Journal of Algebraic Systems

Vol. 10, No. 1, (2022), pp 155-166

THE IDENTIFYING CODE NUMBER AND FUNCTIGRAPHS

A. SHAMINEZHAD* AND E. VATANDOOST

Abstract

Let $G=(V(G), E(G))$ be a simple graph. A set D of vertices G is an identifying code of G, if for every two vertices x and y the sets $N_{G}[x] \cap D$ and $N_{G}[y] \cap D$ are non-empty and different. The minimum cardinality of an identifying code in graph G is the identifying code number of G and it is denoted by $\gamma^{I D}(G)$. Two vertices x and y are twin, when $N_{G}[x]=N_{G}[y]$. Graphs with at least two twin vertices are not identifiable graphs. In this paper, we deal with identifying code number of functigraph of G. Two upper bounds on identifying code number of functigraph are given. Also, we present some graph G with identifying code number $|V(G)|-2$.

1. Introduction

All graphs throughout this paper considered simple, finite and undirected. The open neighborhood of a vertex $v \in V(G)$, denoted by $N_{G}(v)$, is the set of vertices adjacent to v in G. If two vertices x and y are adjacent, then it denoted by $x \sim y$, otherwise, $x \nsim y$. The closed neighborhood of a vertex v in graph G is $N_{G}[v]=N_{G}(v) \cup\{v\}$. The degree of a vertex $v \in V(G)$ is $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. We denote the maximum degree of G with $\Delta(G)$ and its minimum degree with $\delta(G)$. A vertex is called universal if it is adjacent to all of the vertices of graph.

[^0]The complement of graph G is denoted by \bar{G} and defineded as a graph with vertex set $V(G)$ which $e \in E(\bar{G})$ if and only if $e \notin E(G)$. For any $S \subseteq V(G)$, the induced subgraph on S, denoted by $G[S]$.

Given two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, we define the union $G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$.

Given two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, we define their join $G_{1} \bowtie G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup K\right)$, where

$$
K=\left\{u \sim v \mid u \in V_{1}, v \in V_{2}\right\} .
$$

Let G be a graph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, G^{\prime}$ be a copy of G with $V\left(G^{\prime}\right)=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ and $E\left(G^{\prime}\right)=\left\{v_{i}^{\prime} \sim v_{j}^{\prime} \mid v_{i} \sim v_{j}\right\}$, where $v_{i}^{\prime} \in V\left(G^{\prime}\right)$ is corresponding to $v_{i} \in V(G)$. Then a functigraph G with function $\sigma: V(G) \rightarrow V\left(G^{\prime}\right)$, (σ is not necesserily bijective) is denoted by $C(G, \sigma)$, its vertices and edges are

$$
V(C(G, \sigma))=V(G) \cup V\left(G^{\prime}\right)
$$

and

$$
\begin{aligned}
E(C(G, \sigma))= & E(G) \cup E\left(G^{\prime}\right) \cup \\
& \left\{v_{i} \sim v_{j}^{\prime} \mid v_{i} \in V(G), v_{j}^{\prime} \in V\left(G^{\prime}\right), \sigma\left(v_{i}\right)=v_{j}^{\prime}\right\},
\end{aligned}
$$

respectively. For $v_{i}^{\prime} \in V\left(G^{\prime}\right)$,

$$
R_{v_{i}^{\prime}}=\sigma^{-1}\left(\left\{v_{i}^{\prime}\right\}\right)=\left\{v_{j} \in V(G) \mid \sigma\left(v_{j}\right)=v_{i}^{\prime}\right\}
$$

and for $\ell \in\{0,1,2, \cdots, n=|V(G)|\}$, we define

$$
B_{\ell}=\left\{v_{i}^{\prime} \in V\left(G^{\prime}\right)| | R_{v_{i}^{\prime}} \mid=\ell\right\} .
$$

For simplicity, the open neighborhood of x in $C(G, \sigma)$ is denoted by $N_{C}(x)$.

A set of vertices G such as D is a dominating set of graph G if for every vertex x of $V(G)$, is either in D or is adjacent to a vertex in D. It is clear that every isolated vertex is in every dominating set of G. Also a set D is called a separating set of G if for each pair u, v of vertices of $G, N_{G}[u] \cap D \neq N_{G}[v] \cap D$ (equivalently, $\left(N_{G}[u] \triangle N_{G}[v]\right) \cap D \neq \emptyset$). If a dominating set D in graph G is a separating set of G, then we say that D is an identifying code of graph G and if G has an identifying code, then we say that G is an identifiable graph. Given a graph G, the smallest size of an identifying code of G is called identifying code number of G and denoted by $\gamma^{I D}(G)$. A vertex x is a twin of another vertex y if $N_{G}[x]=N_{G}[y]$. A graph G is called twin free if no vertex has a twin. The first observation regarding the concept of identifying codes is that a graph is identifiable if and only if it is twin free [2].

Karpovsky et al [9] have shown that for every identifiable graph G of order $n, \gamma^{I D}(G) \geq\left\lceil\log _{2}(n+1)\right\rceil$. Also, they proved that

$$
\gamma^{I D}(G) \geq \frac{2 n}{\Delta(G)+2}
$$

For every identifiable graph G of order n with at least one edge, there exists a famous bound as $\gamma^{I D}(G) \leq n-1$ (see [3]). In 2012, Foucaud et al [4], had a conjecture that for every connected identifiable graph G, there exist a constant c such that $\gamma^{I D}(G) \geq n-\frac{n}{\Delta(G)}+c$. It is noteworthy that in 2006 Gravier et al [6] investigated the identifying code number of cycles. According to their theorems, this conjecture holds for graphs of maximum degree 2 .

Nowadays, identifying codes are an actively studied topic of its own like: the location of threats in facilities using sensors [12], error-detection schemes [9] and routing [10] in networks, terrorist network monitoring [13], as well as the structural analysis of RNA proteins [7]. For more details we refer reader to $[5,8,11]$.

