Journal of Algebraic Systems

Vol. 10, No. 2, (2023), pp 245-258

FALTINGS' LOCAL-GLOBAL PRINCIPLE FOR THE MINIMAXNESS OF LOCAL COHOMOLOGY MODULES DEFINED BY A SYSTEM OF IDEALS

A. HAJIKARIMI AND F. DEHGHANI-ZADEH*

ABSTRACT. Let R be a commutative Noetherian ring and ϕ a system of ideals of R. We prove that, in certain cases, there are local–global principles for the finiteness and minimaxness of generalized local cohomology module $H^i_{\phi}(M, N)$.

1. INTRODUCTION

Throughout this paper, R is a commutative Noetherian ring with non-zero identity, \mathfrak{a} is an ideal of R and M, N are R-modules. The *i*-th generalized local cohomology functor $H^i_{\mathfrak{a}}(M, N)$ is defined by $H^i_{\mathfrak{a}}(M, N) = \lim_{n>0} \operatorname{Ext}^i_R(M/\mathfrak{a}^n M, N)$ for all $i \in \mathbb{N}$.

Let ϕ be a non-empty set of ideals of R. We say that ϕ is a system of ideals of R if $\mathfrak{a}_1, \mathfrak{a}_2 \in \phi$, then there is an ideal $\mathfrak{b} \in \phi$ such that $\mathfrak{b} \subseteq \mathfrak{a}_1\mathfrak{a}_2$. In such a system, for every R-module N, one can define $\overline{\text{DOI: } 10.22044/\text{JAS}.2022.10587.1524.}$

Keywords: Generalized local cohomology modules; Faltings; Minimax modules.

*Corresponding author.

MSC(2010): Primary: 13C05; Secondary: 13C11, 13E05.

Received: 27 February 2021, Accepted: 17 January 2022.

 $\Gamma_{\phi}(N) = \{x \in N | \mathfrak{a}x = 0 \text{ for some } \mathfrak{a} \in \phi\}.$ For each $i \geq 0$, the *i*-th right derive functor of $\Gamma_{\phi}(-)$ is denoted by $H^{i}_{\phi}(-)$. Some basic properties of the local cohomology modules with respect to ϕ were shown in [3], [4].

Another generalization of local cohomology functor was given by Bijan-Zadeh [3]. For each $i \geq 0$, $H^i_{\phi}(-,-)$ is the functor defined by $H^i_{\phi}(M,N) = \lim_{\mathfrak{a} \in \phi} \operatorname{Ext}^i_R(M/\mathfrak{a} M,N)$ for all *R*-modules M,N and $i \in \mathbb{N}_0$. The functor $H^i_{\phi}(-,-)$ is *R*-linear which is contravariant in the first variable and covariant in the second variable. If $\phi = \{\mathfrak{a}^n | n \in \mathbb{N}\}$, then $H^i_{\phi}(-,-)$ is naturally equivalent to $H^i_{\mathfrak{a}}(-,-)$. An important theorem in local cohomology is Faltings' local-global principle for the finiteness Dimension of local cohomology modules [[8], satz 1], which states that for a positive integer r, then the $R_{\mathfrak{p}}$ -module $H^i_{\mathfrak{a} R_{\mathfrak{p}}}(M_{\mathfrak{p}})$ is finitely generated for all $i \leq r$ and for all $\mathfrak{p} \in \operatorname{Spec}(R)$ if and only if the *R*-module $H^i_{\mathfrak{a}}(M)$ is finitely generated for all $i \leq r$.

Faltings' local-global principle for the finiteness of local cohomology modules has been studied by several authors (for example see [7], [8]).

Aghapournahr et al. ([1], Theorem 2.8) studied the concept of the local-global principle for the minimaxness of ordinary local cohomology modules. The purpose of the present paper is genealization of Faltings[,] local-global principle of ordinary local cohomology to generalized local cohomology modules with respect to a systems of ideals. More precisely, we shall prove the following:

Theorem 1.1. Let M, N be two finitely generated R-modules and $t \in \mathbb{N}$. If $S^{-1}\phi = \{S^{-1}\mathfrak{a} | a \in \phi\}$, then consider the following statements:

- (i) $H^i_{\phi}(M, N)$ is finitely generated for all i < t;
- (ii) There is an ideal $\mathbf{c} \in \phi$ such that $\mathbf{c}H^i_{\phi}(M, N) = 0$ for all i < t;

- (iii) There is an ideal $\mathfrak{c} \in \phi$ such that $\mathfrak{c} \subseteq \operatorname{Rad}(0:_R H^i_{\phi}(M,N))$ for all i < t.
- (iv) $H^i_{S^{-1}\phi}(S^{-1}M, S^{-1}N)$ is finitely generated $S^{-1}R$ -module for all i < t, where $S = R \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$.

