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JORDAN HIGHER DERIVATIONS, A NEW
APPROACH

S. KH. EKRAMI

ABSTRACT. Let A be a unital algebra over a 2-torsion free com-
mutative ring R and M be a unital A-bimodule. We show taht
every Jordan higher derivation D = {D,, },en, from the trivial ex-
tension A x M into itself is a higher derivation, if PD;(QXP)Q =
QD1 (PXQ)P = 0 for all X € Ax M, in which P = (e,0) and
Q@ = (¢/,0) for some non-trivial idempotent elements e € A and
¢/ = 14 — e satisfying the following conditions: eAe’Ae = {0},
¢ AeAe’ = {0}, e(l.anngM)e = {0}, ¢/(r.annagM)e’ = {0} and

eme’ =m for all m € M.

1. Introduction and preliminaries

Let A be a unital algebra over a commutative ring R and M be
a unital A-bimodule. An R-linear mapping 6 : A — M is called a
derivation if it satisfies the leibniz rule 6(zy) = 0(z)y + zd(y) for all
z,y € A and is called an antiderivation if §(xy) = 6(y)x + yo(z) for
all z,y € A. § is called a Jordan derivation if §(z%) = §(x)x + 26(x)
for all x € A. Obviously, every derivation or antiderivation is a Jordan
derivation. However, the converse statement is not true in general (see
[1]). It is natural and very interesting to find some conditions under
which a Jordan derivation is a derivation or an antiderivation. Zhang
and Yu [10] showed that every Jordan derivation of triangular algebras
is a derivation, so every Jordan derivation from the algebra of all upper
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triangular matrices into itself is a derivation. Ghahramani [3] showed
that every Jordan derivation of the trivial extensions of an algebra A
by its bimodules, under some conditions, is the sum of a derivation and
an antiderivation.

Let Ny be the set of all nonnegative integers. If we define a sequence
d,, of linear mappings on A by dy = [ and d,, = %, where [ is the
identity mapping on A, then the Leibniz rule ensures us that d,’s
satisfy the condition

dn(zy) = Y di(w)d;(y) (1.1)
i+j=n
for each =,y € A and each non-negative integer n. Such a sequence
d = {d, }nen, is called a higher derivation. d is called a Jordan higher
derivation if for any n € Ny,

d(@®) = Y di(w)d;(2) (1.2)
i+j=n
for all © € A. Note that d; is a derivation (resp. Jordan derivation), if
d is a higher derivation (resp. Jordan higher derivation).

Higher derivations were introduced by Hasse and Schmidt [9], and
algebraists sometimes call them Hasse-Schmidt derivations. For an
account on higher derivations the reader is referred to the book [3].

Let A and B be unital algebras over a commutative ring R and M
be a unital (A, B)-bimodule which is faithful as a left .A-module and
also as a right B-module. The R-algebra

a m

Tri(A,M, B) = {( o

)‘ aeA,meM,beB}
under the usual matrix operations is called a triangular algebra. Basic
examples of triangular algebras are upper triangular matrix algebras
and nest algebras (see [2], [1]).

Let A be a unital algebra over R and M be a unital A-bimodule.
A x M as an R-module together with the algebra product defined by:

(a,m).(b,n) = (ab,an +mb) (a,b€ A, m,n e M)

is an R-algebra with unity 1 = (14,0) and zero 0 = (0,0), which is
called the trivial extension of A by M and denoted by A x M. Trivial
extensions have been extensively studied in the algebra and analysis.

Let Tri(A, M, B) be a triangular algebra over R. Denote by A ® B
the direct sum of A and B as R-algebra, and view M as an (A & B)-
bimodule with the module actions given by

(a,b).m =am, m.(a,b)=mb (a€ A, meM, bebB).
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Then Tri(A, M, B) is isomorphic to (A& B) x M as an R-algebra. So
triangular algebras are examples of trivial extensions.

Ghahramani [3] has shown that under some mild conditions, ev-
ery Jordan derivation on A4 x M is a derivation. Erfanian Attar and
Ebrahimi Vishki [0] gave characterizations of (Jordan) derivations on
A x M. Note that a Jordan derivation on a trivial extension algebra
may not be a derivation in general. To see an example the reader can
refer to [5].

The following notations will be used in this paper.

Let A be an R-algebra and M be an A-bimodule, define the left
annihilator of M and the right annihilator of M as follows:

LannaM ={a € A:aM = {0}},
rannaM ={a € A: Ma = {0}}.

