Journal of Algebraic Systems

Vol. 10, No. 2, (2023), pp 225-243

GRADED I-PRIME SUBMODULES

I. AKRAY*, S. A. OTHMAN, A. K. JABBAR AND H. S. HUSSEIN

Abstract

Let $R=\bigoplus_{g \in G} R_{g}$ be a G-graded commutative ring with identity, I be a graded ideal and let M be a G-graded unitary R-module, where G is a semigroup with identity e. We introduce graded I-prime ideals (submodules) as a generalizations of the classical notions of prime ideals (submodules). We show that the new notions inherite the basic properties of the classical ones. In particular, we investigate the localization theory of these two concepts. We prove that for a faithfull flat module F, a graded submodule P of M is I-prime if and only if $F \otimes P$ is graded I-prime submodule of $F \otimes M$. As an application, for finitely generated graded module M over Noetherian graded ring R, the completion of graded I-prime submodules is I-prime submodule.

1. Introduction

Throughout this paper, R is a commutative graded ring with nonzero identity, I is a fixed graded ideal of R and M is a unitary graded R-module. The concept of weakly prime ideals was introduced by Anderson and Smith (2003) [6], which is a generalization of the concept of prime ideals. Weakly primary ideals were introduced and studied by Atani S. E. and Farzalipour F. in 2005, [7]. The class of prime submodules of modules was introduced and studied in 1992 as a generalization of the class of prime ideals of rings [14]. Then, many generalizations of prime submodules were studied such as primary,

DOI: 10.22044/JAS.2022.11158.1556.
MSC(2010): Primary: 13A02; Secondary: 13A15, 16W50.
Keywords: I-prime ideal; I-prime submodule; Graded prime ideal; Graded prime submodule.
Received: 1 September 2021, Accepted: 7 January 2022.

* Corresponding author.
classical prime, weakly prime and classical primary submodules, see [11, 12, 15]. Graded prime ideals was introduced by Refai, Hailat and Obiedat in [17] whereas graded weakly prime ideals and graded weakly prime submodules were introduced and investigated by Atani S. E. [8] and [9]. The authors in [3, 5] introduced the notion I-prime ideals and I-prime submodules. This motivated us to study these concepts in the graded rings and graded modules. Let G be an arbitrary semigroup with identity e. A commutative ring R is called a G-graded commutative ring if there exists a family $\left\{R_{g}: g \in G\right\}$ of additive subgroups of R such that $R=\bigoplus_{g \in G} R_{g}$ such that $1 \in R$ and $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$. The summands R_{g} are called homogeneous components and elements of these summands are called homogeneous elements of degree g. If $a \in R$, then a can be written uniquely as finite sum as $\sum_{g \in G} a_{g}$ where a_{g} is the component of a in R_{g} (of degree g). Also, we write $h(R)=\cup_{g \in G} R_{g}$. Moreover, if $R=\bigoplus_{g \in G} R_{g}$ is a graded ring, then R_{e} is a subring of $R, 1_{R} \in R_{e}$ and R_{g} is an R_{e}-module for all $g \in G$ [13]. Let P be an ideal of R. For $g \in G$, let $P_{g}:=P \cap R_{g}$. Then P is a graded ideal of graded ring R if $P=\bigoplus_{g \in G} P_{g}$. In this case, P_{g} is a called the g-component of P. In this article, all ideals and submodules taken are graded and all elements taken are homogeneous.

An R-module M is said to be a multiplication module if every submodule N of M has the form $I M$ for some ideal I of R. Note that $I \subseteq\left(N:_{R} M\right), N=I M \subseteq\left(N:_{R} M\right) M \subseteq N$ so that $N=\left(N:_{R} M\right) M$, where $\left(N:_{R} M\right)=\{r \in R: r M \subseteq N\}$ and briefly we will write $(N: M)$. Hence an R-module M is a multiplication module if every submodule N of M has the form $N=(N: M) M$. For submodules $N=I_{1} M$ and $K=I_{2} M$ of a multiplication R-module M, the product $N K$ is defined by $N K=I_{1} I_{2} M$. This product is independent of presentations of N and K, see [10]. A module M is called faithful if it has zero annihilator.

In section 2, we define graded I-prime ideals in G-graded commutative rings. The aim of this section is to explore some basic facts of these class of ideals. Various properties of graded I-prime ideals are considered. First, we give three equivalents to graded I-prime ideals (Theorem 2.3). Indeed, we prove that if r is a nonzero element in R with $(0: R r) \subseteq R r$ and $I R r \subseteq R r^{2}$, then $R r$ is a graded I-prime ideal if and only if $R r$ is graded prime ideal of R (Corollary 3.13).

Section 3 is devoted to introduce graded I-prime submodules. We prove that the class of graded I-prime submodules is closed under extensions, that is, for any two submodules $Q \subseteq P$ of M and any exact sequence $0 \rightarrow Q \rightarrow P \rightarrow \frac{P}{Q} \rightarrow 0$, the middle term is I-prime
submodule if and only if so are the left and right terms (Theorem 3.9). Also we show that if M is a finitely generated faithful multiplication graded R-module and P is a proper graded submodule of M with $(I P: M)=I(P: M)$, then P is a graded I-prime submodule of M if and only if $(P: M)$ is a graded I-prime ideal of R (Theorem 3.17). Furthermore, for graded I-prime submodule P of M and a flat R-module F with $F \otimes P \neq F \otimes M, F \otimes P$ is a graded I-prime submodule of $F \otimes M$ (Theorem 3.24). If F is faithfuly flat, then the converse is also true. In particular, if M is finitely generated graded module over Noetherian graded ring R, then the completion of graded I-prime submodules is again graded I-prime (Corollary 3.25).

2. Graded I-Prime ideals

Let R be a ring and I be a fixed ideal of R. We recall that a proper ideal P of R is I-prime if for $a, b \in R$ with $a b \in P ? I P$ implies $a \in P$ or $b \in P$. Now we adjust the definition of I-prime ideal to graded rings appropriately.

Definition 2.1. Let I be a an ideal of R_{e} and P be a graded ideal of R. Then P is called graded I-prime ideal of R if $P \neq R$; and whenever $r, s \in h(R)$ with $r s \in P-I P$, we have $r \in P$ or $s \in P$.

Let Q be a graded ideal of a graded ring R. Then R / Q is a G-graded ring by $(R / Q)_{g}=\left(R_{g}+Q\right) / Q$ for all $g \in G$.

Example 2.2. Consider the graded ring $R=\mathbb{R}[x, y]$ where \mathbb{R} is the set of real numbers and $G=\mathbb{N}_{0}$ is the set of nonnegative integers. Then R is a G-graded ring by

$$
R_{n}=\oplus_{\substack{i+j=n, i, j \geq 0}} \mathbb{R} x^{i} y^{j}
$$

with $\operatorname{deg}(x)=\operatorname{deg}(y)=1$. Thus $J=\left\langle x^{2}, x y, y^{2}\right\rangle$ is a graded ideal of R. Suppose that $S=R / J=\mathbb{R}[x, y] /\left\langle x^{2}, x y, y^{2}\right\rangle$. Then S is G-graded by $S_{n}=(R / J)_{n}=\left(R_{n}+J\right) / J$. Let $P=\langle\bar{x}, \bar{y}\rangle$ be a graded ideal of S. Then for any graded ideal I of S, P is a graded I-prime ideal of S.

It is easy to see that a graded proper ideal P of a graded ring R is a graded I-prime ideal of R if and only if $\frac{P}{I P}$ is graded $\{0\}-$ prime in $\frac{R}{I P}$. Let I, J be two ideals of R_{e} with $I \subseteq J$ and P be a graded ideal of R. If P is graded I-prime ideal of R, then P is graded J-prime ideal. In the following theorem, we give some characterizations for graded I-prime ideals in graded rings.