Then the following implications are true.

- (a) (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Rightarrow (iv).
- (b) (iv) \Rightarrow (i), if Max(ϕ) is finite.

Theorem 1.2. Let (R, \mathfrak{m}) be a local ring and M, N be two finitely generated R-module and $t \ge 1$ be an integer. Consider the following statements:

- (i) $H^i_{\phi}(M, N)$ is a minimax *R*-module for all i < t;
- (ii) There exists a ∈ φ such that aHⁱ_φ(M, N) is a minimax R-module for all i < t;
- (iii) $H^i_{\phi_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}})$ is a finitely generated $R_{\mathfrak{p}}$ -module for all i < t and $\mathfrak{p} \in \operatorname{Spec}(R) - \{\mathfrak{m}\}.$

Then,

- (a) (i) \Leftrightarrow (ii) \Rightarrow (iii),
- (b) (iii) \Rightarrow (i), If Max(ϕ) is finite set.

For any unexplained notion and terminology is effected to [5] and [6].

2. Main results

In this section, we investigate the finiteness and minimaxness of local cohomology modules with respect to a system of ideals of R. In particular, we prove that there is a Falthings' local-global principle for the minimaxness of local cohomology modules with respect to a system of ideals. Remark 2.1. Let ϕ be a non-empty set of ideals of R.

- (i) We call φ a system of ideals of R whenever a₁, a₂ ∈ φ, there is an ideal b ∈ φ such that b ⊆ a₁a₂. Define the relative ≤ on φ as follows; a ≤ b if and only if b ⊆ a. It is clear that this relation is a partial order on φ.
- (ii) Using Zorn's Lemma φ has maximal element, we use Max(φ) to denote the set of all maximal elements of φ. Moreover, if Max(φ) is finite set, it has a unique maximal element.
- (iii) The ϕ -torsion submodule $\Gamma_{\phi}(N)$ of N is defined as follows:

$$\Gamma_{\phi}(N) = \{ x \in N | \mathfrak{a} x = 0 \text{ for some } \mathfrak{a} \in \phi \}.$$

It is straightforward to see tat $\Gamma_{\phi}(N) = \bigcup_{\mathfrak{a} \in \phi} (0:_M \mathfrak{a}).$

- (iv) For each $i \geq 0$, the functors $H^i_{\phi}(M, -)$ and $\varinjlim_{\mathfrak{a} \in \phi} H^i_{\mathfrak{a}}(M, -)$ are naturally equivalent.
- (v) $H^0_{\phi}(M, N) \cong \operatorname{Hom}_R(M, \Gamma_{\phi}(N))$. If $\Gamma_{\phi}(N) = N$, then $H^i_{\phi}(M, N) \cong \operatorname{Ext}^i_R(M, N),$

see [3].

The following elementary lemmas are needed in the proof of our main theorems.

Lemma 2.2. Let T be a ϕ -torsion finitely generated R-module. Then, there exists $\mathfrak{b} \in \phi$ such that $\mathfrak{b}T = 0$.

Proof. The assertion follows immediately from definition. \Box

Lemma 2.3. Let $L \longrightarrow M \longrightarrow N$ be an exact sequence of *R*-modules and *R*-homomorphisms, and suppose that there exist $\mathfrak{a}, \mathfrak{b} \in \phi$ such that $\mathfrak{a}L = 0$ and $\mathfrak{b}N = 0$. Then, $\mathfrak{c}M = 0$ for some $\mathfrak{c} \in \phi$.

Proof. It is clear.

In the following theorem, we generalized the main theorem of Bahmanpour and Naghipour ([2], Theorem 2.3) for local cohomology modules with respect to a system of ideals of R.

Theorem 2.4. Let (R, \mathfrak{m}) be a commutative Noetherian local ring. Let M and N be two finitely generated R-modules. Let t be a nonnegative integer such that $H^i_{\phi}(M, N)$ be minimax for all i < t. Then, $\operatorname{Hom}_R(R/a, H^t_{\phi}(M, N))$ is finitely generated for all $\mathfrak{a} \in \phi$ and $\operatorname{Ass}_R(H^t_{\phi}(M, N)) \cap V(\mathfrak{a})$ is finite.