2. Main result

Let us first recall some basic facts concerning Jordan higher deriva-
tions on an associative algebra. Many different kinds of higher deriva-
tions have been studied in commutative and noncommutative rings (see
[7] and the references therein).

Lemma 2.1. Let A be an associative algebra over a 2-torsion free
commutative ring R and D = {D, }nen, be a Jordan higher derivation
from A into itself. Then for all x,y,z € A and each n € Ny, we have

(a) Dn(zy +yx) = > -y Di(x)D;(y) + Diy) D (),

(b) Dulzyz) =3, ;1 h—p Di(2)Dj(y) Di(2),

(¢) Dn(zyz+zyx) =3 5, Di(x)Di(y) Di(2) + Di(2) D;(y) Di ().
Note that the converse holds only in the case where R is 2-torsion free
(that is, 2z = 0 implies x = 0 for any x € A).

Theorem 2.2. Let A be a unital algebra over a 2-torsion free com-
mutative ring R and M be a unital A-bimodule. Suppose that e is a
non-trivial idempotent element in A and ¢’ = 14 — e such that

eAe' Ae = {0}, €' Aede’ = {0},

e(l.anngM)e = {0}, € (r.annsM)e’ = {0},

and eme’ =m for allm € M. Let P = (e,0) and Q = (¢,0).

If D = {Dy}nen, is a Jordan higher derivation from the trivial ex-
tension Ax M into itself such that PD1(QXP)Q = QD(PXQ)P =0
for all X € Ax M, then D 1is a higher derivation.
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Note that P and Q are idempotents of A x M such that P+ Q =1
and PQ = 0. Also for any X,Y € A x M, we have PXQY P = 0 and
QXPYQ = 0. Since if X = (a,m) and Y = (b, n), then

PXQY P = (eae'be, eae’'ne + eme'be) = 0
and similarly QX PY Q) = 0.

Since the triangular algebra T'ri(.A, M, B) is isomorphic to the trivial
extension (A @ B) x M, we have the following result.

Corollary 2.3. Let A and B be unital algebras over a 2-torsion free
commutative ring R and M be a unital (A, B)-bimodule which is faithful
as a left A-module and also as a right B-module. Then any Jordan
higher derivation from triangular algebra Tri(A, M, B) into itself, is a
higher derivation.

To prove Theorem 2.2 we need some lemmas.

Lemma 2.4. For every n € N we have PD,(P)P =0, QD,(Q)Q =0
and for every n € Ny we have PD,(Q)P =0, QD,(P)Q = 0.

Proof. 1t follows from
D,(P) = Dy(P?) = D;(P)P + PD(P) (2.1)
that PD;(P)P = 0. Suppose that PD,,(P)P = 0 for all m < n. From
D,(P) = D,(P)P+ PD,(P)+ > Di(P)D;(P), (2.2)
itj=n
i>1
we have
PD,(P)P = PD,(P)P + PD,(P)P+ Y PDi(P)D;(P)P.
iti=n
i5>1
It follows that
PD,(P)P+ > (PD,(P)PD;(P)P + PDi(P)QD,(P)P) = 0.
s

So we get PD,(P)P = 0.
By induction on n, it follows from (1.2) that D, (/) = 0 for all n € N.
Thus D, (Q) = —D,(P) and so

PD,(Q)P = —PD,(P)P =0

for all n € N. Similarly we can show that QD,(Q)Q = 0 and
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Lemma 2.5. For every n € N, we have
PD,(P) = Du(P)Q,  Du(P)P = QD,(P)
Proof. 1t follows from (2.2) that
PD,(P) = PD,(P)P + PD,(P)+ P Y D;(P)D;(P).
Thus
P )" Di(P)D;(P)=0. (2.3)

i+j=n
i,j>1

Also it follows from (2.2) that

QD,(P) = QD,(P)P+Q Y _ Di(P)D;(P).

Thus
Q > Di(P)D;(P) = QD,(P) — QD,(P)P = QD,(P)Q = 0. (2.4)
From (2.3) and (2.4) we obtain that
> Di(P)D,(P) =0 (25)

i+j=n
i,j>1

So

Therefore we get

PD,(P) = D,(P) — D,(P)P = D,(P)Q.