Theorem 2.3. Let P be a proper graded ideal of R. Then the following conditions are equivalent:
(1) P is graded I-prime ideal in R;
(2) For $r \in h(R)-P,(P: r)=P \cup(I P: r)$;
(3) For $r \in h(R)-P,(P: r)=P$ or $(P: r)=(I P: r)$;
(4) For graded ideals J and K of R, if $J K \subseteq P$ and $J K \nsubseteq I P$, then $J \subseteq P$ or $K \subseteq P$.

Proof. $(1 \Rightarrow 2)$ Assume that P is a graded I-prime ideal in R and $r \in h(R)-P$. Suppose that $a \in h(P: r)$, that is $r a \in P$. Now if $r a \in I P$, then $a \in(I P: r)$. If $r a \notin I P$ and as P is graded I-prime ideal in R and $r \notin P$, then $a \in P$. Therefore $(P: r) \subseteq P \cup(I P: r)$. The other inclusion holds, because $I P \subseteq P$.
$(2 \Rightarrow 3)$ The union of two ideals is an ideal if one contains the other.
$(3 \Rightarrow 4)$ Suppose that J and K are two graded ideals of R such that $J K \subseteq P$. Let $J \nsubseteq P$ and $K \nsubseteq P$, we want to show that $J K \subseteq I P$. Assume $r \in h(J)$, first if $r \notin P$, then $r K \subseteq P$, that is $K \subseteq(P: r)$. Therefore by assumption $K \subseteq(I P: r)$. Hence $r K \subseteq I P$. Now if $r \in J \cap P$, take $s \in h(J)-P$. Then $r+s \in J-P$. By the first case, for each $t \in K$ we have $s t \in I P$ and $(r+s) t \in I P$. Thus $r t+s t \in I P$, that is $r t \in I P$. Therefore $J K \subseteq I P$.
$(4 \Rightarrow 1)$ Assume that for any two graded ideals J and K of R, if $J K \subseteq P$ and $J K \nsubseteq I P$, then $J \subseteq P$ or $K \subseteq P$. We claim that P is graded I-prime ideal in R. Let $r s \in P-I P$, where $r, s \in h(R)$. Take $J=R r$ and $K=R s$. Then $J K \subseteq P-I P$. By hypothesis, either $R r \subseteq P$ or $R s \subseteq P$, that is $r \in P$ or $s \in P$.

Let G be a group with identity e and R be a G-graded ring and $S \subseteq h(R)$ be a multiplicative set. Then $S^{-1} R$ is a G-graded ring with $\left(S^{-1} R\right)_{g}=\left\{\frac{a}{s}: a \in R_{h}, s \in S \cap R_{h g^{-1}}\right\}$ for all $g \in G$. If I is a graded ideal of R, then $S^{-1} I$ is a graded ideal of $S^{-1} R$. We generalize [3, Proposition 2.14] to the graded I-prime ideals.

Proposition 2.4. Let G be a group and let $Q \subseteq P$ be two graded ideals of G-graded ring R. If P is a graded I-prime ideal of R, then the following statements hold:
(1) $\frac{P}{Q}$ is a graded I-prime ideal of $\frac{R}{Q}$;
(2) Suppose that S is a multiplicative closed subset of R_{e} with $P \cap S=\phi$. Then $S^{-1} P$ is a graded $S^{-1} I$-prime ideal of $S^{-1} R$.

Proof. (1) For $r, s \in h(R)$, let

$$
r s+Q=(r+Q)(s+Q) \in \frac{P}{Q}-I \frac{P}{Q}=\frac{P}{Q}-\frac{I P+Q}{Q} .
$$

Then $r s \in P-(I P+Q)$, hence $r s \in P-I P$. As P is graded I-prime, either $r \in P$ or $s \in P$. Therefore either $r+Q \in \frac{P}{Q}$ or $s+Q \in \frac{P}{Q}$. Thus $\frac{P}{Q}$ is graded I-prime ideal in $\frac{R}{Q}$.
(2) For $r s \in h(R)$ and $u, v \in S$ let

$$
\frac{r}{u} \cdot \frac{s}{v} \in S^{-1} P-S^{-1} I \cdot S^{-1} P \subseteq S^{-1} P-S^{-1}(I P)
$$

Then there is $a \in S$ such that $r s a \in P$ and rsa $\notin I P$. As P is graded I-prime ideal in $R, r \in P$ or $s a \in P$, that is $\frac{r}{u} \in S^{-1} P$ or $\frac{s}{v} \in S^{-1} P$. Therefore $S^{-1} P$ is a graded $S^{-1} I$-prime ideal of $S^{-1} R$.

Let R and S be two G-graded rings. A ring homomorphism $f: R \rightarrow S$ is said to be graded ring homomorphism if $f\left(R_{g}\right) \subseteq S_{g}$ for all $g \in G$. For any graded ideal J of R, We denote $\overline{f(J)}$ to the graded ideal generated by the elements of the set $f(J)$.

Proposition 2.5. Let $f: R \longrightarrow S$ be a graded ring homomorphism. If P is a graded I-prime ideal of R with $\operatorname{Ker} f \subseteq P$, then $\overline{f(P)}$ is a graded $\overline{f(I)}$-prime ideal of $f(R)$.
Proof. By [16, Lemma 3.11], we have $\overline{f(P)}$ is graded ideal of $f(R)$. Let $r s \in \overline{f(P)}-\overline{f(I) f(P)}=\overline{f(P)}-\overline{f(I P)}$, where $r, s \in h(f(R))$. Then there are $x, y \in h(R)$ such that $r=f(x)$ and $s=f(y)$, that is $f(x y)=f(x) f(y)=r s \in \overline{f(P)}-\overline{f(I P)}$. Therefore there is $u \in P-I P$ such that $f(x y)=f(u)$. Thus $f(x y)-f(u)=f(x y-u)=0$ and

$$
x y-u \in \operatorname{Ker} f \subseteq P .
$$

Hence $x y \in P$. If $x y \in I P$, then $r s=f(x y) \in f(I P)$ which is a contradiction. Hence $x y \notin I P$. As P is graded I-prime ideal, $x \in P$ or $y \in P$, that is, $r=f(x) \in f(P)$ or $s=f(y) \in f(P)$.

A graded ideal P of a graded ring R is weakly prime if for all $a, b \in R$ with $a b \in P-\{0\}$, then $a \in P$ or $a \in P$. Thus a graded ideal is weakly prime if and only if it is $\{0\}$-prime. Now we characterize graded rings in which every graded ideal is I-prime for a fixed graded ideal I by the following.

Proposition 2.6. If every graded ideal of a graded ring R is an I-prime and I is a graded ideal with $I^{2}=0$, then every graded ideal of R is weakly prime.

Proof. Let P be a graded ideal of R and $a, b \in h(R)$ such that $0 \neq a b \in P$. If $a b \notin I P$, then we are done. If $a b \in I P$, then

$$
a b \in I P-I . I P=I P-I^{2} P=I P-\{0\}
$$

and as $I P$ is I-prime ideal of $R, a \in I P \subseteq P$ or $b \in I P \subseteq P$, that is, $a \in P$ or $b \in P$. Hence P is Weakly Prime ideal of R.

3. Graded I-prime submodules

In this section we define the concept of I-prime submodules for graded modules. We investigate some basic properties of this notion. We begin this section by a definition.

Definition 3.1. Let P be a graded submodule of $M=\bigoplus_{g \in G} M_{g}$ and I a fixed ideal of R_{e}. Then
(1) P_{g} is an I-g-prime submodule of the R_{e}-module M_{g}, if $P_{g} \neq M_{g}$; and whenever $r \in R_{e}, m \in M_{g}$ with $r m \in P_{g}-I_{e} P_{g}$, then $r \in\left(P_{g}: M_{g}\right)$ or $m \in P_{g}$.
(2) P is graded I-prime submodule of M, if $P \neq M$; and whenever $r \in h(R)$ and $m \in h(M)$ with $r m \in P-I P$, then $r \in(P: M)$ or $m \in P$.

