QUASI-PRIMARY DECOMPOSITION IN MODULES OVER PRÜFER DOMAINS

M. BEHBOODI*, R. JAHANI-NEZHAD AND M. H. NADERI

Abstract

In this paper we investigate decompositions of submodules in modules over a Prüfer domain into intersections of quasi-primary and classical quasi-primary submodules. In particular, existence and uniqueness of quasi-primary decompositions in modules over a Prüfer domain of finite character are proved.

1. Introduction

Throughout this paper all rings are commutative with identity elements, and all modules are unital. Let M be an R-module. For every nonempty subset X of M and every submodule N of M, the ideal $\{r \in R \mid r X \subseteq N\}$ will be denoted by $(N: X)$. Note that $(N: M)$ is the annihilator of the module M / N. Also we denote the classical Krull dimension of R by $\operatorname{dim}(R)$, and for an ideal I of R, $\sqrt{I}:=\left\{r \in R \mid r^{k} \in I\right.$ for some $\left.k \in \mathbb{N}\right\}$.

We recall that a proper ideal \mathcal{Q} of the ring R is called a primary ideal if $a b \in \mathcal{Q}$ where $a, b \in R$, implies that either $a \in \mathcal{Q}$ or $b^{k} \in \mathcal{Q}$ for some $k \in \mathbb{N}$ (see for example [2]). The notion of primary ideal was generalized by Fuchs [6] by defining an ideal \mathcal{Q} of a ring R to be quasiprimary if its radical is a prime ideal, i.e., if $a b \in \mathcal{Q}$ where $a, b \in R$, then either $a^{k} \in \mathcal{Q}$ or $b^{k} \in \mathcal{Q}$ for some $k \in \mathbb{N}$ (see also [7]). There are some extensions of these notions to modules. For instance, a proper submodule Q of M is called a primary submodule if am $\in Q$, where

[^0]$a \in R, m \in M \backslash Q$, then $a^{k} M \subseteq Q$ for some $k \in \mathbb{N}$ (see for example $[9,10])$. Also, Q is called quasi-primary if $\sqrt{(Q: M)}$ is a prime ideal of R (see [1]). Moreover, Q is called a classical primary (resp. classical quasi-primary) submodule of M if $a b N \subseteq Q$, where $a, b \in R$ and N is a submodule of M, then either $a N \subseteq Q$ or $b^{k} N \subseteq Q$ (resp. $a^{k} N \subseteq Q$ or $b^{k} N \subseteq Q$) for some $k \in \mathbb{N}$ (see [3, 4]). We note that if Q is a primary, quasi-primary, classical primary or a classical quasi-primary submodule of M, then $\mathcal{P}:=\sqrt{(Q: M)}$ is a prime ideal of R, and hence, we say that Q is a \mathcal{P}-primary, \mathcal{P}-quasi-primary, classical \mathcal{P}-primary or a classical \mathcal{P}-quasi-primary submodule; respectively.

Let $K, N, N_{1}, \cdots, N_{l}$, for some $l \in \mathbb{N}$, be submodules of an R-module M. We say that N and K are co-maximal (resp. with incomparable radicals) when $N+K=M$ (resp. when $\sqrt{(N: M)}$ and $\sqrt{(K: M)}$ are not comparable); also we say that the submodules N_{1}, \ldots, N_{l} are pairwise co-maximal (resp. with pairwise incomparable radicals) if and only if for every $i, j \in\{1,2, \ldots, l\}$ such that $i \neq j, N_{i}+N_{j}=M$ (resp. $\sqrt{\left(N_{i}: M\right)}$ and $\sqrt{\left(K_{j}: M\right)}$ are not comparable). An R-module M is called a multiplication module if, for each submodule N of M, there exists an ideal I of R such that $N=I M$; In this case we can take $I=(N: M)$ (see for example [5]). For an integral domain R, we say that R is of finite character, if every nonzero element of R is contained but in a finite number of maximal ideals.

In a Prüfer domain of finite character, Fuchs and Mosteig [7] established the decomposition of an ideal as (shortest) intersections of a finite number of quasi-primary ideals. In particular, they proved that every nonzero ideal I in a Prüfer domain of finite character is a finite intersection of quasi-primary ideals with incomparable radicals, and the components in such a decomposition are uniquely determined by I (see [7, Theorem 5.6]). In Section 1, some results on quasi-primary and classical quasi-primary submodules are given. For instance, it is shown that if R is a domain, then for each R-module M, every classical quasi-primary submodule of M is a quasi-primary submodule if and only if every proper ideal of R is (classical) quasi-primary, if and only if, the set of prime ideals, $\operatorname{Spec}(R)$, is a chain (see Proposition 1.5). In Section 2, we generalize some main results of [7] to modules over a Prüfer domain of finite character. In particular, we prove that over a Prüfer domain of finite character, every submodule N of a module M such that $(N: M) \neq(0)$, can be shown as an (minimal) intersection of finite number of (classical) quasi-primary submodules (see Theorem 2.7). Also we prove that the components in the decomposition of N
into quasi-primary submodules are uniquely determined by N (see Theorem 2.10). If M is also a multiplication module, such decomposition into quasi-primary submodules exists for every nonzero submodule of M (see Theorem 2.11).

