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QUASI-PRIMARY DECOMPOSITION IN MODULES
OVER PRUFER DOMAINS

M. BEHBOODI*, R. JAHANI-NEZHAD AND M. H. NADERI

ABSTRACT. In this paper we investigate decompositions of sub-
modules in modules over a Priifer domain into intersections of
quasi-primary and classical quasi-primary submodules. In partic-
ular, existence and uniqueness of quasi-primary decompositions in
modules over a Priifer domain of finite character are proved.

1. INTRODUCTION

Throughout this paper all rings are commutative with identity el-
ements, and all modules are unital. Let M be an R-module. For
every nonempty subset X of M and every submodule N of M, the
ideal {r € R | rX C N} will be denoted by (N : X). Note that
(N : M) is the annihilator of the module M/N. Also we denote the
classical Krull dimension of R by dim(R), and for an ideal I of R,
VI:={reR|rF eI for some k € N}.

We recall that a proper ideal Q of the ring R is called a primary
ideal if ab € Q where a,b € R, implies that either a € Q or V¥ € Q
for some k € N (see for example [2]). The notion of primary ideal was
generalized by Fuchs [6] by defining an ideal Q of a ring R to be quasi-
primary if its radical is a prime ideal, i.e., if ab € Q where a, b € R,
then either a* € Q or b* € Q for some k € N (see also [7]). There are
some extensions of these notions to modules. For instance, a proper
submodule @ of M is called a primary submodule if am € @), where
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a€ R, meM\Q, then a*M C Q for some k € N (see for example
[9, 10]). Also, @ is called quasi-primary if \/(Q : M) is a prime ideal
of R (see [1]). Moreover, @) is called a classical primary (resp. classical
quasi-primary) submodule of M if abN C @, where a,b € R and N is
a submodule of M, then either aN C Q or b*N C Q (resp. a*N C Q
or YN C Q) for some k € N (see [3, 1]). We note that if Q is a
primary, quasi-primary, classical primary or a classical quasi-primary
submodule of M, then P := /(Q : M) is a prime ideal of R, and hence,
we say that @) is a P-primary, P-quasi-primary, classical P-primary or
a classical P-quasi-primary submodule; respectively.

Let K, N, Ny,--- , N, for some [ € N, be submodules of an R-module
M. We say that N and K are co-maximal (resp. with incomparable
radicals) when N + K = M (resp. when /(N : M) and /(K : M)
are not comparable); also we say that the submodules Ny, ..., N; are
pairwise co-mazximal (resp. with pairwise incomparable radicals) if and
only if for every 7,5 € {1,2,...,1} such that i # j, N; + N; = M (resp.
V(N; : M) and /(K : M) are not comparable). An R-module M is
called a multiplication module if, for each submodule N of M, there
exists an ideal I of R such that N = IM; In this case we can take
I = (N : M) (see for example [5]). For an integral domain R, we say
that R is of finite character, if every nonzero element of R is contained
but in a finite number of maximal ideals.

In a Priifer domain of finite character, Fuchs and Mosteig [7] es-
tablished the decomposition of an ideal as (shortest) intersections of a
finite number of quasi-primary ideals. In particular, they proved that
every nonzero ideal [ in a Priifer domain of finite character is a finite
intersection of quasi-primary ideals with incomparable radicals, and
the components in such a decomposition are uniquely determined by
I (see [7, Theorem 5.6]). In Section 1, some results on quasi-primary
and classical quasi-primary submodules are given. For instance, it is
shown that if R is a domain, then for each R-module M, every classi-
cal quasi-primary submodule of M is a quasi-primary submodule if and
only if every proper ideal of R is (classical) quasi-primary, if and only
if, the set of prime ideals, Spec(R), is a chain (see Proposition 1.5).
In Section 2, we generalize some main results of [7] to modules over a
Priifer domain of finite character. In particular, we prove that over a
Priifer domain of finite character, every submodule N of a module M
such that (V : M) # (0), can be shown as an (minimal) intersection
of finite number of (classical) quasi-primary submodules (see Theorem
2.7). Also we prove that the components in the decomposition of N
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into quasi-primary submodules are uniquely determined by N (see The-
orem 2.10). If M is also a multiplication module, such decomposition

into quasi-primary submodules exists for every nonzero submodule of
M (see Theorem 2.11).