This concept was studied in a large number of various papers, investigating particular graphs or families of graphs. This paper deals with the study of functigraph of some graphs. Section 2 , the identifying code number of of some special graphs are considered. Two upper bounds are presented. We prove that if G is an identifiable graph and $\delta(G) \geq 1$, then for every function $\sigma: V(G) \rightarrow V\left(G^{\prime}\right)$, graph $C(G, \sigma)$ is an identifiable graph and the upper bound $\gamma^{I D}(C(G, \sigma)) \leq n$ is achieved for σ as a permutation. Also, we show that for every identifiable graph G of order n, with $\delta(G) \geq 1, \gamma^{I D}(C(G, \sigma)) \leq 2 \gamma^{I D}(G)$, where $\sigma: V(G) \rightarrow V\left(G^{\prime}\right)$ is a function and this bound is sharp. Section 3 , we introduce some graphs with identifying code number $|V(G)|-2$. Section 4, we discuss identifying code number of some graphs, which are not identifiable.

2. IDENTIFYING CODE NUMBER OF SOME GRAPHS WHICH ARE IDENTIFIABLE

In this section, the identifiability of functigraph, is investigated.
Lemma 2.1. Let G be a graph. Then $\gamma^{I D}(G)=2$ if and only if $G \in\left\{\overline{K_{2}}, P_{3}\right\}$.

Proof. By $\gamma^{I D}(G) \geq\left\lceil\log _{2}(n+1)\right\rceil$, the proof is straightforward.
Lemma 2.2. If $\sigma: V\left(P_{3}\right) \rightarrow V\left(P_{3}^{\prime}\right)$ is a permutation, then

$$
\gamma^{I D}\left(C\left(P_{3}, \sigma\right)\right)=3
$$

Proof. For every permutation $\sigma: V\left(P_{3}\right) \rightarrow V\left(P_{3}^{\prime}\right), C\left(P_{3}, \sigma\right)$ is isomorphic to $H_{i}(i \in\{1,2,3,4\})$ (see Figure 1). In $H_{1}, D_{1}=\left\{v_{2}, v_{1}^{\prime}, v_{3}^{\prime}\right\}$ is an
identifying code of $C\left(P_{3}, \sigma\right)$. In $H_{2}, D_{2}=\left\{v_{2}, v_{3}, v_{1}^{\prime}\right\}$ is an identifying code of $C\left(P_{3}, \sigma\right)$. In H_{3} and $H_{4}, D_{3}=\left\{v_{2}, v_{3}, v_{2}^{\prime}\right\}$ and $D_{4}=\left\{v_{2}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$ are identifying codes of $C\left(P_{3}, \sigma\right)$, respectively. So $\gamma^{I D}\left(C\left(P_{3}, \sigma\right)\right) \leq 3$. By Lemma 2.1, $\gamma^{I D}\left(C\left(P_{3}, \sigma\right)\right)=3$.

Figure 1

Lemma 2.3. Let G be a graph and D be an identifying code of G.

1) If $N_{G}(x)=N_{G}(y)$, then $x \in D$ or $y \in D$.
2) If $N_{G}[x] \triangle N_{G}[y]=\left\{y_{1}, y_{2}\right\}$, then $y_{1} \in D$ or $y_{2} \in D$.

Proof. Let $\{x, y\} \cap D=\emptyset$ or $\left\{y_{1}, y_{2}\right\} \cap D=\emptyset$. Then

$$
N_{G}[x] \cap D=N_{G}[y] \cap D,
$$

which is not true.
It is clear that if $x \in V(G)$ and $\sigma(x) \in V\left(G^{\prime}\right)$ are isolated vertices, then $C(G, \sigma)$ is not an identifiable graph.

Theorem 2.4. Let G be an identifiable graph of order n. If $\delta(G) \geq 1$, then for every function $\sigma: V(G) \rightarrow V\left(G^{\prime}\right)$, graph $C(G, \sigma)$ is an identifiable graph. If σ is a permutation, then $\gamma^{I D}(C(G, \sigma)) \leq n$. Furthermore, this bound is sharp.

Proof. For each pair x, y of vertices of $C(G, \sigma)$, if $\{x, y\} \subseteq V(G)$, then since G is an identifilable graph, so $N_{G}[x] \neq N_{G}[y]$. Hence, $N_{C}[x] \neq N_{C}[y]$. Similarly, if $\{x, y\} \subseteq V\left(G^{\prime}\right)$, then $N_{C}[x] \neq N_{C}[y]$. Now, let $x \in V(G)$ and $y \in V\left(G^{\prime}\right)$. If $\sigma(x) \neq y$, then x is not adjacent to y in $C(G, \sigma)$. Hence, $N_{C}[x] \neq N_{C}[y]$. If $\sigma(x)=y$, then since G does not have any isolated vertex, so there exist $z \in N_{C}[y]$ such that $z \notin N_{C}[x]$. So $N_{C}[x] \neq N_{C}[y]$. Therefore, $C(G, \sigma)$ is an identifiable graph.

Now, let σ be a permutation and $D=V(G)$. For each pair x, y of vertices of $C(G, \sigma)$, if $\{x, y\} \subseteq V(G)$, then $N_{C}[x] \cap D=N_{G}[x]$ and $N_{C}[y] \cap D=N_{G}[y]$. So $N_{C}[x] \cap D \neq N_{C}[y] \cap D$.

If $\{x, y\} \subseteq V\left(G^{\prime}\right)$, then $N_{C}[x] \cap D=R_{x}$ and $N_{C}[y] \cap D=R_{y}$. Hence, $N_{C}[x] \cap D \neq N_{C}[y] \cap D$.