The following example shows that the class of graded prime submodules is a subclass of graded I-prime submodules.

Example 3.2. Let $R=\mathbb{Z}[i]=\mathbb{Z}+i \mathbb{Z}, G=\mathbb{Z}_{2}$ and $M=\mathbb{Z}_{54}[i]$. Then M is a graded R-module with $M_{0}=\mathbb{Z}_{54}$ and $M_{1}=i \mathbb{Z}_{54}$. Take $I=27 R$ as an ideal of R and $P=\langle 27 i\rangle$ be a submodule of $\mathbb{Z}_{54}[i]$ generated by the element $27 i$. Therefore P is a graded I-prime submodule of M since

$$
\begin{aligned}
P-I P & =\langle 27+i 27\rangle-27 R\langle 27+i 27\rangle \\
& =\langle 27+i 27\rangle-\langle 27+i 27\rangle \\
& =\phi .
\end{aligned}
$$

In otherside P is not graded prime submodule, since $3(9 i)=27 i \in P$ but neither $3 \in(P: M)$ nor $9 i \in P$.

Next, the following example is a graded I-prime submodule that is not I-prime submodule.

Example 3.3. Let $R=\mathbb{Z}[i]=\mathbb{Z}+i \mathbb{Z}, G=\mathbb{Z}_{2}$ and $M=R$ be an R-module. Take $I=2 R$ as a graded ideal of R and $P=2 M$. Then P is a graded submodule of M and $I P=4 M$. Therefore P is a graded I-prime submodule of M, but P as a submodule of M is not I-prime submodule since $(1-i)(1+i)=2 \in P-I P$ and neither $(1-i) \in(P: M)$ nor $(1+i) \in P$.

It is well-known that $P_{g}-I_{e} P_{g} \subseteq P-I P$, for any graded submodule P of M. Hence we conclude that for a graded I-prime submodule P of
M, P_{g} is an $I_{e^{-}} g$-prime submodule of M_{g} for all $g \in G$. The converse is not true. See the following counter example.
Example 3.4. Let $R=\mathbb{Z}[\sqrt{3}], G=\mathbb{Z}_{2}$ and $M=R$ be R-module. Take $I=3 \mathbb{Z}[\sqrt{3}]$ and $P=3 M=3 \mathbb{Z}+3 \sqrt{3} \mathbb{Z}$. Then $I P=9 \mathbb{Z}[\sqrt{3}]$ and $P_{0}=3 \mathbb{Z}, P_{1}=3 \sqrt{3} \mathbb{Z}$ are g-prime submoduls of M_{g} and also I - g-prime submodules for $g=0,1$. But P is not graded I-prime submodule of M, since $(2 \sqrt{3})(\sqrt{3})=6 \in P-I P$ with neither $2 \sqrt{3} \in(P: M)$ nor $\sqrt{3} \in P$.

We give a set of charactrizations of graded $I-g$-prime submodules and graded I-prime submodules.

Theorem 3.5. Let P be a graded submodule of an R-module M and I an ideal of R_{e}. Then the following conditions are equivalent:
(1) P_{g} is an $I-g$-prime submodule of M_{g};
(2) For $m \in M_{g}-P_{g},\left(P_{g}: m\right)=\left(P_{g}: M_{g}\right) \cup\left(I P_{g}: m\right)$;
(3) For $m \in M_{g}-P_{g},\left(P_{g}: m\right)=\left(P_{g}: M_{g}\right)$ or $\left(P_{g}: m\right)=\left(I P_{g}: m\right)$;
(4) If whenever $A K \subseteq P_{g}-I P_{g}$ with A an ideal of R_{e} and K an $R_{e}-$ submodule of M_{g}, then $A \subseteq\left(P_{g}: M_{g}\right)$ or $K \subseteq P_{g}$.

Proof. $(1 \Rightarrow 2)$ Let $m \in M_{g}-P_{g}$ and $a \in\left(P_{g}: m\right)-\left(I P_{g}: m\right)$. Then $a m \in P_{g}-I P_{g}$. As P_{g} is I - g-prime submodule of M_{g} and $m \notin P_{g}$. So $a \in\left(P_{g}: M_{g}\right)$.
$(2 \Rightarrow 3)$ It is obvious.
$(3 \Rightarrow 4)$ Let A be an ideal of R_{e} and K be a submodule of M_{g} such that $A K \subseteq P_{g}$. Assume that $A \nsubseteq\left(P_{g}: M_{g}\right)$ and $K \nsubseteq P_{g}$. We must prove that $A K \subseteq I P_{g}$. Let $a \in A$ and $m \in K$. First let $a \notin\left(P_{g}: M_{g}\right)$. Since $a m \in P_{g}$, then $a \in\left(P_{g}: m\right)$, that is $\left(P_{g}: m\right) \neq\left(P_{g}: M_{g}\right)$. Hence by our assumption $\left(P_{g}: m\right)=\left(I P_{g}: m\right)$. Therefore $a \in\left(I P_{g}: m\right)$. Hence $a m \in I P_{g}$. Now if $a \in A \cap\left(P_{g}: M_{g}\right)$. Let $u \in A-\left(P_{g}: M_{g}\right)$. Then $a+u \in A-\left(P_{g}: M_{g}\right)$. By the first case, for each $m \in K$ we have $u m \in I P_{g}$ and $(a+u) m \in I P_{g}$, that is $a m+u m \in I P_{g}$. Thus $a m \in I P_{g}$. It means that $A K \subseteq I P_{g}$.
$(4 \Rightarrow 1)$ Let $r m \in P_{g}-I P_{g}$. Take $A=R r$ and $K=R m$. Then $A K \subseteq P_{g}-I P_{g}$, that is $A K \subseteq P_{g}$ and $A K \nsubseteq I P_{g}$. Therefore by assuming $A \subseteq\left(P_{g}: M_{g}\right)$ or $K \subseteq P_{g}$. Hence $r \in A \subseteq\left(P_{g}: M_{g}\right)$ or $m \in K \subseteq P_{g}$. Thus $r \in\left(P_{g}: M_{g}\right)$ or $m \in P_{g}$. It means that P_{g} is I - g-prime submodule of M_{g}.

Theorem 3.6. Let P be a graded submodule of an R-module M. Then the following conditions are equivalent.
(1) P is a graded I-prime submodule of M.
(2) For $r \in h(R)-(P: M),(P: r)=P \cup(I P: r)$.
(3) For $r \in h(R)-(P: M),(P: r)=P$ or $(P: r)=(I P: r)$.

Proof. ($1 \Rightarrow 2$) Suppose P is a graded I-prime submodule. Take $r \in h(R)-(P: M)$ and $m \in(P: r)$. So $r m \in P$. If $r m \notin I P$, then P graded I-prime gives $m \in P$. If $r m \in I P$, then $m \in(I P: r)$.
$(2 \Rightarrow 3)$ It is clear.
$(3 \Rightarrow 1)$ Let $r m \in P-I P$ for $r \in h(R)$ and $m \in h(M)$. If $r \notin(P: M)$, then by hypothesis $(P: r)=P$ or $(P: r)=(I P: r)$. Since $r m \notin I P, m \notin(I P: r)$. But $m \in(P: r)$ which means that $(P: r) \neq(I P: r)$. Hence $(P: r)=P$ and so $m \in P$. Therefore P is a graded I-prime submodule of M.

Theorem 3.7. Let P be a graded submodule of M. Then the following conditions are equivalent.
(1) P is a graded I-prime submodule of M.
(2) For $m \in h(M)-P,(P: m)=(P: M) \cup(I P: m)$.
(3) For $m \in h(M)-P,(P: m)=(P: M)$ or $(P: m)=(I P: m)$;
(4) If whenever $A K \subseteq P$ with $A K \nsubseteq I P$, where A a graded ideal of R and K a graded R-submodule of M, then $A \subseteq(P: M)$ or $K \subseteq P$.