2. SOME RESULTS ON (CLASSICAL) QUASI-PRIMARY SUBMODULES

We begin this section with two Propositions 1.1 and 1.2, which give
many examples of classical primary submodules; so many examples of
classical quasi-primary submodules; that are not primary submodules.

Proposition 2.1. Let R be an integral domain and P be a nonzero
prime ideal of R. Let for a non-empty set I, () = @;crA; be a submodule
of a free R-module F' = @;c1R such that for every i € I, A; = (0) or
A; is a P-primary ideal of R. If the set T' := {A; | i € I and A; is
a P-primary ideal of R} is a finite set, then Q is a classical primary
submodule of F'. In addition, if Q) # (0) and for some i € I, A; = (0)

, then @ is not a primary submodule of F.

Proof. Let r,s € R and N be a submodule of F such that rN ¢ @ and
rsN C Q. Then there is y = {y;}ie; € N such that ry € Q). We can
assume that r and s are nonzero; so rs # 0, because R is an integral
domain. Since rsy € Q, rsy; € A;, for every ¢ € I. But ry ¢ Q,
so there is an iy € I that ry,, € A,,. Clearly A;, is nonzero, so A;,
is a P-primary ideal of R. Now since rsy;, € A;, and ry;, € A;,, we
conclude that s € \/A_ZO = P. Evidently for every z = {z;}ie; € N, if
A; =0, for some j € I, then z; = 0, so since the set I' is finite, there
is a positive integer k such that s*N C Q; on the other word, Q is a
classical primary submodule of F'.

Now, suppose that @) # (0) and for some ¢ € I, A; = (0). So there
are 41,45 € I such that A;, # (0) and A;, = (0). Set f = {f;}icr where
fi, = land for every i € I'\{i1}, fi = 0. Evidently f ¢ @ and for every
nonzero element p € P, there is a positive integer k that p*f € Q. Now
if for a positive integer [, (p*)'F C @, then p'* € A;, = (0), i.e., p'* = 0.
But R is an integral domain, so p = 0, a contradiction. On the other
word, () is not a primary submodule of F'. O

Proposition 2.2. Let P be a prime ideal of an integral domain R and
Q be a P-primary ideal of R. Let QQ = Q{x;}icr, for a non-empty set
1, be a submodule of free R-module F' = ®;c; R such that for an j € I,
x; 1s a unit of R. Then @Q is a classical primary submodule of F. In
addition, if Q is nonzero and I has at least two elements, then @) is
not a primary submodule of F.
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Proof. Set © = {x;}icr, and let z; be a unit of R, for an j € I. Let
r,s € R and N be a submodule of F that rsN C @ and rN € @Q;
so there is y = {y;}ier € N such that rsy € Q and ry € Q. We can
assume that r and s are nonzero; so rs # 0, because R is an integral
domain. Then for every i € I, rsy; = qx;, that ¢ € Q; especially,
rsy; = qx;. Since x; is a unit of R, rsijj_lxi = qx;, and since rsy; =
qr;, rsyja:j_lxi = rsy;. Therefore y; = yjmj_lxi, because R is an integral
domain. Then y = {ijj*lq:i}ie] = ijj*lx. Thus for every z € N\@Q,
there is r, € R such that z = r,x. On the other hand, since ry & @,
then rijj_l Z Q, so ry; € Q. Also, since rsy; = qr; € Q, and Q is
a P-primary ideal of R, s € P, i.e., s* € Q for some k € N. Then for
every z € N\Q, s*2 = sfr,x € Q, so s*N C Q. Thus Q is a classical
primary submodule of R.