Similarly we can get that @D, (Q) = D,(Q)P and D, (Q)Q = PD,(Q).
U

Lemma 2.6. For every n € Ny and any X € A x M, we have
PD,(PXQ)P =0, PD,(QXP)P=0, PD,(QXQ)P =0,

QD.(PXP)Q =0, QD.(PXQ)Q =0, QD.,(QXP)Q=0.
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Proof. By Lemma 2.1 (a) we have
PD,(PXQ)P = PD,(PXQ + QPX)P
= <PDZ~(PX)DJ~(Q)P+ PDi(Q)Dj(PX)P>
i+j=n
= (PDi(PX)PDj(Q)PJr PD,(PX)QD;(Q)P
i+j=n
+ PD,(Q)PD;(PX)P + PDi(Q)QDj(PX)P> —0.
Also by Lemma 2.1 (b) we have
PD,(QXQ)P = Y PDi(Q)D;(X)Di(Q)P
i+j+k=n
= Y (PD{(Q)D;(X)PDy(Q)P
i+j+k=n
+ PDy(Q)D;(X)QDy(Q)P) = 0.
Similarly we get
PD,(QXP)P = QD,(PXP)Q = QD,(PXQ)Q
= QD,(QXP)Q = 0.

Lemma 2.7. Let X € Ax M. Then for each n € Ny,
PD,(QXP)Q = QD (PXQ)P = 0.
Proof. 1t is true for n = 0 and by assumption for n = 1. Let n > 2,
then
PD.(QXP)Q = PD,(QXP + PQX)Q
= Y PDi(QX)D;(P)Q + PD,(P)D;(QX)Q
i+j=n
= Y PDi(QXP)D;(P)Q + PD;(P)D;(QXP)Q
i+j=n
+ ) PD(QXQ)D;(P)Q + PD,(P)D;(QXQ)Q
i+j=n

+ PD,(QXQP + PQXQ)Q =0
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Similarly we can show that QD,(PXQ)P = 0. OJ

Lemma 2.8. Let X, Y € Ax M. Then for each n € Ny,
(a) PD(PXPYP)P =%, ., PD;(PXP)D;(PYP)P,
(b) @Dn(QXQYQ)Q =3, ;_, QDi(QXQ)D;(QY Q)R-

Proof. For any XY, Z € A x M and n € Ny we have

PD,(PXPYPZQ)Q = Y (PD{(PXPYP)D(PZQ)Q
k+l=n

+ PDy(PZQ)Dy(PXPYP)Q)
= Y PDy(PXPYP)D|(PZQ)Q.

k+l=n
On the other hand
PD,(PXPYPZQ)Q= > (PDi(PXP)Dj(PYP)Dl(PZQ)Q
i+j+i=n
+ PDi(PZQ)D;(PY P)Di(PXP)Q)
= Y PDi(PXP)D;(PYP)D(PZQ)Q
i+j+=n
= Y > PD{(PXP)D;(PYP)D/(PZQ)Q.
k+l=n i+j=k
It follows from the above two equations that

> P<Dk(PXPYP) - > Di(PXP)Dj(PYP)>Dl(PZQ)Q:()

k+l=n i+j=k

for any X,Y, Z € A x M and n € Ny. Suppose that 20
Xy = Dy(PXPYP) = Y,.._, Dy(PXP)D;(PYP).
It follows from (2.6) that
> PXyPDi(PZQ)Q =0. (2.7)

k+l=n

We show that PX,P =0 for all £k =0,1,...,n, as desired.
Trivially PXoP = 0. Letting n = 1 in (2.7) we get

PXoPDy(PZQ)Q + PX,PDy(PZQ)Q = 0 (2.8)

or equivalently PX;PZ(Q) = 0 for all Z € A x M. Thus by Lemma 3.6
of [3] we get PX; P = 0. Now assume that PX; P =0 forall k <n—1,



174 EKRAMI

then it follws from (2.7) that PX,P = 0. Similarly we can prove the
part (b). This completes the proof. O
Lemma 2.9. Let X, Y € Ax M. Then for each n € Ny, we have

(a) PD,(PXPYP)Q =Y., ,_, PD;(PXP)D;(PY P)Q,
W(PXPYP)P =%, QDi(PXP)D;(PYP

Dy
(b) @Dn( (PXP)D )P
(c) PD(QXQYQ)Q = ;. PDi(QXQ)D;(QYQ)Q,
(d) QD (QXQY Q)P =32, QDi(QXQ)D;(QY Q)P
Pm of. Since QD,(PXP)Q = 0, QD,(P)Q = 0 for all n € Ny and
D, (P)P =0 for all n € N, we get
2PD,(PXPYP)Q = PD,(PXPYP.P + P.PXPY P)Q

