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QUASI-PRIMARY DECOMPOSITION IN MODULES
OVER PRÜFER DOMAINS

M. BEHBOODI∗, R. JAHANI-NEZHAD AND M. H. NADERI

Abstract. In this paper we investigate decompositions of sub-
modules in modules over a Prüfer domain into intersections of
quasi-primary and classical quasi-primary submodules. In partic-
ular, existence and uniqueness of quasi-primary decompositions in
modules over a Prüfer domain of finite character are proved.

1. Introduction

Throughout this paper all rings are commutative with identity el-
ements, and all modules are unital. Let M be an R-module. For
every nonempty subset X of M and every submodule N of M , the
ideal {r ∈ R | rX ⊆ N} will be denoted by (N : X). Note that
(N : M) is the annihilator of the module M/N . Also we denote the
classical Krull dimension of R by dim(R), and for an ideal I of R,√
I := {r ∈ R | rk ∈ I for some k ∈ N}.
We recall that a proper ideal Q of the ring R is called a primary

ideal if ab ∈ Q where a, b ∈ R, implies that either a ∈ Q or bk ∈ Q
for some k ∈ N (see for example [2]). The notion of primary ideal was
generalized by Fuchs [6] by defining an ideal Q of a ring R to be quasi-
primary if its radical is a prime ideal, i.e., if ab ∈ Q where a, b ∈ R,
then either ak ∈ Q or bk ∈ Q for some k ∈ N (see also [7]). There are
some extensions of these notions to modules. For instance, a proper
submodule Q of M is called a primary submodule if am ∈ Q, where
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a ∈ R, m ∈ M \ Q, then akM ⊆ Q for some k ∈ N (see for example

[9, 10]). Also, Q is called quasi-primary if
√
(Q : M) is a prime ideal

of R (see [1]). Moreover, Q is called a classical primary (resp. classical
quasi-primary) submodule of M if abN ⊆ Q, where a, b ∈ R and N is
a submodule of M , then either aN ⊆ Q or bkN ⊆ Q (resp. akN ⊆ Q
or bkN ⊆ Q) for some k ∈ N (see [3, 4]). We note that if Q is a
primary, quasi-primary, classical primary or a classical quasi-primary
submodule ofM , then P :=

√
(Q : M) is a prime ideal of R, and hence,

we say that Q is a P-primary, P-quasi-primary, classical P-primary or
a classical P-quasi-primary submodule; respectively.

Let K,N,N1, · · · , Nl, for some l ∈ N, be submodules of an R-module
M . We say that N and K are co-maximal (resp. with incomparable

radicals) when N + K = M (resp. when
√

(N : M) and
√

(K : M)
are not comparable); also we say that the submodules N1, ..., Nl are
pairwise co-maximal (resp. with pairwise incomparable radicals) if and
only if for every i, j ∈ {1, 2, ..., l} such that i ̸= j, Ni +Nj = M (resp.√

(Ni : M) and
√
(Kj : M) are not comparable). An R-module M is

called a multiplication module if, for each submodule N of M , there
exists an ideal I of R such that N = IM ; In this case we can take
I = (N : M) (see for example [5]). For an integral domain R, we say
that R is of finite character, if every nonzero element of R is contained
but in a finite number of maximal ideals.

In a Prüfer domain of finite character, Fuchs and Mosteig [7] es-
tablished the decomposition of an ideal as (shortest) intersections of a
finite number of quasi-primary ideals. In particular, they proved that
every nonzero ideal I in a Prüfer domain of finite character is a finite
intersection of quasi-primary ideals with incomparable radicals, and
the components in such a decomposition are uniquely determined by
I (see [7, Theorem 5.6]). In Section 1, some results on quasi-primary
and classical quasi-primary submodules are given. For instance, it is
shown that if R is a domain, then for each R-module M , every classi-
cal quasi-primary submodule of M is a quasi-primary submodule if and
only if every proper ideal of R is (classical) quasi-primary, if and only
if, the set of prime ideals, Spec(R), is a chain (see Proposition 1.5).
In Section 2, we generalize some main results of [7] to modules over a
Prüfer domain of finite character. In particular, we prove that over a
Prüfer domain of finite character, every submodule N of a module M
such that (N : M) ̸= (0), can be shown as an (minimal) intersection
of finite number of (classical) quasi-primary submodules (see Theorem
2.7). Also we prove that the components in the decomposition of N
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into quasi-primary submodules are uniquely determined byN (see The-
orem 2.10). If M is also a multiplication module, such decomposition
into quasi-primary submodules exists for every nonzero submodule of
M (see Theorem 2.11).

