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r−CLEAN RINGS RELATIVE TO RIGHT IDEALS

H. HAKMI∗ AND B. ALHUSSEIN

Abstract. An associative ring R with identity is called r−clean
if every element of R is the sum of a regular and an idempotent
element. In this paper, we introduce the concept of r−clean rings
relative to right ideal. We study various properties of these rings.
We give some relations between r−clean ring and r−clean ring of
2× 2 matrices over R relative to some right ideal P . We give some
necessary and sufficient conditions for a ring R to be r−clean, in
terms of P−regular, P−local and P−clean properties of a given
ring. Also, we prove that every ring is r−clean relative to any
maximal right ideal of it.

1. Introduction

In their fundamental work [2], Andrunakievich V. A and Ryabukhin
Yu. M were the first who introduced the notion of rings relative to right
ideals, they study the quasi-regularity and pimitivity relative to right
ideals. Later in [1] the concept of rings relative to right ideals which
was extended to regular ring relative to right ideals in as generalization
of (Von Neumann) regular rings (also known as P−regular rings). In
[5], H. Hakmi continued the study of P−regular and P−potent rings
and in [6], he studied local ring relative to right ideal (P−local rings).
In our paper we continue the study of rings relative to right ideals
from a new point of view that, r−clean rings relative to right ideals.
An element a of a ring R is said to be clean if a = u+ e, where e ∈ R
is an idempotent and u is a unit in R. If every element of a ring R is
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clean, then R is called a clean ring. Clean rings were introduced by W.
K. Nicholson in his fundamental paper [7]. He proved that every clean
ring is an exchange ring, and a ring with central idempotents is clean if
and only if it is an exchange ring, where a ring R is said to be exchange
if for each a ∈ R there exists idempotent e ∈ R such that e ∈ aR and
(1− e) ∈ (1− a)R. The clean rings were further extended to r−clean
rings and the r−clean rings were introduced by Ashrafi and Nasibi [3].
They defined an element x of a ring R to be r−clean if x = a+e, where
a ∈ R is a regular element and e ∈ R is an idempotent. A ring R is
said to be r−clean if each of its element is r−clean. In our paper we
study the concept of r−clean ring relative to some proper right ideal.

Throughout this paper, all rings are associative with identity. In
Section 2, we study the fundamental properties of P−idempotents,
where we proved that if e ∈ R is an idempotent, then the set of
all elements f ∈ R such that f − e ∈ P is a semi-group relative to
multiplication on P . In Section 3, we study some properties of
P−regular and P−clean elements. In Section 4, we study r−clean
rings relative to right ideal P . Where we proved that every ring R
is an r−clean relative to every maximal right ideal. In addition, we
obtain that a ring R is P−local if and only if R is r−clean relative to
P and the set of idempotents in R is {0, 1, p, 1 + p} for every p ∈ P .

Furthermore, we proved that, if in the ring R the set of all
P− idempotents is {0, 1, p, 1 + p} for every p ∈ P , then the ring R
is r−clean relative to P if and only if R is P−clean. Also, if the set
of all idempotents in R is {0, 1, p, 1 + p} for every p ∈ P , then the
ring R is r−clean relative to P if and only if for every x ∈ R, either
x or 1 − x is the P−regular element. Also, in this section, we study
the connection between the r−clean elements in a ring R and r−clean
elements relative to P (relative to Q) in the ring of 2× 2 matrices over
R. We prove that an element a of a ring R is r−clean if and only if
there exist x, y ∈ R such that the element

[
x y
0 a

]
is r−clean relative

to some proper right ideal P of M2(R).

2. P−Idempotent Elements

Let R be a ring and P ̸= R be a right ideal of R. Recall that an
element e ∈ R is idempotent relative to right ideal P or P−idempotent
for short, if e2−e ∈ P and eP ⊆ P , [1]. Note that in previous definition
it is easily verified that 0, 1 ∈ R are P−idempotents for every right ideal
P of R. Also, if P = 0, then an element e ∈ R is P−idempotent if and
only if e is idempotent.
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Lemma 2.1. Let R be a ring and P ̸= R be a right ideal of R. For
every P− idempotent e ∈ R the following hold;

(1) e2 and 1− e are P−idempotents.
(2) For every positive integer k, ek is P−idempotent.
(3) For every p ∈ P , e+ p ∈ R is P− idempotent in R.

Proof. (1) It is obvious.
(2) Since e is P−idempotent, e2− e ∈ P and eP ⊆ P , so e2 = e+ p0

for some p0 ∈ P . The proof can be done by induction on k. For
k = 1, 2 the assertion holds by assumption and (1). Suppose that ek−1

is P−idempotent, then

(ek−1)2 − ek−1 ∈ P and ek−1P ⊆ P

So (ek−1)2 = ek−1 + p1 for some p1 ∈ P . Thus

(ek)2 = (ek−1)2e2

= (ek−1 + p1)(e+ p0)

= ek + ek−1p0 + p1e+ p1p0.

Therefore (ek)2 − ek = p, where p = ek−1p0 + p1e + p1p0 ∈ P . This
shows that

(ek)2 − ek ∈ P and ekP = eek−1P ⊆ eP ⊆ P.

(3) Since e ∈ R is P−idempotent, e2−e ∈ P and eP ⊆ P , so e2 = e+p0
for some p0 ∈ P . Let p ∈ P and suppose that f = e+ p, then

f 2 = (e+ p)(e+ p)

= e2 + ep+ pe+ p2

= e+ p0 + ep+ pe+ p2

= (e+ p) + (−p+ p0 + ep+ pe+ p2)

= f + p2.

Where p2 = −p + p0 + ep + pe + p2 ∈ P , thus f 2 − f ∈ P . On the
other hand, for every t ∈ P , ft = (e+ p)t = et+ pt ∈ eP + P ⊆ P , so
fP ⊆ P . Thus f = e+ p is P−idempotent. □

Let R be a ring and P ̸= R be a right ideal of R. Suppose that
Pid(R) be the set of all P−idempotent elements in R. It is clear that
Pid(R) is a non-empty subset of R, because 0, 1 ∈ Pid(R). For every
e, f ∈ Pid(R), we define the relation (∼) on Pid(R) as following:

e ∼ f ⇔ e− f ∈ P
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It is easy to see that (∼) is an equivalent relation on Pid(R). If
e ∈ Pid(R), then the equivalent class of e is:

[e] = {f : f ∈ Pid(R); e ∼ f}
= {f : f ∈ Pid(R) : e− f ∈ P}

Lemma 2.2. Let R be a ring and P ̸= R be a right ideal in R. If
e, g ∈ R such that e− g ∈ P , then g is P−idempotent if and only if e
is P−idempotent.

