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LATTICE OF WEAK HYPER K-IDEALS OF A HYPER
K-ALGEBRA

M. BAKHSHI

Abstract. In this note, we study the lattice structure of the class
of all weak hyperK-ideals of a hyperK-algebra. We first introduce
the notion of (left, right) scalar element in a hyperK-algebra which
helps us to characterize the weak hyper K-ideals generated by a
subset. In the sequel, using the notion of a closure operator, we
study the lattice of all weak hyper K-ideals of a hyper K-algebra
and prove that, under suitable conditions, a special subclass of this
class forms a Boolean lattice.

1. Introduction

The study of BCK-algebras was initiated by Y. Imai and K. Iséki
[9] in 1966 as a generalization of the concept of set-theoretic differ-
ence and propositional calculi. Since then, a great deal of literature
has been produced on the theory of BCK-algebras. In particular, em-
phasis seems to have been put on the ideal theory of BCK-algebras.
The hyperstructure theory (called also multialgebras)was introduced in
1934 by F. Marty [12] at the 8th congress of Scandinavian Mathemati-
ciens. Around the 40’s, several authors worked on hypergroups, espe-
cially in France and in the United States, but also in Italy, Russia and
Japan. Over the following decades, many important results appeared,
but above all since the 70’s onwards the most luxuriant flourishing of
hyperstructures has been seen. Hyperstructures have many applica-
tions to several sectors of both pure and applied sciences. In [5], R.
A. Borzooei et al. applied the hyperstructures to BCK-algebras, and
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introduced the notion of a hyper K-algebra which is a generalization
of BCK-algebra, and investigated some related properties. They also
introduced the notion of a hyper K-ideal and a weak hyper K-ideal
and gave relations between hyper K-ideals and weak hyper K-ideals
(see also [4, 6]). As we know, distributive lattices have played a many
faceted role in the development of lattice theory and it is one of the most
extensive and most satisfying chapters of lattice theory. Also, distribu-
tive lattices have provided the motivation for many results in general
lattice theory. In [3], Borzooei et al. studied hyper BCK-algebras [11]
from lattice theory point of view and investigated the properties of the
class of all weak hyper BCK-ideals of a hyper BCK-algebra. So, in
this paper we study the lattice structure of the class of all weak hyper
K-ideals of a hyper K-algebra and we prove that a special subclass of
this class together with the suitable operations forms a Boolean lattice.

2. Preliminaries

In this section, we first give some fundamental definitions and results
from literature. For more details, we refer to the references [4, 5, 6, 10].

By a hyper K-algebra we mean a structure (H;<, ◦, 0) in which < is
a binary relation in H, ◦ is a binary hyperoperation on H, and 0 is a
fixed element of H, and the following are satisfied: ∀x, y, z ∈ H,

(HK1) (x ◦ z) ◦ (y ◦ z) < x ◦ y,
(HK2) (x ◦ z) ◦ y = (x ◦ y) ◦ z,
(HK3) x < x,
(HK4) x < y and y < x imply x = y,
(HK5) 0 < x,
(HK6) x < y iff 0 ∈ x ◦ y.

and for A,B ⊆ H, A < B means that there exists a ∈ A and b ∈ B
such that a < b.

Example 2.1. (1) Let (X; ∗, 0) be a BCK-algebra and x◦y = {x∗y},
for all x, y ∈ X be a hyperoperation on X. Then (X; ◦, 0) is a hyper
K-algebra

(2) Let n ∈ N ∪ {0} and define the hyperoperation “ ◦ ” on Hn =
[n,∞) by

x ◦ y =

 [n, x] , x ≤ y,
(n, y] , x > y ̸= n,
{x} , y = n.

for all x, y ∈ Hn. Then (Hn; ◦, n) is a hyper K-algebra.

Proposition 2.2. In any hyper K-algebra H the following statements
hold: for all x, y, z ∈ H,
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(i) (x ◦ z) ◦ (x ◦ y) < y ◦ z,
(ii) x ◦ y < x,
(iii) x ◦ (x ◦ y) < y,
(iv) x ∈ x ◦ 0,
(v) 0 ∈ x ◦ (x ◦ 0).