2. Some results on (Classical) quasi-Primary submodules

We begin this section with two Propositions 1.1 and 1.2, which give many examples of classical primary submodules; so many examples of classical quasi-primary submodules; that are not primary submodules.

Proposition 2.1. Let R be an integral domain and \mathcal{P} be a nonzero prime ideal of R. Let for a non-empty set $I, Q=\oplus_{i \in I} A_{i}$ be a submodule of a free R-module $F=\oplus_{i \in I} R$ such that for every $i \in I, A_{i}=(0)$ or A_{i} is a \mathcal{P}-primary ideal of R. If the set $\Gamma:=\left\{A_{i} \mid i \in I\right.$ and A_{i} is a \mathcal{P}-primary ideal of $R\}$ is a finite set, then Q is a classical primary submodule of F. In addition, if $Q \neq(0)$ and for some $i \in I, A_{i}=(0)$, then Q is not a primary submodule of F.

Proof. Let $r, s \in R$ and N be a submodule of F such that $r N \nsubseteq Q$ and $r s N \subseteq Q$. Then there is $y=\left\{y_{i}\right\}_{i \in I} \in N$ such that $r y \notin Q$. We can assume that r and s are nonzero; so $r s \neq 0$, because R is an integral domain. Since $r s y \in Q, r s y_{i} \in A_{i}$, for every $i \in I$. But $r y \notin Q$, so there is an $i_{0} \in I$ that $r y_{i_{0}} \notin A_{i_{0}}$. Clearly $A_{i_{0}}$ is nonzero, so $A_{i_{0}}$ is a \mathcal{P}-primary ideal of R. Now since $r s y_{i_{0}} \in A_{i_{0}}$ and $r y_{i_{0}} \notin A_{i_{0}}$, we conclude that $s \in \sqrt{A_{i_{0}}}=\mathcal{P}$. Evidently for every $z=\left\{z_{i}\right\}_{i \in I} \in N$, if $A_{j}=0$, for some $j \in I$, then $z_{j}=0$, so since the set Γ is finite, there is a positive integer k such that $s^{k} N \subseteq Q$; on the other word, Q is a classical primary submodule of F.

Now, suppose that $Q \neq(0)$ and for some $i \in I, A_{i}=(0)$. So there are $i_{1}, i_{2} \in I$ such that $A_{i_{1}} \neq(0)$ and $A_{i_{2}}=(0)$. Set $f=\left\{f_{i}\right\}_{i \in I}$ where $f_{i_{1}}=1$ and for every $i \in I \backslash\left\{i_{1}\right\}, f_{i}=0$. Evidently $f \notin Q$ and for every nonzero element $p \in \mathcal{P}$, there is a positive integer k that $p^{k} f \in Q$. Now if for a positive integer $l,\left(p^{k}\right)^{l} F \subseteq Q$, then $p^{l k} \in A_{i_{2}}=(0)$, i.e., $p^{l k}=0$. But R is an integral domain, so $p=0$, a contradiction. On the other word, Q is not a primary submodule of F.

Proposition 2.2. Let \mathcal{P} be a prime ideal of an integral domain R and \mathcal{Q} be a \mathcal{P}-primary ideal of R. Let $Q=\mathcal{Q}\left\{x_{i}\right\}_{i \in I}$, for a non-empty set I, be a submodule of free R-module $F=\oplus_{i \in I} R$ such that for an $j \in I$, x_{j} is a unit of R. Then Q is a classical primary submodule of F. In addition, if \mathcal{Q} is nonzero and I has at least two elements, then Q is not a primary submodule of F.

Proof. Set $x=\left\{x_{i}\right\}_{i \in I}$, and let x_{j} be a unit of R, for an $j \in I$. Let $r, s \in R$ and N be a submodule of F that $r s N \subseteq Q$ and $r N \nsubseteq Q$; so there is $y=\left\{y_{i}\right\}_{i \in I} \in N$ such that $r s y \in Q$ and $r y \notin Q$. We can assume that r and s are nonzero; so $r s \neq 0$, because R is an integral domain. Then for every $i \in I, r s y_{i}=q x_{i}$, that $q \in \mathcal{Q}$; especially, $r s y_{j}=q x_{j}$. Since x_{j} is a unit of $R, r s y_{j} x_{j}^{-1} x_{i}=q x_{i}$, and since $r s y_{i}=$ $q x_{i}, r s y_{j} x_{j}^{-1} x_{i}=r s y_{i}$. Therefore $y_{i}=y_{j} x_{j}^{-1} x_{i}$, because R is an integral domain. Then $y=\left\{y_{j} x_{j}^{-1} x_{i}\right\}_{i \in I}=y_{j} x_{j}^{-1} x$. Thus for every $z \in N \backslash Q$, there is $r_{z} \in R$ such that $z=r_{z} x$. On the other hand, since $r y \notin Q$, then $r y_{j} x_{j}^{-1} \notin \mathcal{Q}$, so $r y_{j} \notin \mathcal{Q}$. Also, since $r s y_{j}=q x_{j} \in \mathcal{Q}$, and \mathcal{Q} is a \mathcal{P}-primary ideal of $R, s \in \mathcal{P}$, i.e., $s^{k} \in \mathcal{Q}$ for some $k \in \mathbb{N}$. Then for every $z \in N \backslash Q, s^{k} z=s^{k} r_{z} x \in Q$, so $s^{k} N \subseteq Q$. Thus Q is a classical primary submodule of R.