Proof. Suppose that e−g ∈ P , then e = g+p1 for some p1 ∈ P . Assume
that g is P−idempotent, then g2 − g ∈ P , gP ⊆ P . So g2 = g + p0 for
some p0 ∈ P and

e2 = (g + p1)(g + p1)

= g2 + gp1 + p1g + p1p1

= g + p0 + gp1 + p1g + p1p1

= (g + p1) + (−p1 + p0 + gp1 + p1g + p1p1),

for
p′ = −p1 + p0 + gp1 + p1g + p1p1 ∈ P

We have e2 − e = p′ ∈ P and eP ⊆ gP + p1P ⊆ P . This shows that e
is P− idempotent. Similarly, we can prove the converse. □

Lemma 2.3. Let R be a ring and P ̸= R be a right ideal of R. Then
for every P− idempotent e ∈ R the following hold:

(1) Every element f ∈ [e] is P−idempotent.
(2) For every g ∈ [e], ge and eg are P−idempotents.

Proof. Since e ∈ R is P−idempotent, e2 − e ∈ P and eP ⊆ P , so
e2 = e+ p0 for some p0 ∈ P .

(1) Let f ∈ [e], then f −e ∈ P , so f = e+p1 for some p1 ∈ P . Thus,

f 2 − f = (e+ p1)(e+ p1)− (e+ p1)

= e2 + ep1 + p1e+ p21 − e− p1

= (e2 − e) + ep1 + p1e+ (p21 − p1) ∈ P.

So f 2 − f ∈ P . For every t ∈ P ;

ft = (e+ p1)t = et+ p1t ∈ eP + P ⊆ P.

This shows that f ∈ [e] is P−idempotent.
(2) Let g ∈ [e], then g − e ∈ P , so g = e + p2 for some p2 ∈ P . On

the other hand, since g ∈ [e], by (1) g is P−idempotent, so g2 − g ∈ P
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and gP ⊆ P , therefore g2 = g + p3 for some p3 ∈ P . Thus
ge = (e+ p2)e

= e2 + p2e

= (e+ p0) + p2e

= e+ p0 + p2e

= e+ p4.

Where, p4 = p0 + p2e ∈ P + PR ⊆ P and
(ge)2 − ge = (e+ p4)(e+ p4)− (e+ p4)

= e2 + ep4 + p4e+ p24 − e− p4

= (e2 − e) + ep4 + p4e+ p24 − p4

∈ eP + P

⊆ P.

So (ge)2 − ge ∈ P . Also, for every t ∈ P ;
(ge)t = g(et) ∈ g(eP ) ⊆ gP ⊆ P.

This shows that ge is P−idempotent. Similarly, we can prove that
eg is a P−idempotent element. □

Lemma 2.4. Let R be a ring and P ̸= R be a right ideal of R. Then
for every P−idempotent e ∈ R the following hold:

(1) For every f ∈ R, f ∈ [e] if and only if 1− f ∈ [1− e].
(2) For every element f ∈ [e], fe ∈ [e] and ef ∈ [e].
(3) For every f, g ∈ [e], fg ∈ [e] and gf ∈ [e].
(4) The set [e] is closed under multiplication defined on R.

Proof. Suppose that e ∈ R is P−idempotent, then e2 − e ∈ P and
eP ⊆ P , so e2 = e+ p0 for some p0 ∈ P .

(1) (⇒). If f ∈ [e], then f − e ∈ P , so
(1− f)− (1− e) = 1− f − 1 + e = −(f − e) ∈ P.

So 1− f ∈ [1− e].
(⇐). If 1−f ∈ [1−e], then f−e = 1−1+f−e = (1−e)−(1−f) ∈ P ,

so f ∈ [e].
(2) Let f ∈ [e], then f −e ∈ P , so f = e+p1 for some p1 ∈ P . Thus,

fe− e = (e+ p1)e− e = (e2 − e) + p1e ∈ P + PR ⊆ P ;

ef − e = e(e+ p1)− e = (e2 − e) + ep1 ∈ P + eP ⊆ P.

This shows that fe, ef ∈ [e].
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(3) Let f, g ∈ [e], then f − e ∈ P and g − e ∈ P , so f = e + p2 and
g = e+ p3 for some p2, p3 ∈ P . Thus,

fg = (e+ p2)(e+ p3) = e2 + ep3 + p2e+ p2p3 = e2 + p4,

where, p4 = ep3 + p2e+ p2p3 ∈ P , so fg − e = (e2 − e) + p4 ∈ P . This
shows that fg ∈ [e]. Similarly, we can prove that gf ∈ [e]. (4) Is clear
by (2). □

From two Lemmas 2.3 and 2.4, we can obtain the following:

Corollary 2.5. Let R be a ring and P ̸= R be a right ideal of R. Then
for every P−idempotent e ∈ R the set:

[e] = {f : f ∈ R; e− f ∈ P}
is a semi-group in R.

3. P−Regular Elements and P−Clean Elements

An element a of a ring R is called (Von Neumann) regular, if aba = a
for some b ∈ R, [4]. A ring R is called regular if every element in R is
regular, [4]. Recall that an element x of a ring R is clean if x = a+ e,
where a ∈ R is unit and e ∈ R is idempotent, [8]. A ring R is called a
clean ring, if every element x in R is clean, [8].

Let R be a ring and P ̸= R be a right ideal of R. Recall that an
element a ∈ R is regular relative to right ideal P or P−regular for
short, if there exists b ∈ R such that aba− a ∈ P and abP ⊆ P , [2]. A
ring R is called a P−regular ring if every element a in R is P−regular,
[2]. Also, an element a ∈ R has a right P−inverse if R = aR+P . Note
that an element a ∈ R has a right P−inverse if and only if there exists
x ∈ R such that 1− ax ∈ P .