2. Some results on (classical) quasi-primary submodules

We begin this section with two Propositions 1.1 and 1.2, which give
many examples of classical primary submodules; so many examples of
classical quasi-primary submodules; that are not primary submodules.

Proposition 2.1. Let R be an integral domain and P be a nonzero
prime ideal of R. Let for a non-empty set I, Q = ⊕i∈IAi be a submodule
of a free R-module F = ⊕i∈IR such that for every i ∈ I, Ai = (0) or
Ai is a P-primary ideal of R. If the set Γ := {Ai | i ∈ I and Ai is
a P-primary ideal of R} is a finite set, then Q is a classical primary
submodule of F . In addition, if Q ̸= (0) and for some i ∈ I, Ai = (0)
, then Q is not a primary submodule of F .

Proof. Let r, s ∈ R and N be a submodule of F such that rN ⊈ Q and
rsN ⊆ Q. Then there is y = {yi}i∈I ∈ N such that ry ̸∈ Q. We can
assume that r and s are nonzero; so rs ̸= 0, because R is an integral
domain. Since rsy ∈ Q, rsyi ∈ Ai, for every i ∈ I. But ry ̸∈ Q,
so there is an i0 ∈ I that ryi0 ̸∈ Ai0 . Clearly Ai0 is nonzero, so Ai0

is a P-primary ideal of R. Now since rsyi0 ∈ Ai0 and ryi0 ̸∈ Ai0 , we
conclude that s ∈

√
Ai0 = P . Evidently for every z = {zi}i∈I ∈ N , if

Aj = 0, for some j ∈ I, then zj = 0, so since the set Γ is finite, there
is a positive integer k such that skN ⊆ Q; on the other word, Q is a
classical primary submodule of F .

Now, suppose that Q ̸= (0) and for some i ∈ I, Ai = (0). So there
are i1, i2 ∈ I such that Ai1 ̸= (0) and Ai2 = (0). Set f = {fi}i∈I where
fi1 = 1 and for every i ∈ I \{i1}, fi = 0. Evidently f ̸∈ Q and for every
nonzero element p ∈ P , there is a positive integer k that pkf ∈ Q. Now
if for a positive integer l, (pk)lF ⊆ Q, then plk ∈ Ai2 = (0), i.e., plk = 0.
But R is an integral domain, so p = 0, a contradiction. On the other
word, Q is not a primary submodule of F . □

Proposition 2.2. Let P be a prime ideal of an integral domain R and
Q be a P-primary ideal of R. Let Q = Q{xi}i∈I , for a non-empty set
I, be a submodule of free R-module F = ⊕i∈IR such that for an j ∈ I,
xj is a unit of R. Then Q is a classical primary submodule of F . In
addition, if Q is nonzero and I has at least two elements, then Q is
not a primary submodule of F .



152 BEHBOODI, JAHANI-NEZHAD AND NADERI

Proof. Set x = {xi}i∈I , and let xj be a unit of R, for an j ∈ I. Let
r, s ∈ R and N be a submodule of F that rsN ⊆ Q and rN ⊈ Q;
so there is y = {yi}i∈I ∈ N such that rsy ∈ Q and ry ̸∈ Q. We can
assume that r and s are nonzero; so rs ̸= 0, because R is an integral
domain. Then for every i ∈ I, rsyi = qxi, that q ∈ Q; especially,
rsyj = qxj. Since xj is a unit of R, rsyjx

−1
j xi = qxi, and since rsyi =

qxi, rsyjx
−1
j xi = rsyi. Therefore yi = yjx

−1
j xi, because R is an integral

domain. Then y = {yjx−1
j xi}i∈I = yjx

−1
j x. Thus for every z ∈ N\Q,

there is rz ∈ R such that z = rzx. On the other hand, since ry ̸∈ Q,
then ryjx

−1
j ̸∈ Q, so ryj ̸∈ Q. Also, since rsyj = qxj ∈ Q, and Q is

a P-primary ideal of R, s ∈ P , i.e., sk ∈ Q for some k ∈ N. Then for
every z ∈ N\Q, skz = skrzx ∈ Q, so skN ⊆ Q. Thus Q is a classical
primary submodule of R.