Now suppose that \mathcal{Q} is nonzero and I has at least two elements. Evidently, there exists a subset $J=\left\{i_{1}, \cdots, i_{t}\right\}$, where $t \geq 2$ and $i_{1}<$ $i_{2}<\cdots<i_{t}$, of I such that for every $i \in I \backslash J, x_{i}=0$. Let $e=\left\{e_{i}\right\}_{i \in I}$ such that for every $i \in J, e_{i}=1$, and for every $i \in I \backslash J, e_{i}=0$. Also let $f=\left\{f_{i}\right\}_{i \in I}$ such that $f_{i_{1}}=1$ and for every $i \in I \backslash\left\{i_{1}\right\}, f_{i}=0$. Obviously, $x \notin Q$ and for every nonzero $q \in \mathcal{Q}, q x \in Q$. Now if for a positive integer $k, q^{k} F \subseteq Q$, then $q^{k} e \in Q$, so $q^{k} e=q_{1} x$ for some $q_{1} \in \mathcal{Q}$. Then for every $i \in J, q^{k}=q_{1} x_{i}$, therefore $q_{1} x_{i}=q_{1} x_{j}$. Since R is an integral domain and $q \neq 0, x_{i}=x_{j}$ for every $i \in J$, so $x=x_{j} e$. On the other hand, $q^{k} f=q_{2} x$, for some $q_{2} \in \mathcal{Q}$. Then $q^{k} f=q_{2} x_{j} e$, so $q^{k} f_{i_{1}}=q^{k} f_{i_{2}}$, i.e., $q^{k}=0$. Now since R is an integral domain we conclude that $q=0$, a contradiction. Therefore Q is not a primary submodule of F.

Proposition 2.3. Let \mathcal{P} be a prime ideal of an integral domain R and \mathcal{Q} be a \mathcal{P}-primary ideal of R. Let $F=\oplus_{i=1}^{n} R$ and $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in$ F such that for some $i, 1 \leq i \leq n, x_{i}$ is invertible. If $Q=\mathcal{Q} x$, then Q is a classical primary submodule of F. In addition, if \mathcal{Q} is nonzero and $n \geq 2$, then Q is not a primary submodule of F.

Proof. Set $x=\left\{x_{i}\right\}_{i \in I}$, and let x_{j} be a unit of R, for an $j \in I$. Let $r, s \in R$ and N be a submodule of F that $r s N \subseteq Q$ and $r N \nsubseteq Q$; so there is $y=\left\{y_{i}\right\}_{i \in I} \in N$ such that $r s y \in Q$ and $r y \notin Q$. We can assume that r and s are nonzero; so $r s \neq 0$, because R is an integral domain. Then for every $i \in I, r s y_{i}=q x_{i}$, that $q \in \mathcal{Q}$; especially, $r s y_{j}=q x_{j}$. Since x_{j} is a unit of $R, r s y_{j} x_{j}^{-1} x_{i}=q x_{i}$, and since $r s y_{i}=$ $q x_{i}, r s y_{j} x_{j}^{-1} x_{i}=r s y_{i}$. Therefore $y_{i}=y_{j} x_{j}^{-1} x_{i}$, because R is an integral domain. Then $y=\left\{y_{j} x_{j}^{-1} x_{i}\right\}_{i \in I}=y_{j} x_{j}^{-1} x$. Thus for every $z \in N \backslash Q$, there is $r_{z} \in R$ such that $z=r_{z} x$. On the other hand, since $r y \notin Q$,
then $r y_{j} x_{j}^{-1} \notin \mathcal{Q}$, so $r y_{j} \notin \mathcal{Q}$. Also, since $r s y_{j}=q x_{j} \in \mathcal{Q}$, and \mathcal{Q} is a \mathcal{P}-primary ideal of $R, s \in \mathcal{P}$, i.e., $s^{k} \in \mathcal{Q}$ for some $k \in \mathbb{N}$. Then for every $z \in N \backslash Q, s^{k} z=s^{k} r_{z} x \in Q$, so $s^{k} N \subseteq Q$. Thus Q is a classical primary submodule of R.