= ) (PD(PXPYP)D/(P)Q
k+l=n
+ PDy(P)D)(PXPY P)Q

= ) (PDy(PXPYP)PD,(P)Q)

+ PD,(PXPYP)Q.
Therefore by Lemma 2.8 (a) we have

PD,(PXPYP)Q
= Y (PD(PXPYP)PDy(P)Q)
k+l=n
= Y > PD{(PXP)D;(PYP)PD/(P)Q
k+l=nit+j=k
= Y PDi(PXP)D;(PYP)D\(P)Q
i+j+l=n
= Y PDy(PXP) ( > Di(PYP) Dz(P))Q
jHl=k
= 3" PD(PXP)(2D4(PYP) = Y D;i(P)DI(PYP))Q
i+k=n jt+i=k
=9 Z PD;(PXP)D(PYP)Q
i+k=n
— Y PDi(PXP)D;(P)Dy(PY P)Q
i+j+l=n
=2 Y PD{(PXP)Dy(PYP)Q— > PDy(PXP)PD|(PYP)Q

i+k=n i+l=n

i+k=n
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=2 Y PD{(PXP)Dy(PYP)Q - Y PD{PXP)D)(PYP)Q
i+k=n i+l=n

= Y PDy(PXP)Dy(PYP)Q.
i+k=n
The other parts can be proved similarly. O

Lemma 2.10. Let X,Y € Ax M. Then for each n € Ny, we have

(a) PD(PXQYQ)Q =), nPD (PXQ)D;(QYQ)Q,
(b) PDo(PXPYQ)Q =3, PDi(PXP)D;(PYQ)Q,
(¢) QDn(QXPYP)P =%, ., QDi(QXP)D;(PYP)P,
(d) QDn(QXQYP)P =3, QD{(QXQ)D;(QY P)P

Proof. 1t follows from Lemmas 2.1 and 2.6 that
PD,(PXQYQ)Q
= PD,((PXQ)(QYQ) + (QYQ)(PXQ))Q
= Y (PD(PXQ)D;(QYQ)Q + PDi(QYQ)D;(PXQ)Q)
1+j=n
= ) PD(PXQ)D;(QYQ)Q.
1+j=n
Other parts proved similarly. O
Proof of Theorem 2.2

Proof. For any X € Ax M we have X = PXP+PXQ+QXP+QXQ,
so by Lemmas 2.6 and 2.7 it follows that

D,(X) = PD,(PXP)P + PD,(PXP)Q + QD,(PXP)P
+ PD,(PXQ)Q + QDn(QXP)P + PD,(QXQ)Q
+ QD (QXQ)P + QD,(QXQ)Q

for all X € A x M.
It is a consequence of Lemmas 2.8, 2.9, 2.10 and the facts

0=PD,(PXP)(QYQ)+ (QYQ)(PXP))Q
= ) (PD;(PXP)D;(QYQ)Q + PDi(QYQ)D;(PXP)Q)
i+j=n
= Y PD{(PXP)D;(QYQ)Q
i+j=n
and

0=QD,((QXQ)(PYP) + (PYP)(QXQ))P
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= ) (QD;(QXQ)D;(PYP)P + QD;(PY P)D;(QXQ)P)

i+j=n
= Y QDi(QXQ)D;(PYP)P

i+j=n

that
Dy(XY) = ) DiX)D;(Y)
i+j=n

for all X,Y € A x M. Therefore D is a higher derivation from A x M
into itself. O

Let A and B be unital algebras over a 2-torsion free commutative
ring R and A @ B be the direct sum of A and B as R-algebras.
Let M be an (A @ B)-bimodule. If e = (14,0), then ¢ = (0,15)
and so P = ((14,0),0) and @ = ((0,15),0). Then the trivial exten-
sion (A @ B) x M satisfies all the requirements in Theorem 2.2. Let
D = {D, }nen, be a Jordan higher derivation on (A® B) x M, then D,
is a Jordan derivation on it and so PD;(QXP)Q = QD1(PXQ)P =0
for all X € (A® B) x M. Therefore by Theorem 2.2, every Jordan
higher derivation from (A & B) x M into itself is a higher derivation.
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