Now suppose that Q is nonzero and I has at least two elements.
Evidently, there exists a subset J = {i1, · · · , it}, where t ≥ 2 and i1 <
i2 < · · · < it, of I such that for every i ∈ I \ J , xi = 0. Let e = {ei}i∈I
such that for every i ∈ J, ei = 1, and for every i ∈ I \ J, ei = 0. Also
let f = {fi}i∈I such that fi1 = 1 and for every i ∈ I \ {i1}, fi = 0.
Obviously, x ̸∈ Q and for every nonzero q ∈ Q, qx ∈ Q. Now if for
a positive integer k, qkF ⊆ Q, then qke ∈ Q, so qke = q1x for some
q1 ∈ Q. Then for every i ∈ J , qk = q1xi, therefore q1xi = q1xj. Since
R is an integral domain and q ̸= 0, xi = xj for every i ∈ J , so x = xje.
On the other hand, qkf = q2x, for some q2 ∈ Q. Then qkf = q2xje,
so qkfi1 = qkfi2 , i.e., q

k = 0. Now since R is an integral domain we
conclude that q = 0, a contradiction. Therefore Q is not a primary
submodule of F . □

Proposition 2.3. Let P be a prime ideal of an integral domain R and
Q be a P-primary ideal of R. Let F = ⊕n

i=1R and x = (x1, x2, · · · , xn) ∈
F such that for some i, 1 ≤ i ≤ n, xi is invertible. If Q = Qx, then
Q is a classical primary submodule of F . In addition, if Q is nonzero
and n ≥ 2, then Q is not a primary submodule of F .

Proof. Set x = {xi}i∈I , and let xj be a unit of R, for an j ∈ I. Let
r, s ∈ R and N be a submodule of F that rsN ⊆ Q and rN ⊈ Q;
so there is y = {yi}i∈I ∈ N such that rsy ∈ Q and ry ̸∈ Q. We can
assume that r and s are nonzero; so rs ̸= 0, because R is an integral
domain. Then for every i ∈ I, rsyi = qxi, that q ∈ Q; especially,
rsyj = qxj. Since xj is a unit of R, rsyjx

−1
j xi = qxi, and since rsyi =

qxi, rsyjx
−1
j xi = rsyi. Therefore yi = yjx

−1
j xi, because R is an integral

domain. Then y = {yjx−1
j xi}i∈I = yjx

−1
j x. Thus for every z ∈ N\Q,

there is rz ∈ R such that z = rzx. On the other hand, since ry ̸∈ Q,
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then ryjx
−1
j ̸∈ Q, so ryj ̸∈ Q. Also, since rsyj = qxj ∈ Q, and Q is

a P-primary ideal of R, s ∈ P , i.e., sk ∈ Q for some k ∈ N. Then for
every z ∈ N\Q, skz = skrzx ∈ Q, so skN ⊆ Q. Thus Q is a classical
primary submodule of R.

Now suppose that Q is nonzero and I has at least two elements.
Evidently, there exists a subset J = {i1, · · · , it}, where t ≥ 2 and i1 <
i2 < · · · < it, of I such that for every i ∈ I \ J , xi = 0. Let e = {ei}i∈I
such that for every i ∈ J, ei = 1, and for every i ∈ I \ J, ei = 0. Also
let f = {fi}i∈I such that fi1 = 1 and for every i ∈ I \ {i1}, fi = 0.
Obviously, x ̸∈ Q and for every nonzero q ∈ Q, qx ∈ Q. Now if for
a positive integer k, qkF ⊆ Q, then qke ∈ Q, so qke = q1x for some
q1 ∈ Q. Then for every i ∈ J , qk = q1xi, therefore q1xi = q1xj. Since
R is an integral domain and q ̸= 0, xi = xj for every i ∈ J , so x = xje.
On the other hand, qkf = q2x, for some q2 ∈ Q. Then qkf = q2xje,
so qkfi1 = qkfi2 , i.e., q

k = 0. Now since R is an integral domain we
conclude that q = 0, a contradiction. Therefore Q is not a primary
submodule of F . □

Even in a ring R, the classical quasi-primary ideals and primary
ideals are not the same, see the following example.

Example 2.4..

(a): Let R be valuation domain. It is easy to see that every
ideal of R is a quasi-primary ideal (see for example [8, Theorem
5.10]). Then every ideal of R is a classical quasi-primary ideal
by [4, Proposition 1.3]. Since every ideal of R need not to be a
primary ideal, then there are non-primary ideals of R that are
classical quasi-primary.