Proof. $(1 \Rightarrow 2)$ Let $m h(M)-P$ and $a \in h(P: m)-(I P: m)$. Then $a m \in P-I P$ and as P is graded I-prime submodule of M and $m \notin P$, we have $a \in(P: M)$.
($2 \Rightarrow 3$) It is clear.
$(3 \Rightarrow 4)$ Let A be a graded ideal of R and K be a graded submodule of M such that $A K \subseteq P$. Assume that $A \nsubseteq(P: M)$ and $K \nsubseteq P$. Now we must prove that $A K \subseteq I P$. Let $a \in h(A)$ and $m \in h(K)$. First let $a \notin(P: M)$. Since $a m \in P$, that is $a \in(P: m)$, we have $(P: m) \neq(P: M)$. Hence by our assumption $(P: m)=(I P: m)$. Therefore $a \in(I P: m)$. Thus $a m \in I P$. Now if $a \in A \cap(P: M)$. Let $u \in h(A)-(P: M)$. Then $a+u \in A-(P: M)$. By the first case, for each $m \in h(K)$ we have $u m \in I P$ and $(a+u) m \in I P$. Then $a m+u m \in I P$, that is $a m \in I P$. Therefore $A K \subseteq I P$.
$(4 \Rightarrow 1)$ Let $r m \in P-I P$ for some $r \in h(R)$ and $m \in h(M)$. Take $A=R r$ and $K=R m$. Then $A K \subseteq P-I P$, that is $A K \subseteq P$ and $A K \nsubseteq I P$. Therefore by assuming $A \subseteq(P: M)$ or $K \subseteq P$. Thus $r \in A \subseteq(P: M)$ or $m \in K \subseteq P$. Hence $r \in(P: M)$ or $m \in P$. It is mean that P is graded I-prime submodule of M.

Theorem 3.8. Let P be a graded submodule of M. Then the following conditions are equivalent.
(1) P is a graded I-prime submodule of M;
(2) For any graded submodule K of M with $K \nsubseteq P$,

$$
(P: K)=(P: M) \cup(I P: K)
$$

(3) For any graded submodule K of M with $K \nsubseteq P$,

$$
(P: K)=(P: M) \text { or }(P: K)=(I P: K)
$$

Proof. $(1 \Rightarrow 2)$ Suppose that $K \subseteq M$ and $K \nsubseteq P$. Let $a \in h(P: K)$. Then $a K \subseteq P$. So $R a K \subseteq P$. If $R a K \nsubseteq I P$, and as P is graded I-prime submodule of M and $K \nsubseteq P, R a \subseteq(P: M)$ and so $a \in(P: M)$. For the reverse inclusion, if $a \in h(P: M)$, then $a M \subseteq P$, and so $a m \in P$ for all $m \in h(M)$. Hence $a \in(P: K)$. If $a \in(I P: K)$, then $a K \subseteq I P \subseteq P$, so $a \in(P: K)$. Thus $(P: K)=(P: M) \cup(I P: K)$.
$(2 \Rightarrow 3)$ It is clear.
$(3 \Rightarrow 1)$ Suppose that for $K \subseteq M$ and $K \nsubseteq P,(P: K)=(P: M)$ or $(P: K)=(I P: M)$, where K is submodule of M. Let $A K \subseteq P-I P$ where A is an ideal of R and K is a submodule of M. Since $K \nsubseteq P$, by Theorem 3.7 we must prove $A \subseteq(P: M)$. Since $A K \subseteq P$,

$$
A \subseteq(P: K)=(P: M)
$$

Hence we get (1).
In the following we show that for any exact sequence

$$
0 \rightarrow Q \rightarrow P \rightarrow \frac{P}{Q} \rightarrow 0
$$

with $Q \subseteq P$ are graded submodules of M, P is graded I-prime submodule of M if and only if so are Q and $\frac{P}{Q}$.

Theorem 3.9. Suppose that P and Q are graded submodules of M such that $Q \subseteq P$ with $P \neq M$. Then
(1) If P is a graded I-prime submodule of M, then $\frac{P}{Q}$ is a graded I-prime submodule of $\frac{M}{Q}$.
(2) If Q and $\frac{P}{Q}$ are graded I-prime submodule, then P is a graded I-prime submodule of M.
Proof. (1) For all $r \in h(R), m \in h(M)$, let

$$
r(m+Q)=r m+Q \in \frac{P}{Q}-I \frac{P}{Q} .
$$

Then $r m+Q \in \frac{P}{Q}-\frac{I P+Q}{Q}$. So $r m \in P-I P$, because if $r m \in I P$, then $r m \in I P+Q$, so $r m+Q \in \frac{I P+Q}{Q}$ which is a contradiction. As P is graded I-prime submodule, $r \in(P: M)$ or $m \in P$. Thus $r \in\left(\frac{P}{Q}: \frac{M}{Q}\right)$ or $m+Q \in \frac{P}{Q}$.
(2) Let $a m \in P-I P$ where $a \in h(R)$ and $m \in h(M)$. Then $a(m+Q)=a m+Q \in \frac{P}{Q}$. If $a m \in Q$, since $a m \notin I P$ and $Q \subseteq P$, then $I Q \subseteq I P$. So $a m \nsubseteq I Q$. Hence $a m \in Q-I Q$. As Q is a graded I-prime submodule, $a \in(Q: M) \subseteq(P: M)$ or $m \in Q \subseteq P$. If $a m \notin Q$, then we have $a m+Q \notin \frac{I P+Q}{Q}$ and $a(m+Q) \in \frac{P}{Q}-I \frac{P}{Q}$. Since $\frac{P}{Q}$ is a graded I-prime submodule, we have $m+Q \in \frac{P}{Q}$ or $a \in\left(\frac{P}{Q}: \frac{M}{Q}\right)$. Hence $m \in P$ or $a \in(P: M)$.

Proposition 3.10. (1) Let P be a graded submodule of M and $g \in G$. Then P_{g} is an I-g-prime submodule in M_{g} if and only if $\frac{P_{g}}{I P_{g}}$ is a $\{0\}$ - g-prime submodule in $\frac{M_{g}}{I P_{g}}$.
(2) A graded submodule P of an R-module M is graded I-prime submodule of M if and only if $\frac{P}{I P}$ is graded $\{0\}$-prime submodule of $\frac{M}{I P}$.

Proof. (1) Let P_{g} be an I - g-prime submodule in M_{g}. Let $r \in R_{e}$ and $m \in M_{g}$ such that

$$
0 \neq r\left(m+I P_{g}\right) \in \frac{P_{g}}{I P_{g}} .
$$

Then $r m \in P_{g}-I P_{g}$. So $r \in\left(P_{g}: M_{g}\right)$ or $m \in P_{g}$, because P_{g} is I - g-prime submodule in M_{g}. Therefore $r \in\left(\frac{P_{g}}{I P_{g}}: \frac{M_{g}}{I P_{g}}\right)$ or $m+I P_{g} \in \frac{P_{g}}{I P_{g}}$. Hence $\frac{P}{I P}$ is $\{0\}$ - g-prime submodule in $\frac{M_{g}}{I P_{g}}$. Conversely, suppose that $\frac{P_{g}}{I P_{g}}$ is $\{0\}$ - g-prime submodule in $\frac{M_{g}}{I P_{g}}$. Let $r \in R_{e}$ and $m \in M_{g}$ such that $r m \in P_{g}-I P_{g}$. Then $0 \neq r\left(m+I P_{g}\right) \in \frac{P_{g}}{I P_{g}}$. So $m+I P_{g} \in \frac{P_{g}}{I P_{g}}$ or $r \in\left(\frac{P_{g}}{I P_{g}}: \frac{M_{g}}{I P_{g}}\right)$. Thus $m \in P_{g}$ or $r \in\left(P_{g}: M_{g}\right)$. This means that P_{g} is I - g-prime submodule in M_{g}.
(2) Let P be graded I-prime submodule of M. Let $r \in h(R)$ and $m \in h(M)$ such that $0 \neq r(m+I P) \in \frac{P}{I P}$. Then $r m \in P-I P$ and as P is graded I-prime submodule in $M, r \in(P: M)$ or $m \in P$, that is $r \in\left(\frac{P}{I P}: \frac{M}{I P}\right)$ or $m+I P \in \frac{P}{I P}$. Thus $\frac{P}{I P}$ is graded $\{0\}$-prime submodule in $\frac{M}{I P}$. Conversely, suppose that $\frac{P}{I P}$ is graded $\{0\}$-prime submodule in $\frac{M}{I P}$. Let $r \in h(R)$ and $m \in h(M)$ such that $r m \in P-I P$. Then $0 \neq r(m+I P) \in \frac{P}{I P}$. Therefore $m+I P \in \frac{P}{I P}$ or $r \in\left(\frac{P}{I P}: \frac{M}{I P}\right)$, that is $m \in P$ or $r \in(P: M)$. Hence P is graded I-prime submodule in M.