Now suppose that Q is nonzero and I has at least two elements.
Evidently, there exists a subset J = {i1, -+ ,4;}, where t > 2 and i; <
Qg < -++ <1y, of I such that for every i € I'\ J, z; = 0. Let e = {e; }ies
such that for every i € J,e; = 1, and for every i € I\ J,e; = 0. Also
let f = {fi}ier such that f;, = 1 and for every i € I\ {i1}, f; = 0.
Obviously, z ¢ @ and for every nonzero q € Q, qr € ). Now if for
a positive integer k, ¢*F C @, then ¢*e € Q, so ¢*e = ¢,z for some
q1 € Q. Then for every i € J, ¢* = q;, therefore ¢x; = q1x;. Since
R is an integral domain and ¢ # 0, z; = z; for every i € J, so x = zje.
On the other hand, ¢*f = oz, for some ¢» € Q. Then ¢"f = quje,
so ¢*fi, = ¢"fi,, i.e., ¢ = 0. Now since R is an integral domain we
conclude that ¢ = 0, a contradiction. Therefore () is not a primary
submodule of F'. O

Proposition 2.3. Let P be a prime ideal of an integral domain R and
Q be a P-primary ideal of R. Let F = @ |R andx = (1,29, -+ ,x,) €
F such that for some i,1 <1 < n, x; 1s invertible. If ) = Qux, then
Q 1s a classical primary submodule of F'. In addition, if Q is nonzero
and n > 2, then Q) is not a primary submodule of F.

Proof. Set © = {z;}er, and let x; be a unit of R, for an j € I. Let
r,s € R and N be a submodule of F' that rsN C Q and rN ¢ Q;
so there is y = {y;}iesr € N such that rsy € Q and ry ¢ Q. We can
assume that r and s are nonzero; so rs # 0, because R is an integral
domain. Then for every ¢ € I, rsy; = qx;, that ¢ € Q; especially,
rsy; = qx;. Since x; is a unit of R, Tsyj:vj_lxi = qu;, and since rsy; =
qr;, rsyjmj-’lxi = rsy;. Therefore y; = yja:]-’l:ci, because R is an integral
domain. Then y = {ijj_lxi}ie] = ijjflx. Thus for every z € N\Q,
there is r, € R such that z = r.z. On the other hand, since ry € @,
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then rijj’l ¢ Q, so ry; € Q. Also, since rsy; = qr; € Q, and Q is
a P-primary ideal of R, s € P, i.e., s* € Q for some k € N. Then for
every z € N\Q, s*2 = sfr,x € Q, so s*N C Q. Thus Q is a classical
primary submodule of R.

Now suppose that Q is nonzero and I has at least two elements.
Evidently, there exists a subset J = {i1, -+ ,4;}, where t > 2 and i; <
Qg < -++ <1y, of I such that for every i € I'\ J, z; = 0. Let e = {e; }ies
such that for every i € J,e; = 1, and for every i € I\ J,e; = 0. Also
let f = {fi}ics such that f;; = 1 and for every i € I\ {i1}, f; = 0.
Obviously, ¢ @ and for every nonzero q € Q, qr € ). Now if for
a positive integer k, ¢*F C @, then ¢*e € Q, so ¢¥e = ¢z for some
q1 € Q. Then for every i € J, ¢* = q;, therefore ¢1x; = q1x;. Since
R is an integral domain and ¢ # 0, z; = z; for every i € J, so v = xje.
On the other hand, ¢"f = gz, for some g2 € Q. Then ¢*f = gouje,
so ¢*fi, = ¢"fi,, i.e., ¢ = 0. Now since R is an integral domain we
conclude that ¢ = 0, a contradiction. Therefore () is not a primary
submodule of F'. 0

Even in a ring R, the classical quasi-primary ideals and primary
ideals are not the same, see the following example.

Example 2.4.

(a): Let R be valuation domain. It is easy to see that every
ideal of R is a quasi-primary ideal (see for example [$, Theorem
5.10]). Then every ideal of R is a classical quasi-primary ideal
by [, Proposition 1.3]. Since every ideal of R need not to be a
primary ideal, then there are non-primary ideals of R that are
classical quasi-primary.