Lemma 3.1. Let R be a ring, P ̸= R be a right ideal of R and a ∈ R.
If a is P−regular, then a+ p is P−regular for every p ∈ P .

Proof. Suppose that a ∈ R is P−regular, then there exists b ∈ R such
that aba− a ∈ P and abP ⊆ P , so a = aba+ p0 for some p0 ∈ P . Let
p ∈ P , then

(a+ p)b(a+ p) = (ab+ pb)(a+ p)

= aba+ abp+ pba+ pbp

= a− p0 + abp+ pba+ pbp

= (a+ p) + (−p− p0 + abp+ pba+ pbp)

= (a+ p) + p′,

where, p′ = −p− p0 + abp+ pba+ pbp ∈ P . So
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(a+ p)b(a+ p)− (a+ p) ∈ P.

For every t ∈ P , (a+ p)bt = abt+ pbt ∈ abP + pR ⊆ P , thus

(a+ p)P ⊆ P.

This shows that a+ p is P−regular. □
Let R be a ring and M2(R) be the ring of all 2 × 2 matrices over a

ring R. It is clear that the sets:

P = {
[
a b
0 0

]
: a, b ∈ R} and Q = {

[
0 0
a b

]
: a, b ∈ R}

are right ideals in M2(R) such that P ̸= M2(R), Q ̸= M2(R).

Proposition 3.2. Let R be a ring. Then the following hold:
(1) If e ∈ R is an idempotent, then for every x, y ∈ R the element

α =

[
x y
0 e

]
is P−idempotent in M2(R).

(2) An element e ∈ R is idempotent in R if and only if the element

α =

[
x y
0 e

]
is P−idempotent in M2(R), for some x, y ∈ R.

(3) If e ∈ R is an idempotent, then for every x, y ∈ R the element

α =

[
e 0
x y

]
is Q−idempotent in M2(R).

(4) An element e ∈ R is idempotent in R if and only if the element

α =

[
e 0
x y

]
is Q−idempotent in M2(R), for some x, y ∈ R.

Proof. (1) Suppose that e ∈ R is idempotent. Let x, y ∈ R, then

α2 − α =

[
x2 xy + ye
0 e

]
−
[
x y
0 e

]
=

[
x2 − x xy + ye− y

0 0

]
∈ P

For every p =

[
a b
0 0

]
∈ P , αp =

[
xa yb
0 0

]
∈ P , thus αP ⊆ P . This

shows that α is P−idempotent.
(2) If e ∈ R is idempotent in R, then by (1) the element α is

P−idempotent. Conversely, suppose that α is P−idempotent for some
x, y ∈ R. Since α2 − α ∈ P ,[

x2 xy + ye
0 e2

]
−

[
x y
0 e

]
=

[
x2 − x xy + ye− y

0 e2 − e

]
∈ P

Thus e2 = e. Similarly, we can prove (3) and (4). □
Proposition 3.3. For any element a ∈ R the following hold:
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(1) If a is a regular element in R, then for every x ∈ R, the
elements:

α =

[
x 0
0 a

]
, α′ =

[
0 x
a 0

]
are P−regular in M2(R).

(2) If for some x ∈ R, the element α =

[
x 0
0 a

]
is P−regular in

M2(R), then a is regular in R.

(3) If for some x ∈ R, the element α =

[
0 x
a 0

]
is P−regular in

M2(R), then a is regular in R.
(4) If a is a regular element in R, then for every x ∈ R, the ele-

ments:
α =

[
a 0
0 x

]
, α′ =

[
0 a
x 0

]
are Q−regular in M2(R).

(5) If for some x ∈ R, the element α =

[
a 0
0 x

]
is Q−regular in

M2(R), then a is regular in R.

(6) If for some x ∈ R, the element α =

[
0 a
x 0

]
is Q−regular in M2(R), then a is regular in R.

Proof. (1) Suppose that a is a regular element in R, then a = aba for
some b ∈ R. For every x1, y1 ∈ R,

β =

[
x1 y1
0 b

]
∈ M2(R)

such that

αβα− α =

[
xx1x xy1a
0 aba

]
−
[
x 0
0 a

]
=

[
xx1x− x xy1a

0 aba− a

]
∈ P

and for every t =

[
a′ b′

0 0

]
∈ P where a′, b′ ∈ R

αβt =

[
xx1 xy1
0 ab

] [
a′ b′

0 0

]
=

[
xx1a

′ xx1b
′

0 0

]
∈ P

this shows that αβP ⊆ P . Thus, α is an P−regular element in M2(R).
Similarly, we can prove that for every x′, y′ ∈ R, the element:

β′ =

[
0 b
x1 y1

]
∈ M2(R)
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such that α′β′α′ − α′ ∈ P and α′β′P ⊆ P . i.e., α′ is a P−regular
element in M2(R).
(2) Suppose that α is P−regular in M2(R), then there exists

β =

[
y z
r b

]
∈ M2(R)

where y, z, r, b ∈ R such that αβα− α ∈ P , so[
xyx xza
arx aba

]
−
[
x 0
0 a

]
=

[
xyx− x xza
arx aba− a

]
∈ P

This shows that aba = a. i.e., an element a is regular. (3) It is proved
in the similar way as in the proof of (2). (4) It is proved in the similar
way as in the proof of (1). (5) and (6) It is proved in the similar way
as in the proof of (2) and (3). □

4. r−Clean Rings Relative to Right Ideal

Recall that an element x of a ring R is r−clean if x = a + e, where
a ∈ R is regular and e ∈ R is idempotent, [3]. A ring R is r−clean if
every element x ∈ R is r−clean, [3].

Definition 4.1. Let R be a ring and P ̸= R be a right ideal of R.
We say that an element x of a ring R is r−clean relative to right ideal
P , if x = a+e, where e ∈ R is P−idempotent and a ∈ R is P−regular.
Also, we say a ring R is r−clean relative to right ideal P , if every
element x in R is r−clean relative to P .

Note that in previous definition, it is easy to see that for P = 0, a ring
R is a r−clean relative to P if and only if R is r−clean. Furthermore,
we have the following:

Lemma 4.2. Let R be a ring and P ̸= R be a right ideal of R. Then
the following hold:

(1) Elements 1,−1, 0 are r−cleans relative to P .
(2) Every right invertible element of R is r−clean relative to P .
(3) Every invertible element of R is r−clean relative to P .