Definition 2.3. Let H be a hyper K-algebra.

(i) H is said to be positive implicative if

(x ◦ y) ◦ z = (x ◦ z) ◦ (y ◦ z) (∀x, y, z ∈ H).

(ii) A non-empty subset I of H is called a weak-hyper K-ideal if
0 ∈ I and x ◦ y ⊆ I and y ∈ I imply x ∈ I.

(iii) An element a of H is called an atom if x < a implies that x = 0
or x = a.

We denote the set of all atoms and the set of all weak hyper K-ideals
of H, by A(H) and W (H), respectively.

Example 2.4. (i) In any hyper K-algebra H, {0} and H are weak
hyper K-ideals of H.

(ii) Let H = {0, 1, 2} and hyperoperation ‘◦’ be defined as shown in
Table 1. Then (H; ◦) is a hyper K-algebra (see [6]). Furthermore, it is
easy to check that {0, 2} is a weak hyper K-ideal of H.

Table 1. The action of ‘◦’ on H

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0,1} {0,1,2}

Proposition 2.5. [5] Let {Iα : α ∈ Λ} be a nonempty family of weak
hyper K-ideals of hyper K-algebra H. Then ∩{Iα : α ∈ Λ} is a weak
hyper K-ideal of H.

Remark 2.6. Example 2.4 shows that for any nonempty subset A of a
hyperK-algebra H, there always exists a weak hyperK-ideal of H that
contains A and so by Propsition 2.5, it follows that the intersection of
any family of weak hyper K-ideals of H containing A is the least weak
hyper K-ideal of H containing A, called the weak hyper K-ideal of H
generated by A and we denote it by [A]w. In this case, for A ⊆ W (H),
we let ∧A = inf A =

∩
I∈A I and ∨̇A = supA = [A]w. Moreover, it is

obvious that {0} is the least element and H is the greatest element of
W (H) with respect to the set-theoretic inclusion.
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Definition 2.7. [8] A lattice L is said to be

(1) complete if for any subset A of L,
∧
A = inf A and

∨
A = supA

exist in L,
(2) infinitely distributive if for any indexed set Λ and z ∈ L,

z ∧

(∨
α∈Λ

xα

)
=
∨
α∈Λ

(z ∧ xα) (2.1)

(3) modular if

x ≥ z ⇒ (x ∧ y) ∨ z = x ∧ (y ∨ z) (∀x, y, z ∈ L),

(4) semimodular if x ≺ y implies that x ∨ z ⪯ y ∨ z, where x ≺ y
means that x < y and there is no z ∈ L such that x < z < y.

Note 2.8. It must be noticed that any lattice which satisfies (2.1), for
Λ = {1, 2}, is called a distributive lattice.

Definition 2.9. [8] (i) An element a of a complete lattice L is called
compact if a ≤

∨
A implies that a ≤

∨
A1, for some finite subset A1 of

A ⊆ L.
(ii) An element a of a lattice L with zero is called an atom if x ≤ a

implies that x = 0 or x = a.

Definition 2.10. [8] A lattice L is called

(1) algebraic if it is complete and every element of L is a join of
compact elements of L,

(2) geometric if L is semimodular, algebraic and the compact ele-
ments of L are exactly the finite joins of atoms.

Definition 2.11. [8]

(1) For element a of a bounded lattice L, b ∈ L is called a comple-
ment of a if and only if a ∧ b = 0 and a ∨ b = 1.

(2) A bounded lattice in which every element has a complement is
said to be a complemented lattice.

(3) Any complemented distributive lattice is said to be a Boolean
lattice.

