 is exact if and only if h is a
strong R-isomorphism.

Proof. It is obvious by Lemma 4.15. □
Definition 5.10. Assume (A,+A, ∗), (B,+B, ∗) and (C,+C , ∗) are
general Krasner R-hypermodules. A short exact sequence of general
Krasner R-hypermodules and strong R-homomorphisms is an exact se-
quence of the form 0 −→ A

f−→ B
g−→ C −→ 0. We also call this

short exact sequence an extension of A by C.
Example 5.11. Let (A,+A, ∗) be a general Krasner R-hypermodule
and S ≤ A. Then a sequence 0 −→ S

i−→ A
π−→ A/S −→ 0 is a short

exact sequence, where i is the inclusion R-homomorphism and π is the
canonical R-epimorphism.
Theorem 5.12. Assume (A,+A, ∗) and (B,+B, ∗) are general Krasner
R-hypermodules and f : A −→ B is a strong R-homomorphism.

(i) If (C,+C , ∗) is a trivial general Krasner R-hypermodule and a
sequence 0 −→ A

f−→ B
g−→ C −→ 0 is a short exact sequence,

then A ∼= Im(f) and B/Im(f) ∼= C.
(ii) If T ⊆ S ⊆ A is a tower of general Krasner R-subhypermodules,

then there is an exact sequence
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0 −→ S/T
f−→ A/T

g−→ A/S −→ 0.

Proof. (i) Define φ : A → Im(f) by φ(x) = f(x). Clearly φ is a
strong R-isomorphism, so A ∼= Im(f). In addition, by Theorem 4.16,
B/Im(f) ∼= C.

(ii) It is clear by Theorem 4.18. □
Theorem 5.13. Assume A,B, B1 and B2 are general Krasner R-
hypermodules, (B,+B, ∗) is a trivial general Krasner R-hypermodule
and φ and ψ are strong R-homomorphisms. Then the sequence
0 −→ B1

φ−→ B
ψ−→ B2 is exact if and only if for any general Krasner

R-hypermodule A, the sequence
0 −→ Rhom(A,B1)

φ∗
−→ Rhom(A,B)

ψ∗
−→ Rhom(A,B2)

is exact, where φ∗ = Rhom(A,φ) and ψ∗ = Rhom(A,ψ).

Proof. Let f ∈ Rhom(A,B1) and φ∗(f) = 0A,B. Thus φ ◦ f = 0A,B,
since φ is a strong R-monomorphism, we get that f = 0A,B and so
φ∗ is a strong R-monomorphism. Let β ∈ Im(φ∗). Then there exists
α ∈ Rhom(A,B1) in such a way that φ ◦ α = φ∗(α) = β. Since
ψ◦φ = 0B2 , we get that 0A,B2 = (ψ◦φ)◦α = ψ◦(φ◦α) = ψ◦β = ψ∗(β)
and so Im(φ∗) ⊆ Ker(ψ∗).

Conversely, if β ∈ Ker(ψ∗), then 0A,B2 = ψ∗(β) = ψ ◦ β and so
Im(β) ⊆ Ker(ψ) = Im(φ). Because φ : B1 → Im(φ) is an R-
isomorphism, we get φ−1 ◦ β = α ∈ Rhom(A,B1) and so φ∗(α) = β. It
follows that Ker(ψ∗) ⊆ Im(φ∗). Consider A = Ker(φ) so we have the
sequence

0 −→ Rhom(Ker(φ), B1)
φ∗
−→ Rhom(Ker(φ), B)

ψ∗
−→ Rhom(Ker(φ), B2)

is exact, where φ∗ = Rhom(Ker(φ), φ) and ψ∗ = Rhom(Ker(φ), ψ).
Now, for all x ∈ Ker(φ), we have

φ∗(i)(x) = (φ ◦ i)(x) = φ(i(x)) = φ(x) = 0.

It concludes that φ∗(i) = 0 and so i ∈ Ker(φ∗). Since φ∗ is an strong
R-monomorphism map, we get that x = 0 and so Ker(φ) = {0}. If
consider B1 = A, then we get that the sequence

0 −→ Rhom(B1, B1)
φ∗
−→ Rhom(B1, B)

ψ∗
−→ Rhom(B1, B2)

is exact, where φ∗ = Rhom(B1, φ) and ψ∗ = Rhom(B1, ψ). Let
y ∈ Im(φ), Then there exists x ∈ B1 such that y = φ(x). Because
ψ∗ ◦ φ∗ = 0, we imply that (ψ∗ ◦ φ∗)(idB1) = 0 and so