Proof. (1) It is obvious, because 1 = 1+0, 0 = (−1)+1, −1 = −1+0,
where 1, 0 are P−idempotents and 1,−1 are P−regular elements.

(2) If a ∈ R has a right inverse, then R = aR ⊆ aR + P ⊆ R,
so R = aR + P and so 1 = ab + p0 for some b ∈ R, p0 ∈ P . Thus,
a − aba = p0a ∈ PR ⊆ P . For every t ∈ P , t = abt + p0t, so
abt = t− p0t ∈ P , i.e., abP ⊆ P . This shows that a is P−regular and
a = a+ 0. Thus a is r−clean relative to P .

(3) It is obvious by (2). □
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Lemma 4.3. Let R be a ring and P ̸= R be a right ideal of R. Then
the following hold:

(1) Every right P−invertible element of R is r−clean relative to P .
(2) Every P−idempotent element in R is r−clean relative to P .
(3) Every P−clean element in R is r−clean relative to P .
(4) Every P−regular element in R is r−clean relative to P .

Proof. (1) Let a ∈ R has a right P−inverse, then R = aR + P , so
1 = ax + p0 for some x ∈ R and p0 ∈ P . Thus a = axa + p0a and so
axa− a = −p0a ∈ PR ⊆ P . For every t ∈ P ,

axt = (1− p0t) = t− p0t ∈ P,

so axP ⊆ P . This shows that a is P−regular. Thus we van write
a = a+ 0, hence a is r−clean relative to P .

(2) Let e ∈ R be a P−idempotent element, then e2 − e ∈ P and
eP ⊆ P , so e2 = e+ p0 for some p0 ∈ P . Thus,

eee = ee2 = e(e+ p0) = e2 + ep0 = e+ p0 + ep0

so e3 − e = p0 + ep0 ∈ P and e2P ⊆ eP ⊆ P . This shows that e is
P−regular and so e is r−clean relative to P .

(3) Let x ∈ R be a P−clean element, then x = a+ e, where e ∈ R is
P− idempotent and a ∈ R has a right P−inverse, so R = aR+ P and
so 1 = ax+ p0 for some x ∈ R and p0 ∈ P , therefore

axa− a = −p0a ∈ PR ⊆ P.

For every t ∈ P , axt = (1 − p0)t = t − p0t ∈ P , i.e., axP ⊆ P , this
shows that a is P−regular, thus x is r−clean relative to P .

(4) It is clear. □

Also, we have the following:

Lemma 4.4. Let R be a ring, P ̸= R be a right ideal. Suppose that
x, y ∈ R are such that x − y ∈ P . Then y is r−clean relative to P if
and only if x is r−clean relative to P .

Proof. Let x, y ∈ R such that x − y ∈ P , then x = y + p0 for some
p0 ∈ P . Suppose that y is r−clean relative to P , then y = a+ e, where
a ∈ R is P−regular and e ∈ R is P−idempotent. So

x = (a+ p0) + e = a+ (e+ p0),

where a ∈ R is P−regular and e+ p0 ∈ R is P−idempotent by Lemma
2.1. Thus x is r−clean relative to P . We can prove the converse in the
similar way. □
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Proposition 4.5. Let R be a ring, P ̸= R be a right ideal of R and
x ∈ R, then x is r−clean relative to P if and only if 1− x is r−clean
relative to P .

Proof. Let x ∈ R be an r−clean element relative to P . Then write
x = a + e, where a ∈ R is P−regular and e ∈ R is P−idempotent.
Thus, 1− x = (−a) + (1− e). Since a ∈ R is P−regular, aba− a ∈ P
for some b ∈ R and abP ⊆ P , so

(−a)(−b)(−a)− (−a) = −(aba− a) ∈ P

and (−a)(−b)P = abP ⊆ P . This shows that −a ∈ R is P−regular.
Also, since e ∈ R is P−idempotent, 1−e ∈ R is P−idempotent. Thus,
1− x is r−clean relative to P . Conversely, if 1− x is r−clean relative
to P , write 1 − x = a + e, where a ∈ R is P−regular and e ∈ R is
P−idempotent. Thus, x = −a+ (1− e), like previous part, −a ∈ R is
P−regular and 1 − e ∈ R is P−idempotent. Therefore, x is r−clean
relative to P . □
Theorem 4.6. Every ring R is r−clean relative to any maximal right
ideal of R.

Proof. Let R be a ring and M be a maximal right ideal of R. Let
a ∈ R, then:
Case 1. If a ∈ M , then a− axa ∈ M for every x ∈ R. Also, for every
m ∈ M , axm ∈ M , i.e., axM ⊆ M , this shows that a is M−regular.
Since a = a+ 0 and 0 is M−idempotent, a is r−clean relative to M .
Case 2. If a ̸∈ M , then R = aR +M , so 1 = ax + p0 for some x ∈ R
and p0 ∈ M . So a − axa = p0a ∈ M . Also, for every t ∈ M we have
axt = (1 − p0)t = t − p0t ∈ P , this shows that a is M−regular. Since
a = a + 0 and 0 is M−idempotent, a is M−regular. Therefore R is
r−clean relative to M . □

Let R be a ring and P ̸= R be a right ideal of R. A ring R is
called P−local if for every element x ∈ R, either x or 1− x has a right
P−inverse, [6].

Proposition 4.7. Let R be a ring and P ̸= R be a right ideal of R. If
R is a P−local ring, then R is r−clean relative to right ideal P .