Finally, if $x \in V(G)$ and $y \in V\left(G^{\prime}\right)$, then $N_{C}[x] \cap D=N_{G}[x]$ and $N_{C}[y] \cap D=R_{y}$. Since $\delta(G) \geq 1$ and σ is a permutation, so $N_{C}[x] \cap D \neq N_{C}[y] \cap D$.

However, $N_{C}[x] \cap D \neq N_{C}[y] \cap D$. Hence, $V(G)$ is an identifying code $C(G, \sigma)$. Therefore, $\gamma^{I D}(C(G, \sigma)) \leq|V(G)|=n$. By Lemma 2.2, this bound is Sharp.
Corollary 2.5. Let $G \cong K_{1, n-1}, n \geq 3$ and $\sigma: V(G) \rightarrow V\left(G^{\prime}\right)$ be a permutation such that $\sigma(a)=a^{\prime}$, where a is the universal vertex of G and $a^{\prime} \in V\left(G^{\prime}\right)$ is corresponding to a. Then $\gamma^{I D}(C(G, \sigma))=n$.

Proof. By Theorem 2.4, $C(G, \sigma)$ is an identifiable graph and $\gamma^{I D}(C(G, \sigma)) \leq n$.
Now, let $\gamma^{I D}(C(G, \sigma)) \leq n-1$ and D be an identifying code of $C(G, \sigma)$, where $\gamma^{I D}(C(G, \sigma))=|D|$. Since for each $2 \leq i \leq n-1$, we have $N_{C}\left[v_{1}\right]=\left\{a, v_{1}, \sigma\left(v_{1}\right)\right\}$ and $N_{C}\left[v_{i}\right]=\left\{a, v_{i}, \sigma\left(v_{i}\right)\right\}$, so

$$
\left|\left\{v_{1}, v_{i}, \sigma\left(v_{1}\right), \sigma\left(v_{i}\right)\right\} \cap D\right| \geq 1
$$

Hence, there is $A \subseteq V(X) \cup V\left(X^{\prime}\right)$, such that $|A| \geq n-2$ and $A \subseteq D$, where $X=V(G) \backslash\{a\}=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$. Since

$$
N_{C}\left[v_{1}\right] \triangle N_{C}\left[\sigma\left(v_{1}\right)\right]=\left\{a, a^{\prime}\right\},
$$

by Lemma 2.3, (2), $a \in D$ or $a^{\prime} \in D$. So $|D| \geq n-1$. Thus $|D|=n-1$. There is no loss of generality in assuming that $a \in D$ and $a^{\prime} \notin D$. Hence, there exists some $v_{i} \in V(G)$, such that $\sigma\left(v_{i}\right)$ is not dominated by D. It is a contradiction.

Theorem 2.6. Let G be an identifiable graph of order n, with $\delta(G) \geq 1$ and $\sigma: V(G) \rightarrow V\left(G^{\prime}\right)$ be a function. Then $\gamma^{I D}(C(G, \sigma)) \leq 2 \gamma^{I D}(G)$. Furthermore, this bound is sharp.
Proof. By Theorem 2.4, $C(G, \sigma)$ is an identifiable graph. Let D_{1} be an identifying code of G such that $\gamma^{I D}(G)=\left|D_{1}\right|$ and $D_{1}^{\prime} \subseteq V\left(G^{\prime}\right)$ be corresponding to D_{1}. Let $X=\left\{v \in D_{1} \mid N_{G}(v) \cap D_{1}=\{v\}\right\}$ and $X^{\prime} \subseteq V\left(G^{\prime}\right)$ be the corresponding to X. Also, let

$$
Y^{\prime}=\left\{v^{\prime} \in X^{\prime} \mid R_{v^{\prime}} \cap D_{1}=\{x\} \subseteq X\right\}
$$

If $Y^{\prime}=\emptyset$, then $D=D_{1} \cup D_{1}^{\prime}$ is an identifying code of $C(G, \sigma)$ and so $\gamma^{I D}(C(G, \sigma)) \leq 2 \gamma^{I D}(G)$.

So suppose that $Y^{\prime} \neq \emptyset$ and $Y^{\prime}=\left\{v_{1}^{\prime}, \cdots, v_{t}^{\prime}\right\}$. Since $\delta(G) \geq 1$, for $1 \leq i \leq t, N_{G^{\prime}}\left(v_{i}^{\prime}\right) \neq \emptyset$, we set $Y_{1}^{\prime}=\left\{u_{i 1}^{\prime} \in V\left(G^{\prime}\right) \mid u_{i 1}^{\prime} \in N_{G^{\prime}}\left(v_{i}^{\prime}\right)\right\}$. Then $D=D_{1} \cup Y_{1}^{\prime} \cup D_{1}^{\prime} \backslash \sigma\left(Y^{\prime}\right)$ is an identifying code of $C(G, \sigma)$. Thus $\gamma^{I D}(C(G, \sigma)) \leq|D|=\gamma^{I D}(G)+t+\gamma^{I D}(G)-t=2 \gamma^{I D}(G)$.
It is clear that $\gamma^{I D}\left(P_{3}\right)=2$. Let $\sigma: V\left(P_{3}\right) \rightarrow V\left(P_{3}^{\prime}\right)$ be a function, such that $\sigma(a)=\sigma(b)=\sigma(c)=b^{\prime}$, where $\operatorname{deg}_{P_{3}}(b)=2$. Then $\gamma^{I D}\left(C\left(P_{3}, \sigma\right)\right)=4$. This show that this bound is sharp.
Theorem 2.7. Let G be a graph with $\delta(G) \geq 1$ such that G is not an identifiable graph and $\sigma: V(G) \rightarrow V\left(G^{\prime}\right)$ be a function. Then $C(G, \sigma)$ is an identifiable graph if and only if two following conditions are hold.

1) If $N_{G}[x]=N_{G}[y]$, then $\sigma(x) \neq \sigma(y)$.
2) If $N_{G^{\prime}}[x]=N_{G^{\prime}}[y]$, then $x \notin B_{0}$ or $y \notin B_{0}$.