0 = (ψ∗ ◦ φ∗)(idB1) = ψ∗ ◦ (φ ◦ idB1) = ψ ◦ (φ ◦ idB1).
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Thus ψ(y) = ψ(φ(x)) = ψ(φ(idB1(x))) = 0 and so Im(φ) ⊆ Ker(ψ).
Consider A = Ker(ψ), hence the sequence

0 −→ Rhom(Ker(ψ), B1)
φ∗
−→ Rhom(Ker(ψ), B)

ψ∗
−→ Rhom(Ker(ψ), B2)

is exact, where φ∗ = Rhom(Ker(ψ), φ) and ψ∗ = Rhom(Ker(ψ), ψ).
Since i ∈ Rhom(Ker(ψ), B), where i : Ker(ψ) → B, we get that
ψ∗(i) = 0 and so i ∈ Ker(ψ∗). It follows that i ∈ Im(φ∗) and there
exists α ∈ Rhom(Ker(ψ), B) in such a way that i = φ∗(α) = φ ◦ α.
Suppose that y ∈ Kerψ, then y = i(y) = φ(α(y)) and so y ∈ Im(φ).
Thus Im(φ) = Ker(ψ). □
Corollary 5.14. Assume A,B, B1 and B2 are general Krasner R-
hypermodules, (B,+B, ∗) is a trivial general Krasner R-hypermodule
and φ, ψ are strong R-homomorphisms. Then the sequence

B1
φ−→ B

ψ−→ B2 −→ 0

is exact if and only if for any general Krasner R-hypermodule A, the
sequence 0 −→ Rhom(B2, A)

ψ∗
−→ Rhom(B,A)

φ∗
−→ Rhom(B1, A) is

exact, where φ∗ = Rhom(φ,A) and ψ∗ = Rhom(ψ,A).

Definition 5.15. Assume (A,+A, ∗), (B,+B, ∗) and (E,+E, ∗) are
general Krasner R-hypermodules. Then (E,+E, ∗) is called a normal
injective general KrasnerR-hypermodule if for strongR-monomorphism
g ∈ Rhom(A,B) and f ∈ Rhom(A,E), there exists f ∈ Rhom(B,E)
such that f ◦ g = f or the following diagram is commutative.

A B

E

g

f
f

Theorem 5.16. Assume (E,+E, ∗) is a general Krasner R-hypermodule.
Then (E,+E, ∗) is a normal injective if and only if Rhom(−, E) is an
exact functor.

Proof. Let 0 −→ B1
φ−→ B

ψ−→ B2 −→ 0 be an exact sequence and
(B,+B, ∗) be a trivial general Krasner R-hypermodule. By Corollary
5.14, the sequence

0 −→ Rhom(B2, E)
ψ∗
−→ Rhom(B,E)

φ∗
−→ Rhom(B1, E)

is exact. Let f : B1 → E. Thus there exists f : B → E in such
a way that fφ = f . Hence for all f ∈ Rhom(B1, E) there exists
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f ∈ Rhom(B,E) such that φ∗(f) = f so φ∗ is a strong R-epimorphism
and so Rhom(−, E) is an exact functor. Conversely, is clear. □

Given a collection {Ai}i∈I of general Krasner R-hypermodules, the
direct product

∏
i∈I

Ai is just the product of the underlying sets Ai

with general Krasner R-hypermodule hyperstructure given by com-
ponentwise hyperaddition and left external multiplication, i.e., for all
(ai)i∈I , (a

′
i)i∈I ∈

∏
i∈I

Ai and r ∈ R,

(ai)i∈I +
′ (a′i)i∈I = {(a′′i )i∈I | a′′i ∈ ai +Ai

a′i, i ∈ I}
and r ∗′ (ai)i∈I = {(ti)i∈I | ti ∈ r ∗ai, i ∈ I}. The direct sum

⊕
i∈I

Ai is a

R-subhypermodule of the direct product
∏
i∈I

Ai consisting of elements

(ai)i∈I such that all but a finitely many ai are zero.
Now by the hyperoperations “+′ ” and “∗′ ” in above notation, we have
the following results.
Proposition 5.17. Let (A,+R, ∗) be a general Krasner R-hypermodule.
Then

(i) If A1, A2 are general Krasner R-subhypermodules of A, then
A1 +R A2 is a general Krasner R-subhypermodule of A.

(ii) If {Aj}j∈J is a family of general Krasner R-subhypermodules of
A, then

∩
j∈J

Aj is a general Krasner R-subhypermodule of A.