Proposition 3.11. Suppose G is a group with identity e and R is a G-graded ring and M is a G-graded R-module. Then for a graded I-prime submodule P of M, we have
(1) If $S \subseteq h(R)$ is a multiplicative closed subset of R with $(P: M) \cap S=\phi$, then $S^{-1} P$ is graded I-prime submodule of $S^{-1} M$.
(2) Let S be a multiplicative closed subset of $h(R)$ with $S^{-1} P \neq S^{-1} M$ and $S^{-1}(I P) \subseteq S^{-1} I S^{-1} P$. Then $S^{-1} P$ is a graded $S^{-1} I$-prime submodule of $S^{-1} M$.

Proof. (1) Let $r \in h(R)$ and $\frac{m}{t} \in h\left(S^{-1} M\right)$ with

$$
r \frac{m}{t} \in S^{-1} P-I S^{-1} P
$$

Then $\frac{r m}{t} \in S^{-1} P-S^{-1}(I P)$. So there is $s \in S$ and $p \in h(P)$ such that $\frac{r m}{t}=\frac{p}{s}$. Then there is $u \in S$ such that

$$
\text { surm }=u t p \in P
$$

Moreover for any $v \in S, v r m \notin I P$. So usrm $\in P-I P$. Since P is graded I-prime submodule of M, then $r m \in P$ and so $r m \in P-I P$. Hence $r \in(P: M) \subseteq\left(S^{-1} P: S^{-1} M\right)$ or $m \in P$, that is $\frac{m}{t} \in S^{-1} P$.
(2) For all $\frac{r}{s} \in h\left(S^{-1} R\right), \frac{m}{t} \in h\left(S^{-1} M\right)$, let

$$
\frac{r}{s} \cdot \frac{m}{t} \in S^{-1} P-S^{-1} I S^{-1} P \subseteq S^{-1} P-S^{-1}(I P)
$$

So urm $\in P-I P$ for some $u \in S$, and as P is graded I-prime, either ur $\in(P: M)$ or $m \in P$. Therefore

$$
\frac{u r}{u s}=\frac{r}{s} \in S^{-1}(P: M)=\left(S^{-1} P: S^{-1} M\right)
$$

or $\frac{m}{t} \in S^{-1} P$. This means that $S^{-1} P$ is graded $S^{-1} I$-prime submodule of $S^{-1} M$.

Recall that a graded proper ideal P of a graded ring R is graded prime if for any $a, b \in h(R)$ with $a b \in P$, we get $a \in P$ or $b \in P$. A graded proper submodule P of a graded module M over graded ring R is graded prime submodule if for any $r \in h(R)$ and $m \in M$ with $r m \in P$, we get $m \in P$ or $r M \subseteq P$.

Theorem 3.12. Let M be an R-module and $r \in h(R)$ such that $r M \neq M$ with $\operatorname{Ann}_{M}(r) \subseteq r M$ and $I \subseteq(r m: M)$. Then $r M$ is a graded I-prime submodule of M if and only if it is a graded prime submodule of M.

Proof. It is clear that every graded prime is a graded I-prime. For the converse part, let $s m \in r M$ where $s \in h(R)$ and $m \in h(M)$. We have to prove $s \in(r M: M)$ or $m \in r M$. If $s m \notin I(r M)$, then as $r M$ is graded I-prime, $s \in(r M: M)$ or $m \in r M$. Now, if $s m \in I(r M)$, then $(s+r) m \in r M$. If $(s+r) m \notin I(r M)$, then as $r M$ is graded I-prime, $s+r \in(r M: M)$ or $m \in r M$, that is, $s \in(r M: M)$ or $m \in r M$. For
the case $(s+r) m \in I(r M)$, $s m \in I(r M)$ implies $r m \in I(r M)$. Hence, there exists $y \in I M$ such that $r m=r y$ and so $m-y \in A n n_{M}(r)$. This implies that $m \in I M+A n n_{M}(r) \subseteq r M+A n n_{M}(r) \subseteq r M$ and hence we get the result.

By a particular condition, graded I-prime ideals and graded prime ideals are coincide in graded principal ideal rings.

Corollary 3.13. Let r be a nonzero graded element in a graded ring R with $(0: R r) \subseteq R r$ and $I R r \subseteq R r^{2}$. Then $R r$ is graded I-prime ideal if and only if $R r$ is graded prime ideal of R.

Proof. Suppose that $R r$ is a graded I-prime ideal of R. If $R r$ is not graded prime, then there exist graded elements $a, b \in R$ such that $a b \in R r$ but $a \notin R r$ and $b \notin R r$. Since $R r$ is a graded I-prime ideal, $a b \in I R r$. Now we have $a(b+r) \in R r$. If $a(b+r) \notin I R r$, then $a \in R r$ or $(b+r) \in R r$, that is, $a \in R r$ or $b \in R r$, which is a contradiction. Therefore $a(b+r) \in I R r$ and we have $a r \in I R r$, that is $a r \in R r^{2}$. So there is an element $d \in R$ such that $a r=d r^{2}$, that is $r(a-d r)=0$ and as $(0: r) \subseteq R r$, we have $(a-d r) \in R r$ and so $a \in R r$ which is a contradiction. Hence $R r$ is a graded prime ideal of R.
The converse part is obvious.
Example 3.14. Consider the graded ring $R=\frac{K[x]}{\left\langle x^{2}-x^{4}\right\rangle}$ and the graded ideals $P=I=<\bar{x}^{2}>$ where K is a field. Then the graded ideal $P=<\bar{x}^{2}>$ is an I-prime since $P-I P=\emptyset$. But P is not graded prime cause the first condition $\left(0:<x^{2}>\right)=<1-\bar{x}^{2}>\nsubseteq<\bar{x}^{2}>$ of the Corollary 3.13 does not satisfied. Similarly, if we take $P=<\bar{x}^{3}>$ and $I=<\bar{x}^{2}>$ in the graded ring $S=\frac{K[x]}{<x^{3}-x^{5}>}$. Then P is I-prime but not prime since the second condition of Corollary 3.13 does not satisfied cause $I P=<\bar{x}^{3}>\nsubseteq P^{2}=<\bar{x}^{4}>$.

Example 3.15. Let $P=I=2 Z$ be ideals in the ring of integers Z which is a trivial graded principal ideal ring. Then the conditions of the Corollary 3.13 are satisfied and so P is I-prime ideal as well as it is a prime ideal of Z.

Lemma 3.16. Let M be an R-module and $0 \neq x \in h(M)$ such that $R x \neq M$ and $\operatorname{Ann}(x)=0$. Then I-primeness of $R x$ implies primeness of $R x$ for $I=(R x: M)$.