Proof. Suppose that R is a P−local ring. Let x ∈ R, then either x or
1− x has a right P−inverse.
Case 1. If x has a right P−inverse, then R = xR + P , so 1 = xy + p0
for some y ∈ R, p0 ∈ P . Thus x−xyx = p0x ∈ PR ⊆ P . On the other
hand, for every t ∈ P we have t = xyt+ p0t and so xyt = t− p0t ∈ P ,
therefore xyP ⊆ P . This shows that x is an P−regular element. Since
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x = x+ 0 and 0 is P−idempotent, x is r−clean relative to P .
Case 2. If 1 − x has a right P−inverse, then R = (1 − x)R + P , so
1 = (1− x)z + p1 for some z ∈ R, p1 ∈ P . Thus,

1− x = (1− x)z(1− x) + p1(1− x)

x− 1 = (x− 1)(−z)(x− 1) + p1(x− 1)

(x− 1)− (x− 1)(−z)(x− 1) = p1(x− 1) ∈ PR ⊆ P

Also, for every t ∈ P we have
t = (1− x)zt+ p1t = (x− 1)(−z)t+ p1t

and so (x−1)(−z)t = t−p1t ∈ P . This shows that (x−1)(−z)P ⊆ P .
Thus x− 1 is a P−regular element. Since x = (x− 1)+1, implies that
x is r−clean relative to P . Thus a ring R is r−clean relative to P . □
Theorem 4.8. Let R be a ring and P ̸= R be a right ideal of R. Then
the following statements are equivalent:

(1) R is P−local.
(2) R is r−clean relative to P and the set of P−idempotents in R

is {0, 1, p, 1 + p} for every p ∈ P .

Proof. (1) ⇒ (2) Suppose that R is P−local, then by Proposition 4.7
R is r−clean relative to P . Let e ∈ R be a P−idempotent. If e = 0
or e = 1, our proof is completed. Suppose that e ̸= 0, e ̸= 1, then by
assumption either e or 1− e has a right P−inverse.

If e has a right P−inverse, then R = eR+P , so 1 = ex+p1 for some
x ∈ R and p1 ∈ P , thus e = e2x+ ep1. Since e is P−idempotent, then
e2 = e+ p0 for some p0 ∈ P . So

e = e2x+ ep1

= (e+ p0)x+ ep1

= ex+ p0x+ ep1

= 1− p1 + p0x+ ep1

= 1 + p

where, p = −p1 + p0x+ ep1 ∈ P . Thus e = 1 + p.
If 1 − e has a right P−inverse, then R = (1 − e)R + P , so

1 = (1− e)y + p2 for some y ∈ R, p2 ∈ P , thus e = (e− e2) + ep2 ∈ P .
Our proof is completed.

(2) ⇒ (1) Let x ∈ R, by assumption x = a + e, where a ∈ R is a
P−regular element and e ∈ R is P−idempotent. Since a is P−regular,
there exists b ∈ R such that a−aba ∈ P and abP ⊆ P , so a = aba+ p0
for some p0 ∈ P . By assumption either e = 0, e = 1, e = p or e = 1+p,
where p ∈ P .
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If e = 0, then x = a. Since ab ∈ R is P−idempotent, either ab = 0,
ab = 1, ab = p′ or ab = p′ + 1, where p′ ∈ P .

I) - If ab = 0, then x = a = p0 ∈ P , so
R = aR + (1− a)R ⊆ (1− a)R + P ⊆ R

Therefore R = (1− a)R+P , this shows that 1− x = 1− a has a right
P−inverse.

II) - If ab = p′, then
a = aba+ p0 = p′a+ p0 ∈ PR + P ⊆ P

and so
R = aR + (1− a)R ⊆ (1− a)R + P ⊆ R.

Therefore R = (1− a)R+P , this shows that 1− x = 1− a has a right
P−inverse.

III) - If ab = 1, then R = aR + (1 − ab) = aR and so R = aR + P
this shows that x = a has a right P−inverse.

IV) - If ab = 1 + p′, then
R = aR + (1− ab) = aR + (−p′)R = aR + P

and so R = aR + P , this shows that x = a has a right P−inverse.
If e = p, then

x = a+ e = (aba+ p0) + p = aba+ (p0 + p) = aba+ p′′,

where, p′′ = p0 + p ∈ P .
I) - If ab = 0, then x = aba+ p′′ = p′′ ∈ P , so

R = xR + (1− x)R ⊆ (1− x)R + P ⊆ R.

Therefore R = (1−x)R+P , this shows that 1−x has a right P−inverse.
II) - If ab = p′, then

a = aba+ p0 = p′a+ p0 ∈ PR + P ⊆ P,

so x = a+ e = a+ p ∈ P , thus
R = xR + (1− x)R ⊆ (1− x)R + P ⊆ R.

Therefore R = (1−x)R+P , this shows that 1−x has a right P−inverse.
III) - If ab = 1, then

x = a+ e = (aba+ p0) + p = a+ (p0 + p) = a+ p1,

where, p1 = p0 + p ∈ P . Since R = aR+ (1− ab)R = aR, R = aR and
so
R = aR = (a+ p1 + (−p1))R ⊆ (a+ p1)R + (−p1)R ⊆ xR + P ⊆ R.

Thus R = xR + P , this shows that x has a right P−inverse.
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IV) - If ab = 1 + p′, then
x = a+ e

= (aba+ p0) + p

= (1 + p′)a+ (p0 + p)

= a+ p′a+ p0 + p

= a+ p2,

where, p2 = p′a+ p0 + p ∈ P . Thus,
R = aR + (1− ab)R = aR + (−p′)R ⊆ aR + P ⊆ R.

So R = aR + P , therefore,
R = aR + P

= (a+ p2 − p2)R + P

⊆ (a+ p2)R + (−p2)R + P

⊆ xR + P

⊆ R

so R = xR + P , this shows that x has a right P−inverse.
If e = 1, then x = a+ e = a+ 1.
I) - If ab = 0, then a = aba+ p0 = p0, so x = 1 + p0. Thus

R = (1 + p0 − p0)R ⊆ (1 + p0)R + (−p0)R ⊆ xR + P ⊆ R

So R = xR + P , this shows that x has a right P−inverse.
II) - If ab = p′, then a = aba+p0 = p′a+p0 ∈ P , so x = a+e = a+1,

thus
R = (1 + a− a)R ⊆ (1 + a)R + (−a)R ⊆ xR + P ⊆ R

therefore R = xR + P , this shows that x has a right P−inverse.
III) - If ab = 1, then x = a + e = a + 1, so a = x − 1 and so

−a = 1 − x. Thus R = aR + (1 − ab)R = aR = (−a)R = (1 − x)R,
therefore R = (1−x)R+P , this shows that 1−x has a right P−inverse.