Proof. Let conditions (1) and (2) are holding and x and y be two vertices of $C(G, \sigma)$. Let $\{x, y\} \subseteq V(G)$. If $N_{G}[x]=N_{G}[y]$, then $\sigma(x) \neq \sigma(y)$. So $\sigma(x) \in N_{C}[x]$ and $\sigma(x) \notin N_{C}[y]$. If $N_{G}[x] \neq N_{G}[y]$, then $N_{C}[x] \neq N_{C}[y]$. Suppose that $\{x, y\} \subseteq V\left(G^{\prime}\right)$. If $N_{G^{\prime}}[x] \neq N_{G^{\prime}}[y]$, then $N_{C}[x] \neq N_{C}[y]$. If $N_{G^{\prime}}[x]=N_{G^{\prime}}[y]$ and $x \notin B_{0}$, then there exists $z \in V(G)$ such that $\sigma(z)=x$. So $z \in N_{C}[x]$ and $z \notin N_{C}[y]$. Now, assume that $x \in V(G), y \in V\left(G^{\prime}\right)$ and $N_{C}[x]=N_{C}[y]$. Then $\sigma(x)=y$ and y is an isolated vertex in G^{\prime}, which is contradiction with this fact that $\delta(G) \geq 1$.

Conversely, let $C(G, \sigma)$ be an identifiable graph. If $N_{G}[x]=N_{G}[y]$ and $\sigma(x)=\sigma(y)$. Then $N_{C}[x]=N_{G}[x] \cup\{\sigma(x)\}$ and

$$
N_{C}[y]=N_{G}[y] \cup\{\sigma(y)\} .
$$

Hence, $N_{C}[x]=N_{C}[y]$. Which is not true. If $N_{G^{\prime}}[x]=N_{G^{\prime}}[y]$ and $\{x, y\} \subseteq B_{0}$, then $N_{C}[x]=N_{G^{\prime}}[x]$ and $N_{C}[y]=N_{G^{\prime}}[y]$. Which is a contradiction.

Let us mention two consequences of the Theorem 2.7.
Corollary 2.8. Let G be a graph of order n with $\delta(G) \geq 1$. If G is not an identifiable graph, then for every permutation $\sigma: V(G) \rightarrow V\left(G^{\prime}\right)$, $C(G, \sigma)$ is an identifiable graph.
Proof. By Theorem 2.7, the proof is straightforward.
Corollary 2.9. Let $G \cong K_{n}$ and $n \geq 2$. Then $C(G, \sigma)$ is an identifiable graph if and only if $\sigma: V(G) \rightarrow V\left(G^{\prime}\right)$ be a permutation.
Proof. If σ is a permutation, then by Corollary $2.8, C(G, \sigma)$ is an identifiable graph.

Conversely, let $C(G, \sigma)$ be an identifiable graph. On the contrary, let σ not be a permutation. Then $B_{0} \neq \emptyset$. If $\{x, y\} \subseteq B_{0}$, then

$$
N_{C}[x]=N_{C}[y]=V\left(K_{n}\right) .
$$

Which is contradiction. If $\left|B_{0}\right|=1$, then $\left|B_{2}\right|=1$. Let $y \in B_{2}$ and $\sigma(t)=\sigma(z)=y$. Then $N_{C}[t]=V(G) \cup\{y\}=N_{C}[z]$. So $C(G, \sigma)$ is not an identifiable graph. That is not true.
3. Graphs $G=(V(G), E(G))$ with identifying Code number

$$
|V(G)|-2
$$

Foucaud et al.[3], in 2011 classified all graphs with identifying code number $|V(G)|-1$. In this section, we intruduce some graphs with identifying code number $|V(G)|-2$.
For an integer $k \geq 1$, let $A_{k}=\left(V_{k}, E_{k}\right)$ be the graph with vertex set $V_{k}=\left\{x_{1}, \ldots, x_{2 k}\right\}$ and edge set $E_{k}=\left\{x_{i} \sim x_{j}| | i-j \mid \leq k-1\right\}$. Also, let \mathscr{A} be the closure of $\left\{A_{i} \mid i=1,2, \cdots\right\}$ with respect to operation \bowtie. In the next theorem, Foucaud et al. showed that for any twin free graph $G \notin\left\{K_{1, n-1}\right\} \cup(\mathscr{A}, \bowtie) \cup(\mathscr{A}, \bowtie) \bowtie K_{1}, \gamma^{I D}(G) \leq|V(G)|-2$.

Theorem 3.1. [3] Let G be an identifiable graph of order n. Then $\gamma^{I D}(G)=|V(G)|-1$ if and only if $G \not \approx \overline{K_{2}}$ and

$$
G \in\left\{K_{1, n-1}\right\} \cup(A, \bowtie) \cup(A, \bowtie) \bowtie K_{1} .
$$

Theorem 3.2. Let $G \cong K_{m, n}, m, n \geq 2$ and $G \nsubseteq C_{4}$. Then

$$
\gamma^{I D}(G)=|V(G)|-2 .
$$

Proof. Let the bipartition of $K_{m, n}$ be X and Y with $|X|=n$ and $|Y|=m$. Also, let D be an identifying code of $K_{m, n}$. By Lemma 2.3, (1), we have $|X \cap D| \geq n-1$ and $|Y \cap D| \geq m-1$. So $|D| \geq m+n-2$. By Theorem 3.1, $\gamma^{I D}(G)=m+n-2$.

Observation 3.3. If $\sigma: V\left(K_{2}\right) \rightarrow V\left(K_{2}^{\prime}\right)$ is a permutation, then $\gamma^{I D}\left(C\left(K_{2}, \sigma\right)\right)=3$.