(iii) If {Aj}j∈J is a family of general Krasner R-subhypermodules of
A, then (

∏
j∈I

Aj,+
′, ∗′) is a general Krasner R-subhypermodule

of A.
(iv) If {Aj}j∈J is a family of general Krasner R-subhypermodules of

A, then (
⊕
j∈I

Aj,+
′, ∗′) is a general Krasner R-subhypermodule

of A.
Proof. It is straightforward by definition. □

The direct product
∏
i∈I

Ai is equipped with a collection of strong R-

homomorphisms {πj :
∏
i∈I

Ai → Aj}j∈I given by πj((ai)i∈I) = aj, for

all (ai)i∈I ∈
∏
i∈I

Ai. Similarly, the direct sum
⊕
i∈I

Ai is equipped with a
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collection of strong R-homomorphisms {pj : Aj →
∏
i∈I

Ai}j∈I given by

pj(aj) = (ai)i∈I , for all j ∈ I, where for each i ̸= j, ai = 0 and ai = 0,
for all aj ∈ Aj.

Theorem 5.18. RGKHmod is equipped with products and coproducts.

Proof. Given a collection {Ai}i∈I of general Krasner R-hypermodules.
By Proposition 5.17, the direct product

∏
i∈I

Ai with the collection of

strong R-homomorphism {πj :
∏
i∈I

Ai → Aj}j∈I is a product of {Ai}i∈I .

Similarly, the direct sum
⊕
i∈I

Ai with the collection of strongR-homomor

phism{pj : Aj →
∏
i∈I

Ai}j∈I is a coproduct of {Ai}j∈I . □

Theorem 5.19. The category RGKHmod has kernels and cokernels.

Proof. LetA,A′ be general KrasnerR-hypermodules, where (A′,+A′ , ∗)
is trivial and φ : A → A′ be a strong R-homomorphism. It can be
shown that Ker(φ) with the inclusion R-homomorphism

i : Ker(φ) → A

is the kernel of φ in the categorical sense. Similarly, A′/Im(φ) with
the natural projection R-homomorphism π : A′ → A′/Im(φ) mapping
π(a) =

∪
t∈a+A′Im(φ)

t is the cokernel of φ. □

Theorem 5.20. In RGKHmod:
(i) every strong R-monomorphism is the kernel of its cokernel.
(ii) every strong R-epimorphism is the cokernel of its kernel.

Proof. (i) Let A,A′ be general Krasner R-hypermodules, where
(A′,+A′ , ∗) is trivial and φ : A→ A′ be a strong R-monomorphism. We
know that the cokernel of φ is A′/Im(φ) with the strong
R-homomorphism π : A′ → A′/Im(φ). Now, the

Ker(π) = Im(φ) ∼= A,

together with the inclusion R-homomorphism i : Ker(π) → A′. Hence,
there exists a strong R-isomorphism ϕ : Ker(π) → A. If A′′ is any gen-
eral Krasner R-hypermodule with a strong R-homomorphism
α : A′′ → A′ such that π ◦α = 0, then by the universal property of the
kernel, there exists a unique strong R-homomorphism β : A′′ → Ker(π)
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such that i ◦ β = α. Then from ϕ ◦ β : A′′ → A is a strong R-
homomorphism and moreover, φ ◦ (ϕ ◦ β) = (φ ◦ ϕ) ◦ β = i ◦ β = α.
Moreover, if γ : A′′ → A is any other strong R-monomorphism such
that φ ◦ γ = α, then i ◦ (ϕ−1 ◦ γ) = (i ◦ ϕ−1) ◦ γ = φ ◦ γ = α.
Thus, by the uniqueness of β, β = ϕ−1 ◦ γ. Thus, γ = ϕ ◦ β, and
so there exists a unique strong R-monomorphism ϕ ◦ β : A′′ → A
such that φ ◦ (ϕ ◦ β) = α. By the universal property of the ker-
nel, A with the strong R-monomorphism φ : A → A′ is the kernel of
π : A′ → A′/Im(φ), which is the cokernel of φ : A → A′. Thus, every
strong R- monomorphism is the kernel of its cokernel.

Ker(π) A′ A′/Im(φ)

A A′′

f π

∃!ϕ ◦ β

ϕ
∃!β

α
0

φ

(ii) It is similar to (i). □

Corollary 5.21. RGKHmod is an abelian category.

5.3. Normal injective resolution in RGKHmod. In this subsec-
tion, we define the concept of normal injective resolutions and prove
that any trivial general Krasner R-hypermodule, where R is commu-
tative, has a normal injective resolution.

Definition 5.22. A normal injective resolution of
A ∈ obj(RGKHmod),

is an exact sequence

E : 0 −→ A
η−→ E0 d0−→ E1 d1−→ E2 −→ . . .

in which for all n, En is a normal injective trivial general Krasner
R-hypermodule. If E is an injective resolution of A, then its deleted
normal injective resolution is the complex

EA : 0 −→ E0 d0−→ E1 d1−→ E2 −→ . . . .

Indeed, by deleting of A in sequence E, we do not lose any information,
for A ∼= Kerd0.