Definition 2.12. [7] For nonempty set A, mapping C : 2A −→ 2A is
called a closure operator if for all X ∈ 2A,

• X ⊆ C(X), (Extended)
• C2(X) = C(X), (Idempotent)
• X ⊆ Y ⇒ C(X) ⊆ C(Y ), (Isotone)
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Nonempty subset X of A is said to be closed if C(X) = X. We
denote the set of all closed subsets of A, by LC . If for X ∈ 2A there
exists Y ∈ 2A such that C(Y ) = X, we say that X is generated by Y ,
and Y is a generating set for X. When Y is finite we say that X is
finitely generated. A closure operator C on A is said to be algebraic if
C(X) = ∪{C(Y ) : Y ⊆ X is finite}.

Theorem 2.13. [7] If C is a closure operator on a set A, then LC is
a complete lattice with∧

i∈I

C(Ai) =
∩
i∈I

C(Ai),
∨
i∈I

C(Ai) = C

(∪
i∈I

Ai

)
.

Theorem 2.14. [7] If C is an algebraic closure operator on a set A,
then LC is an algebraic lattice, and the compact elements of LC are
precisely the closed sets C(X), where X is a finite subset of A.

3. Main results

Throughout the paper, H will denotes a hyper K-algebra, unless
otherwise mentioned.

As a first result, from the previous section, we conclude that W (H)
is a complete lattice. Indeed

Theorem 3.1. W (H) is a complete lattice, where for all I, J ∈ W (H),
I ∧ J = I ∩ J and I∨̇J = [I ∪ J ]w.

Proof. It follows from Proposition 2.5 and Remark 2.6. □
Definition 3.2. Let H be a hyper K-algebra.

(i) An element a ∈ H is called a (right) left scalar if (|x ◦ a| = 1)
|a ◦ x| = 1, for any x ∈ H.

(ii) An element a ∈ H is called a scalar if a is both a left and a
right scalar.

(iii) H is called (0r or 0l) 0-scalar if 0 is a (right or left) scalar
element of H.

Notation. We denote the set of all (right) left scalars of H, by (resp.
R(H)) L(H).

Proposition 3.3. Let S(H) = {a ∈ H : a ◦ a = {0}}. Then L(H) ⊆
R(H) ⊆ S(H).

Proof. Let a ∈ R(H). Then for each x ∈ H we have |x◦a| = 1. Taking
x = a we get |a ◦ a| = 1. Since 0 ∈ a ◦ a, then a ◦ a = {0} and so
a ∈ S(H). The proof of other case is similar. □
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Definition 3.4. In a hyper K-algebra H, we say that < is isotone to
the right if x < y implies that x ◦ z < y ◦ z, for all z ∈ H. In this case,
we say that H is <r-isotone.

Example 3.5. Let H = {0, 1, 2} and hyperoperation ‘◦’ be defined as
shown in Table 2. Then (H; ◦) is a hyper K-algebra (see [6]). Further-
more, it is easy to check that < is isotone to the right.

Table 2. The action of ‘◦’ on H

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0, 2} {0, 2}

Lemma 3.6. Let H be <r-isotone and |x ◦ y| < ∞, for all x, y ∈ H.

(i) If A ⊆ R(H), then

[A]w =

{
x ∈ H : (· · · (x ◦ a1) ◦ · · · ) ◦ an = {0}, for some n ∈ N,

a1, · · · , an ∈ A

}
.

(ii) Assume that H is a positive implicative hyper K-algebra and
a ∈ R(H). Then

[a]w = {x ∈ H : x ◦ a = {0}}.
(iii) If H is a positive implicative hyper K-algebra and a ∈ R(H) ∩

A(H), then [a]w = {0, a}. Moreover, [a]w is an atom of W (H).

Proof. (i) Let

B = {x ∈ H : (· · · (x ◦ a1) ◦ · · · ) ◦ an = {0}, n ∈ N, a1, · · · , an ∈ A}.
First we have to prove that B is a weak hyper K-ideal of H. Since
A ⊆ R(H), then for any a ∈ A we have 0 ◦ a = {0} whence 0 ∈ B.
Now, let x ◦ y ⊆ B and y ∈ B, for x, y ∈ H. Hence, for all z ∈ x ◦ y
there exist nz ∈ N and a1, a2, · · · , anz ∈ A such that

(· · · ((z ◦ a1) ◦ · · · ) ◦ anz = {0}.
Since |x ◦ y| < ∞, we can take n = max{nz : z ∈ x ◦ y} and so without
loss of generality,

(· · · ((x ◦ a1) ◦ · · · ) ◦ an) ◦ y = (· · · ((x ◦ y) ◦ a1) ◦ · · · ) ◦ an
=

∪
z∈x◦y

(· · · ((z ◦ a1) ◦ · · · ) ◦ anz = {0}.