Proof. Suppose $R x$ is not graded prime submodule of M. Then there exist $r \in h(R)$ and $m \in h(M)$ such that $r m \in R x$ with $r \notin(R x: M)$ and $m \notin R x$. If $r m \notin(R x: M) x$, then $R x$ is not graded I-prime
submodule of M. Assume $r m \in(R x: M) x$. But $m+x \notin R x$ and $r(m+x) \in R x$. If $r(m+x) \notin(R x: M) x$, then $R x$ is not graded I-prime submodule of M, since $r \notin(R x: M)$. So we get $r(m+x) \in(R x: M) x$. Then $r x \in(R x: M) x$ and so $r x=s x$ for some $s \in(R x: M)$. Thus $(r-s) x=0$ and $r-s \in \operatorname{Ann}(x)=0$ which give us $r=s$ and so $r \in(R x: M)$. Thus the result is obtained.

In the following we link graded I-prime submodules of M and I-prime ideals of R together as follows .

Theorem 3.17. Let M be a finitely generated faithful multiplication graded R-module and P a proper graded submodule of M with $(I P: M)=I(P: M)$. Then P is graded I-prime submodule of M if and only if $(P: M)$ is a graded I-prime ideal of R.

Proof. Assume that P is a graded I-prime submodule of M. We have to prove $(P: M)$ is graded I-prime ideal of R. Let $a, b \in h(R)$ such that $a b \in(P: M)-I(P: M)$. Then $a b M \subseteq P$. If $a b M \subseteq I P$, then $a b \in(I P: M)=I(P: M)$ which is a contradiction. Hence $a b M \nsubseteq I P$. Then $a b M \subseteq P$ and $a b M \nsubseteq I P$. So $a \in(P: M)$ or $b M \subseteq P$. It means that $a \in(P: M)$ or $b \in(P: M)$, that is, $(P: M)$ is a graded I-prime ideal of R. For the converse, assume $(P: M)$ is a graded I-prime ideal of R. Let $r m \in P-I P$, where $r \in h(R)$ and $m \in h(M)$. Then $r(R m: M) \subseteq(r R m: M) \subseteq(P: M)$ and $r(R m: M) \nsubseteq I(P: M)$. Otherwise, we will get

$$
r R m=r(R m: M) M \subseteq I(P: M) M=I P
$$

which is a contradiction. Hence

$$
r(R m: M) \subseteq(P: M)
$$

and $r(R m: M) \nsubseteq I(P: M)$. As $(P: M)$ is a graded I-prime ideal, $r \in(P: M)$ or $(R m: M) \subseteq(P: M)$. So $r \in(P: M)$ or $R m \subseteq P$. Therefore $r \in(P: M)$ or $m \in P$. This means that P is a graded I-prime submodule of M.

Remark 3.18. Let $I_{1} \subseteq I_{2}$ be ideals of R_{e}. Then every graded I_{1}-prime submodule is a graded I_{2}-prime. For this suppose that P is graded I_{1}-prime. Take $r \in h(R)$ and $m \in h(M)$ with $r m \in P-I_{2} P$. Since $I_{1} \subseteq I_{2}, I_{1} P \subseteq I_{2} P$ and thus $P-I_{2} P \subseteq P-I_{1} P$. Then $r m \in P-I_{1} P$. Since P is a graded I_{1}-prime submodule, we have $r \in(P: M)$ or $m \in P$. Hence P is graded I_{2}-prime.

Theorem 3.19. Let P be a graded I-prime submodule of M with $(P: M)=J$. Then there is a one-to-one correspondence between
graded I-prime submodules of $\frac{R}{J}$-module $\frac{M}{P}$ and the graded I-prime submodules of the graded R-module M containing P.

Proof. Assume that Q is a proper graded submodule of M containing P. Suppose that Q is graded I-prime. We want to prove that $\frac{Q}{P}$ is graded I-prime submodule of $\frac{M}{P}$. Now $\frac{Q}{P}$ is a proper submodule of $\frac{M}{P}$ since Q is proper in M. Let

$$
(a+P)(m+P) \in \frac{Q}{P}-I \frac{Q}{P},
$$

where $a \in h(R)$ and $m \in h(M)$. Then $a m+P \in \frac{Q}{P}-\frac{I Q+P}{P}$. Therefore $a m+P \notin \frac{I Q+P}{P}$ and hence $a m \notin I Q+P$, then $a m \notin I Q$, because if $a m \in I Q$, then $a m \in I Q+P$. Thus $a m \in Q-I Q$. Since Q is a graded I-prime submodule, we get that $a \in(Q: M)$ or $m \in Q$. So $m+P \in \frac{Q}{P}$ or $a+P \in\left(\frac{Q}{P}: \frac{M}{P}\right)$. Conversely, suppose that $\frac{Q}{P}$ is a graded I-prime submodule of $\frac{M}{P}$ and by assumption P is graded I-prime. So by Theorem 3.9 (2) Q is graded I-prime.

Since zero submodule is graded I-prime, by taking $P=0$ in Theorem 3.19, we get a one to one correspondence between graded I-prime submodules of M as R-module and as $\frac{R}{\operatorname{Ann}(M)}$-module. The following characterizes I-prime submodules in finitely generated faithful multiplication graded modules.

Theorem 3.20. Let P be a proper graded submodule of a finitely generated faithful multiplication graded R-module M such that $I(P: M)=(I P: M)$. Then P is a graded I-prime submodule of M if and only if whenever A and B are graded submodules of M such that $A . B \subseteq P$ and $A . B \nsubseteq I P$, then either $A \subseteq P$ or $B \subseteq P$.

Proof. Suppose that P is a graded I-prime submodule of M and A, B are two graded submodules of M. As M is multiplication R-module, $A=(A: M) M$ and $B=(B: M) M$ and so $A \cdot B=(A: M)(B: M) M$. Suppose that $A . B \subseteq P$ and $A . B \nsubseteq I P$ with $A \nsubseteq P$ and $B \nsubseteq P$. Then $(A: M) \nsubseteq(P: M)$ and $(B: M) \nsubseteq(P: M)$. Since $(P: M)$ is graded I-prime by Theorem 3.17, either $(A: M)(B: M) \nsubseteq(P: M)$ or $(A: M)(B: M) \subseteq I(P: M)$. In the first case, we have

$$
A B=(A: M)(B: M) M \nsubseteq(P: M) M=P
$$

which is a contradiction. Now in the other case we get

$$
A B=(A: M)(B: M) M \subseteq I(P: M) M=I P
$$

which is again contradiction. So either $A \subseteq P$ or $B \subseteq P$. For the converse, by Theorem 3.17, it is enough to prove that $(P: M)$ is a graded I-prime ideal of R. Let $r s \in(P: M)-I(P: M)$, where $r, s \in h(R)$ such that $r \notin(P: M)$ and $s \notin(P: M)$. Take $A=r M$ and $B=s M$. Then $A B=r s M \subseteq(P: M) M=P$ and $A B=r s M \nsubseteq I P$, because if $A B=r s M \subseteq I P$, then $r s \in(I P: M)=I(P: M)$ which is a contradiction. Hence $A B \subseteq P-I P$, so by hypothesis we get either $A=r M \subseteq P$ or $B=s M \subseteq P$. Therefore $r \in(P: M)$ or $s \in(P: M)$. We get the result.

Theorem 3.21. Let M be a multiplication graded R-module and P a graded submodule of M. Then P is a graded I-prime submodule in M if and only if, for any graded ideal J of R and graded submodule N of M with $J N \subseteq P$ and $J N \nsubseteq I P$, implies that $J \subseteq(P: M)$ or $N \subseteq P$.

