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JORDAN HIGHER DERIVATIONS, A NEW
APPROACH

S. KH. EKRAMI

Abstract. Let A be a unital algebra over a 2-torsion free com-
mutative ring R and M be a unital A-bimodule. We show taht
every Jordan higher derivation D = {Dn}n∈N0

from the trivial ex-
tension A⋉M into itself is a higher derivation, if PD1(QXP )Q =
QD1(PXQ)P = 0 for all X ∈ A ⋉ M, in which P = (e, 0) and
Q = (e′, 0) for some non-trivial idempotent elements e ∈ A and
e′ = 1A − e satisfying the following conditions: eAe′Ae = {0},
e′AeAe′ = {0}, e(l.annAM)e = {0}, e′(r.annAM)e′ = {0} and
eme′ = m for all m ∈ M.

1. Introduction and preliminaries
Let A be a unital algebra over a commutative ring R and M be

a unital A-bimodule. An R-linear mapping δ : A → M is called a
derivation if it satisfies the leibniz rule δ(xy) = δ(x)y + xδ(y) for all
x, y ∈ A and is called an antiderivation if δ(xy) = δ(y)x + yδ(x) for
all x, y ∈ A. δ is called a Jordan derivation if δ(x2) = δ(x)x + xδ(x)
for all x ∈ A. Obviously, every derivation or antiderivation is a Jordan
derivation. However, the converse statement is not true in general (see
[1]). It is natural and very interesting to find some conditions under
which a Jordan derivation is a derivation or an antiderivation. Zhang
and Yu [10] showed that every Jordan derivation of triangular algebras
is a derivation, so every Jordan derivation from the algebra of all upper
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triangular matrices into itself is a derivation. Ghahramani [8] showed
that every Jordan derivation of the trivial extensions of an algebra A
by its bimodules, under some conditions, is the sum of a derivation and
an antiderivation.

Let N0 be the set of all nonnegative integers. If we define a sequence
dn of linear mappings on A by d0 = I and dn = δn

n!
, where I is the

identity mapping on A, then the Leibniz rule ensures us that dn’s
satisfy the condition

dn(xy) =
∑
i+j=n

di(x)dj(y) (1.1)

for each x, y ∈ A and each non-negative integer n. Such a sequence
d = {dn}n∈N0 is called a higher derivation. d is called a Jordan higher
derivation if for any n ∈ N0,

dn(x
2) =

∑
i+j=n

di(x)dj(x) (1.2)

for all x ∈ A. Note that d1 is a derivation (resp. Jordan derivation), if
d is a higher derivation (resp. Jordan higher derivation).

Higher derivations were introduced by Hasse and Schmidt [9], and
algebraists sometimes call them Hasse-Schmidt derivations. For an
account on higher derivations the reader is referred to the book [3].

Let A and B be unital algebras over a commutative ring R and M
be a unital (A,B)-bimodule which is faithful as a left A-module and
also as a right B-module. The R-algebra

Tri(A,M,B) =
{(

a m
0 b

)∣∣∣ a ∈ A,m ∈ M, b ∈ B
}

under the usual matrix operations is called a triangular algebra. Basic
examples of triangular algebras are upper triangular matrix algebras
and nest algebras (see [2], [4]).

Let A be a unital algebra over R and M be a unital A-bimodule.
A×M as an R-module together with the algebra product defined by:

(a,m).(b, n) = (ab, an+mb) (a, b ∈ A, m, n ∈ M)

is an R-algebra with unity 1 = (1A, 0) and zero 0 = (0, 0), which is
called the trivial extension of A by M and denoted by A⋉M. Trivial
extensions have been extensively studied in the algebra and analysis.

Let Tri(A,M,B) be a triangular algebra over R. Denote by A⊕B
the direct sum of A and B as R-algebra, and view M as an (A⊕ B)-
bimodule with the module actions given by

(a, b).m = am, m.(a, b) = mb (a ∈ A, m ∈ M, b ∈ B).
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Then Tri(A,M,B) is isomorphic to (A⊕B)⋉M as an R-algebra. So
triangular algebras are examples of trivial extensions.