(b): Let R be an integral domain and I be a valuation ideal of
R (an ideal I of integral domain R with quotient filed K is a
valuation ideal if there is a valuation ring V of K containing R
such that I = J ∩ R for some ideal J of V ). By [8, Exercise
V13-page 122], every valuation ideal of R is a (classical) quasi-
primary ideal, but there are valuation ideals of R that are not
primary ideals. For example, if K is a filed and I is the ideal
generated by x2 and y2 in K[x, y], for indeterminates x and y,
then I is a (classical) quasi-primary ideal that is not a primary
ideal.

Following [3, 4], we call an R-module M (quasi) primary compatible
if its (quasi) primary and its classical (quasi) primary submodules are
the same. A ring R is said to be (quasi) primary compatible if every
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R-module is (quasi) primary compatible. Some results about quasi-
primary compatible rings were proved in [4]; for example it was shown
that if dim(R) = 0, then R is a quasi-primary compatible ring, and
if R is a Noetherian quasi-primary compatible ring, then dim(R) ≤ 1.
In the sequel of this section, we will prove some other results about
quasi-primary compatible rings.

The next proposition gives some equivalent conditions for a ring that
is a quasi-primary compatible ring:

Proposition 2.5. Let R be an integral domain. Then the following
statements are equivalent:

(1) Spec(R) is a chain of prime ideals;
(2) Every proper ideal of R is quasi-primary;
(3) Every proper ideal of R is classical quasi-primary;
(4) R is a quasi-primary compatible ring.

Proof. (1) ⇒ (2) Let I be a proper ideal of R. It is well-known that√
I =

∩
P∈V ar(I) P ; where V ar(I) = {P ∈ Spec(R)|I ⊆ P} (see for

example [2, Proposition 1.14]). Since Spec(R) is a chain,
√
I = P0 for

some P0 ∈ V ar(I); on the other word, I is a quasi-primary ideal of R.
(2) ⇒ (3) follows from [4, Proposition 2.3].
(3) ⇒ (4) is evident.
(4) ⇒ (1) follows from [4, Proposition 2.11]. □

Corollary 2.6. Let R be a quasi-primary compatible ring. Then for
every P ∈ Spec(R), Spec(R/P) is a chain of prime ideals.

Proof. Evidently, every factor ring of a quasi-primary compatible ring
is quasi-primary compatible. Then for every P ∈ Spec(R), R/P is a
quasi-primary compatible integral domain; therefore Spec(R/P) is a
chain of prime ideals by Proposition 1.5. □

Lemma 2.7. Let R be an integral domain. If R is a quasi-primary
compatible ring, then any two prime elements of R are associated.

Proof. It is clear from the definition of a prime element, for p ∈ R, pR
is a nonzero prime ideal of R if and only if p is a prime element of R.
Now assume that p1, p2 ∈ R are prime elements. Since by Propositions
2.5, Spec(R) is a chain, p1R ⊆ p2R or p2R ⊆ p1R. It follows that
p1R = p2R, i.e., p1 and p2 are associated. □

Theorem 2.8. Let R be a unique factorization domain. Then R is
quasi-primary compatible if and only if R is a field.
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Proof. By Lemma 2.7, any two prime elements of R are associated.
Now if R is not a filed, then dim(R) ≥ 1 and there is a prime element
p of R. Since R is an unique factorization domain, every nonzero non-
unit element r ∈ R, is a finite multiple of prime elements; then r = upk,
for some unit u ∈ R, and some positive integer k. Now, if we define
θ(r) = k, for every nonzero element r = upk of R, then it is easy to
check that θ is an Euclidean valuation. Then R is an Euclidean domain;
so, R is a principle ideal domain. Since dim(R) ≥ 1, R has one nonzero
prime ideal Rp; so any nonzero ideal of R is of the form Rpk, for some
positive integer k. Thus every ideal of R is a primary ideal. This
implies that R is a primary compatible ring, so by [4, Theorem 1.14],
dim(R) = 0, a contradiction. Therefore R is a filed. The converse is
clear. □

3. Decomposition into quasi-primary submodules

The decomposition into classical quasi-primary submodules in Noe-
therian modules was introduced in detail in [4]. The purpose of this sec-
tion is to investigate decomposition of submodules into quasi-primary
submodules in non-Noetherian modules over a Prüfer domain.