Proof. Suppose that P is a graded I-prime submodule of M and there exists a graded ideal J of R and a graded submodule N of M such that $J N \subseteq P$ but $J \nsubseteq(P: M)$ and $N \nsubseteq P$. We claim that $J N \subseteq I P$. Let $r \in h(M)$ such that $r \in J-(P: M)$. Then $r N \subseteq P$ implies that $N \subseteq(P: R r)$. Since P is a graded I-prime submodule and $N \nsubseteq P$, we get by Theorem 3.7 that $N \subseteq(I P: R r)$. Thus $r N \subseteq I P$. Suppose $r \in J \cap(P: M)$ and let $s \in h(M)$ such that $s \in(N: M)$. If $s \in I$, then $r s \in I(P: M) \subseteq(I P: M)$ and so $r s M \subseteq I P$. If $s \in(N: M)-I$, then $s M \subseteq N$ and so $s J M \subseteq J N \subseteq P$. Thus $J M \subseteq(P: R s)$ and $J M \nsubseteq P$ since by our assumption $J \nsubseteq(P: M)$. Again by Theorem 3.7 we get that $J M \subseteq(I P: R s)$ and so $s J M \subseteq I P$. As s is arbitrary in $(N: M), r N=r(N: M) M \subseteq I P$. Hence $J N \subseteq I P$. For the converse, the condition that M is a multiplication R-module is not required. Let $r m \in P-I P$ for $r \in h(R)$ and $m \in h(M)$. Then $(R r)(R m) \subseteq P-I P$ and so either $R r \subseteq(P: M)$ or $R m \subseteq P$. Therefore, $r \in(P: M)$ or $m \in P$. This means that P is a graded I-prime submodule of M.

Theorem 3.22. Let R be a G-graded ring and M_{1}, M_{2} be two graded R-modules with a graded R-epimorphism $f: M_{1} \rightarrow M_{2}$. Then a graded submodule Q of M_{2} such that $f\left(M_{1}\right) \nsubseteq Q$ is graded I-prime submodule of M_{2} if and only if $f^{-1}(Q)$ is a graded I-prime submodule of M_{1}.

Proof. To show that $f^{-1}(Q)$ is a proper submodule of M_{1}, let $f^{-1}(Q)=M_{1}$ and $m \in h\left(M_{1}\right)$. Thus $m \in f^{-1}(Q)$, and $f(m) \in Q$, that is, $f\left(M_{1}\right) \subseteq Q$ which contradics our assumption. Now, suppose Q is a graded I-prime submodule of M_{2} and let $r \in h(R), m \in h\left(M_{1}\right)$ such that

$$
r m \in f^{-1}(Q)-I f^{-1}(Q)=f^{-1}(Q)-f^{-1}(I Q)=f^{-1}(Q-I Q)
$$

Assume that $m \notin f^{-1}(Q)$. This implies that $f(m) \notin Q$. Since $r m \in f^{-1}(Q-I Q)$, then $f(r m) \in Q-I Q$, that is $r f(m) \in Q-I Q$. As Q is a graded I-prime submodule of M_{2} and $f(m) \notin Q$, $r \in\left(Q: M_{2}\right)$. Hence $r M_{2} \subseteq Q$ and $f\left(M_{1}\right) \subseteq M_{2}$. Therefore $r f\left(M_{1}\right) \subseteq r M_{2} \subseteq Q$. This means $r M_{1} \subseteq f^{-1}(Q)$, so $r \in\left(f^{-1}(Q): M_{1}\right)$. Conversely, suppose that $f^{-1}(Q)$ is a graded I-prime submodule of M_{1} and let $r \in h(R)$ and $m \in h\left(M_{2}\right)$ such that $r m \in Q-I Q$ and $m \notin Q$. Since f is graded epimorphism, there exists $n \in h\left(M_{1}\right)$ such that $f(n)=m$. Thus $f(n) \notin Q$ and so $n \notin f^{-1}(Q)$. Hence $r f(n)=f(r n) \in Q-I Q$, so $r n \in f^{-1}(Q)-I f^{-1}(Q)$. Since $f^{-1}(Q)$ is graded I-prime submodule of M_{1} and $n \notin f^{-1}(Q), r \in\left(f^{-1}(Q): M_{1}\right)$. Thus $r M_{1} \subseteq f^{-1}(Q)$ and $r M_{2} \subseteq Q$. Therefore Q is graded I-prime submodule of M_{2}.

Let $f: M_{1} \rightarrow M_{2}$ be an epimorphism of R-modules. According to Theorem 3.22, there is a one to one correspondence between graded I-prime submodules P of M_{1} with $k e r f \subseteq P$ and proper graded I-prime submodules $f(P)$ of M_{2}. In the following, we study graded I-prime submodules in decomposition graded modules (bigraded modules).

Theorem 3.23. Let R_{i} be a graded ring and M_{i} a graded R_{i}-module for $i=1,2$ with $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ a graded R-module. Let I_{1} and I_{2} be two ideals of $\left(R_{1}\right)_{e}$ and $\left(R_{2}\right)_{e}$ respectively with $I=I_{1} \times I_{2}$ and P_{1}, P_{2} be proper graded submodules of M_{1} and M_{2} respectively.
(1) If $I_{2} M_{2}=M_{2}$, then P_{1} is a graded I_{1}-prime submodule of M_{1} if and only if $P_{1} \times M_{2}$ is a graded I-prime submodule of M.
(2) If $I_{1} M_{1}=M_{1}$, then P_{2} is a graded I_{2}-prime submodule of M_{2} if and only if $M_{1} \times P_{2}$ is a graded I-prime submodule of M.
(3) If $I_{i} P_{i}=P_{i}$ for $i=1,2$, then $P_{1} \times P_{2}$ is graded I-prime submodule of M.

Proof. (1) Suppose that P_{1} is a graded I_{1}-prime submodule of M_{1} and $I_{2} M_{2}=M_{2}$. Let $\left(r_{1}, r_{2}\right) \in h(R)$ and $\left(m_{1}, m_{2}\right) \in h(M)$ such that

$$
\begin{aligned}
\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right) & =\left(r_{1} m_{1}, r_{2} m_{2}\right) \in\left(P_{1} \times M_{2}\right)-I\left(P_{1} \times M_{2}\right) \\
& =\left(P_{1} \times M_{2}\right)-\left(I_{1} \times I_{2}\right)\left(P_{1} \times M_{2}\right) \\
& =\left(P_{1} \times M_{2}\right)-\left(I_{1} P_{1} \times I_{2} M_{2}\right) \\
& =\left(P_{1} \times M_{2}\right)-\left(I_{1} P_{1} \times M_{2}\right) \\
& =\left(P_{1}-I_{1} P_{1}\right) \times M_{2} .
\end{aligned}
$$

Thus $r_{1} m_{1} \in P_{1}-I_{1} P_{1}$ and P_{1} is a graded I_{1}-prime submodule of M_{1}, so $r_{1} \in\left(P_{1}:_{R_{1}} M_{1}\right)$ or $m_{1} \in P_{1}$. Hence

$$
\left(r_{1}, r_{2}\right) \in\left(P_{1}:_{R_{1}} M_{1}\right) \times R_{2}=\left(P_{1} \times M_{2}:_{R_{1} \times R_{2}} M_{1} \times M_{2}\right)
$$

or $\left(m_{1}, m_{2}\right) \in P_{1} \times M_{2}$. Therefore $P_{1} \times M_{2}$ is a graded I-prime submodule of M. Conversely, assume that $P_{1} \times M_{2}$ is a graded I-prime submodule of M. Take $r_{1} \in h\left(R_{1}\right)$ and $m_{1} \in h\left(M_{1}\right)$ with $r_{1} m_{1} \in P_{1}-I_{1} P_{1}$. Then

$$
\begin{aligned}
\left(r_{1} m_{1}, 0\right) \in\left(P_{1}-I_{1} P_{1}\right) \times M_{2} & =\left(P_{1} \times M_{2}\right)-\left(I_{1} P_{1} \times M_{2}\right) \\
& =\left(P_{1} \times M_{2}\right)-\left(I_{1} P_{1} \times I_{2} M_{2}\right) \\
& =\left(P_{1} \times M_{2}\right)-I\left(P_{1} \times M_{2}\right)
\end{aligned}
$$

and as $P_{1} \times M_{2}$ is a graded I-prime,

$$
\left(r_{1}, 0\right) \in\left(P_{1} \times M_{2}:_{R_{1} \times R_{2}} M_{1} \times M_{2}\right)=\left(P_{1}:_{R_{1}} M_{1}\right) \times R_{2}
$$

or $\left(m_{1}, 0\right) \in P_{1} \times M_{2}$. Therefore $r_{1} \in\left(P_{1}:_{R_{1}} M_{1}\right)$ or $m_{1} \in P_{1}$, and P_{1} becomes a graded I_{1}-prime submodule of M_{1}.
(2) The proof is similar to part (1).
(3) $I_{1} P_{1}=P_{1}$ and $I_{2} P_{2}=P_{2}$ implies

$$
P_{1} \times P_{2}=I_{1} P_{1} \times I_{2} P_{2}=I\left(P_{1} \times P_{2}\right)
$$

Hence $P_{1} \times P_{2}$ is a graded I-prime submodule of M.
Now we state the graded I-prime submodules version of [5, Theorem 2.16].