Ghahramani [8] has shown that under some mild conditions, ev-
ery Jordan derivation on A ⋉M is a derivation. Erfanian Attar and
Ebrahimi Vishki [6] gave characterizations of (Jordan) derivations on
A ⋉M. Note that a Jordan derivation on a trivial extension algebra
may not be a derivation in general. To see an example the reader can
refer to [5].

The following notations will be used in this paper.
Let A be an R-algebra and M be an A-bimodule, define the left

annihilator of M and the right annihilator of M as follows:

l.annAM = {a ∈ A : aM = {0}},

r.annAM = {a ∈ A : Ma = {0}}.

2. Main result
Let us first recall some basic facts concerning Jordan higher deriva-

tions on an associative algebra. Many different kinds of higher deriva-
tions have been studied in commutative and noncommutative rings (see
[7] and the references therein).

Lemma 2.1. Let A be an associative algebra over a 2-torsion free
commutative ring R and D = {Dn}n∈N0 be a Jordan higher derivation
from A into itself. Then for all x, y, z ∈ A and each n ∈ N0, we have

(a) Dn(xy + yx) =
∑

i+j=nDi(x)Dj(y) +Di(y)Dj(x),
(b) Dn(xyx) =

∑
i+j+k=n Di(x)Dj(y)Dk(x),

(c) Dn(xyz+zyx) =
∑

i+j=nDi(x)Dj(y)Dk(z)+Di(z)Dj(y)Dk(x).
Note that the converse holds only in the case where R is 2-torsion free
(that is, 2x = 0 implies x = 0 for any x ∈ A).

Theorem 2.2. Let A be a unital algebra over a 2-torsion free com-
mutative ring R and M be a unital A-bimodule. Suppose that e is a
non-trivial idempotent element in A and e′ = 1A − e such that

eAe′Ae = {0}, e′AeAe′ = {0},

e(l.annAM)e = {0}, e′(r.annAM)e′ = {0},
and eme′ = m for all m ∈ M. Let P = (e, 0) and Q = (e′, 0).

If D = {Dn}n∈N0 is a Jordan higher derivation from the trivial ex-
tension A⋉M into itself such that PD1(QXP )Q = QD1(PXQ)P = 0
for all X ∈ A⋉M, then D is a higher derivation.
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Note that P and Q are idempotents of A⋉M such that P +Q = 1
and PQ = 0. Also for any X,Y ∈ A⋉M, we have PXQY P = 0 and
QXPY Q = 0. Since if X = (a,m) and Y = (b, n), then

PXQY P = (eae′be, eae′ne+ eme′be) = 0

and similarly QXPY Q = 0.
Since the triangular algebra Tri(A,M,B) is isomorphic to the trivial

extension (A⊕ B)⋉M, we have the following result.

Corollary 2.3. Let A and B be unital algebras over a 2-torsion free
commutative ring R and M be a unital (A,B)-bimodule which is faithful
as a left A-module and also as a right B-module. Then any Jordan
higher derivation from triangular algebra Tri(A,M,B) into itself, is a
higher derivation.

To prove Theorem 2.2 we need some lemmas.

Lemma 2.4. For every n ∈ N we have PDn(P )P = 0, QDn(Q)Q = 0
and for every n ∈ N0 we have PDn(Q)P = 0, QDn(P )Q = 0.

Proof. It follows from

D1(P ) = D1(P
2) = D1(P )P + PD1(P ) (2.1)

that PD1(P )P = 0. Suppose that PDm(P )P = 0 for all m < n. From

Dn(P ) = Dn(P )P + PDn(P ) +
∑
i+j=n
i,j≥1

Di(P )Dj(P ), (2.2)

we have

PDn(P )P = PDn(P )P + PDn(P )P +
∑
i+j=n
i,j≥1

PDi(P )Dj(P )P.

It follows that

PDn(P )P +
∑
i+j=n
i,j≥1

(
PDi(P )PDj(P )P + PDi(P )QDj(P )P

)
= 0.

So we get PDn(P )P = 0.
By induction on n, it follows from (1.2) that Dn(I) = 0 for all n ∈ N.