(b): Let R be an integral domain and Z be a valuation ideal of
R (an ideal 7 of integral domain R with quotient filed K is a
valuation ideal if there is a valuation ring V' of K containing R
such that Z = J N R for some ideal J of V). By [8, Exercise
V13-page 122], every valuation ideal of R is a (classical) quasi-
primary ideal, but there are valuation ideals of R that are not
primary ideals. For example, if K is a filed and 7 is the ideal
generated by z? and y? in K[x,y], for indeterminates z and y,
then Z is a (classical) quasi-primary ideal that is not a primary
ideal.

Following [3, 4], we call an R-module M (quasi) primary compatible
if its (quasi) primary and its classical (quasi) primary submodules are
the same. A ring R is said to be (quasi) primary compatible if every
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R-module is (quasi) primary compatible. Some results about quasi-
primary compatible rings were proved in [!]; for example it was shown
that if dim(R) = 0, then R is a quasi-primary compatible ring, and
if R is a Noetherian quasi-primary compatible ring, then dim(R) < 1.
In the sequel of this section, we will prove some other results about
quasi-primary compatible rings.

The next proposition gives some equivalent conditions for a ring that
is a quasi-primary compatible ring:

Proposition 2.5. Let R be an integral domain. Then the following
statements are equivalent:

(1) Spec(R) is a chain of prime ideals;

(2) Every proper ideal of R is quasi-primary;

(3) Every proper ideal of R is classical quasi-primary;

(4) R is a quasi-primary compatible ring.

Proof. (1) = (2) Let Z be a proper ideal of R. It is well-known that
VI = MVpevar Pi where Var(Z) = {P € Spec(R)|Z C P} (see for

example [2, Proposition 1.14]). Since Spec(R) is a chain, vZ = P, for

some Py € Var(Z); on the other word, Z is a quasi-primary ideal of R.
(2) = (3) follows from [!, Proposition 2.3].

(3) = (4) is evident.

(4) = (1) follows from [, Proposition 2.11]. O

Corollary 2.6. Let R be a quasi-primary compatible ring. Then for
every P € Spec(R), Spec(R/P) is a chain of prime ideals.

Proof. Evidently, every factor ring of a quasi-primary compatible ring
is quasi-primary compatible. Then for every P € Spec(R), R/P is a
quasi-primary compatible integral domain; therefore Spec(R/P) is a
chain of prime ideals by Proposition 1.5. O

Lemma 2.7. Let R be an integral domain. If R is a quasi-primary
compatible ring, then any two prime elements of R are associated.

Proof. 1t is clear from the definition of a prime element, for p € R, pR
is a nonzero prime ideal of R if and only if p is a prime element of R.
Now assume that p;, po € R are prime elements. Since by Propositions
2.5, Spec(R) is a chain, pyR C poR or poR C p;R. Tt follows that
PR =paR, i.e., p; and py are associated. O

Theorem 2.8. Let R be a unique factorization domain. Then R is
quasi-primary compatible if and only if R is a field.
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Proof. By Lemma 2.7, any two prime elements of R are associated.
Now if R is not a filed, then dim(R) > 1 and there is a prime element
p of R. Since R is an unique factorization domain, every nonzero non-
unit element r € R, is a finite multiple of prime elements; then r = up”,
for some unit u € R, and some positive integer k. Now, if we define
O(r) = k, for every nonzero element r = up* of R, then it is easy to
check that 6 is an Euclidean valuation. Then R is an Euclidean domain;
so, R is a principle ideal domain. Since dim(R) > 1, R has one nonzero
prime ideal Rp; so any nonzero ideal of R is of the form Rp*, for some
positive integer k. Thus every ideal of R is a primary ideal. This
implies that R is a primary compatible ring, so by [, Theorem 1.14],
dim(R) = 0, a contradiction. Therefore R is a filed. The converse is
clear. O

3. DECOMPOSITION INTO QUASI-PRIMARY SUBMODULES

The decomposition into classical quasi-primary submodules in Noe-
therian modules was introduced in detail in [1]. The purpose of this sec-
tion is to investigate decomposition of submodules into quasi-primary
submodules in non-Noetherian modules over a Priifer domain.