Definition 3.1. Let R be a commutative ring and N be a proper
submodule of an R-module M . A quasi-primary (resp., classical quasi-
primary) decomposition of N is an expression N =

∩n
i=1Qi, where

each Qi is a quasi-primary (resp., classical quasi-primary) submodule
of M(see also [4, Definition 2.6]). The decomposition is called reduced
if it satisfies the following two conditions:

(1) no Qi1 ∩ · · · ∩ Qit is a quasi-primary (resp., classical quasi-
primary) submodule, where {i1, · · · , it} ⊆ {1, · · · , n} for t ≥
2 with i1 < i2 < · · · < it.

(2) for each j, Qj ⊉
∩

i̸=j Qi.

Corresponding to the above definition, by the definition of (classical)
quasi-primary submodules, we have a list of prime ideals√

(Q1 : M), · · · ,
√

(Qn : M). Among reduced quasi-primary (resp.,
classical quasi-primary) decompositions, any one that has the least
number of distinct primes will be called minimal.

Let R be a commutative ring, N a non-zero submodule of an R-
module M , NP = N ⊗R RP the localization of N by a maximal ideal
P and N(P) := f−1(NP), that f : M → MP is the canonical map
with f(m) = m/1, for every m ∈ M . First of all note that N =∩

P∈Max(R) N(P), that Max(R) is the set of maximal ideals of R. Because

it is evident that N ⊆
∩

P∈Max(R) N(P). Now if m ∈
∩

P∈Max(R) N(P),
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then m/1 ∈ NP for every P ∈ Max(R), so there is an sP ∈ R \ P
such that sPm ∈ N . Suppose I is the ideal generated by all such sP .
If I ̸= R, then there is a maximal ideal P0 of R such that I ⊆ P0,
therefore sP0 ∈ P0, that is contradicts with choosing sP0 . Then I = R,
so for some positive integer k, there are rj ∈ R, 1 ≤ j ≤ k, such that

1 =
∑k

j=1 rjsPj
. Therefore m =

∑k
j=1 rjsPj

m ∈ N , this implies that∩
P∈Max(R) N(P) ⊆ N . Thus N =

∩
P∈Max(R)N(P).

Over an integral domain of finite character, the number of proper
components of this intersection can be finite, but for proving this fact,
first note the following lemma:

Lemma 3.2. Let P be a maximal ideal of a commutative ring R and
N be a submodule of an R-module M . Then the following statements
hold:

(1) MP = NP if and only if (N : m) ⊈ P for every m ∈ M .
(2) If R is an integral domain of finite character and M/N is tor-

sion, then N is a finite intersection of submodules of the form
N(P), for maximal ideals P of R.

Proof. (1) Set S = R \ P . Clearly, MP = NP if and only if for every
m ∈ M , there exists s ∈ S such that sm ∈ N , i.e., s ∈ (N : m). On the
other word, MP = NP if and only if for every m ∈ M , S∩ (N : m) ̸= ∅,
i.e., (N : m) ⊈ P .

(2) Since R is of finite character and (N : M) ̸= (0), there are a
finite number of maximal ideals of R, say P1, ...,Pk, containing (N :
M). Obviously for every m ∈ M , (N : M) ⊆ (N : m), so for every
P ∈ Max(R) \ {P1, ...,Pk}, (N : m) ⊈ P . Then by (1), for every

P ∈ Max(R) \ {P1, ...,Pk}, MP = NP . Therefore N =
∩k

i=1N(Pi). □

Lemma 3.3. Let S be a multiplicatively closed subset of a commutative
ring R. Let M be an R-module, and Q be a (classical) quasi-primary
submodule of RS-module MS. Then Q∩M is a (classical) quasi-primary
submodule of M .

Proof. Let Q be a classical quasi-primary submodule of RS-module
MS. Suppose N is a submodule of M such that N ⊈ Q ∩ M and
abN ⊆ Q ∩M for some a, b ∈ R. Then ab

1
NS ⊆ (Q ∩M)S = Q. Since

Q is a classical quasi-primary submodule, ak

1
NS ⊆ Q or bk

1
NS ⊆ Q

for some positive integer k. Then akN ⊆ (a
k

1
NS) ∩ M ⊆ Q ∩ M or

bkN ⊆ ( b
k

1
NS) ∩ M ⊆ Q ∩ M . Consequently, Q ∩ M is a classical

quasi-primary submodule of M .
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In the same way one can easily show that if Q is a quasi-primary
submodule of MS, then Q∩M is a quasi-primary submodule of M . □
Lemma 3.4. Let for every i, 1 ≤ i ≤ n, Pi be a prime ideal of a ring R,
Qi be a submodule of an R-module M , and Q = Q1∩Q2∩· · ·∩Qn. For
each submodule N of M and each i, 1 ≤ i ≤ n, set Pi,N =

√
(Qi : N).