Now suppose that \mathcal{Q} is nonzero and I has at least two elements. Evidently, there exists a subset $J=\left\{i_{1}, \cdots, i_{t}\right\}$, where $t \geq 2$ and $i_{1}<$ $i_{2}<\cdots<i_{t}$, of I such that for every $i \in I \backslash J, x_{i}=0$. Let $e=\left\{e_{i}\right\}_{i \in I}$ such that for every $i \in J, e_{i}=1$, and for every $i \in I \backslash J, e_{i}=0$. Also let $f=\left\{f_{i}\right\}_{i \in I}$ such that $f_{i_{1}}=1$ and for every $i \in I \backslash\left\{i_{1}\right\}, f_{i}=0$. Obviously, $x \notin Q$ and for every nonzero $q \in \mathcal{Q}, q x \in Q$. Now if for a positive integer $k, q^{k} F \subseteq Q$, then $q^{k} e \in Q$, so $q^{k} e=q_{1} x$ for some $q_{1} \in \mathcal{Q}$. Then for every $i \in J, q^{k}=q_{1} x_{i}$, therefore $q_{1} x_{i}=q_{1} x_{j}$. Since R is an integral domain and $q \neq 0, x_{i}=x_{j}$ for every $i \in J$, so $x=x_{j} e$. On the other hand, $q^{k} f=q_{2} x$, for some $q_{2} \in \mathcal{Q}$. Then $q^{k} f=q_{2} x_{j} e$, so $q^{k} f_{i_{1}}=q^{k} f_{i_{2}}$, i.e., $q^{k}=0$. Now since R is an integral domain we conclude that $q=0$, a contradiction. Therefore Q is not a primary submodule of F.

Even in a ring R, the classical quasi-primary ideals and primary ideals are not the same, see the following example.

Example 2.4.

(a): Let R be valuation domain. It is easy to see that every ideal of R is a quasi-primary ideal (see for example [8, Theorem 5.10]). Then every ideal of R is a classical quasi-primary ideal by [4, Proposition 1.3]. Since every ideal of R need not to be a primary ideal, then there are non-primary ideals of R that are classical quasi-primary.
(b): Let R be an integral domain and \mathcal{I} be a valuation ideal of R (an ideal \mathcal{I} of integral domain R with quotient filed K is a valuation ideal if there is a valuation ring V of K containing R such that $\mathcal{I}=\mathcal{J} \cap R$ for some ideal \mathcal{J} of $V)$. By [8, Exercise V13-page 122], every valuation ideal of R is a (classical) quasiprimary ideal, but there are valuation ideals of R that are not primary ideals. For example, if K is a filed and \mathcal{I} is the ideal generated by x^{2} and y^{2} in $K[x, y]$, for indeterminates x and y, then \mathcal{I} is a (classical) quasi-primary ideal that is not a primary ideal.

Following [3, 4], we call an R-module M (quasi) primary compatible if its (quasi) primary and its classical (quasi) primary submodules are the same. A ring R is said to be (quasi) primary compatible if every
R-module is (quasi) primary compatible. Some results about quasiprimary compatible rings were proved in [4]; for example it was shown that if $\operatorname{dim}(R)=0$, then R is a quasi-primary compatible ring, and if R is a Noetherian quasi-primary compatible ring, then $\operatorname{dim}(R) \leq 1$. In the sequel of this section, we will prove some other results about quasi-primary compatible rings.

The next proposition gives some equivalent conditions for a ring that is a quasi-primary compatible ring:

Proposition 2.5. Let R be an integral domain. Then the following statements are equivalent:
(1) $\operatorname{Spec}(R)$ is a chain of prime ideals;
(2) Every proper ideal of R is quasi-primary;
(3) Every proper ideal of R is classical quasi-primary;
(4) R is a quasi-primary compatible ring.

Proof. (1) $\Rightarrow(2)$ Let \mathcal{I} be a proper ideal of R. It is well-known that $\sqrt{\mathcal{I}}=\bigcap_{\mathcal{P} \in \operatorname{Var}(\mathcal{I})} \mathcal{P}$; where $\operatorname{Var}(\mathcal{I})=\{\mathcal{P} \in \operatorname{Spec}(R) \mid \mathcal{I} \subseteq \mathcal{P}\}$ (see for example [2, Proposition 1.14]). Since $\operatorname{Spec}(R)$ is a chain, $\sqrt{\mathcal{I}}=\mathcal{P}_{0}$ for some $\mathcal{P}_{0} \in \operatorname{Var}(\mathcal{I})$; on the other word, \mathcal{I} is a quasi-primary ideal of R.
$(2) \Rightarrow(3)$ follows from [4, Proposition 2.3].
$(3) \Rightarrow(4)$ is evident.
$(4) \Rightarrow(1)$ follows from [4, Proposition 2.11].
Corollary 2.6. Let R be a quasi-primary compatible ring. Then for every $\mathcal{P} \in \operatorname{Spec}(R), \operatorname{Spec}(R / \mathcal{P})$ is a chain of prime ideals.

Proof. Evidently, every factor ring of a quasi-primary compatible ring is quasi-primary compatible. Then for every $\mathcal{P} \in \operatorname{Spec}(R), R / \mathcal{P}$ is a quasi-primary compatible integral domain; therefore $\operatorname{Spec}(R / \mathcal{P})$ is a chain of prime ideals by Proposition 1.5.

Lemma 2.7. Let R be an integral domain. If R is a quasi-primary compatible ring, then any two prime elements of R are associated.