Proof. It is clear that $C\left(K_{2}, \sigma\right) \cong C_{4}$. Since $\gamma^{I D}\left(C_{4}\right)=3$, so $\gamma^{I D}\left(C\left(K_{2}, \sigma\right)\right)=3$.

Theorem 3.4. Let $G \cong K_{n}, n \geq 3$ and $\sigma: V(G) \rightarrow V\left(G^{\prime}\right)$ be a permutation. Then $\gamma^{I D}(C(G, \sigma))=|V(C(G, \sigma))|-2$.

Proof. By Corollary 2.9, $C(G, \sigma)$ is an identifiable graph. Let

$$
X=V(G) \backslash\left\{v_{1}\right\} \cup V\left(G^{\prime}\right) \backslash\left\{\sigma\left(v_{1}\right)\right\} .
$$

Then for $2 \leq i \leq n$, we have $N_{C}\left[v_{i}\right] \cap X=V(G) \backslash\left\{v_{1}\right\} \cup\left\{\sigma\left(v_{i}\right)\right\}$, $N_{C}\left[v_{1}\right] \cap X=V(G) \backslash\left\{v_{1}\right\}$. If $v_{i}^{\prime} \in V\left(G^{\prime}\right)$ and $v_{i}^{\prime} \neq \sigma\left(v_{1}\right)$, then

$$
N_{C}\left[v_{i}^{\prime}\right] \cap X=V\left(G^{\prime}\right) \backslash\left\{\sigma\left(v_{1}\right)\right\} \cup \sigma^{-1}\left(v_{i}^{\prime}\right)
$$

and $N_{C}\left[\sigma\left(v_{1}\right)\right] \cap X=V\left(G^{\prime}\right) \backslash\left\{\sigma\left(v_{1}\right)\right\}$. So for each pair x, y in $C(G, \sigma)$, we have $N_{C}[x] \cap X \neq N_{C}[y] \cap X$. Hence, X is an identifying code of $C(G, \sigma)$ and so $\gamma^{I D}(C(G, \sigma)) \leq|X|=2 n-2$.

Now, let D be an identifying code of graph $C(G, \sigma)$ and $\gamma^{I D}(C(G, \sigma))=|D|$. Since $N_{C}\left[v_{1}\right] \triangle N_{C}\left[v_{2}\right]=\left\{\sigma\left(v_{1}\right), \sigma\left(v_{2}\right)\right\}$, so by Lemma 2.3, (2), we have $\sigma\left(v_{1}\right) \in D$ or $\sigma\left(v_{2}\right) \in D$. Let $\sigma\left(v_{1}\right) \notin D$. Then $\sigma\left(v_{2}\right) \in D$. Now, let $3 \leq i \leq n$. Since $N_{C}\left[v_{1}\right] \triangle N_{C}\left[v_{i}\right]=\left\{\sigma\left(v_{1}\right), \sigma\left(v_{i}\right)\right\}$, by Lemma 2.3, (2), $\sigma\left(v_{i}\right) \in D$. So there is $A \subseteq V(G)$, such that $A \subseteq D$ and $|A| \geq n-1$. Similarly, There is $A^{\prime} \subseteq V\left(G^{\prime}\right)$, such that $A^{\prime} \subseteq D$ and $\left|A^{\prime}\right| \geq n-1$. Hence, $|D| \geq 2 n-2$. Therefore, $\gamma^{I D}(C(G, \sigma))=2 n-2$.

Following Ashrafi et. al [1], a link of graphs G and H by vertices $y \in V(G)$ and $z \in V(H)$ is defined as the graph $(G \sim H)(y, z)$ obtained by joining y and z by an edge in the union of these graphs.

Theorem 3.5. Let \mathcal{B} be a family of graphs of order n, with identifying code number $n-1$. Also, let $G \in \mathcal{B}, u \in V(G)$ and $v \in V\left(K_{1}\right)$, such that $\left(G \sim K_{1}\right)(u, v) \notin \mathcal{B}$. Then $\gamma^{I D}\left(\left(G \sim K_{1}\right)(u, v)\right)=n-1$.
Proof. Since $\left(G \sim K_{1}\right)(u, v) \notin \mathcal{B}$, so

$$
\gamma^{I D}\left(\left(G \sim K_{1}\right)(u, v)\right) \leq\left|\left(G \sim K_{1}\right)(u, v)\right|-2=n+1-2=n-1 .
$$

Let D be an identifying code of $\left(G \sim K_{1}\right)(u, v)$ and

$$
\gamma^{I D}\left(\left(G \sim K_{1}\right)(u, v)\right)=|D| .
$$

Then $|D| \leq n-1$. If $v \notin D$, then D is an identifying code of G. Hence, $\gamma^{I D}(G) \leq|D|$. Thus $n-1 \leq|D|$ and so $|D|=n-1$. Now, let $v \in D$. Then there exists some $x \in V(G)$, such that $x \in N_{G}(u) \cap D$. Since G is an identifiable graph, so there exists $z \in V(G)$, such that $z \sim x$ and $z \nsim u$ or $z \sim u$ and $z \nsim x$. It is easy to see that $D \backslash\{v\} \cup\{z\}=D_{1}$ is an identifying code of G. So $\left|D_{1}\right| \geq n-1$. Hence, $|D| \geq n-1$ and so $|D|=n-1$. Therefore,

$$
\left.\gamma^{I D}\left(\left(G \sim K_{1}\right)(u, v)\right)=\mid V\left(G \sim K_{1}\right)(u, v)\right) \mid-2
$$

Theorem 3.6. Let $G \cong\left(K_{1, r} \sim K_{1, s}\right)(a, b)$, where a and b be the universal vertices of $K_{1, r}$ and $K_{1, s}$, respectively. Then $\gamma^{I D}(G)=|V(G)|-2$.
Proof. Let $V\left(K_{1, r}\right)=\left\{a, v_{1}, v_{2}, \cdots, v_{r}\right\}$ and

$$
V\left(K_{1, s}\right)=\left\{b, u_{1}, u_{2}, \cdots, u_{s}\right\}
$$

such that a and b be the universal vertices of $K_{1, r}$ and $K_{1, s}$, respectively. Then $D_{1}=V\left(K_{1, r}\right) \backslash\{a\} \cup V\left(K_{1, s}\right) \backslash\{b\}$ is an identifying code of G. So $\gamma^{I D}(G) \leq\left|D_{1}\right|=s+r$.