IV) - If ab = 1 + p′, then
a = aba+ p0 = (1 + p′)a+ p0 = a+ p′a+ p0 = a+ p3,

where, p3 = p′a+ p0 ∈ P . Since x = a+ e = a+ 1, −a = 1− x. Thus,
R = aR + (1− ab)R = aR + (−p′)R ⊆ aR + P ⊆ R.

So
R = aR + P = (−a)R + P = (1− x)R + P

this shows that 1− x has a right P−inverse.
If e = 1 + p, then x = a+ e+ 1.
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I) - If ab = 0, then a = aba+ p0 = p0, so
x = a+ e = p0 + p+ 1 = 1 + p4,

where, p4 = p0 + p ∈ P . Thus,
R = (1 + p4 − p4)R ⊆ (1 + p4)R + (−p4)R ⊆ xR + P ⊆ R.

So R = xR + P , this shows that x has a right P−inverse.
II) - If ab = p′, then a = aba+p0 = p′a+p0 ∈ P . Suppose that a = t,

where t ∈ P . Then x = a+e = t+1+p = 1+p5 where p5 = t+p ∈ P .
Thus,

R = (1 + p5 − p5)R ⊆ (1 + p5)R + (−p5)R ⊆ xR + P ⊆ R

Therefore R = xR + P , this shows that x has a right P−inverse.
III) - If ab = 1, then x = a+ e = a+1+ p, so 1− x = −a− p. Since

R = aR + (1− ab)R = aR,

R = aR = (−a)R = (−a−p+p)R ⊆ (−a−p)R+pR ⊆ (1−x)R+P ⊆ R.

Thus, R = (1− x)R+ P , this shows that 1− x has a right P−inverse.
IV) - If ab = 1 + p′, then

R = aR + (1− ab)R = aR + (−p′)R ⊆ aR + P ⊆ R

So R = aR + P . Since x = a+ e = a+ (1 + p), 1− x = −a− p. Thus
R = aR + P

= (−a)R + P

= (−a− p+ p)R + P

⊆ (−a− p)R + pR + P

⊆ (1− x)R + P

⊆ R

Therefore R = (1 − x)R + P , this shows that 1 − x has a right
P−invertible. So the proof is completed. □

Lemma 4.9. Let R be a ring, P ̸= R be a right ideal of R. If R is a
P−clean ring, then R is r−clean relative to P .

Proof. Suppose that R is a P−clean ring. Let x ∈ R, then x = a + e,
where a ∈ R has a right P−inverse and e ∈ R is P−idempotent. So
R = aR + P and therefore 1 = ab + p0 for some b ∈ R, p0 ∈ P , so
a − aba = p0a ∈ PR ⊆ P . Also, for every t ∈ P , abt = t − p0t ∈ P ,
i.e., abP ⊆ P , thus a is P−regular. Therefore R is r−clean relative to
P . □
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Theorem 4.10. Let R be a ring, P ̸= R be a right ideal of R. If R is
a r−clean ring relative to P and the P−idempotents of R are the only
0, 1, p and 1 + p for every p ∈ P , then R is a P−clean ring.

Proof. Let x ∈ R, then x = a+ e, where a ∈ R is a P−regular element
and e ∈ R is P−idempotent, so e2 = e + p0, eP ⊆ P for some p0 ∈ P
and a = aba+ p1, abP ⊆ P for some p1 ∈ P . Now we consider several
cases.

If a = 0, then x = e = (2e − 1) + (1 − e), where 1 − e ∈ R is
P− idempotent and 2e− 1 ∈ R has a right P−inverse, hence

(2e− 1)(2e− 1) = 4e2 − 4e+ 1 = 4(e+ p0)− 4e+ 1 = 1 + 4p0

i.e., 1− (2e− 1)(2e− 1) ∈ P . Thus, x = e is a P−clean element.
Suppose that a ̸= 0. Since ab ∈ R is P−idempotent, by assumption

either ab = 0, ab = 1, ab = p or ab = 1 + p where p ∈ P .
If ab = 0, then a = aba+ p1 = p1 ∈ P and so

x = a+ e = p1 + e = (2e− 1) + (1− e) + p1 = (2e− 1) + ((1− e) + p1)

Since e ∈ R is P−idempotent, 1 − e ∈ R is P−idempotent and by
Lemma 2.1, (1 − e) + p1 ∈ R is P−idempotent. Thus x is P−clean,
hence 2e− 1 has a right P−inverse.

If ab = 1, then R = aR + (1 − ab)R = aR, so R = aR + P , i.e., a
has a right P−inverse, thus x is P−clean.

If ab = p, then a = aba + p1 = pa + p1 ∈ P . Suppose that a = p2,
where p2 ∈ P . Then
x = a+ e = p2 + e = (2e− 1) + (1− e) + p2 = (2e− 1) + ((1− e) + p2)

Since e ∈ R is P−idempotent, 1 − e ∈ R is P−idempotent and by
Lemma 2.1, (1 − e) + p2 ∈ R is P−idempotent. Thus x is P−clean,
hence 2e− 1 has a right P−inverse.

If ab = 1 + p, then
R = aR + (1− ab)R = aR + (−p)R ⊆ aR + P ⊆ R

so R = aR+P , This shows that a has a right P−inverse. Thus x = a+e
is P−clean. Therefore a ring R is P−clean. □

From Theorem 4.8 and Theorem 4.10, we can obtain the following:

Corollary 4.11. Let R be a ring and P ̸= R be a right ideal of R.
Then the following statements are equivalent:

(1) R is P−local.
(2) R is r−clean relative to P and the set of P−idempotents in R

is {0, 1, p, 1 + p} for every p ∈ P .
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(3) R is P−clean and the set of P−idempotents in R is
{0, 1, p, 1 + p} for every p ∈ P .

Proof. (1) ⇔ (2) It is clear by Theorem 4.8.
(2) ⇒ (3) It can be obtained by Theorem 4.10.
(3) ⇒ (2) It follows from Lemma 4.9. □

Proposition 4.12. Let R be a ring and P ̸= R be a right ideal of R.
Then the following statements are equivalent:

(1) R is r−clean relative to right ideal P .
(2) For every x ∈ R, x = a − e, where a ∈ R is P−regular and

e ∈ R is P−idempotent.