This implies that

(· · · ((x ◦ a1) ◦ · · · ) ◦ an) < y
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i.e, a < y, for some a ∈ (· · · ((x◦a1)◦ · · · )◦an. Also, since y ∈ B, then
there exist m ∈ N and b1, b2, . . . , bm ∈ A such that

(· · · ((y ◦ b1) ◦ b2) ◦ · · · ) ◦ bm = {0}.
Since < is isotone to the right, a ◦ b1 < y ◦ b1, which implies that

((· · · (x ◦ a1) ◦ · · · ) ◦ an) ◦ b1 < y ◦ b1.
By continuing this process, we obtain

(· · · (((· · · (x◦a1)◦· · · )◦an)◦b1)◦· · · )◦bm < (· · · ((y◦b1)◦b2)◦· · · )◦bm = {0}.
Since

|(· · · (((· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ an) ◦ b1) ◦ · · · ) ◦ bm| = 1,

so

(· · · (((· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ an) ◦ b1) ◦ · · · ) ◦ bm = {0},
proving x ∈ B. Consequently, B is a weak hyper K-ideal of H. More-
over, since a ◦ a = {0} for all a ∈ A, then a ∈ B means that A ⊆ B.
Now, let C be a weak hyper K-ideal of H containing A and x ∈ B.
Then there exist n ∈ N and a1, a2, · · · , an ∈ A such that

(· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ an = {0} ⊆ C.

Since C is a weak hyper K-ideal and an ∈ A ⊆ C, then

(· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ an−1 ⊆ C.

By continuing this process we get that x ∈ C. Therefore, B = [A]w.
(ii) Obviously, x ◦ a = {0} implies that x ∈ [a]w, that is, {x ∈ H :

x ◦ a = {0}} ⊆ [a]w. Conversely, since a ∈ R(H) and R(H) ⊆ S(H)
and H is positive implicative, then

(x ◦ a) ◦ a = (x ◦ a) ◦ (a ◦ a) = (x ◦ a) ◦ 0 = x ◦ a.
By continuing this process after n steps (with n ∈ N) we get

(· · · ((x ◦ a) ◦ a) ◦ · · · ) ◦ a︸ ︷︷ ︸
n times

= x ◦ a.

Hence, if x ∈ [a]w, then there exists n ∈ N such that

x ◦ a = (· · · ((x ◦ a) ◦ a) ◦ · · · ) ◦ a︸ ︷︷ ︸
n times

= {0}.

Therefore, [a]w = {x ∈ H : x ◦ a = {0}}.
(iii) Let a ∈ R(H) ∩ A(H). Then a ◦ a = {0} = 0 ◦ a, which imply

that {0, a} ⊆ [a]w. Now, let x ∈ [a]w. Then by (ii), x ◦ a = {0} and
so x < a. Since a ∈ A(H), then x = 0 or x = a whence x ∈ {0, a}.
Hence, [a]w ⊆ {0, a}. Therefore, [a]w = {0, a}. □
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Note. Hereafter, in this paper, we suppose that |x ◦ y| < ∞, for all
x, y ∈ H.

Example 3.7. (i) Consider the hyper K-algebra H given in Example
3.5. Obviously, {1, 2} ̸⊆ R(H). Moreover,

{x ∈ H : (· · · (x◦a1)◦· · · )◦an = {0}, n ∈ N, a1, . . . , an ∈ {1, 2}} = {0, 1}

which is a weak hyper K-ideal of H, does not contain {1, 2}. So,
[{1, 2}]w ̸= {0, 1}. Moreover, {x ∈ H : x ◦ 2 = {0}} = {0} ̸= [2]w.
This example shows that the condition “inclusion in R(H)”, in Lemma
3.6(i), and “positive implicativity”, in Lemma 3.6(ii), are necessary.