Proof. We use induction on t. By Remark 2.1, we have

$$H^0_{\phi}(M,N) \cong \operatorname{Hom}_R(M,\Gamma_{\phi}(N)),$$

and the assertion is true for t = 0. Let $t \ge 1$ and suppose that the claim has been proved for t - 1. From the exact sequence

$$0 \longrightarrow \Gamma_{\phi}(N) \longrightarrow N \longrightarrow N/\Gamma_{\phi}(N) \longrightarrow 0$$

we earn the exact sequence

$$\operatorname{Ext}^{t}_{R}(M, \Gamma_{\phi}(N)) \xrightarrow{f} H^{t}_{\phi}(M, N) \xrightarrow{g} H^{t}_{\phi}(M, N/\Gamma_{\phi}(N)).$$

So, Imf is finitely generated. From exact sequence

$$0 \longrightarrow Imf \longrightarrow H^t_{\phi}(M, N) \longrightarrow H^t_{\phi}(M, N/\Gamma_{\phi}(N)),$$

it is enough to show that $\operatorname{Hom}_R(R/a, H^t_{\phi}(M, N/\Gamma_{\phi}(N)))$ is finitely generated. Thus, we can assume that $\Gamma_{\phi}(N) = 0$. Let $\mathfrak{a} \in \phi$. Then, \mathfrak{a} contains an N-regular element x. Consider the exact sequence

$$0 \longrightarrow N \xrightarrow{x} N \longrightarrow N/xN \longrightarrow 0.$$

This short exact sequence yields the exact sequence

$$H^{t-1}_{\phi}(M,N) \xrightarrow{h} H^{t-1}_{\phi}(M,N/xN) \xrightarrow{k} H^{t}_{\phi}(M,N) \xrightarrow{x} H^{t}_{\phi}(M,N).$$

We split the above exact sequence into the following two exact sequences

$$0 \longrightarrow Imh \longrightarrow H^{t-1}_{\phi}(M, N/xN) \longrightarrow Imk \longrightarrow 0$$

and $0 \longrightarrow Imk \longrightarrow H^t_{\phi}(M, N) \longrightarrow H^t_{\phi}(M, N)$ then we get the following exact sequences:

$$0 \longrightarrow \operatorname{Hom}_{R}(R/a, Imh) \longrightarrow \operatorname{Hom}_{R}(R/a, H_{\phi}^{t-1}(M, N/xN))$$
$$\longrightarrow \operatorname{Hom}_{R}(R/a, Imk) \longrightarrow \operatorname{Ext}_{R}^{1}(R/a, Imh)$$
(2.1)

and

$$0 \longrightarrow \operatorname{Hom}_{R}(R/a, Imk) \longrightarrow \operatorname{Hom}_{R}(R/a, H_{\phi}^{t}(M, N))$$
$$\xrightarrow{x} \operatorname{Hom}_{R}(R/a, H_{\phi}^{t}(M, N)).$$
(2.2)

Moreover, by the induction hypothesis, $\operatorname{Hom}_R(R/a, H^{t-1}_{\phi}(M, N/xN))$ is finitely generated. Hence, by the exact sequence (2.1) the *R*-module $\operatorname{Hom}_R(R/a, Imh)$ is finitely generated. It is clear that the *R*-module, $x \operatorname{Hom}_R(R/a, H^t_{\phi}(M, N)) = 0$ it follows that

$$\operatorname{Hom}_R(R/a, H^t_{\phi}(M, N)) \cong \operatorname{Hom}_R(R/a, Imk).$$

On the other hand, since Imh is minimax there exists two *R*-modules T_1, T_2 such that T_1 is finitely generated and T_2 is Artinian and

$$0 \longrightarrow T_1 \longrightarrow Imh \longrightarrow T_2 \longrightarrow 0$$

is exact. This exact sequence induces the following exact sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(R/a, T_{1}) \longrightarrow \operatorname{Hom}_{R}(R/a, Imh) \longrightarrow \operatorname{Hom}_{R}(R/a, T_{2})$$
$$\longrightarrow \operatorname{Ext}^{1}_{R}(R/a, T_{1}) \longrightarrow \operatorname{Ext}^{1}_{R}(R/a, Imh) \longrightarrow \operatorname{Ext}^{1}_{R}(R/a, T_{2})$$
(2.3)

which implies that the R-module $\operatorname{Hom}_R(R/a, T_2)$ is of finite length and since

 $\operatorname{Supp} T_2 \subseteq V(\mathfrak{m}) \subseteq V(\mathfrak{a}).$

By ([12], Proposition 4.1) $\operatorname{Ext}_{R}^{i}(R/a, T_{2})$ is finitely generated. From the exact sequence (2.3) we get the *R*-module $\operatorname{Ext}_{R}^{1}(R/a, Imh)$ is finitely generated. It follows from the exact sequence (2.1) that the *R*-module $\operatorname{Hom}_{R}(R/a, Imk)$ is finitely generated. Now, we use the exact sequence (2.2) to obtain the result.

