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ON THE PATH HYPEROPERATION AND ITS
CONNECTIONS WITH HYPERGRAPH THEORY

R. BAYAT TAJVAR∗ AND M. LATIFI

Abstract. In this paper, we introduce a path hyperoperation
associated with a hypergraph, which is an extension of the Corsini’s
hyperoperation. We investigate some related properties and study
relations between the path hyperoperation and hypergraph theory.

1. Introduction

Hypergraphs in the early 1960s as a generalization of graphs, became
an independent theory. Hypergraphs are systems of finite sets and
form the most general concept in discrete mathematics. This branch of
mathematics has developed very rapidly during the twentieth century.
In [2], there is a very good presentation of graph and hypergraph theory.

Algebraic hyperstructures, in particular hypergroups, were intro-
duced in 1934 by Marty, at the 8th Congress of Scandinavian
Mathematicians (see [23]) and then it was developed by many
researchers. Since then, hundreds of papers and several books have
been written on this topic. Nowadays, there are many connections
between hyperstructures and other branches of mathematics, leading
to applications in hypergraphs, binary relations, combinatorics, arti-
ficial intelligence, automata and fuzzy sets. One can find a survey of
hyperstructure theory and their applications in [9, 10].
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The concept of hypergroupoids deriving from binary relations,
namely C-hypergroupoids were delineated by Corsini in [7] (see also
[24, 25, 26, 27]). Also, the connection between hyperstructures and
binary relations in general, has been investigated in [10, 11, 12, 13, 14].

A new class of hyperoperations, namely path hyperoperations that
are obtained from binary relations and their connections with graph
theory, were introduced by Kalampakas et al. [18, 20]. In this
paper, we introduce path hyperoperations by obtaining it from
directed hypergraphs, which are an extension of the Corsini’s hyper-
operation. Also, we study some properties of these hyperoperations and
their
correlations with hypergraph theory are investigated.

More exactly, for a given hypergraph Γ = (V,E), we define a path
hyperoperation on V by,

◦Γ : V × V → P ∗(V ) : (u, v) 7→ u ◦Γ v,
where
u◦Γ v := {z ∈ V | z belongs to at least one directed path from u to v}.

It is obvious that this definition is a natural extension of the Corsini’s
hyperoperation. In other words, for each binary relation E ⊆ V × V
and elements u, v ∈ V , the Corsini product u •E v is a subset of
u ◦Γ v i.e., u •E v ⊆ u ◦Γ v. The relationship between this concept and
directed hypergraphs is presented by proving that: A directed
hypergraph Γ = (V,E), is strongly connected if and only if the
associated path hyperoperation is non-partial.

This article is organized as follows. In Section 2, we review several
basic concepts of hypergraphs and hypergroupoids. In Section 3 we
introduce the path hyperoperation which is an extension of the
Corsini’s hyperoperation. Also we study the connection between this
concept with hypergraph theory. In Section 4, we present some
connections between commutative path hypergroupoids and
hypergraphs. In Section 5, we introduce an induced equivalence
relation on a path hypergroupoid associated with a given hypergraph
and we prove that every commutative path hypergroupoid can be
obtained as the disjoint union of a set of non-partial commutative
hypergroupoids. Finally, we discuss applications of the path hyper-
operations in Section 6.

2. Preliminary Results

In this section, we introduce some preliminary results and definitions
which will be needed in the subsequent sections.
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We provide some definitions from the theory of hypergraphs. The
interested reader should refer to [2, 3] for more concepts of hypergraph
theory.