Now, let D be an identifying code of G, where $\gamma^{I D}(G)=|D|$. For each $1 \leq i \leq r$, we have $N_{G}\left[v_{1}\right] \triangle N_{G}\left[v_{i}\right]=\left\{v_{1}, v_{i}\right\}$, by Lemma 2.3, (2), $v_{1} \in D$ or $v_{i} \in D$. Hence, there is $A \subseteq V\left(K_{1, r}\right) \backslash\{a\}$, such that $|A \cap D| \geq r-1$. Similarly, there is $F \subseteq V\left(K_{1, s}\right) \backslash\{b\}$, such that $|F \cap D| \geq s-1$. So $|D| \geq r+s-2$. Since D is a dominating set of G, so $|A|=r$ or $|A|=r-1$ and $a \in D$. Similarly, $|F|=s$ or $|F|=s-1$ and $b \in D$. However, $|D| \geq s+r$. Therefore, $\gamma^{I D}(G)=s+r$.
4. Identifying code number of $C(G, \sigma)$, where G is not an IDENTIFIABLE GRAPH

In this section, we consider the identifying code number of $C(G, \sigma)$, where $\sigma: V(G) \rightarrow V\left(G^{\prime}\right)$ is a function and G is not an identifiable graph.

Theorem 4.1. Let H be an empty graph of order s and $G \cong H \bowtie K_{r}$, where $(s, r) \notin\{(0,2),(1,1)\}$. Also, let $\sigma: V(G) \rightarrow V\left(G^{\prime}\right)$ be a permutation, such that $\sigma(V(H))=V\left(H^{\prime}\right)$. Then

$$
\gamma^{I D}\left(C\left(\left(H \bowtie K_{r}\right), \sigma\right)\right)= \begin{cases}2 r-2, & s=0 \\ 2 r, & s=1 \\ s+1, & r=1 \\ 2 r+s-3, & o . w .\end{cases}
$$

Proof. By Corollary 2.8, $C(G, \sigma)$ is an identifiable graph. If $s \in\{0,1\}$, then by Theorem 3.4, the proof is straightforward. If $r=1$, then by Theorem 2.5, $\gamma^{I D}(C(G, \sigma))=s+1$.

Let $r, s \geq 2, V(H)=\left\{v_{1}, v_{2}, \cdots, v_{s}\right\}$ and $V\left(K_{r}\right)=\left\{u_{1}, u_{2}, \cdots, u_{r}\right\}$. Then $D_{1}=V\left(K_{r}\right) \backslash\left\{u_{1}\right\} \cup V\left(K_{r}^{\prime}\right) \backslash\left\{\sigma\left(u_{1}\right)\right\} \cup\left\{v_{1}, v_{2}, \cdots, v_{s-1}\right\}$ is an identifying code of $C(G, \sigma)$. So $\gamma^{I D}(C(G, \sigma)) \leq 2 r+s-3$.

Now, let D be an identifying code of $C(G, \sigma)$ and

$$
\gamma^{I D}(C(G, \sigma))=|D|
$$

For every $i, j \in\{1, \cdots, r\}$, we have $N_{C}\left[u_{i}\right] \triangle N_{C}\left[u_{j}\right]=\left\{\sigma\left(u_{i}\right), \sigma\left(u_{j}\right)\right\}$. By Lemma 2.3, (2), $\sigma\left(u_{i}\right) \in D$ or $\sigma\left(u_{j}\right) \in D$. So there is $A^{\prime} \subseteq V\left(K_{r}^{\prime}\right)$, such that $\left|A^{\prime}\right| \geq r-1$ and $A^{\prime} \subseteq D$. Similarly, there is $A \subseteq V\left(K_{r}\right)$, such that $|A| \geq r-1$ and $A \subseteq D$. Hence, $|D| \geq 2 r-2$.

Now, let $|D| \leq 2 r+s-4$ and $F \subseteq\left(V(H) \cup V\left(H^{\prime}\right)\right) \cap D$. Then $|F| \leq s-2$. Let $|F \cap V(H)|=\ell \leq s-2$ and $\{x, y\} \subseteq V(H) \backslash F$. Since $N_{C}[x] \triangle N_{C}[y]=\{\sigma(x), \sigma(y)\}$, by Lemma 2.3, (2), $\sigma(x) \in D$ or $\sigma(y) \in D$. Thus there is $X \subseteq V\left(H^{\prime}\right)$, such that $|X| \geq(s-\ell)-1$ and $X \subseteq D$. Hence, $|F| \geq \ell+s-\ell-1=s-1$, which is not true. So $|D| \geq 2 r+s-3$. Therefore, $\gamma^{I D}(C(G, \sigma))=2 r+s-3$.