Proof. (1) ⇒ (2) Suppose that R is a r−clean ring relative to P . Let
x ∈ R, then −x ∈ R and −x = a + e, where a ∈ R is an P−regular
element and e ∈ R is P−idempotent, so x = (−a) − e. Since a is
P−regular, there exists b ∈ R such that aba − a ∈ P and abP ⊆ P .
Thus,

(−a)(−b)(−a)− (−a) = −aba+ a = −(aba− a) ∈ P

and (−a)(−b)R = abP ⊆ P , this shows that −a ∈ R is a P−regular
element.

(2) ⇒ (1) Let x ∈ R, then −x ∈ R and −x = a − e, where a ∈ R
is a P−regular element and e ∈ R is P−idempotent, so x = (−a) + e.
Since a is P−regular, there exists b ∈ R such that aba − a ∈ P and
abP ⊆ P . Thus,

(−a)(−b)(−a)− (−a) = −aba+ a = −(aba− a) ∈ P

and (−a)(−b)R = abP ⊆ P , this shows that −a ∈ R is a P−regular
element. Thus, R is r−clean relative to P . □

Theorem 4.13. Let R be a ring and P ̸= R be a right ideal of R. If
the set of P− idempotents in R is {0, 1, p, 1+p} for every p ∈ P . Then
the following conditions are equivalent:

(1) R is r−clean relative to P .
(2) For every x ∈ R, either x or 1− x is a P−regular element.

Proof. (1) ⇒ (2) Suppose that R is r−clean relative to P . Let x ∈ R,
then x = a+e, where a ∈ R is P−regular and e ∈ R is P−idempotent.
So by assumption:

If e = 0, then x = a is P−regular.
If e = p, then x = a+p. Since p ∈ P and a is P−regular, by Lemma

3.1, x = a+ p is P−regular.
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If e = 1, then x = a + 1, so 1− x = −a. Since a is P−regular then
aba− a ∈ P and abP ⊆ P for some b ∈ R, so

(−a)(−b)(−a)− (−a) = −aba+ a = −(aba− a) ∈ P,

(−a)(−b)P = abP ⊆ P.

This shows that −a ∈ R is a P−regular element, therefore 1− x = −a
is P−regular.

If e = 1+p, then x = a+e = a+1+p, so 1−x = −(a+p). Since a is
P−regular, by Lemma 3.1, a+ p is P−regular and so 1−x = −(a+ p)
is a P−regular element.

(2) ⇒ (1). Let x ∈ R, by assumption, either x or 1−x is P−regular.
If x is P−regular, then x = x + 0 is r−clean relative to P . Suppose
that 1− x is P−regular, x− 1 is P−regular and so x = (x− 1) + 1 is
r−clean relative to P . Thus, R is a r−clean ring relative to P . □

Let R be a ring and S = M2(R) be the ring of all 2×2 matrices over
a ring R. It is clear that the sets:

P = {
[
a b
0 0

]
: a, b ∈ R} and Q = {

[
0 0
a b

]
: a, b ∈ R}

are right ideals in S such that P ̸= S, Q ̸= S. Now we provide the
connection between the r−clean elements in R and r−clean elements
relative to P (relative to Q) in S, in the following:

Theorem 4.14. For any element a ∈ R the following hold:
(1) If a is a r−clean element in R, then for every x, y ∈ R, the

element α =

[
x y
0 a

]
is r−clean relative to P in S.

(2) If for some x, y ∈ R the element α =

[
x y
0 a

]
is r−clean relative

to P in S, then the element a is r−clean in R.
(3) Let a be a r−clean element in R, then for every x, y ∈ R, the

element α =

[
a 0
x y

]
is r−clean relative to Q in S.

(4) If for some x, y ∈ R the element α =

[
a 0
x y

]
is r−clean relative

to Q in S, then the element a is r−clean in R.

Proof. (1) Suppose that a is r−clean in R, then a = u+e, where u ∈ R
is a regular element and e ∈ R is idempotent. So, for every x, y ∈ R

α =

[
x y
0 a

]
=

[
x y
0 u+ e

]
=

[
x 0
0 u

]
+

[
0 y
0 e

]
.
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Since u ∈ R is regular, by Proposition 3.3, the element β =

[
x 0
0 u

]
is P−regular in S. Also, since e ∈ R is idempotent, by Proposition
3.2, the element γ =

[
0 y
0 e

]
is P−idempotent in S. Thus, the element

α = β + γ is r−clean relative to P in S.
(2) Suppose that for some x, y ∈ R, the element α =

[
x y
0 a

]
is

r−clean relative to P in S. Then α = β+γ, where β ∈ S is P−regular
and γ ∈ S is P−idempotent.

Suppose that γ =

[
x2 y2
z2 e

]
∈ S, where x2, y2, z2, e ∈ R. Since

γ is P− idempotent, then γP ⊆ P which implies that z2 = 0. So
γ =

[
x2 y2
0 e

]
and by Proposition 3.2, e ∈ R is idempotent in R.

Suppose that β =

[
x1 y1
z1 u

]
∈ S, where x1, y1, z1, u ∈ R. Since

α = β + γ implies that z1 = 0 and a = u+ e. Since β =

[
x1 y1
0 u

]
is

P− regular in S, by Proposition 3.3, u ∈ R is regular. This shows
that an element a is r−clean.

(3) It is proved in the similar way as in (1).
(4) It is proved in the similar way as in (2). □
From Theorem 4.14, we can obtain the following:

Corollary 4.15. Let R be a ring, P ̸= R be a right ideal of R and
a ∈ R. Then the following statements hold:

(1) The element a is r−clean in R if and only if there exists x, y ∈ R

such that the element
[
x y
0 a

]
is r−clean relative to P in S.

(2) The element a is r−clean in R if and only if there exists x ∈ R

such that the element
[
x 0
0 a

]
is r−clean relative to P in S.

(3) The element a is r−clean in R if and only if there exists x, y ∈ R

such that the element
[
a 0
x y

]
is r−clean relative to Q in S.

(4) The element a is r−clean in R if and only if there exists x ∈ R

such that the element
[
a 0
0 x

]
is r−clean relative to Q in S.