Proof. It is clear from the definition of a prime element, for $p \in R, p R$ is a nonzero prime ideal of R if and only if p is a prime element of R. Now assume that $p_{1}, p_{2} \in R$ are prime elements. Since by Propositions 2.5, $\operatorname{Spec}(R)$ is a chain, $p_{1} R \subseteq p_{2} R$ or $p_{2} R \subseteq p_{1} R$. It follows that $p_{1} R=p_{2} R$, i.e., p_{1} and p_{2} are associated.

Theorem 2.8. Let R be a unique factorization domain. Then R is quasi-primary compatible if and only if R is a field.

Proof. By Lemma 2.7, any two prime elements of R are associated. Now if R is not a filed, then $\operatorname{dim}(R) \geq 1$ and there is a prime element p of R. Since R is an unique factorization domain, every nonzero nonunit element $r \in R$, is a finite multiple of prime elements; then $r=u p^{k}$, for some unit $u \in R$, and some positive integer k. Now, if we define $\theta(r)=k$, for every nonzero element $r=u p^{k}$ of R, then it is easy to check that θ is an Euclidean valuation. Then R is an Euclidean domain; so, R is a principle ideal domain. Since $\operatorname{dim}(R) \geq 1, R$ has one nonzero prime ideal $R p$; so any nonzero ideal of R is of the form $R p^{k}$, for some positive integer k. Thus every ideal of R is a primary ideal. This implies that R is a primary compatible ring, so by [4, Theorem 1.14], $\operatorname{dim}(R)=0$, a contradiction. Therefore R is a filed. The converse is clear.

3. Decomposition into quasi-PRIMARY SUBMODULES

The decomposition into classical quasi-primary submodules in Noetherian modules was introduced in detail in [4]. The purpose of this section is to investigate decomposition of submodules into quasi-primary submodules in non-Noetherian modules over a Prüfer domain.

Definition 3.1. Let R be a commutative ring and N be a proper submodule of an R-module M. A quasi-primary (resp., classical quasiprimary) decomposition of N is an expression $N=\bigcap_{i=1}^{n} Q_{i}$, where each Q_{i} is a quasi-primary (resp., classical quasi-primary) submodule of M (see also [4, Definition 2.6]). The decomposition is called reduced if it satisfies the following two conditions:
(1) no $Q_{i_{1}} \cap \cdots \cap Q_{i_{t}}$ is a quasi-primary (resp., classical quasiprimary) submodule, where $\quad\left\{i_{1}, \cdots, i_{t}\right\} \subseteq\{1, \cdots, n\}$ for $t \geq$ 2 with $i_{1}<i_{2}<\cdots<i_{t}$.
(2) for each $j, Q_{j} \nsupseteq \bigcap_{i \neq j} Q_{i}$.

Corresponding to the above definition, by the definition of (classical) quasi-primary submodules, we have a list of prime ideals $\sqrt{\left(Q_{1}: M\right)}, \cdots, \sqrt{\left(Q_{n}: M\right)}$. Among reduced quasi-primary (resp., classical quasi-primary) decompositions, any one that has the least number of distinct primes will be called minimal.

Let R be a commutative ring, N a non-zero submodule of an R module $M, N_{\mathcal{P}}=N \otimes_{R} R_{\mathcal{P}}$ the localization of N by a maximal ideal \mathcal{P} and $N_{(\mathcal{P})}:=f^{-1}\left(N_{\mathcal{P}}\right)$, that $f: M \rightarrow M_{\mathcal{P}}$ is the canonical map with $f(m)=m / 1$, for every $m \in M$. First of all note that $N=$ $\bigcap_{\mathcal{P} \in \operatorname{Max}(R)} N_{(\mathcal{P})}$, that $\operatorname{Max}(R)$ is the set of maximal ideals of R. Because it is evident that $N \subseteq \bigcap_{\mathcal{P} \in \operatorname{Max}(R)} N_{(\mathcal{P})}$. Now if $m \in \bigcap_{\mathcal{P} \in \operatorname{Max}(R)} N_{(\mathcal{P})}$,
then $m / 1 \in N_{\mathcal{P}}$ for every $\mathcal{P} \in \operatorname{Max}(R)$, so there is an $s_{\mathcal{P}} \in R \backslash \mathcal{P}$ such that $s_{\mathcal{P}} m \in N$. Suppose \mathcal{I} is the ideal generated by all such $s_{\mathcal{P}}$. If $\mathcal{I} \neq R$, then there is a maximal ideal \mathcal{P}_{0} of R such that $\mathcal{I} \subseteq \mathcal{P}_{0}$, therefore $s_{\mathcal{P}_{0}} \in \mathcal{P}_{0}$, that is contradicts with choosing $s_{\mathcal{P}_{0}}$. Then $\mathcal{I}=R$, so for some positive integer k, there are $r_{j} \in R, 1 \leq j \leq k$, such that $1=\sum_{j=1}^{k} r_{j} s_{\mathcal{P}_{j}}$. Therefore $m=\sum_{j=1}^{k} r_{j} s_{\mathcal{P}_{j}} m \in N$, this implies that $\bigcap_{\mathcal{P} \in \operatorname{Max}(R)} N_{(\mathcal{P})} \subseteq N$. Thus $N=\bigcap_{\mathcal{P} \in \operatorname{Max}(R)} N_{(\mathcal{P})}$.