Theorem 3.24. Assume P is a graded I-prime submodule of M and F a flat R - module such that $F \otimes P \neq F \otimes M$. Then $F \otimes P$ is graded I-prime submodule of $F \otimes M$.

Proof. Let P be a graded I-prime submodule of graded R-module M and $r \in h(R)-(P: M)$. Theorem 3.6 implies $(P: r)=P$ or $(P: r)=(I P: r)$ and [5, Lemma 2.15] implies

$$
(F \otimes P: r)=F \otimes(P: r)=F \otimes P
$$

or $(F \otimes P: r)=F \otimes(P: r)=F \otimes(I P: r)=(I(F \otimes P): r)$. Therefore $F \otimes P$ is graded I-prime submodule of $F \otimes M$.

The converse of Theorem 3.24 is true under assumption that F is graded faithfully flat R-module. In fact $F \otimes P \neq F \otimes M$ if and only if $P \neq M$, and for $r \in h(R), r \notin(P: m)$ implies $r \notin(F \otimes P: F \otimes m)$. Also $F \otimes(P: r)=F \otimes P$ and $F \otimes(P: r)=F \otimes(I P: r)$ implies $(P: r)=P$ and $(P: r)=(I P: r)$ respectively by faithfully flatness of F. Hence the result follows by Theorem 3.6.

It is well-known that if M is finitely generated graded module M over Noetherian graded ring R the completion \hat{M} of a graded R-module M is isomorphic to $\hat{R} \otimes M$. Hence we deduce the following corollary.

Corollary 3.25. Let P be a graded I-prime submodule of a finitely generated R-module M and R a Notherian graded ring. Then its completion \hat{P} is graded I-prime submodule of the complete \hat{R}-module \hat{M}.

Finally, by taking polynomial ring as an especial example of graded rings we have the following result in which the ideals and the submodules not necessarily need be graded.

Proposition 3.26. Let P be I-prime submodule of an R-module M. Then $P[x]$ is an $I[x]$-prime submodule of $R[x]$-module $M[x]$, where x is an indeterminate.

Proof. Assume that $r(x) m(x) \in P[x]-I[x] P[x]=P[x]-(I P)[x]$, for $r(x) \in R[x], m(x) \in M[x]$. Let $r(x)=\sum_{i=0}^{n} r_{i} x^{i}$ and

$$
m(x)=\sum_{j=1}^{m} m_{j} x^{j}
$$

for $r_{i} \in R, m_{j} \in M$. Since

$$
r(x) m(x)=\sum_{k=0}^{n+m}\left(\sum_{i+j=k} r_{i} m_{j}\right) x^{k} \in(P-I P)[x]
$$

for $i=0,1, \ldots, n$ and $j=0,1, \ldots, m, \sum_{i+j=k} r_{i} m_{j} \in P-I P$ for all $k=0,1, \ldots, n+m$ and as P is I-prime submodule of M, we have recursively that $r_{i} \in(P: M)$ or $m_{j} \in P$ and this means

$$
r_{i} x^{i} \in(P[x]: M[x])
$$

or $m_{j} x^{j} \in P[x]$. Therefore $r(x) \in(P[x]: M[x])$ or $m(x) \in P[x]$ and so $P[x]$ is $I[x]$-prime submodule of $M[x]$.

Acknowledgments

The authors gratefully acknowledge the constructive comments on this paper offered by the anonymous referee. We express our sincere gratitude for his/her review, which improved the quality of the paper significantly.

References

1. J. Abaffy, C. G. Broyden and E. Spedicato, A class of direct methods for linear equations, Numer. Math., 45 (1984), 361-376.
2. J. Abaffy and E. Spedicato, ABS Projection Algorithms: Mathematical Techniques for Linear and Nonlinear Equations, Ellis Horwood, Chichester, 1989.
3. I. Akray, I-prime ideals, J. Algebra Relat. Topics, 4(2) (2016), 41-47.
4. I. Akray and H. S. Hussein, I-primary submodules, Acad. J. Garmian Univ., 1(11) (2017), 592-599
5. I. Akray and H. S. Hussein, I-prime submodules, Acta Math. Acad. Paedag. Nyiregyhaziensis, 33(2) (2017), 165-173.
6. D. Anderson and E. V. Smith, Weakly prime ideals, Houston J. Math., 29(4) (2003), 831-840.
7. S. E. Atani and F. Farzalipour, On weakly primary ideals, Georgian Math. J., 12 (3) (2005), 423-429.
8. S. E. Atani, On graded weakly prime submodules, Int. Math. Forum, 2 (2006), 61-66.
9. S. E. Atani, On graded weakly prime ideals, Turkish J. Math., 30(4) (2006), 351-358.
10. A. Barnard, Multiplication modules, J. Algebra, 71(1) (1981), 174-178.
11. M. Baziar and M. Behboodi, Classical primary submodules and decomposition theory of modules, J. Algebra Appl., 8(03) (2009), 351-362.
12. M. Behboodi and H. Koohy, Weakly prime modules, Vietnam J. Math., 32(2) (2004), 185-195.
13. C. D. Everett, Group-Graded rings and modules, Math. Z., 174 (1980), 241262.
14. J. Jenkin and P. F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra, 20(12) (1992), 3593-3602.
15. C. Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli, 33(1) (1984), 61-69.
16. Refai M. and Abu-Dawwas R., On generalizations of graded second submodules, Proyecciones, 39(6) (2020), 1537-1554.
17. M. Refai, M. Hailat and S. Obiedat, Graded radicals and graded prime spectra, Far East J. Math. Sci., part 1 (2000), 59-73.

Ismael Akray

Department of Mathematics, Soran University, Erbil, Iraq.
Email: ismaeelhmd@yahoo.com, ismael.akray@soran.edu.iq, akray.ismael@gmail.com

Shadan A. Othman

Department of Mathematics, Salahaddin university, Erbil, Iraq.
Email: shadanmath@gmail.com

Adil K. Jabbar

Department of Mathematics, University of Sulaimani, Erbil, Iraq. Email: adilkj@gmail.com

Halgurd S. Hussein

Department of Mathematics, Soran University, Erbil, Iraq.
Email: rasty.rosty1@gmail.com

Journal of Algebraic Systems

GRADED I－PRIME SUBMODULES

I．AKRAY，S．A．OTHMAN，A．K．JABBAR AND H．S．HUSSEIN

$$
\begin{aligned}
& \text { زيرمدولهاى I-اول مدرج }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 〒,(اگروه رياضى، دانشگاه سوران، اربيل، عراق } \\
& \text { 「「گروه رياضى، دانشگاه صلاح الدين، اربيل، عراق } \\
& \text { "ّگروه رياضى، دانشگاه سليمانيه، اربيل، عراق }
\end{aligned}
$$

 مدول مدرج متناهياً توليد شده روى حلقهى مدرج مدرج، زيرمدول I－اول هستند．

كلمات كليدى：ايدهآلهاى I－اول، زيرمدول I－اول، ايدهآل اول مدرج، زيرمدول اول مدرج．