Theorem 2.5. Let M, N be two finitely generated R-modules and $t \in \mathbb{N}$. Then, the following statements are equivalent.

- (i) $H^i_{\phi}(M, N)$ is finitely generated for all i < t;
- (ii) There is an ideal $\mathbf{c} \in \phi$ such that $\mathbf{c}H^i_{\phi}(M,N) = 0$ for all i < t;
- (iii) There is an ideal $\mathfrak{c} \in \phi$ such that $\mathfrak{c} \subseteq \operatorname{Rad}(0 :_R H^i_{\phi}(M, N))$ for all i < t.

Proof. The conclusion (ii) \iff (iii) is obviously true.

To prove (i) \Rightarrow (ii), in view of the Theorem 2.2, there exists $\mathbf{c}_i \in \phi$, such that $\mathbf{c}_i H^i_{\phi}(M, N) = 0$. Since ϕ is a system of ideals, there is $\mathbf{c} \in \phi$ such that $\mathbf{c} \subseteq \mathbf{c}_i$ for $i = 1, \ldots, t - 1$. It follows that $\mathbf{c} H^i_{\phi}(M, N) = 0$ for all i < t.

In order to show the implication (ii) \Rightarrow (i) we use induction on t. When t = 1, there is nothing to prove. Now, suppose inductively t > 1 and that the assertion holds for t - 1. By this inductive assumption, $H^i_{\phi}(M, N)$ is finitely generated for all $i \leq t - 2$ and it only remains to prove that $H^{t-1}_{\phi}(M, N)$ is finitely generated. Since

$$H^i_{\phi}(M,\Gamma_{\phi}(N)) \longrightarrow H^i_{\phi}(M,N) \longrightarrow H^i_{\phi}(M,N/\Gamma_{\phi}(N))$$

is exact for all i > 0, we assume $\Gamma_{\phi}(N) = 0$. Therefore, $\Gamma_{\mathfrak{a}}(N) = 0$ for all $\mathfrak{a} \in \phi$. Therefore, in view of hypothesis there exists $x \in \mathfrak{a}$ such that x is N-sequence and $xH_{\phi}^{t-1}(M,N) = 0$. Using the exact sequence $0 \longrightarrow N \longrightarrow N \longrightarrow N/xN \longrightarrow 0$, we obtain the exact sequence

$$0 \longrightarrow H^0_{\phi}(M, N) \longrightarrow H^0_{\phi}(M, N) \longrightarrow \cdots \longrightarrow H^{t-2}_{\phi}(M, N)$$
$$\longrightarrow H^{t-2}_{\phi}(M, N/xN) \longrightarrow H^{t-1}_{\phi}(M, N) \longrightarrow H^{t-1}_{\phi}(M, N).$$
(2.4)

Now, use the exact sequence (2.4) together with Lemma 2.3 to see that there is $\mathfrak{c} \in \phi$ such that $\mathfrak{c} \subseteq \mathfrak{a}$ and $\mathfrak{c}H^i_{\phi}(M, N/xN) = 0$ for i < t-1. Therefore, by inductive hypothesis $H^{t-2}_{\phi}(M, N/xN)$ is finitely generated *R*-module. Again, using the long exact sequence (2.4), the result follows.

Definition 2.6. Let M, N be two finitely generated R-modules. Using Theorem 2.5 and Remark 2.1, we define the finiteness dimension $f_{\phi}(M, N)$ relative to ϕ by

$$f_{\phi}(M,N) = \inf\{i \in \mathbb{N} | H^{i}_{\phi}(M,N) \text{ is not finitely generated}\}$$
$$= \inf\{i \in \mathbb{N} | \mathfrak{a} H^{i}_{\phi}(M,N) \neq 0 \text{ for all } \mathfrak{a} \in \phi\}$$
$$= \inf\{i \in \mathbb{N} | \mathfrak{a} \nsubseteq \operatorname{Rad}(0 :_{R} H^{i}_{\phi}(M,N))\}.$$

At this stage the following remark is needed.