Over an integral domain of finite character, the number of proper components of this intersection can be finite, but for proving this fact, first note the following lemma:

Lemma 3.2. Let \mathcal{P} be a maximal ideal of a commutative ring R and N be a submodule of an R-module M. Then the following statements hold:
(1) $M_{\mathcal{P}}=N_{\mathcal{P}}$ if and only if $(N: m) \nsubseteq \mathcal{P}$ for every $m \in M$.
(2) If R is an integral domain of finite character and M / N is torsion, then N is a finite intersection of submodules of the form $N_{(\mathcal{P})}$, for maximal ideals \mathcal{P} of R.

Proof. (1) Set $S=R \backslash \mathcal{P}$. Clearly, $M_{\mathcal{P}}=N_{\mathcal{P}}$ if and only if for every $m \in M$, there exists $s \in S$ such that $s m \in N$, i.e., $s \in(N: m)$. On the other word, $M_{\mathcal{P}}=N_{\mathcal{P}}$ if and only if for every $m \in M, S \cap(N: m) \neq \emptyset$, i.e., $(N: m) \nsubseteq \mathcal{P}$.
(2) Since R is of finite character and $(N: M) \neq(0)$, there are a finite number of maximal ideals of R, say $\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}$, containing (N : $M)$. Obviously for every $m \in M,(N: M) \subseteq(N: m)$, so for every $\mathcal{P} \in \operatorname{Max}(R) \backslash\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right\},(N: m) \nsubseteq \mathcal{P}$. Then by (1), for every $\mathcal{P} \in \operatorname{Max}(R) \backslash\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right\}, M_{\mathcal{P}}=N_{\mathcal{P}}$. Therefore $N=\bigcap_{i=1}^{k} N_{\left(\mathcal{P}_{i}\right)}$.

Lemma 3.3. Let S be a multiplicatively closed subset of a commutative ring R. Let M be an R-module, and Q be a (classical) quasi-primary submodule of R_{S}-module M_{S}. Then $Q \cap M$ is a (classical) quasi-primary submodule of M.

Proof. Let Q be a classical quasi-primary submodule of R_{S}-module M_{S}. Suppose N is a submodule of M such that $N \nsubseteq Q \cap M$ and $a b N \subseteq Q \cap M$ for some $a, b \in R$. Then $\frac{a b}{1} N_{S} \subseteq(Q \cap M)_{S}=Q$. Since Q is a classical quasi-primary submodule, $\frac{a^{k}}{1} N_{S} \subseteq Q$ or $\frac{b^{k}}{1} N_{S} \subseteq Q$ for some positive integer k. Then $a^{k} N \subseteq\left(\frac{a^{k}}{1} N_{S}\right) \cap M \subseteq Q \cap M$ or $b^{k} N \subseteq\left(\frac{b^{k}}{1} N_{S}\right) \cap M \subseteq Q \cap M$. Consequently, $Q \cap M$ is a classical quasi-primary submodule of M.

In the same way one can easily show that if Q is a quasi-primary submodule of M_{S}, then $Q \cap M$ is a quasi-primary submodule of M.

Lemma 3.4. Let for every $i, 1 \leq i \leq n, \mathcal{P}_{i}$ be a prime ideal of a ring R, Q_{i} be a submodule of an R-module M, and $Q=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$. For each submodule N of M and each $i, 1 \leq i \leq n$, set $\mathcal{P}_{i, N}=\sqrt{\left(Q_{i}: N\right)}$. Then the following statements hold:
(1) If for every $i, 1 \leq i \leq n, Q_{i}$ is a classical \mathcal{P}_{i}-quasi-primary submodule, then Q is a classical quasi-primary submodule if and only if the set $\left\{\mathcal{P}_{1, N}, \cdots, \mathcal{P}_{n, N}\right\}$ has the least element (with respect to the relation \subseteq) for every submodule N of M.
(2) If for every $i, 1 \leq i \leq n$, Q_{i} is a \mathcal{P}_{i}-quasi-primary submodule, then Q is a quasi-primary submodule if and only if the set $\left\{\mathcal{P}_{1}, \cdots, \mathcal{P}_{n}\right\}$ has the least element (with respect to the relation $\subseteq)$.

Proof. We only prove (1), the proof of (2) is similar.
(1) For every submodule N of M, set
$\mathcal{P}_{N}=\sqrt{\left(Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}: N\right)}$. Clearly, $\mathcal{P}_{N}=\mathcal{P}_{1, N} \cap \mathcal{P}_{2, N} \cap \cdots \cap$ $\mathcal{P}_{n, N}$. By [4, Lemma 1.3(2)], $Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$ is a classical quasiprimary submodule if and only if for every submodule N of M such that $N \nsubseteq Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}, \mathcal{P}_{N}$ is a prime ideal of R, i.e., $\mathcal{P}_{N}=\mathcal{P}_{j, N}$ for some $j, 1 \leq j \leq n$. But if for a submodule N of $M, N \subseteq Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$, then $\mathcal{P}_{N}=\mathcal{P}_{i, N}=R$ for every $i, 1 \leq i \leq n$. Thus $Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$ is a classical quasi-primary submodule if and only if for every submodule N of M, there exists an $j, 1 \leq j \leq n$, such that $\mathcal{P}_{N}=\mathcal{P}_{j, N}$. On the other words, $Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$ is a classical quasi-primary submodule if and only if the set $\left\{\mathcal{P}_{1, N}, \cdots, \mathcal{P}_{n, N}\right\}$ has the least element (with respect to the relation \subseteq).