Lemma 4.16. Let R be a ring, P ̸= R be a right ideal of R and a ∈ R.
Then the following statements hold:
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(1) The element a is r−clean in R if and only if the element

α =

[
1 0
0 a

]
is r−clean relative to P in S.

(2) The element a is r−clean in R if and only if the element

α =

[
a 0
0 1

]
is r−clean relative to Q in S.

Proof. (1)(⇒) Suppose that a is r−clean, then a = x+ e, where x ∈ R
is regular and e ∈ R is idempotent, so x = xyx for some y ∈ R. Thus,

β =

[
1 0
0 x

]
, γ =

[
1 0
0 y

]
∈ S

βγβ − β =

[
1 0
0 x

]
·
[
1 0
0 y

]
·
[
1 0
0 x

]
−
[
1 0
0 x

]
=

[
0 0
0 xyx− x

]
∈ P

and for any λ =

[
u v
0 0

]
∈ P , where u, v ∈ R and βγλ =

[
u v
0 0

]
∈ P .

This shows that βγP ⊆ P . Thus, β ∈ S is a P−regular element is S.
Also, since e ∈ R is idempotent, δ =

[
0 0
0 e

]
∈ S is P−idempotent and

α =

[
1 0
0 a

]
=

[
1 0
0 x+ e

]
=

[
1 0
0 x

]
+

[
0 0
0 e

]
= β + δ

where β ∈ S is P−regular and δ ∈ S is P−idempotent, thus α is
r−clean relative to P in S.
(⇐) Suppose that α =

[
1 0
0 a

]
is r−clean relative to P is S, then

α = β + δ, where β ∈ S is P−regular and δ ∈ S is P−idempotent.
Suppose that δ =

[
u v
w e

]
, where u, v, w, e ∈ R, since δP ⊆ P , w = 0,

so δ =

[
u v
0 e

]
. Also, since δ2 − δ ∈ P , e2 = e, so e ∈ R is idempotent.

Suppose that β =

[
x y
z b

]
, where x, y, z, b ∈ R, since α = β + δ, z = 0,

so β =

[
x y
0 b

]
and a = b + e. Since β =

[
x y
0 b

]
is P−regular in S,

so by Theorem 4.14 the element b ∈ R is regular. Thus, a is a regular
element in R. Similarly, we can prove (2). □

Let R be a ring and S = M2(R) be the ring of all 2×2 matrices over
a ring R. It is clear that the set

S0 =
{[

x 0
0 y

]
: x, y ∈ R

}
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is a subring in S with identity element. Also, the sets

P0 =
{[

a 0
0 0

]
: a ∈ R

}
and Q0 =

{[
0 0
0 a

]
: a ∈ R

}
are right ideals in S0 and P0 ̸= S0, Q0 ̸= S0. Then we have the
following:

Theorem 4.17. For any ring R the following hold:
(1) A ring R is a r−clean ring if and only if the ring S0 is a r−clean

ring relative to right ideal P0.
(2) A ring R is a r−clean ring if and only if the ring S0 is a r−clean

ring relative to right ideal Q0.
(3) The ring S0 is a r−clean ring relative to right ideal P0 if and

only if the ring S0 is a r−clean ring relative to right ideal Q0.

Proof. (1)(⇒) Suppose that a ring R is r−clean. Let α =

[
x 0
0 u

]
∈ S0,

where x, u ∈ R. Since R is r−clean, then u = a + e where a ∈ R is a
P−regular element and e ∈ R is idempotent. Then

α =

[
x 0
0 u

]
=

[
x 0
0 a+ e

]
=

[
x 0
0 a

]
+

[
0 0
0 e

]
Let β =

[
x 0
0 a

]
and γ =

[
0 0
0 e

]
, then α = β + γ.

Since a ∈ R is regular, by Proposition 3.3, β ∈ S0 is a P0−regular
element in S0.

On the other hand, since e ∈ R is idempotent, by Proposition 3.2,
γ ∈ S0 is P− idempotent. Thus α is a r−clean element relative to P0

in S0. Therefore a ring S0 is r−clean relative to P0.
(⇐) Let x ∈ R, then α =

[
0 0
0 x

]
∈ S0. Since S0 is a r−clean

ring relative to P0, α = β + γ where β =

[
y 0
0 a

]
∈ S0 is P0−regular,

for some y, a ∈ R and γ =

[
z 0
0 e

]
∈ S0 is P0−idempotent, for some

z, e ∈ R.
Since β is P0−regular in S0, by Proposition 3.3 a is regular in R.
Since γ is P0−idempotent in S0, by Proposition 3.2 a is idempotent

in R. Thus x = a + e is a r−clean element, therefore a ring R is
r−clean. Similarly, we can prove (2).

(3) Follows immediately from (1) and (2). □
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r-CLEAN RINGS RELATIVE TO RIGHT IDEALS

H. HAKMI AND B. ALHUSSEIN

راست ایده آل های به نسبت r-تمیز حلقه های

الحسین٢ بشار و حکمی١ حمزه

سوریه دمشق، دمشق، دانشگاه ریاضی، ١,٢گروه

عنصر یک و منظم عنصر یک جمع ،R عنصر هر هرگاه می نامیم r-تمیز را R یکدار و شرکت پذیر حلقه ی
خواص و کرده معرفی را راست ایده آل  به نسبت r-تمیز حلقه های مفهوم مقاله، این در باشد. خودتوان
r-تمیز حلقه ی  و r-تمیز حلقه ی بین روابطی راستا، این در کرد. خواهیم بررسی را حلقه ها این مختلف
لازم شرایط برخی می دهیم. ارائه را P راست ایده آل یک به نسبت R حلقه ی روی ٢ × ٢ ماتریس های
P-تمیز و P-موضعی P-منظم، خواص اساس بر باشد، r-تمیز حلقه ای R حلقه ی اینکه برای کافی و
r-تمیز خودش، ماکسیمال ایده آل  هر به نسبت حلقه یک می دهیم نشان همچنین، کرد. خواهیم ارائه حلقه

است.

ایده آل. یک به نسبت r-تمیز حلقه ی P)-منظم؛ ) حلقه ی P)-خودتوان؛ ) کلیدی: کلمات
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