Remark 2.7. (i) Let $f : R \longrightarrow R'$ be a ring homomorphism. For any ideal \mathfrak{a} of R we denote its extension to R' by \mathfrak{a}^e . If ϕ is a system of ideals of R, then the set $\phi^e = {\mathfrak{a}^e : \mathfrak{a} \in \phi}$ is a system of ideals of R'. Moreover, suppose that S is a multiplicatively closed subset of Rand ϕ is a system of ideals of R. Let $S^{-1}\phi = {S^{-1}\mathfrak{a}|\mathfrak{a} \in \phi}$. Then, the connected right sequences of covariant functors, from category R-modules to category $S^{-1}R$ -modules and ${S^{-1}R^i\Gamma_{\phi}(-)}_{i\geq 0}$ and

$${R^i \Gamma_{S^{-1}\phi}(S^{-1}(-))}_{i\geq 0}$$

are isomorphic. In particular, for any R-module N,

$$S^{-1}R^i\Gamma_{\phi}(N) \cong R^i\Gamma_{S^{-1}\phi}(S^{-1}(N))$$

for all $i \ge 0$. For Example,

 $\tilde{W}(I,J) = \{ \mathfrak{a} | \mathfrak{a} \text{ is an ideal of } R \text{ and } I^n \subseteq \mathfrak{a} + J, \text{ for some } n \gg 0 \},$

is system of ideals and

$$S^{-1}\tilde{W}(I,J) = \{S^{-1}\mathfrak{a} | \mathfrak{a} \in \tilde{W}(I,J)\} \neq \tilde{W}(S^{-1}I,S^{-1}J).$$

(ii) Let $R \longrightarrow R'$ be a flat extension of rings, M and T be R-modules. If M is finitely generated, then

$$\operatorname{Ext}_{R}^{i}(M,T) \otimes_{R} R' \cong \operatorname{Ext}_{R'}^{i}(M \otimes R', T \otimes R')$$

is finitely generated for all $i \ge 0$ (see [11]).

(iii) Suppose that $R \longrightarrow R'$ is faithfully flat. Then, $T \otimes R'$ is finitely generated as an R'-module if and only if T is finitely generated as an R-module.

(iv) Let (R, \mathfrak{m}) be a local ring and \hat{R} its completion with respect to \mathfrak{m} , and T an R-module. If T has support only at \mathfrak{m} , Then $T \otimes R'$ has support only at $\mathfrak{m}\hat{R}$.

(v) Let (R, \mathfrak{m}, k) be a complete local Noetherian ring and let T be an R-module. Then T is Artinian if and only if $\operatorname{Supp} T = \{\mathfrak{m}\}$ and $\operatorname{Hom}(K, T)$ is finitely generated (see [10]).

Theorem 2.8. Let M, N be two finitely generated R-modules and $t \in \mathbb{N}$. If $S^{-1}\phi = \{S^{-1}\mathfrak{a} | a \in \phi\}$, consider the following statements:

- (i) $H^i_{\phi}(M, N)$ is finitely generated for all i < t,
- (ii) Hⁱ<sub>S<sup>-1φ</sub>(S⁻¹M, S⁻¹N) is finitely generated S⁻¹R- module for all i < t, where S = R − p and p ∈ Spec(R). Then, the following implications are true.
 </sub></sup>
 - (a) (i) \Rightarrow (ii).
 - (b) (ii) \Rightarrow (i), if Max(ϕ) is finite.

Proof. (i) \Rightarrow (ii) Using Remark 2.7, shows that

$$H^{i}_{S^{-1}\phi}(S^{-1}M, S^{-1}N) \cong S^{-1}(H^{i}_{\phi}(M, N))$$

for all $i \in \mathbb{N}$ and $\mathfrak{p} \in \operatorname{Spec}(R)$, this implication is clear. In order to show that (ii) implies (i), we proceed by induction on t. If t = 1there is nothing to show. Suppose that t > 1 and the case t - 1 is settled. By inductive hypothesis the R-module $H^i_{\phi}(M, N)$ is finitely generated for all i < t-1, and so it is enough to show that the R-module $H^{t-1}_{\phi}(M, N)$ is finitely generated. Using 2.4, $\operatorname{Hom}_R(R/\mathfrak{a}, H^{t-1}_{\phi}(M, N))$ is finitely generated. In other hand $\operatorname{Ass} H^{t-1}_{\phi}(M, N) \subseteq \bigcup_{\mathfrak{a} \in \phi} v(\mathfrak{a})$, the $\operatorname{Ass} H^{t-1}_{\phi}(M, N)$ is finite set, by assumption. Let