Definition 3.1. Let R be a commutative ring and N be a proper
submodule of an R-module M. A quasi-primary (resp., classical quasi-
primary) decomposition of N is an expression N = (., Q;, where
each @; is a quasi-primary (resp., classical quasi-primary) submodule
of M (see also [, Definition 2.6]). The decomposition is called reduced
if it satisfies the following two conditions:
(1) no Q;; N -+~ N Q;, is a quasi-primary (resp., classical quasi-
primary) submodule, where  {iy,---,4,} C{1,--- ,n} for t >
2 with i1 <9 < -+ < 1.

(2) for each j, Q; 2 N;; Qi-
Corresponding to the above definition, by the definition of (classical)
quasi-primary submodules, we have a list of prime ideals
V(Qy: M), \/(Qn: M). Among reduced quasi-primary (resp.,
classical quasi-primary) decompositions, any one that has the least
number of distinct primes will be called minimal.

Let R be a commutative ring, N a non-zero submodule of an R-
module M, Np = N ®g Rp the localization of N by a maximal ideal
P and Ny = f~'(Np), that f : M — Mp is the canonical map
with f(m) = m/1, for every m € M. First of all note that N =
(Mpemax(r) Nep), that Max(R) is the set of maximal ideals of . Because

it is evident that N C Mpypaemy Nep)- Now if m € Npergaxr) Ner)»
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then m/1 € Np for every P € Max(R), so there is an sp € R\ P
such that spm € N. Suppose Z is the ideal generated by all such sp.
If Z # R, then there is a maximal ideal Py of R such that Z C Py,
therefore sp, € Py, that is contradicts with choosing sp,. Then 7 = R,
so for some positive integer k, there are r; € R, 1 < j <k, such that
1= 25:1 r;sp,. Therefore m = Zle risp,m € N, this implies that

Mpertaxmy Nepy © N Thus N = Npertaxir) Nep)-

Over an integral domain of finite character, the number of proper
components of this intersection can be finite, but for proving this fact,
first note the following lemma:

Lemma 3.2. Let P be a maximal ideal of a commutative ring R and
N be a submodule of an R-module M. Then the following statements
hold:

(1) Mp = Np if and only if (N : m) € P for every m € M.
(2) If R is an integral domain of finite character and M/N is tor-

sion, then N is a finite intersection of submodules of the form
Npy, for maximal ideals P of R.

Proof. (1) Set S = R\ P. Clearly, Mp = Np if and only if for every
m € M, there exists s € S such that sm € N ie., s € (N :m). On the
other word, Mp = Np if and only if for every m € M, SN (N :m) # 0,
e, (N:m) ¢ P.

(2) Since R is of finite character and (N : M) # (0), there are a
finite number of maximal ideals of R, say Py, ..., Py, containing (N :
M). Obviously for every m € M, (N : M) C (N : m), so for every
P € Max(R) \ {P1,...,Px}, (N : m) € P. Then by (1), for every
P € Max(R) \ {P1, ..., P}, Mp = Np. Therefore N = N\, Npy. O

Lemma 3.3. Let S be a multiplicatively closed subset of a commutative
ring R. Let M be an R-module, and @ be a (classical) quasi-primary
submodule of Rs-module Mg. Then QNM is a (classical) quasi-primary
submodule of M.