Theorem 4.2. Let G be a graph of order n and a be an universal vertex of G. Also, let $G \backslash\{a\}=\overline{K_{s}} \bigcup_{i=1}^{r} K_{n_{i}}, r \geq 2,2 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{r}$ and

$$
\sigma: V(G) \rightarrow V\left(G^{\prime}\right)
$$

be a permutation, such that $\sigma\left(V\left(K_{n_{i}}\right)\right)=V\left(K_{n_{i}}^{\prime}\right)$, for each $1 \leq i \leq r$ and $\sigma(a)=a^{\prime}$. Then

$$
\gamma^{I D}(C(G, \sigma))=\left\{\begin{array}{lc}
2 n-2 r-1, & s=0, n_{1}=2 \\
2 n-2 r-2, & s=0, n_{1} \geq 3 \\
2 n-2 r-s-1, & s \geq 1
\end{array}\right.
$$

Proof. By Corollary 2.8, $C(G, \sigma)$ is an identifiable graph. Let

$$
V\left(K_{n_{i}}\right)=\left\{v_{i 1}, v_{i 2}, \cdots, v_{i n_{i}}\right\}
$$

and $V(G)=V\left(\bigcup_{i=1}^{r} K_{n_{i}}\right) \cup\left\{v_{j} \mid 1 \leq j \leq s\right\} \cup\{a\}$.
Let $s=0, n_{1}=2$ and

$$
X_{1}=V(G) \backslash\left\{v_{i 1} \mid 1 \leq i \leq r\right\} \cup V\left(G^{\prime}\right) \backslash\left\{\sigma\left(v_{i 1}\right), a^{\prime} \mid 1 \leq i \leq r\right\}
$$

Then X_{1} is an identifying code of $C(G, \sigma)$. Thus

$$
\begin{equation*}
\gamma^{I D}(C(G, \sigma)) \leq\left|X_{1}\right|=2 n-2 r-1 . \tag{4.1}
\end{equation*}
$$

Assume that $s=0, n_{1} \geq 3$ and

$$
X_{2}=V(G) \backslash\left\{a, v_{i 1} \mid 1 \leq i \leq r\right\} \cup V\left(G^{\prime}\right) \backslash\left\{a^{\prime}, \sigma\left(v_{i 1}\right) \mid 1 \leq i \leq r\right\}
$$

Then X_{2} is an identifying code of $C(G, \sigma)$ and so

$$
\begin{equation*}
\gamma^{I D}(C(G, \sigma)) \leq\left|X_{2}\right|=2 n-2 r-2 . \tag{4.2}
\end{equation*}
$$

Also, let $s \geq 1$ and

$$
\begin{aligned}
& X_{3}=V(G) \backslash\left\{v_{i 1}, v_{s} \mid 1 \leq i \leq r\right\} \\
& \quad \cup V\left(G^{\prime}\right) \backslash\left(\left\{\sigma\left(v_{i 1}\right), v_{j}^{\prime} \mid 1 \leq i \leq r, 1 \leq j \leq s\right\}\right.
\end{aligned}
$$

Then X_{3} is an identifying code of $C(G, \sigma)$. Thus

$$
\begin{equation*}
\gamma^{I D}(C(G, \sigma)) \leq\left|X_{3}\right|=2 n-2 r-s-1 \tag{4.3}
\end{equation*}
$$

Now, let D be an identifying code of $C(G, \sigma)$ with

$$
\gamma^{I D}(C(G, \sigma))=|D|
$$

Since $N_{C}\left[v_{i 1}\right] \triangle N_{C}\left[v_{i j}\right]=\left\{\sigma\left(v_{i 1}\right), \sigma\left(v_{i j}\right)\right\}$, so by Lemma 2.3, (2), $\sigma\left(v_{i 1}\right) \in D$ or $\sigma\left(v_{i j}\right) \in D$. Thus there is $A^{\prime} \subseteq \bigcup_{i=1}^{r} V^{\prime}\left(K_{n_{i}}\right)$, such that $\left|A^{\prime} \cap D\right| \geq \sum_{i=1}^{r}\left(n_{i}-1\right)$. Also, we have

$$
N_{C}\left[\sigma\left(v_{i 1}\right)\right] \triangle N_{C}\left[\sigma\left(v_{i j}\right)\right]=\left\{v_{i 1}, v_{i j}\right\},
$$

so by Lemma 2.3, (2), we have $v_{i 1} \in D$ and $v_{i j} \in D$. So there is $A \subseteq V\left(\bigcup_{i=1}^{r} K_{n_{i}}\right)$, such that $|A \cap D| \geq \sum_{i=1}^{r}\left(n_{i}-1\right)$. Thus

$$
|D| \geq 2\left(\sum_{i=1}^{r}\left(n_{i}-1\right)\right)=2 \sum_{i=1}^{r} n_{i}-2 r
$$

Case 1: Let $s=0, n_{1}=2$ and $\left\{v_{11}, \sigma\left(v_{11}\right)\right\} \cap D=\emptyset$. If

$$
|D|=2 \sum_{i=1}^{r} n_{i}-2 r
$$

then $D \cap\left\{a, a^{\prime}\right\}=\emptyset$ and so $N_{C}\left[v_{12}\right] \cap D=N_{C}\left[\sigma\left(v_{12}\right)\right] \cap D$, which is not true. So $D \cap\left\{a, a^{\prime}\right\} \neq \emptyset$. Hence, $|D| \geq 2 \sum_{i=1}^{r} n_{i}-2 r+1$. By (1), $\gamma^{I D}(C(G, \sigma))=2 n-2 r-1$.
Case 2: Let $s=0$ and $n_{1} \geq 3$. We have $|D| \geq 2 \sum_{i=1}^{r} n_{i}-2 r$. By (2), $\gamma^{I D}(C(G, \sigma))=2 n-2 r-2$.
Case 3: Let $s \geq 1$. For $1 \leq i \leq s$, we have $N_{C}\left[v_{1}\right]=\left\{a, v_{1}, \sigma\left(v_{1}\right)\right\}$ and $N_{C}\left[v_{i}\right]=\left\{a, v_{i}, \sigma\left(v_{i}\right)\right\}$. So $\left|\left\{v_{1}, v_{i}, \sigma\left(v_{1}\right), \sigma\left(v_{i}\right)\right\} \cap D\right| \geq 1$. Thus there is $F \subseteq\left\{v_{i}, \sigma\left(v_{i}\right) \mid 1 \leq i \leq s\right\}$, such that $|F \cap D| \geq s-1$. Hence $|D| \geq 2 \sum_{i=1}^{r} n_{i}-2 r+s-1=2 n-2 r-s-3$. Now, if $|D|=2 n-2 r-s-3$, then $\left\{a, a^{\prime}\right\} \cap D=\emptyset$. It is clear that $N_{C}\left[v_{i}\right] \cap D=N_{C}\left[\sigma\left(v_{i}\right)\right] \cap D$, which is a contradiction. Hence, $D \cap\left\{a, a^{\prime}\right\} \neq \emptyset$. Let $\left|D \cap\left\{a, a^{\prime}\right\}\right|=1$. Then $|D| \geq 2 n-2 r-s-2$. If $|D|=2 n-2 r-s-2$ and $a \in D$, then $a^{\prime} \notin D$ (or if $a^{\prime} \in D$, then $a \notin D$). Thus there is an x in $\left\{v_{i}^{\prime} \mid 1 \leq i \leq s\right\}$ such that x is not dominated by D. It is impossible. Hence, $\left\{a, a^{\prime}\right\} \subseteq D$ and so $|D| \geq 2 n-2 r-s-1$. By (3), we have $\gamma^{I D}(C(G, \sigma))=2 n-2 r-s-1$.