Then the following statements hold:

(1) If for every i, 1 ≤ i ≤ n, Qi is a classical Pi-quasi-primary sub-
module, then Q is a classical quasi-primary submodule if and
only if the set {P1,N , · · · ,Pn,N} has the least element (with re-
spect to the relation ⊆) for every submodule N of M .

(2) If for every i, 1 ≤ i ≤ n, Qi is a Pi-quasi-primary submod-
ule, then Q is a quasi-primary submodule if and only if the set
{P1, · · · ,Pn} has the least element (with respect to the relation
⊆).

Proof. We only prove (1), the proof of (2) is similar.
(1) For every submodule N of M , set

PN =
√

(Q1 ∩Q2 ∩ · · · ∩Qn : N). Clearly, PN = P1,N ∩ P2,N ∩ · · · ∩
Pn,N . By [4, Lemma 1.3(2)], Q1 ∩ Q2 ∩ · · · ∩ Qn is a classical quasi-
primary submodule if and only if for every submoduleN ofM such that
N ⊈ Q1∩Q2∩· · ·∩Qn, PN is a prime ideal of R, i.e., PN = Pj,N for some
j, 1 ≤ j ≤ n. But if for a submodule N of M , N ⊆ Q1 ∩Q2 ∩ · · · ∩Qn,
then PN = Pi,N = R for every i, 1 ≤ i ≤ n. Thus Q1∩Q2∩· · ·∩Qn is a
classical quasi-primary submodule if and only if for every submodule N
of M , there exists an j, 1 ≤ j ≤ n, such that PN = Pj,N . On the other
words, Q1∩Q2∩ · · ·∩Qn is a classical quasi-primary submodule if and
only if the set {P1,N , · · · ,Pn,N} has the least element (with respect to
the relation ⊆). □

By using the fact that every classical quasi-primary submodule is a
quasi-primary submodule, we can get the following corollary:

Corollary 3.5. Let for every i, 1 ≤ i ≤ n, Pi be a prime ideal of a
ring R, Qi be a Pi-quasi-primary submodule of an R-module M , and
Q = Q1 ∩ Q2 ∩ · · · ∩ Qn. If Q is a classical quasi-primary submodule,
then the set {P1, · · · ,Pn} has the least element (with respect to the
relation ⊆).

The following example shows that the converse of Corollary 3.5 is
not necessarily true (even if the decomposition Q = Q1 ∩Q2 ∩ · · · ∩Qn

is a minimal primary decomposition).

Example 3.6. (see [3, Example 2.2]). Let R = Z, M = Z2 ⊕ Z3 ⊕ Z,
Q1 = Z2⊕Z3⊕ (0), Q2 = Z2⊕ (0)⊕Z, and Q3 = (0)⊕Z3⊕Z. Clearly,
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Q1, Q2, and Q3 are primary submodules of M with
√
(Q1 : M) = (0),√

(Q2 : M) = 3Z, and
√

(Q3 : M) = 2Z. On the other hand, (0) =
Q1 ∩ Q2 ∩ Q3 is a (minimal) primary decomposition of (0). Now, the
set {(0), 2Z, 3Z} has the least element (with respect to the relation ⊆),
but (0) is not a classical quasi-primary submodule of M .

Let R be a Prüfer domain of finite character and N be a proper
submodule of an R-module M such that (N : M) ̸= (0). In the next
theorem, the existence of a minimal classical quasi-primary decompo-
sition of N are proved.

Theorem 3.7. Let R be a Prüfer domain of finite character and N be
a proper submodule of an R-module M such that (N : M) ̸= (0). Then
N has a minimal classical quasi-primary decomposition. In particular
N has a minimal quasi-primary decomposition.

Proof. It is well-known that every proper ideal in a valuation domain
is a quasi-primary ideal (see for example [8]). Then by [4, Proposition
1.3], N is a classical quasi-primary submodule of M . Therefore by

Lemmas 3.2 and 3.3, we obtain a decomposition of N as N =
∩k

′

i=1Qi

where each Qi, 1 ≤ i ≤ k
′
, is a classical quasi-primary submodule ofM .