Ass
$$H^{t-1}_{\phi}(M,N) = \{\mathfrak{p}_1,\mathfrak{p}_2,\ldots,\mathfrak{p}_s\}.$$

Since $(H^{t-1}_{\phi}(M, N))_{\mathfrak{p}_i}$ is finitely generated $R_{\mathfrak{p}_i}$ -module for all $\mathfrak{p}_i \in \operatorname{Spec}(R)$, it follows from Theorem 2.5 and Remark 2.7 that there exists $\mathfrak{b}_i \in \phi$ such that $\mathfrak{b}_{i\mathfrak{p}_i}H^{t-1}_{\phi}(M, N)_{\mathfrak{p}_i} = 0$. Hence, there is $\mathfrak{c} \in \phi$ such that $\mathfrak{c}_{\mathfrak{p}} \subseteq (\mathfrak{b}_i)_{\mathfrak{p}}$ for all $i = 1, \ldots, s$. It follows that $\mathfrak{c}_{\mathfrak{p}}H^{t-1}_{\phi}(M, N)_{\mathfrak{p}_i} = 0$ for all $i = 1, \ldots, s$. Therefore $\{\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_s\} \not\subseteq \operatorname{Supp}(\mathfrak{c} H^{t-1}_{\phi}(M, N))$. On the other hand,

Ass
$$\mathfrak{c}H_{\phi}^{t-1}(M,N) \subseteq \operatorname{Ass}H_{\phi}^{t-1}(M,N),$$

then Ass $\mathfrak{c}H_{\phi}^{t-1}(M,N) = \emptyset$ and $\mathfrak{c}H_{\phi}^{t-1}(M,N) = 0$. Now, the result follows from Theorem 2.5.

Lemma 2.9. Let R be a Noetherian ring, \mathfrak{a} an ideal of R and T an R-module. Then, $T/(0:_{\mathfrak{a}}T)$ is isomorphic to a submodule $(\mathfrak{a}T)^n$ for some $n \in \mathbb{N}$.

Proof. Suppose $\mathfrak{a} = (x_1, \ldots, x_n)$ and define $f : T \longrightarrow (\mathfrak{a}T)^n$ by $f(m) = (x_1m, \ldots, x_nm)$. Since $\ker(f) = (0 :_\mathfrak{a} T)$, as required. \Box

Theorem 2.10. Let (R, \mathfrak{m}) be a local ring and M, N be two finitely generated R-modules and $t \ge 1$ an integer. Consider the following statements:

- (i) $H^i_{\phi}(M, N)$ is a minimax *R*-module for all i < t;
- (ii) There exists $\mathfrak{a} \in \phi$ such that $\mathfrak{a}H^i_{\phi}(M, N)$ is a minimax *R*-module for all i < t;
- (iii) $(H^i_{\phi}(M, N))_{\mathfrak{p}}$ is a finitely generated $R_{\mathfrak{p}}$ -module for all i < t and $\mathfrak{p} \in \operatorname{Spec}(R) - \{\mathfrak{m}\}.$

Then,

- (a) (i) \Leftrightarrow (ii) \Rightarrow (iii),
- (b) (iii) \Rightarrow (i), if Max(ϕ) is a finite set.

Proof. The implication (i) \Rightarrow (ii) is obviously true.

In order to show (ii) \Rightarrow (i), we proceed by induction on t. If t = 1, there is nothing to show, because $H^0_{\phi}(M, N) \cong \operatorname{Hom}(M, \Gamma_{\phi}(N))$ is a minimax R-module. Suppose that t > 1 and that the desired result has been proved for t - 1. By the inductive hypothesis, the R-module $H^i_{\phi}(M, N)$ is minimax for all i < t - 1, and it is enough to show that the R-module $H^{t-1}_{\phi}(M, N)$ is minimax. By assumption there exists $\mathfrak{a} \in \phi$ such that $\mathfrak{a}H^{t-1}_{\phi}(M, N)$ is a minimax R-module. In one hand, using Theorem 2.4 (0 : $\mathfrak{a} H^{t-1}_{\phi}(M, N)$) is finitely generated for all $\mathfrak{a} \in \phi$. On the other hand, since $\mathfrak{a}H^{t-1}_{\phi}(M, N)$ is minimax R-module, Lemma 2.9 implies that $H^{t-1}_{\phi}(M, N)/(0 :\mathfrak{a} H^{t-1}_{\phi}(M, N))$ is minimax R-module. We consider the exact sequence