By using the fact that every classical quasi-primary submodule is a quasi-primary submodule, we can get the following corollary:
Corollary 3.5. Let for every $i, 1 \leq i \leq n, \mathcal{P}_{i}$ be a prime ideal of a ring R, Q_{i} be a \mathcal{P}_{i}-quasi-primary submodule of an R-module M, and $Q=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$. If Q is a classical quasi-primary submodule, then the set $\left\{\mathcal{P}_{1}, \cdots, \mathcal{P}_{n}\right\}$ has the least element (with respect to the relation \subseteq).

The following example shows that the converse of Corollary 3.5 is not necessarily true (even if the decomposition $Q=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$ is a minimal primary decomposition).
Example 3.6. (see [3, Example 2.2]). Let $R=\mathbb{Z}, M=\mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}$, $Q_{1}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus(0), Q_{2}=\mathbb{Z}_{2} \oplus(0) \oplus \mathbb{Z}$, and $Q_{3}=(0) \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}$. Clearly,
Q_{1}, Q_{2}, and Q_{3} are primary submodules of M with $\sqrt{\left(Q_{1}: M\right)}=(0)$, $\sqrt{\left(Q_{2}: M\right)}=3 \mathbb{Z}$, and $\sqrt{\left(Q_{3}: M\right)}=2 \mathbb{Z}$. On the other hand, $(0)=$ $Q_{1} \cap Q_{2} \cap Q_{3}$ is a (minimal) primary decomposition of (0). Now, the set $\{(0), 2 \mathbb{Z}, 3 \mathbb{Z}\}$ has the least element (with respect to the relation \subseteq), but (0) is not a classical quasi-primary submodule of M.

Let R be a Prüfer domain of finite character and N be a proper submodule of an R-module M such that $(N: M) \neq(0)$. In the next theorem, the existence of a minimal classical quasi-primary decomposition of N are proved.

Theorem 3.7. Let R be a Prüfer domain of finite character and N be a proper submodule of an R-module M such that $(N: M) \neq(0)$. Then N has a minimal classical quasi-primary decomposition. In particular N has a minimal quasi-primary decomposition.

Proof. It is well-known that every proper ideal in a valuation domain is a quasi-primary ideal (see for example [8]). Then by [4, Proposition 1.3], N is a classical quasi-primary submodule of M. Therefore by Lemmas 3.2 and 3.3, we obtain a decomposition of N as $N=\bigcap_{i=1}^{k^{\prime}} Q_{i}$ where each $Q_{i}, 1 \leq i \leq k^{\prime}$, is a classical quasi-primary submodule of M. If $Q_{0}:=Q_{i_{1}} \cap Q_{i_{2}} \cap \cdots \cap Q_{i_{t}}$ is a classical quasi-primary submodule of M, where $\left\{i_{1}, \cdots, i_{t}\right\} \subseteq\left\{1, \cdots, k^{\prime}\right\}$ for $t \geq 2$ with $i_{1}<i_{2}<\cdots<i_{t}$, then we can replace $Q_{i_{1}} \cap Q_{i_{2}} \cap \cdots \cap Q_{i_{t}}$ with the single component Q_{0}. Now by using this argument, we can get the decomposition $N=Q_{1} \cap Q_{2} \cap \cdots \cap$ Q_{n} such that no $Q_{i_{1}} \cap \cdots \cap Q_{i_{t}}$ is a classical quasi-primary submodule, where $\left\{i_{1}, \cdots, i_{t}\right\} \subseteq\{1, \cdots, n\}$ for $t \geq 2$ with $i_{1}<i_{2}<\cdots<i_{t}$. If there is some $j, 1 \leq j \leq n$ such that $Q_{j} \supseteq \bigcap_{i \neq j} Q_{i}$, then we can exclude the Q_{j} from the decomposition $N=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$. By using this argument, we can get the decomposition $N=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{k}$ such that no component is abundant, so the decomposition is reduced. Obviously, among such reduced decompositions, we can get a minimal classical quasi-primary decomposition of N.

Recall that any two incomparable primary ideals of a Prüfer domain are co-maximal (see for example [8, page 131]). Also by [7, Lemma 5.5], any two quasi-primary ideals with incomparable radicals of a prüfer domain are co-maximal. The next lemma proves a similar result for quasi-primary submodules.

Lemma 3.8. Let R be a Prüfer domain, Q_{1} and Q_{2} be two quasiprimary submodules of an R-module M, and N be a submodule of M such that $Q_{1}+Q_{2} \subseteq N$. If $\sqrt{\left(Q_{1}: N\right)}$ and $\sqrt{\left(Q_{2}: N\right)}$ are incomparable,
then $Q_{1}+Q_{2}=N$. In particular, any two quasi-primary submodules of M with incomparable radicals are co-maximal.