Proof. Let ) be a classical quasi-primary submodule of Rg-module
Msg. Suppose N is a submodule of M such that N ¢ @ N M and

abN C Q N M for some a,b € R. Then “TbNS C(@Q@NM)s=@Q. Since
Q@ is a classical quasi-primary submodule, %CNS C Q@ or %NS C qQ
for some positive integer k. Then a*N C (£Ng)N M C QN M or

b*N C (%Ng) NM C QN M. Consequently, Q@ N M is a classical
quasi-primary submodule of M.
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In the same way one can easily show that if () is a quasi-primary
submodule of Mg, then QN M is a quasi-primary submodule of M. [J

Lemma 3.4. Let for everyi,1 <1 < n, P; be a prime ideal of a ring R,
Qi be a submodule of an R-module M, and () = Q1NQ2N---NQ,. For
each submodule N of M and each i,1 <i <n, set P,y = +/(Q;: N).
Then the following statements hold:

(1) If for every i,1 <i <mn, Q; is a classical P;-quasi-primary sub-
module, then Q) s a classical quasi-primary submodule if and
only if the set {Pin, -+ ,Pun} has the least element (with re-
spect to the relation C) for every submodule N of M.

(2) If for every i,1 < i < n, Q; is a P;-quasi-primary submod-
ule, then Q) is a quasi-primary submodule if and only if the set
{P1,--- ., Pn} has the least element (with respect to the relation
c).

Proof. We only prove (1), the proof of (2) is similar.
(1) For every submodule N of M, set

Py =/ (@Q1NQ2N---NQy: N). Clearly, Py = PLyNPoy -+ N
Pnn. By [1, Lemma 1.3(2)], Q1N Q2N ---NQ, is a classical quasi-
primary submodule if and only if for every submodule N of M such that
N € QiNQ2N- - -NQy, Py is a prime ideal of R, i.e., Py = P; y for some
7,1 <7 <n. Butif for a submodule N of M, N C Q1 NQ2N---NQy,
then Py = P,y = Rforeveryi,1 <7 <n. Thus Q;NQ2N---NEQ, is a
classical quasi-primary submodule if and only if for every submodule N
of M, there exists an j,1 < j < n, such that Py = P; y. On the other
words, Q1 NQ2N---NE, is a classical quasi-primary submodule if and
only if the set {Py v, ,Pnn} has the least element (with respect to
the relation C). O

By using the fact that every classical quasi-primary submodule is a
quasi-primary submodule, we can get the following corollary:

Corollary 3.5. Let for every i,1 < i < n, P; be a prime ideal of a
ring R, Q; be a P;-quasi-primary submodule of an R-module M, and
RQ=0Q:1NQN---NQ,. If Q is a classical quasi-primary submodule,
then the set {Pi,--- , Py} has the least element (with respect to the
relation C ).

The following example shows that the converse of Corollary 3.5 is
not necessarily true (even if the decomposition Q = Q1N Q2N ---NQ,
is a minimal primary decomposition).

Example 3.6. (see [3, Example 2.2]). Let R=7Z, M = Zs ® Z3 B Z,
Ql = ZQ @Zg @ (0), QQ = Z2 @ (0) @Z, and Qg = (O) @23 @Z Clearly,
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(1, Q2, and Q3 are primary submodules of M with /(Q; : M) = (0),

(Q2: M) = 3Z, and \/(Q3: M) = 2Z. On the other hand, (0) =
Q1 N Q2 N Q3 is a (minimal) primary decomposition of (0). Now, the
set {(0),2Z, 37} has the least element (with respect to the relation C),
but (0) is not a classical quasi-primary submodule of M.

Let R be a Priifer domain of finite character and N be a proper
submodule of an R-module M such that (N : M) # (0). In the next
theorem, the existence of a minimal classical quasi-primary decompo-
sition of N are proved.

Theorem 3.7. Let R be a Priifer domain of finite character and N be
a proper submodule of an R-module M such that (N : M) # (0). Then
N has a minimal classical quasi-primary decomposition. In particular
N has a minimal quasi-primary decomposition.