Thus Dn(Q) = −Dn(P ) and so

PDn(Q)P = −PDn(P )P = 0

for all n ∈ N. Similarly we can show that QDn(Q)Q = 0 and
QDn(P )Q = 0. □
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Lemma 2.5. For every n ∈ N, we have

PDn(P ) = Dn(P )Q, Dn(P )P = QDn(P )

QDn(Q) = Dn(Q)P, Dn(Q)Q = PDn(Q).

Proof. It follows from (2.2) that

PDn(P ) = PDn(P )P + PDn(P ) + P
∑
i+j=n
i,j≥1

Di(P )Dj(P ).

Thus
P

∑
i+j=n
i,j≥1

Di(P )Dj(P ) = 0. (2.3)

Also it follows from (2.2) that

QDn(P ) = QDn(P )P +Q
∑
i+j=n
i,j≥1

Di(P )Dj(P ).

Thus

Q
∑
i+j=n
i,j≥1

Di(P )Dj(P ) = QDn(P )−QDn(P )P = QDn(P )Q = 0. (2.4)

From (2.3) and (2.4) we obtain that∑
i+j=n
i,j≥1

Di(P )Dj(P ) = 0. (2.5)

So
Dn(P ) = Dn(P )P + PDn(P ).

Therefore we get

Dn(P )P = Dn(P )− PDn(P ) = QDn(P ),

PDn(P ) = Dn(P )−Dn(P )P = Dn(P )Q.

Similarly we can get that QDn(Q) = Dn(Q)P and Dn(Q)Q = PDn(Q).
□

Lemma 2.6. For every n ∈ N0 and any X ∈ A⋉M, we have

PDn(PXQ)P = 0, PDn(QXP )P = 0, PDn(QXQ)P = 0,

QDn(PXP )Q = 0, QDn(PXQ)Q = 0, QDn(QXP )Q = 0.
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Proof. By Lemma 2.1 (a) we have
PDn(PXQ)P = PDn(PXQ+QPX)P

=
∑
i+j=n

(
PDi(PX)Dj(Q)P + PDi(Q)Dj(PX)P

)
=

∑
i+j=n

(
PDi(PX)PDj(Q)P + PDi(PX)QDj(Q)P

+ PDi(Q)PDj(PX)P + PDi(Q)QDj(PX)P
)
= 0.

Also by Lemma 2.1 (b) we have

PDn(QXQ)P =
∑

i+j+k=n

PDi(Q)Dj(X)Dk(Q)P

=
∑

i+j+k=n

(PDi(Q)Dj(X)PDk(Q)P

+ PDi(Q)Dj(X)QDk(Q)P ) = 0.

Similarly we get
PDn(QXP )P = QDn(PXP )Q = QDn(PXQ)Q

= QDn(QXP )Q = 0.

□
Lemma 2.7. Let X ∈ A⋉M. Then for each n ∈ N0,

PDn(QXP )Q = QDn(PXQ)P = 0.

Proof. It is true for n = 0 and by assumption for n = 1. Let n ≥ 2,
then

PDn(QXP )Q = PDn(QXP + PQX)Q

=
∑
i+j=n

PDi(QX)Dj(P )Q+ PDi(P )Dj(QX)Q

=
∑
i+j=n

PDi(QXP )Dj(P )Q+ PDi(P )Dj(QXP )Q

+
∑
i+j=n

PDi(QXQ)Dj(P )Q+ PDi(P )Dj(QXQ)Q

=
∑
i+j=n

PDi(QXP )PDj(P ) +Di(P )QDj(QXP )Q

+ PDn(QXQP + PQXQ)Q = 0
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Similarly we can show that QDn(PXQ)P = 0. □
Lemma 2.8. Let X,Y ∈ A⋉M. Then for each n ∈ N0,

(a) PDn(PXPY P )P =
∑

i+j=n PDi(PXP )Dj(PY P )P ,
(b) QDn(QXQY Q)Q =

∑
i+j=n QDi(QXQ)Dj(QYQ)Q.

Proof. For any X,Y, Z ∈ A⋉M and n ∈ N0 we have

PDn(PXPY PZQ)Q =
∑

k+l=n

(
PDk(PXPY P )Dl(PZQ)Q

+ PDk(PZQ)Dl(PXPY P )Q
)

=
∑

k+l=n

PDk(PXPY P )Dl(PZQ)Q.