It is easy to see that any abelian group is a canonical hypergroup. So
in the following theorem, consider A as trivial canonical hypergroup.
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Theorem 5.23. Assume A is a trivial general Krasner R-hypermodule,
where R is commutative. Then A can be embedded as a general Krasner
R-subhypermodule of a normal injective general Krasner R-hypermodule.

Proof. Since Z is a general Krasner hyperring and A a trivial gen-
eral Krasner R-hypermodule, by Theorem 5.3, Zhom(R,A) is a general
Krasner Z-hypermodule. Define φ : A → Zhom(R,A) by φ(a) = φa,
where for r ∈ R, φa(r) = r ∗ a. It is easy to see that φ is a strong R-
monomorphism. In addition, there exist an injective abelian group
D and a strong Z-monomorphism i : A → D. Left exactness of
Rhom(R,−) gives an injection i∗ : Zhom(R,A) → Zhom(R,D), and
so the composite i∗ ◦φ is a strong Z-monomorphism. By Theorem 4.7,
i∗ ◦ φ is a strong R-monomorphism and the proof is finished. □

Theorem 5.24. Suppose A is a trivial general Krasner R-hypermodule,
where R is commutative. Then A has a normal injective resolution.

Proof. By Theorem 5.23, A can be embedded as a general Krasner R-
subhypermodule of a normal injective general Krasner R-hypermodule.
Thus, there are a normal injective general Krasner R-hypermodule
E0, a strong R-monomorphism η : A → E0 and an exact sequence
0 −→ A

η−→ E0 π−→ V 0 = coker(η) −→ 0, where π is the natural
R-epimorphism. By continuous of this process, there are an injective
module E1 and an embedding η1 : V 0 → E1, as follows:

0 A E0 E1 V 1 0

V 0

η d0

π η1

,

where d0 is the composite d0 = η1 ◦ π. □

6. Conclusion

The current paper has defined and considered the notion of trivial
general Krasner R-hypermodule, and has investigated the categorical
properties of general Krasner R-hypermodules. We construct the gen-
eral Krasner R-hypermodules based on any non-empty set and gen-
eralize R-modules to general Krasner R-hypermodules. The strong
R-isomorphism theorems on trivial general Krasner R-hypermodules,
are proved and so are constructed the quotient of general Krasner
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R-hypermodules. We try to define a hyperoperation and a left gen-
eral Krasner hypermodule on the set of all strong homomorphisms of
general Krasner R-hypermodules and construct a new class of general
Krasner R-hypermodules. Besides, we show that the category of triv-
ial general Krasner R-hypermodules is an abelian category and so has
an injection resolution. In this work, we define some functors on triv-
ial general Krasner R-hypermodules and prove that these functors are
exact functors.

We hope that these results are helpful for further studies in module
theory. In our future studies, we hope to obtain more results regard-
ing homology on general Krasner R-hypermodules and fuzzy general
Krasner R-hypermodules.
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عمومی کراسنر ابرمدول های از نرمال انژکتیو تحلیل

آملی۴ احمدی خدیجه و عامری٣ رضا فرجی٢، فاطمه حمیدی١، محمد

ایران۴,١,٢ نور، پیام دانشگاه علوم، دانشکده

ایران٣ تهران، تهران، دانشگاه کامپیوتر، و آمار ریاضی، علوم دانشکده

کراسنر ابرمدول های و حلقه ساختار اساس بر را عمومی کراسنر ابرحلقه های مفهوم مقاله این در
و کرده معرفی را بدیهی چپ عمومی کراسنر ابرمدول های می سازیم. مدول ساختار روی را چپ عمومی
هستند. متفاوت چپ کراسنر ابرمدول های با بدیهی چپ عمومی کراسنر ابرمدول های که می کنیم ثابت
،A,B بدیهی چپ عمومی کراسنر ابرمدول تا دو هر Rو عمومی کراسنر ابرحلقه هر برای که می  دهیم نشان
تابعگون یک ،Rhom(−, B) و است چپ عمومی کراسنر ابرمدول یک Rhom(A,B) ساختار
رسته که می دهیم نشان پایان در است. دقیق ناوردای تابعگون یک Rhom(A,−) و دقیق هموردای
آبلی رسته یک همریختی ها) تمام و بدیهی چپ عمومی کراسنر ابرمدول های تمام (رسته RGKHmod

دارند. نرمال انژکتیو تحلیل یک بدیهی چپ عمومی کراسنر ابرمدول های و است

انژکتیو تحلیل انژکتیو)، (نرمال عمومی کراسنر ابرمدول های عمومی، کراسنر ابرحلقه کلیدی: کلمات
آبلی. رسته نرمال،
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