Corollary 4.3. Let $G \cong K_{3}^{r}$ be a graph, $r \geq 2$ and $\sigma: V(G) \rightarrow V\left(G^{\prime}\right)$ be a permutation. Then $\gamma^{I D}(C(G, \sigma))=2 r+1$.

Proof. By Theorem 4.2, the proof is straigtforward.
Conjecture 4.4. [4] There exists a constant c such that for any nontrivial connected twin-free graph G of maximum degree $\Delta(G)$,

$$
\gamma^{I D}(G) \leq n-\frac{n}{\Delta(G)}+c
$$

Note: The conjecture 4.4, holds for graphs which are presented in Theorems 4.1 and 4.2 with $c=0$.

Acknowledgments

The authors are very grateful to the referee for his/her useful comments.

References

1. A. R. Ashrafi, A. Hamzeh and S. Hossein-Zadeh, Calculation of some topological indices of splices and links of graphs, J. Appl. Math. Informatics, 29(1-2) (2011), 327-335.
2. F. Foucaud, S. Gravier, R. Naserasr, A. Parreau and P. Valicov, Identifying codes in line graphs, J. Graph Theory, 73(4) (2013), 425-448.
3. F. Foucaud, E. Guerrini, M. Kove, R. Naserasr, A. Parreau and P. Valicov, Extremal graphs for the identifying code problem, European J. Combin., 32(4) (2011), 628-638.
4. F. Foucaud, R. Klasing, A. Kosowski and A. Raspaud, On the size of identifying codes in triangle-free graphs, Discrete Appl. Math., 160(10-11) (2012), 15321546.
5. F. Foucaud and G. Perarnau, Bounds for identifying codes in terms of degree parameters, Electron. J. Combin., 19(1) (2012) 32.
6. S. Gravier, J. Moncel and A. Semri, Identifying codes of cycles, European J. Combin., 27(5) (2006), 767-776.
7. T. Haynes, D. Knisley, E. Seier and Y. Zou, A quantitative analysis of secondary RNA structure using domination based parameters on trees, BMC bioinformatics, 7 (1) (2006), 108.
8. O. Hudry and A. Lobstein, Unique (optimal) solutions: Complexity results for identifying and locating?dominating codes, Theoret. Comput. Sci., 767 (2019), 83-102.
9. M.G. Karpovsky, K. Chakrabarty and L.B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inform. Theory, 44(2) (1998), 599-611.
10. M. Laifenfeld, A. Trachtenberg, R. Cohen and D. Starobinski, Joint monitoring and routing in wireless sensor networks using robust identifying codes, Mobile Networks and Applications, 14(4) (2009), 415-432.
11. D.F. Rall and K. Wash, Identifying codes of the direct product of two cliques, European J. Combin., 36 (2014), 159-171.
12. S. Ray, R. Ungrangsi, D. Pellegrini, A. Trachtenberg and D. Starobinski, March. Robust location detection in emergency sensor networks, In IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428), 2 (2003), 1044-1053.
13. A. Sen, V.H. Goliber, C. Zhou and K. Basu, July. Terrorist Network Monitoring with Identifying Code, In International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation (2018), 329-339.

Athena Shaminezhad

Department of Mathematics, Imam Khomeini International University, P.O. Box 3414896818, Qazvin, Iran.
athenashaminejad@edu.ikiu.ac.ir

Ebrahim Vatandoost

Department of Mathematics, Imam Khomeini International University, P.O. Box 3414896818, Qazvin, Iran.
Vatandoost@sci.ikiu.ac.ir

Journal of Algebraic Systems

THE IDENTIFYING CODE NUMBER AND FUNCTIGRAPHS

A. SHAMINEZHD AND E. VATANDOOST

$$
\begin{aligned}
& \text { عدد كد شناساگر و گرافهاى تابعى } \\
& \text { آتنا شامىنزاد’ و ابراهيم وطندوست「 }
\end{aligned}
$$

ז,اگروه رياضى محض، دانشكده علوم پايه، دانشگاه بين المللى امام خمينى (ره)، قزوين، ايران
فرض كنيد (G)
 متمايز باشند. تعداد اعضاى يك كد شناساگر گراف G و با كمترين عضو، عدد كد شناساگر G ناميده شده و با نماد (و

 شناساگر ץ - | \mid | \mid مى باشند را ا ارائه مىكنيم.

كلمات كليدى: كد شناساگر، گراف كدپذير، گراف تابعى.

[^0]: DOI: 10.22044/JAS.2021.9902.1487.
 MSC(2010): 05C69, 05C75.
 Keywords: Identifying code, Identifiable graph, Functigraph. Received: 14 July 2020, Accepted: 22 October 2021.

 * Corresponding author.