Proof. 1t is well-known that every proper ideal in a valuation domain
is a quasi-primary ideal (see for example [8]). Then by [!, Proposition
1.3], N is a classical quasi-primary submodule of M. Therefore by

Lemmas 3.2 and 3.3, we obtain a decomposition of N as N = ﬂle Qi
where each Q;, 1 < i < k', is a classical quasi-primary submodule of M.
If Qo := Qi;,NQ;,N---NQ;, is a classical quasi-primary submodule of M,
where {i1,--- i} € {1,--- ,k'} for t > 2 with 4, < iy < --- < 4, then
we can replace Q;, NQ;,N- - -NQ;, with the single component ()y. Now by
using this argument, we can get the decomposition N = Q;NQ2N---N
Q) such that no @Q;, N---NQ;, is a classical quasi-primary submodule,
where {iy, -+ ,i;} C {1,--- ,n} for t > 2 with iy < iy < -+ < iy. If
there is some j,1 < j < n such that Q); 2 ﬂ#j @i, then we can exclude
the @); from the decomposition N = Q1 N Q2N ---NQ,. By using this
argument, we can get the decomposition N = Q1 N Q>N --- N Qp
such that no component is abundant, so the decomposition is reduced.
Obviously, among such reduced decompositions, we can get a minimal
classical quasi-primary decomposition of N. 0

Recall that any two incomparable primary ideals of a Priifer domain
are co-maximal (see for example [3, page 131]). Also by [7, Lemma 5.5],
any two quasi-primary ideals with incomparable radicals of a priifer
domain are co-maximal. The next lemma proves a similar result for
quasi-primary submodules.

Lemma 3.8. Let R be a Priifer domain, Q1 and Q)2 be two quasi-
primary submodules of an R-module M, and N be a submodule of M

such that Q14+Q2 C N. If \/(Q1 : N) and \/(Qs : N) are incomparable,
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then Q1 + Q2 = N. In particular, any two quasi-primary submodules
of M with incomparable radicals are co-maximal.

Proof. Tt suffices to prove that (Q1+ @2 : N) = R. We can assume that

N ¢ Qiand N € Q2,50 /(Q1: N) and \/(Q2 : N) are prime ideals of
R. Since R is a Priifer domain, 1/(Q1 : N) ++/(Q2 : N) = R. Finally,
because \/(Q1: N)++/(Qz2: N) C 1/(Q1 + Q2 : N), we conclude that
<Q1+Q2N):R O

One can easily see that a proper submodule N of an R-module M
has a minimal quasi-primary decomposition if N can be shown as an
intersection of finite number of quasi-primary submodules with pairwise
incomparable radicals where no component can be omitted. So by
Theorem 3.7 and Lemma 3.8, we can get the following corollary:

Corollary 3.9. Let R be a Priifer domain of finite character and N be
a submodule of an R-module M such that (N : M) # (0). Then N can

be shown as an intersection of finite number of co-maximal submodules
of M.

The next theorem proves uniqueness of the decomposition of sub-
modules into quasi-primary submodules of modules over a Priifer do-
main of finite character.

Theorem 3.10. [Uniqueness Theorem|. Let R be a Priifer domain
of finite character, P;, 1 < i < k, be prime ideals of R, and N be a
submodule of an R-module M. If N = ﬂle Qi is a minimal decompo-
sition of N to P;-quasi-primary submodules Q;,1 < i < k, then k is
independent of any such decompositions of N and

(Pr, ., Py} = Min(N : M).
Proof. First note that /(N : M) = N_, /(Qi : M) = N, P:. Since

P;‘s are incomparable prime ideals, then P;‘s are minimal prime ideals
of the ideal (N : M) and so {Pi,...,Pr} = Min(N : M). On the
other word, k and the set {P,...,Px} are independent of any such
decompositions of N. O

Theorem 3.11. Let R be a Prifer domain of finite character and M
be a multiplication R-module. Then every nonzero submodule N of M
1s the intersection of finite number of quasi-primary submodules with
pairwise incomparable radicals, uniquely determined by N.

Proof. Since M is a multiplication module, N = (N : M)M; so,
(N : M) # (0). Then the result follows form Theorems 3.7 and 3.11
(compare with [I, Theorem 3.4]). O
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