IfQ0 := Qi1∩Qi2∩· · ·∩Qit is a classical quasi-primary submodule ofM ,
where {i1, · · · , it} ⊆ {1, · · · , k′} for t ≥ 2 with i1 < i2 < · · · < it, then
we can replaceQi1∩Qi2∩· · ·∩Qit with the single componentQ0. Now by
using this argument, we can get the decomposition N = Q1∩Q2∩· · ·∩
Qn such that no Qi1 ∩ · · · ∩Qit is a classical quasi-primary submodule,
where {i1, · · · , it} ⊆ {1, · · · , n} for t ≥ 2 with i1 < i2 < · · · < it. If
there is some j, 1 ≤ j ≤ n such that Qj ⊇

∩
i̸=j Qi, then we can exclude

the Qj from the decomposition N = Q1 ∩Q2 ∩ · · · ∩Qn. By using this
argument, we can get the decomposition N = Q1 ∩ Q2 ∩ · · · ∩ Qk

such that no component is abundant, so the decomposition is reduced.
Obviously, among such reduced decompositions, we can get a minimal
classical quasi-primary decomposition of N . □

Recall that any two incomparable primary ideals of a Prüfer domain
are co-maximal (see for example [8, page 131]). Also by [7, Lemma 5.5],
any two quasi-primary ideals with incomparable radicals of a prüfer
domain are co-maximal. The next lemma proves a similar result for
quasi-primary submodules.

Lemma 3.8. Let R be a Prüfer domain, Q1 and Q2 be two quasi-
primary submodules of an R-module M , and N be a submodule of M
such that Q1+Q2 ⊆ N . If

√
(Q1 : N) and

√
(Q2 : N) are incomparable,
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then Q1 + Q2 = N . In particular, any two quasi-primary submodules
of M with incomparable radicals are co-maximal.

Proof. It suffices to prove that (Q1+Q2 : N) = R. We can assume that

N ⊈ Q1 and N ⊈ Q2, so
√
(Q1 : N) and

√
(Q2 : N) are prime ideals of

R. Since R is a Prüfer domain,
√

(Q1 : N) +
√

(Q2 : N) = R. Finally,

because
√
(Q1 : N)+

√
(Q2 : N) ⊆

√
(Q1 +Q2 : N), we conclude that

(Q1 +Q2 : N) = R. □
One can easily see that a proper submodule N of an R-module M

has a minimal quasi-primary decomposition if N can be shown as an
intersection of finite number of quasi-primary submodules with pairwise
incomparable radicals where no component can be omitted. So by
Theorem 3.7 and Lemma 3.8, we can get the following corollary:

Corollary 3.9. Let R be a Prüfer domain of finite character and N be
a submodule of an R-module M such that (N : M) ̸= (0). Then N can
be shown as an intersection of finite number of co-maximal submodules
of M .

The next theorem proves uniqueness of the decomposition of sub-
modules into quasi-primary submodules of modules over a Prüfer do-
main of finite character.

Theorem 3.10. [Uniqueness Theorem]. Let R be a Prüfer domain
of finite character, Pi, 1 ≤ i ≤ k, be prime ideals of R, and N be a
submodule of an R-module M . If N =

∩k
i=1 Qi is a minimal decompo-

sition of N to Pi-quasi-primary submodules Qi, 1 ≤ i ≤ k, then k is
independent of any such decompositions of N and

{P1, ...,Pk} = Min(N : M).

Proof. First note that
√
(N : M) =

∩k
i=1

√
(Qi : M) =

∩k
i=1Pi. Since

Pi‘s are incomparable prime ideals, then Pi‘s are minimal prime ideals
of the ideal (N : M) and so {P1, ...,Pk} = Min(N : M). On the
other word, k and the set {P1, ...,Pk} are independent of any such
decompositions of N . □
Theorem 3.11. Let R be a Prüfer domain of finite character and M
be a multiplication R-module. Then every nonzero submodule N of M
is the intersection of finite number of quasi-primary submodules with
pairwise incomparable radicals, uniquely determined by N .

Proof. Since M is a multiplication module, N = (N : M)M ; so,
(N : M) ̸= (0). Then the result follows form Theorems 3.7 and 3.11
(compare with [1, Theorem 3.4]). □
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