On the other hand

PDn(PXPY PZQ)Q =
∑

i+j+l=n

(
PDi(PXP )Dj(PY P )Dl(PZQ)Q

+ PDi(PZQ)Dj(PY P )Dl(PXP )Q
)

=
∑

i+j+l=n

PDi(PXP )Dj(PY P )Dl(PZQ)Q

=
∑

k+l=n

∑
i+j=k

PDi(PXP )Dj(PY P )Dl(PZQ)Q.

It follows from the above two equations that∑
k+l=n

P
(
Dk(PXPY P )−

∑
i+j=k

Di(PXP )Dj(PY P )
)
Dl(PZQ)Q = 0

(2.6)
for any X,Y, Z ∈ A⋉M and n ∈ N0. Suppose that

Xk = Dk(PXPY P )−
∑

i+j=k Di(PXP )Dj(PY P ).

It follows from (2.6) that∑
k+l=n

PXkPDl(PZQ)Q = 0. (2.7)

We show that PXkP = 0 for all k = 0, 1, . . . , n, as desired.
Trivially PX0P = 0. Letting n = 1 in (2.7) we get

PX0PD1(PZQ)Q+ PX1PD0(PZQ)Q = 0 (2.8)
or equivalently PX1PZQ = 0 for all Z ∈ A⋉M. Thus by Lemma 3.6
of [8] we get PX1P = 0. Now assume that PXkP = 0 for all k ≤ n−1,
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then it follws from (2.7) that PXnP = 0. Similarly we can prove the
part (b). This completes the proof. □
Lemma 2.9. Let X,Y ∈ A⋉M. Then for each n ∈ N0, we have

(a) PDn(PXPY P )Q =
∑

i+j=n PDi(PXP )Dj(PY P )Q,
(b) QDn(PXPY P )P =

∑
i+j=n QDi(PXP )Dj(PY P )P ,

(c) PDn(QXQY Q)Q =
∑

i+j=n PDi(QXQ)Dj(QYQ)Q,
(d) QDn(QXQY Q)P =

∑
i+j=nQDi(QXQ)Dj(QYQ)P .

Proof. Since QDn(PXP )Q = 0, QDn(P )Q = 0 for all n ∈ N0 and
PDn(P )P = 0 for all n ∈ N, we get

2PDn(PXPY P )Q = PDn(PXPY P.P + P.PXPY P )Q

=
∑

k+l=n

(PDk(PXPY P )Dl(P )Q

+ PDk(P )Dl(PXPY P )Q

=
∑

k+l=n

(PDk(PXPY P )PDl(P )Q)

+ PDn(PXPY P )Q.

Therefore by Lemma 2.8 (a) we have
PDn(PXPY P )Q

=
∑

k+l=n

(PDk(PXPY P )PDl(P )Q)

=
∑

k+l=n

∑
i+j=k

PDi(PXP )Dj(PY P )PDl(P )Q

=
∑

i+j+l=n

PDi(PXP )Dj(PY P )Dl(P )Q

=
∑

i+k=n

PDi(PXP )
( ∑

j+l=k

Dj(PY P )Dl(P )
)
Q

=
∑

i+k=n

PDi(PXP )
(
2Dk(PY P )−

∑
j+l=k

Dj(P )Dl(PY P )
)
Q

= 2
∑

i+k=n

PDi(PXP )Dk(PY P )Q

−
∑

i+j+l=n

PDi(PXP )Dj(P )Dl(PY P )Q

= 2
∑

i+k=n

PDi(PXP )Dk(PY P )Q−
∑
i+l=n

PDi(PXP )PDl(PY P )Q
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= 2
∑

i+k=n

PDi(PXP )Dk(PY P )Q−
∑
i+l=n

PDi(PXP )Dl(PY P )Q

=
∑

i+k=n

PDi(PXP )Dk(PY P )Q.