(ii) Let (H; ◦) be a hyper K-algebra (see [4]), where H = {0, 1, 2, 3}
and Cayley table of ◦ is below (see Table 3). It is seen that 3 is a
right scalar and [3]w = {0, 1, 3}, while H is not <r-isotone and positive
implicative because, 2 < 1 whereas 2◦3 = {2} ̸< {0} = 1◦3 and (3◦1)◦
1 = {0} ̸= {1} = (3◦1)◦(1◦1). This shows that “positive implicativity”
and “<r-isotonicity“ in Lemma 3.6(ii), are sufficient conditions.

Table 3. The action of ‘◦’ on H

◦ 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0} {1} {0}
2 {2} {0, 2} {0, 2} {2}
3 {3} {1} {3} {0}

Notation. We denote a hyper K-algebra in which < is isotone to the
right, by H<r . Let PR(H<r) be the set of all nonempty subsets of H
contained in R(H<r), W R(H<r) be the set of all weak hyper K-ideals
of H that is contained in R(H), and [A]rw be the intersection of all weak
hyper K-ideals of H contained in R(H) which contain A. To ensure
that this situation can be exists we consider the next example.

Example 3.8. Let H = {0, 1, 2, 3} and hyperoperation ‘◦’ be given as
shown in Table 4. Then, (H, ◦) is a hyper K-algebra [6]. It is easy to
see that < is isotone to the right, R(H<r) = {0, 2}, and W R(H<r) =
{{0}, {0, 2}}. So, the definitions given in the above notation are well-
defined.

Lemma 3.9. The mapping Cr
w : PR(H<r) −→ PR(H<r) which is

defined by Cr
w(A) = [A]rw, for all A ∈ PR(H<r), is a closure operator

provided that [A]rw exists.
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Table 4. The action of ‘◦’ on H

◦ 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0} {1} {1}
2 {2} {0} {0} {0}
3 {3} {0, 1} {3} {0, 1, 3}

Proof. Obviously, A ⊆ [A]rw and [[A]rw]
r
w = [A]rw, for all A ∈ PR(H<r),

proving Cr
w is extended and idempotent, respectively. Now, let A,B ∈

PR(H<r) be such that A ⊆ B and x ∈ [A]rw. Then there exist n ∈ N
and a1, a2, . . . , an ∈ A such that (· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ an = {0}
and since A ⊆ B, a1, . . . , an ∈ B. Hence, x ∈ [B]rw, proving that Cr

w is
isotone. □
Remark 3.10. In Lemma 3.9, we assumed that for all nonempty subsets
A of PR(H<r), [A]rw always exists. In such a case, W R(H<r) has the
greatest element, denoted by 1. Also, if H is 0r-scalar, then 0 is a weak
hyper K-ideal contained in R(H<r); i.e, 0 ∈ W R(H<r) means that
W R(H<r) is a lattice with zero. Consequently, W R(H<r) is bounded.
Moreover, W R(H<r) is the set of all closed subsets of PR(H<r), which
is a poset under set inclusion as the partial ordering.

By Theorem 2.13, we have

Theorem 3.11. W R(H<r) is a complete lattice in which ∧Ii = ∩Ii
and ∨̇Ii = [∪Ii]rw. Indeed, it is a complete sublattice of W (H).

Lemma 3.12. Cr
w is algebraic.

Proof. Let A ∈ PR(H) and B ⊆ A be finite. Then [B]rw ⊆ [A]rw and so
∪{[B]rw : B ⊆ A is finite} ⊆ [A]rw. Now, let x ∈ [A]rw. Then there exist
n ∈ N and a1, . . . , an ∈ A such that (· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ an = {0}.
Let B = {a1, a2, . . . , an}. Then x ∈ [B]rw and so

x ∈ ∪{[B]rw : B ⊆ A is finite}.
Thus, [A]rw = ∪{[B]rw : B ⊆ A is finite}, showing that Cr

w is algebraic.
□

Now, by Lemma 3.12 and Theorem 2.14 we get

Theorem 3.13. W R(H<r) is an algebraic lattice in which the compact
elements are precisely the weak hyper K-ideals [A]rw, where A is a finite
set in PR(H<r).