$$0 \longrightarrow (0:_{\mathfrak{a}} H^{t-1}_{\phi}(M,N)) \longrightarrow H^{t-1}_{\phi}(M,N)$$
$$\longrightarrow H^{t-1}_{\phi}(M,N)/(0:_{\mathfrak{a}} H^{t-1}_{\phi}(M,N)) \longrightarrow 0.$$
(2.5)

Since $(0:_{\mathfrak{a}} H^{t-1}_{\phi}(M,N))$ and $H^{t-1}_{\phi}(M,N)/(0:_{\mathfrak{a}} H^{t-1}_{\phi}(M,N))$ are minimax, it follows that $H^{t-1}_{\phi}(M,N)$ is minimax, as required.

(i) \Rightarrow (iii) As $H^i_{\phi}(M, N)$ is a minimax *R*-module, there is an exact sequence of *R*-modules $0 \longrightarrow T \longrightarrow H^i_{\phi}(M, N) \longrightarrow T' \longrightarrow 0$, such that *T* is a finitely generated and *T'* is an Artinian R-module. Since $T'_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R) - {\mathfrak{m}}$, then $T_{\mathfrak{p}} \cong (H^i_{\phi}(M, N))_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Spec}(R) - {\mathfrak{m}}$, the result follows.

(iii) \Rightarrow (i) We use induction on t. If t = 1, then the assertion holds by assumption. So assume that t > 1 and the result has been proved for t-1. By the inductive hypothesis $H^i_{\phi}(M, N)$ is minimax R-module for all i < t - 1. Using Theorem 2.4 (0 :_a $H^{t-1}_{\phi}(M, N)$) is finitely generated for all $\mathfrak{a} \in \phi$. On the other hand, use the

Ass
$$H^{t-1}_{\phi}(M, N) \subseteq \bigcup_{\mathfrak{a}\in\phi} V(\mathfrak{a})$$

in conjunction with the assumption Ass $H^{t-1}_{\phi}(M,N)$ is finite set. Let

Ass
$$H^{t-1}_{\phi}(M,N) - {\mathfrak{m}} = {\mathfrak{p}_1,\mathfrak{p}_2,\ldots,\mathfrak{p}_s}.$$

By assumption $(H^{t-1}_{\phi}(M, N))_{\mathfrak{p}_i}$ is finitely generated for all $i = 1, \ldots, s$. Using Theorem 2.5 and Remark 2.7, there exist $\mathfrak{c}_i \in \phi$ such that $(\mathfrak{c}_i H^i_{\phi}(M, N))_{\mathfrak{p}_i} = 0$ for all $i = 1, \ldots, s$. It follows that, there is $\mathfrak{b} \in \phi$ such that $\mathfrak{b} \subseteq \mathfrak{c}_i$ and $(\mathfrak{b} H^i_{\phi}(M, N))_{\mathfrak{p}_i} = 0$ for all $i = 1, \ldots, s$. Therefore Ass $\mathfrak{b} H^i_{\phi}(M, N) \subseteq \{\mathfrak{m}\}$ and Supp $\mathfrak{b} H^i_{\phi}(M, N) \subseteq \{\mathfrak{m}\}$. Hence in view of Lemma 2.9,

$$\operatorname{Supp} H^{t-1}_{\phi}(M,N)/(0:_{\mathfrak{b}} H^{t-1}_{\phi}(M,N)) \subseteq \{\mathfrak{m}\}.$$

We may consider the exact sequence

$$0 \longrightarrow (0:_{\mathfrak{b}} H^{t-1}_{\phi}(M,N)) \longrightarrow H^{t-1}_{\phi}(M,N)$$
$$\longrightarrow H^{t-1}_{\phi}(M,N)/(0:_{\mathfrak{b}} H^{t-1}_{\phi}(M,N)) \longrightarrow 0, \qquad (2.6)$$

to obtain the exact sequence

$$0 \longrightarrow (0:_{\mathfrak{b}} (0:_{\mathfrak{b}} H^{t-1}_{\phi}(M,N))) \longrightarrow (0:_{\mathfrak{b}} H^{t-1}_{\phi}(M,N))$$
$$\longrightarrow (0:_{\mathfrak{b}} H^{t-1}_{\phi}(M,N)/(0:_{\mathfrak{b}} H^{t-1}_{\phi}(M,N))$$
$$\longrightarrow \operatorname{Ext}_{R}^{1} \left(R/\mathfrak{b}, (0:_{\mathfrak{b}} H^{t-1}_{\phi}(M,N)) \right).$$
(2.7)