The other parts can be proved similarly. □
Lemma 2.10. Let X,Y ∈ A⋉M. Then for each n ∈ N0, we have

(a) PDn(PXQY Q)Q =
∑

i+j=n PDi(PXQ)Dj(QYQ)Q,
(b) PDn(PXPY Q)Q =

∑
i+j=n PDi(PXP )Dj(PY Q)Q,

(c) QDn(QXPY P )P =
∑

i+j=nQDi(QXP )Dj(PY P )P ,
(d) QDn(QXQY P )P =

∑
i+j=n QDi(QXQ)Dj(QY P )P .

Proof. It follows from Lemmas 2.1 and 2.6 that
PDn(PXQY Q)Q

= PDn((PXQ)(QYQ) + (QYQ)(PXQ))Q

=
∑
i+j=n

(PDi(PXQ)Dj(QYQ)Q+ PDi(QYQ)Dj(PXQ)Q)

=
∑
i+j=n

PDi(PXQ)Dj(QYQ)Q.

Other parts proved similarly. □
Proof of Theorem 2.2

Proof. For any X ∈ A⋉M we have X = PXP+PXQ+QXP+QXQ,
so by Lemmas 2.6 and 2.7 it follows that

Dn(X) = PDn(PXP )P + PDn(PXP )Q+QDn(PXP )P

+ PDn(PXQ)Q+QDn(QXP )P + PDn(QXQ)Q

+QDn(QXQ)P +QDn(QXQ)Q

for all X ∈ A⋉M.
It is a consequence of Lemmas 2.8, 2.9, 2.10 and the facts
0 = PDn((PXP )(QYQ) + (QYQ)(PXP ))Q

=
∑
i+j=n

(PDi(PXP )Dj(QYQ)Q+ PDi(QYQ)Dj(PXP )Q)

=
∑
i+j=n

PDi(PXP )Dj(QYQ)Q

and
0 = QDn((QXQ)(PY P ) + (PY P )(QXQ))P
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=
∑
i+j=n

(QDi(QXQ)Dj(PY P )P +QDi(PY P )Dj(QXQ)P )

=
∑
i+j=n

QDi(QXQ)Dj(PY P )P

that
Dn(XY ) =

∑
i+j=n

Di(X)Dj(Y )

for all X,Y ∈ A⋉M. Therefore D is a higher derivation from A⋉M
into itself. □

Let A and B be unital algebras over a 2-torsion free commutative
ring R and A ⊕ B be the direct sum of A and B as R-algebras.
Let M be an (A ⊕ B)-bimodule. If e = (1A, 0), then e′ = (0, 1B)
and so P = ((1A, 0), 0) and Q = ((0, 1B), 0). Then the trivial exten-
sion (A ⊕ B) ⋉ M satisfies all the requirements in Theorem 2.2. Let
D = {Dn}n∈N0 be a Jordan higher derivation on (A⊕B)⋉M, then D1

is a Jordan derivation on it and so PD1(QXP )Q = QD1(PXQ)P = 0
for all X ∈ (A ⊕ B) ⋉ M. Therefore by Theorem 2.2, every Jordan
higher derivation from (A⊕ B)⋉M into itself is a higher derivation.
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جدید رویکرد یک ژوردان: بالاتر اشتقاق های

اکرامی خلیل سید

ایران تهران، نور، پیام دانشگاه ریاضی، گروه

A-دومدول یک M و بوده R آزاد ٢ -پیچش جابجایی حلقه روی یک دار جبر یک A کنید فرض
بدیهی توسیع از D = {Dn}n∈N٠ ژوردان بالاتر اشتقاق هر که می دهیم نشان مقاله این در باشد. یک دار
PD١(QXP )Q = ،X ∈ A⋉M هر ازای به اگر است، بالاتر اشتقاق یک خودش به A⋉M
غیربدیهی خودتوان عناصر ازای به Q = (e′, ٠) و P = (e, ٠) آن در که ،QD١(PXQ)P = ٠
e(l.annAM)e = ،e′AeAe′ = {٠} ،eAe′Ae = {٠} شرایط در که e′ = ١A− e و e ∈ A
تعریف می کنند، صدق eme′ = m ،m ∈ M هر ازای به و e′(r.annAM)e′ = {٠} ،{٠}

شده اند.

مثلثی. جبر بدیهی، توسیع بالاتر، اشتقاق ژوردان، بالاتر اشتقاق کلیدی: کلمات
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