Corollary 3.14. The finitely generated subsets of PR(H<r) are pre-
cisely the compact elements of W R(H<r).
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Theorem 3.15. W R(H<r) is an infinitely distributive lattice.

Proof. Let Jα, K ∈ W R(H<r), α ∈ Λ. We prove that

K ∩
(∨̇

α∈Λ
Jα

)
=
∨̇

α∈Λ
(K ∩ Jα).

Obviously, ∨̇
α∈Λ

(K ∩ Jα) ⊆ K ∩
(∨̇

α∈Λ
Jα

)
.

Let x ∈ K ∩ (
∨̇

α∈ΛJα). Then x ∈ K and x ∈
∨̇

α∈ΛJα =

[∪
α∈Λ

Jα

]
w

,

which implies that

(· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ an = {0},

for some n ∈ N and a1, a2, . . . , an ∈
∪
α∈Λ

Jα. Observe that since ai ∈

R(H), then |(· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ ai| = 1, for i ∈ {1, 2, . . . , n}. Let
{jr} = (· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ ar−1

and ar ∈ Jr, for r ∈ {1, 2, . . . , n}. Then
(· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ an = {0} ⊆ Jn,

which implies that

{jn} = (· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ an−1 ⊆ Jn,

because an ∈ Jn and Jn is a weak hyper K-ideal. Then,

(· · · ((x ◦ jn) ◦ a1) ◦ · · · ) ◦ an−1 = ((· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ an−1) ◦ jn
= jn ◦ jn = {0} ⊆ Jn−1.

By continuing this process we get

(· · · ((x ◦ j1) ◦ j2) ◦ · · · ) ◦ jn = {0} (3.1)

where ji ∈ Ji, for i ∈ {1, 2, . . . , n}. Now, since x ∈ R(H) and 0 ∈ x◦x,
then x ◦ x = {0} and so

jr ◦ x = ((· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ ar−1) ◦ x
= (· · · ((x ◦ x) ◦ a1) ◦ · · · ) ◦ ar−1

= {0} ⊆ K.

Since K is a weak hyper K-ideal and x ∈ K, then jr ∈ K whence
jr ∈ K ∩ Jr, for r ∈ {1, 2, . . . , n}. This together with (3.1) imply that

x ∈

[∪
α∈Λ

(K ∩ Jα)

]
w

=
∨̇

α∈Λ
(K ∩ Jα).
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□
Proposition 3.16. For every I ∈ W R(H<r) we have I =

∨̇
a∈I [a]

r
w.

Proof. Let I be a weak hyper K-ideal of H contained in R(H<r). It

is clear that
∨̇

a∈I [a]
r
w ⊆ I. Now, let x ∈ I. Since I ⊆ R(H<r), then

x ◦ x = {0} and so x ∈ [x]rw ⊆
∨̇

a∈I [a]
r
w. Hence, I ⊆

∨̇
a∈I [a]

r
w and so

I =
∨̇

a∈I [a]
r
w. □

Notation. Let W RA (H<r) denote the set of all weak hyper K-ideals
of H<r contained in R(H<r) ∩ A(H<r).

Theorem 3.17. If H<r is positive implicative, W RA (H<r) is a geo-
metric lattice.

Proof. The only thing remains to prove is to verify that every compact
element in W R(H<r) is exactly the finite join of atoms of W R(H<r).

By Proposition 3.16, we know that I =
∨̇

a∈I [a]w. Then, if I is compact

we get I =
∨̇n

i=1[ai]w, for some a1, a2, . . . , an ∈ I. Now, by Lemma
3.6(iii), the proof is complete. □
Definition 3.18. [8] For lattice L with zero and a ∈ L, a∗ is called the
pseudocomplement of a if a∧ a∗ = 0 and a∧ x = 0 implies that x ≤ a∗,
for all x ∈ L.