It follows from the exact sequence (2.5) that

$$(0:_{\mathfrak{b}} H^{t-1}_{\phi}(M,N)/(0:_{\mathfrak{b}} H^{t-1}_{\phi}(M,N))$$

is a finitely generated R-module. Thus

$$(0:_{\mathfrak{m}} H^{t-1}_{\phi}(M,N)/(0:_{\mathfrak{b}} H^{t-1}_{\phi}(M,N)))$$

is a finitely generated *R*-module. Therefore, in view of Remark 2.7, $H^{t-1}_{\phi}(M,N)/(0:_{\mathfrak{b}} H^{t-1}_{\phi}(M,N))$ is an Artinian R-module. Now, by virtue of the exact sequence (2.6) the result follows.

Acknowledgments

The authors would like to thank the referee for his/her useful comments.

References

- M. Aghapournahr and L. Melkersson, Finiteness properties of minimax and coatomic local cohomology modules, Arch. Math. (Basel), 94 (2010), 519–528.
- K. Bahmanpour, R. Naghipour, On the cofiniteness of local cohomology modules, Amer. Math. Soc., 136(7) (2005), 2359–2363.
- M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasg. Math. J., 21(1) (1980), 173–181.
- M. H. Bijan-Zadeh, Torsion theory and local cohomology over commutative Noetherian ring, J. Londan Math. Soc., 19(3) (1979), 402–410.
- M. P. Brodmann and R. Y. sharp, Local cohomology: An algebraic introduction with geometric applications, Cammbridge. Univ. Press, 1998.

- W. Bruns and J. Herzog, *Cohen-Macaulay rings*, Cambridge studies in Advanced Mathematics 39, Revised edition, Cambridge University Press, 1998.
- M. R, Doustimehr and R. Naghipour, On the generalization of Faltings^{*} Annihilator Theorem, Arch. Math., **102**(1) (2014), 15–23.
- G. Faltings, Der endlichkeitssatz in der lokalen kohomomologie, Math. Ann., 255 (1981), 45–56.
- A. Hajikarimi, Cofiniteness with respect to a serre subcategory, *Math. Notes*, 58(1) (2011), 121–130.
- C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc., 110(3) (1991), 421–429.
- 11. H. Matsumura, *Commutative Ring Theory*, Second edition, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge, 1989.
- L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra, 285(1) (2005), 649–668.

Aireza Hajikarimi

Department of Mathematics, Mobarakeh Branch, Islamic Azad University, Isfahan, Iran.

Email: a.hajikarimi@mau.ac.ir

Fatemeh Dehghani-Zadeh

Department of Mathematics, Islamic Azad University, Yazd branch, Yazd, Iran.

Email: fdzadeh@gmail.com

Journal of Algebraic Systems

FALTINGS' LOCAL-GLOBAL PRINCIPLE FOR THE MINIMAXNESS OF LOCAL COHOMOLOGY MODULES DEFINED BY A SYSTEM OF IDEALS

A. HAJIKARIMI AND F. DEHGHANI-ZADEH

اصل موضعی-سرتاسری فالتینگز برای مینیماکس بودن مدولهای کوهمولوژی موضعی تعریف شده نسبت به دستگاه ایدهآلی

علیرضا حاجیکریمی و فاطمه دهقانیزاده ً

اگروه ریاضی، دانشگاه آزاد واحد مبارکه، اصفهان، ایران

کروه ریاضی، دانشگاه آزاد واحد یزد، یزد، ایران

فرض کنید R یک حلقه نوتری و جابهجایی و ϕ یک دستگاه ایدهآلی از R باشد. در این مقاله نشان میدهیم که در برخی حالات خاص، شرایط اصل موضعی-سرتاسری فالتینگز برای متناهی بودن و مینیماکس بودن مدولهای کوهمولوژی موضعی $H^i_{\phi}(M,N)$ برقرار است.

کلمات کلیدی: مدول،ای کوهمولوژی موضعی تعمیمیافته، اصل موضعی-سرتاسری، مدول،ای مینیماکس.