A hypergraph Γ is a pair (V,E), where V ={v1, v2, . . . , vn} is a set of
discrete elements known as vertices (or nodes) and E={e1, e2, . . . , em}
is a collection of arbitrary non-void subsets of V such that

∪
j ej = V ,

known as edges (or hyperedges). A hypergraph is a generalization of
an ordinary undirected graph, such that a hyperedge does not need
to contain exactly two vertices, but can instead contain an arbitrary
non-zero number of nodes. Also, an ordinary undirected graph (with-
out self-loops) is a hypergraph such that every edge has exactly two
vertices. Two vertices u and v are adjacent in Γ=(V,E) if there is an
edge e ∈ E such that u, v ∈ e. If for two edges e, f ∈ E, e ∩ f ̸= ∅,
then we say that e and f are adjacent. A vertex v and an edge e are
incident if v ∈ e. We denote by Γ(v) the neighborhood of a vertex v,
i.e. Γ(v) = {u ∈ V : {u, v} ∈ E}. Given v ∈ V , denote the number of
edges incident with v by d(v); d(v) is called the degree of v. A hyper-
graph in which all vertices have the same degree d is said to be regular
of degree d or d-regular. The size, or the cardinality, |e| of a hyperedge
is the number of vertices in e. A hypergraph Γ is simple if there are no
repeated edges and no edge properly contains another. A hypergraph
is known as uniform or k-uniform if all the edges have cardinality k.
Note that an ordinary graph with no isolated vertices is a 2-uniform
hypergraph.

A partial hypergraph (or subhypergraph) Γ
′
= (V

′
, E

′
) of a hyper-

graph Γ = (V,E), denoted by Γ
′ ⊆ Γ, is a hypergraph such that

V
′ ⊆ V and E

′ ⊆ E. The partial hypergraph Γ
′
= (V

′
, E

′
) is induced

if E
′
= {e ∈ E | e ⊆ V

′}. Induced hypergraphs will be denoted by
⟨V ′⟩. A partial hypergraph of a simple hypergraph is always simple.

Let Γ = (V,E) be a hypergraph. A path of length k in Γ is an
alternating sequence

Pv1,vk+1
= (v1, e1, v2, . . . , vk, ek, vk+1)

in which vi ∈ V for each i = 1, 2, . . . , k + 1, ei ∈ E, {vi, vi+1} ⊆ ei for
i = 1, 2, . . . , k and vi ̸= vj, ei ̸= ej for i ̸= j. Also, a hypergraph is
connected if there is a path between every pair of vertices. A connected
component of a hypergraph is every maximal set of vertices such that
are pairwise connected by a path. A cycle of length k is a sequence
(v1, e1, v2, . . . , vk, ek, v1), such that Pv1,vk is a path. Also, a hypergraph
is called acyclic if it does not contain any cycles.

Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be two hypergraphs. A
homomorphism from Γ1 into Γ2 is a mapping φ : V1 → V2 such that



312 BAYAT AND LATIFI

φ(e) = {φ(v1), . . . , φ(vr)} is an hyperedge in Γ2, if e = {v1, . . . , vr} is
a hyperedge in Γ1. Note, a homomorphism from Γ1 into Γ2 implies
also a mapping φE : E1 → E2. A homomorphism φ that is bijective
is called an isomorphism if φ(e) ∈ E2 if and only if e ∈ E1 holds. We
say, Γ1 and Γ2 are isomorphic, in symbols Γ1

∼= Γ2 if there exists an
isomorphism between them. An isomorphism from a hypergraph Γ onto
itself is an automorphism. The automorphism group of Γ is denoted by
Aut(Γ). A hypergraph is vertex transitive if its automorphism group
acts transitively on the set of vertices. Such a hypergraph is necessarily
regular, that is, each vertex is incident to the same number of edges.
In the same way a hypergraph is edge transitive if its automorphism
group acts transitively on the set of edges.

Let H be a non-void set and P ∗(H) be the set of all non-void subsets
of H. A hyperoperation on H is a map ∗ : H2 → P ∗(H) and the couple
(H, ∗) is called a partial hypergroupoid. The structure (H, ∗) is called
a non-partial hypergroupoid if for every x, y ∈ H we have x ∗ y ̸= ∅. A
hypergroupoid (H, ∗) is called a total hypergroupoid if for each pair of
x and y in H, x∗y = H. A hypergroupoid (H, ∗) is called commutative
if for all x, y ∈ H we have x ∗ y = y ∗ x. Also, (H, ∗) is called weakly
commutative if ∀x, y ∈ H, x ∗ y ∩ y ∗ x ̸= ∅.