Proof. It suffices to prove that $\left(Q_{1}+Q_{2}: N\right)=R$. We can assume that $N \nsubseteq Q_{1}$ and $N \nsubseteq Q_{2}$, so $\sqrt{\left(Q_{1}: N\right)}$ and $\sqrt{\left(Q_{2}: N\right)}$ are prime ideals of R. Since R is a Prüfer domain, $\sqrt{\left(Q_{1}: N\right)}+\sqrt{\left(Q_{2}: N\right)}=R$. Finally, because $\sqrt{\left(Q_{1}: N\right)}+\sqrt{\left(Q_{2}: N\right)} \subseteq \sqrt{\left(Q_{1}+Q_{2}: N\right)}$, we conclude that $\left(Q_{1}+Q_{2}: N\right)=R$.

One can easily see that a proper submodule N of an R-module M has a minimal quasi-primary decomposition if N can be shown as an intersection of finite number of quasi-primary submodules with pairwise incomparable radicals where no component can be omitted. So by Theorem 3.7 and Lemma 3.8, we can get the following corollary:
Corollary 3.9. Let R be a Prüfer domain of finite character and N be a submodule of an R-module M such that $(N: M) \neq(0)$. Then N can be shown as an intersection of finite number of co-maximal submodules of M.

The next theorem proves uniqueness of the decomposition of submodules into quasi-primary submodules of modules over a Prüfer domain of finite character.

Theorem 3.10. [Uniqueness Theorem]. Let R be a Prüfer domain of finite character, $\mathcal{P}_{i}, 1 \leq i \leq k$, be prime ideals of R, and N be a submodule of an R-module M. If $N=\bigcap_{i=1}^{k} Q_{i}$ is a minimal decomposition of N to \mathcal{P}_{i}-quasi-primary submodules $Q_{i}, 1 \leq i \leq k$, then k is independent of any such decompositions of N and

$$
\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right\}=\operatorname{Min}(N: M)
$$

Proof. First note that $\sqrt{(N: M)}=\bigcap_{i=1}^{k} \sqrt{\left(Q_{i}: M\right)}=\bigcap_{i=1}^{k} \mathcal{P}_{i}$. Since $\mathcal{P}_{i}{ }^{\prime}$ s are incomparable prime ideals, then $\mathcal{P}_{i}{ }^{\prime}$ s are minimal prime ideals of the ideal $(N: M)$ and so $\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right\}=\operatorname{Min}(N: M)$. On the other word, k and the set $\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right\}$ are independent of any such decompositions of N.

Theorem 3.11. Let R be a Prüfer domain of finite character and M be a multiplication R-module. Then every nonzero submodule N of M is the intersection of finite number of quasi-primary submodules with pairwise incomparable radicals, uniquely determined by N.

Proof. Since M is a multiplication module, $N=(N: M) M$; so, $(N: M) \neq(0)$. Then the result follows form Theorems 3.7 and 3.11 (compare with [1, Theorem 3.4]).

Acknowledgments

The research of the first author was in part supported by a grant from IPM (No. 92130413).

References

1. S. E. Atani and A. Y. Darani, On quasi-primary submodules, Chiang Mai J. Science 33(3) (2006), 249-254.
2. M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, 1969.
3. M. Baziar and M. Behboodi, Classical primary submodules and decomposition theory of modules, J. Algebra Appl. 8(3) (2009), 351-362.
4. M. Behboodi, R. Jahani-Nezhad, and M. H. Naderi, Classical quasi-primary submodules, Bull. Iranian Math. Soc. (to appear).
5. Z. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16(4) (1998), 755-779.
6. L. Fuchs, On quasi-primary ideals, Acta Sci. Math. (Szeged) 11 (1947), 174-183.
7. L. Fuchs and E. Mosteig, Ideal theory in Prüfer domains, J. Algebra 252 (2002), 411-430.
8. M. D. Larsen and P. J. McCarthy, Multiplicative ideal theory, Academic press, 1971.
9. R. Y. Sharp, Steps in commutative algebra, London Math. Soc. Cambridge University Press, Cambridge, 1990.
10. P. F. Smith, Primary modules over commutative rings, Glasg. Math. J. 43(1) (2001), 103-111.

Mahmood Behboodi

Department of Mathematical Sciences, Isfahan University of Technology, P.O.Box 84156-83111, Isfahan, Iran, and
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box 19395-5746, Tehran, Iran.

Email: mbehbood@cc.iut.ac.ir

Reza Jahani-Nezhad

Department of Mathematics, Faculty of Science, University of Kashan, Kashan, Iran.
Email: jahanian@kashanu.ac.ir

Mohammad Hasan Naderi

Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran.
Email: mh.naderi@qom.ac.ir

[^0]: MSC(2010): Primary: 13C13; 16D10; Secondary: 13A15
 Keywords: Prüfer domain; Primary submodule; Quasi-primary submodule; Classical quasi-primary; Decomposition.
 Received: 14 March 2013, Revised: 11 December 2013.
 $*$ Corresponding author .