Let S(W R(H<r)) = {I∗ : I ∈ W R(H<r)}. Then S(W R(H<r))
with respect to the partial ordering of W R(H<r) is a lattice. Further-
more, we have the following.

Lemma 3.19. In S(W R(H<r)) the following hold:

(1) I ∧ J = inf
I,J∈S(W R(H<r ))

{I, J} = inf
I,J∈W R(H<r )

{I, J}.

(2) I∨̃J = sup
I,J∈S(W R(H<r ))

{I, J} = (I∗ ∧ J∗)∗.

(3) I ⊆ I∗∗.
(4) I ⊆ J implies that I∗ ⊇ J∗.
(5) I∗ = I∗∗∗.
(6) I ∈ S(W R(H<r)) if and only if I = I∗∗.
(7) I, J ∈ S(W R(H<r)) implies that I∧J = (I∧J)∗∗ ∈ S(W R(H<r)).
(8) For I, J ∈ S(W R(H<r)) we have (I∨̇J)∗∗ = (I∗ ∧ J∗)∗.
(9) For I, J ∈ S(W R(H<r)), I∨̃J = (I∨̇J)∗∗.

Proof. The proof of (1)-(6) is similar to that of [8, Theorem 100].
(7) Let I, J ∈ S(W R(H<r)). Hence, there exist L,K ∈ W R(H<r)

such that I = L∗ and J = K∗. Then by (5),

I∗∗ = L∗∗∗ = L∗ = I.
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Similarly, we can prove that J∗∗ = J . Since I ∧ J ⊆ I, J , then

I = I∗∗ ⊇ (I ∧ J)∗∗ , J = J∗∗ ⊇ (I ∧ J)∗∗.

Hence, I ∧ J ⊇ (I ∧ J)∗∗. But by (3), I ∧ J ⊆ (I ∧ J)∗∗ and so
I ∧J = (I ∧J)∗∗ ∈ S(W R(H<r)). Now, if K ∈ S(W R(H<r)) be such
that K ⊆ I and K ⊆ J , then K ⊆ I ∧ J = (I ∧ J)∗∗. Therefore,

I ∧ J = (I ∧ J)∗∗ = inf
I,J∈S(W R(H<r ))

{I, J}

(8) Since by (3), I, J ⊆ I∨̇J ⊆ (I∨̇J)∗∗, then (I∨̇J)∗∗ is an upper
bound for {I, J}. Now, let K ∈ S(W R(H<r)) be such that I ⊆ K and
J ⊆ K. Then I∨̇J ⊆ K and so by (4) and (6), (I∨̇J)∗∗ ⊆ K∗∗ = K.
This implies that

I∨̃J = (I∨̇J)∗∗ = sup
I,J∈S(W R(H<r ))

{I, J}.

(9) Let I, J ∈ S(W R(H<r)). Since I∗, J∗ ⊇ I∗ ∧ J∗, then by (3)
and (4), I ⊆ I∗∗ ⊆ (I∗ ∧ J∗)∗. Similarly, J ⊆ (I∗ ∧ J∗)∗. Hence, in
W R(H<r), I∨̇J ⊆ (I∗ ∧ J∗)∗ and so by (5),

(I∨̇J)∗∗ ⊆ (I∗ ∧ J∗)∗∗∗ = (I∗ ∧ J∗)∗.

Moreover, since I, J ⊆ I∨̇J in W R(H<r), then I∗, J∗ ⊇ (I∨̇J)∗. Thus
I∗ ∧ J∗ ⊇ (I∨̇J)∗ and so by (4), (I∗ ∧ J∗)∗ ⊆ (I∨̇J)∗∗. Therefore,

(I∨̇J)∗∗ = (I∗ ∧ J∗)∗.

□
By Glivenko’s theorem [1, Theorem 7.2] we have

Theorem 3.20. (S(W R(H<r),∧, ∨̇, ∗,0,1) is a Boolean algebra.
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