If A and B are non-void subsets of H, then A ∗B is defined by,

A ∗B =
∪

a∈A,b∈B

a ∗ b.

(i) A semihypergroup is a hypergroupoid (H, ∗) which satisfies the
associative axiom:

∀x, y, z ∈ H, (x ∗ y) ∗ z = x ∗ (y ∗ z).

(ii) A quasihypergroup is a hypergroupoid (H, ∗) which satisfies the
reproductive axiom:

∀x ∈ H, x ∗H = H = H ∗ x.

(iii) A hypergroup is a semihypergroup which is also a quasihyper-
group.

A non-void subset K of a hypergroup (H, ∗) is called a subhypergroup
if it satisfies the reproductive axiom, i.e., for all k ∈ K,

k ∗K = K ∗ k = K.

Let (H1, ∗1) and (H2, ∗2) be two hypergroupoids. A map f : H1 → H2

is called a homomorphism if ∀x, y ∈ H1, f(x∗1y) ⊆ f(x)∗2f(y) and it is
called a good homomorphism if for all x, y ∈ H1, f(x∗1y) = f(x)∗2f(y).
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We say that the two hypergroups H1 and H2 are isomorphic if there
is a good homomorphism between them which is also a bijection and
we write H1

∼= H2.
The relationship between hyperstructure theory and hypergraph

theory has been studied by many authors (see [1, 8, 15, 16, 17, 21, 22]).
Let Γ = (H, {Ei}i) be a hypergraph. The hypergroupoid

HΓ = (H, ◦) such that the hyperoperation “◦” on H is defined as
follows:

∀(x, y) ∈ H2, x ◦ y = E(x) ∪ E(y),

is called a hypergraph hypergroupoid, where E(x) =
∪

x∈Ei
Ei. The

following results have been obtained by Corsini in [8].

Theorem 2.1. Let (H, ◦) be a hypergroupoid. Then for any
(x, y) ∈ H2, the following holds:

(i) x ◦ y = x ◦ x ∪ y ◦ y,
(ii) x ∈ x ◦ x,
(iii) y ∈ x ◦ x ⇐⇒ x ∈ y ◦ y.

Theorem 2.2. Let (H, ◦) be a hypergroupoid satisfying (i), (ii) and (iii)
of Theorem 2.1. Then (H, ◦) is a hypergroup if and only if the following
condition is valid:

∀(x, y) ∈ H2, y ◦ y ◦ y − y ◦ y ⊂ x ◦ x ◦ x. (2.1)

Corollary 2.3. Let (H, ◦) be a hypergroupoid which satisfies (i), (ii)
and (iii) of Theorem 2.1 and the condition:

∀x ∈ H, x ◦ x ◦ x = x ◦ x. (2.2)
Then (H, ◦) is a hypergroup.

Example 2.4. Let Γ = {{1, 2}, {2, 3}} be a hypergraph. We have
1 ◦ 1 = {1, 2} ̸= 1 ◦ 1 ◦ 1 = {1, 2, 3}.

Then, clearly HΓ does not satisfy (2.2), but satisfying (2.1). Thus by
Theorem 2.2, HΓ is a hypergroup.

Let E ⊆ H ×H be a binary relation. The Corsini’s hyperoperation
•E : H ×H → P ∗(H) is defined as follows:

(x, y) 7→ x •E y := {z ∈ H | (x, z) ∈ E and (z, y) ∈ E}.

The hypergroupoid (H, •E) is called Corsini’s partial hypergroupoid
or simply partial C-hypergroupoid associated with the binary relation
on H (see [7, 19, 24, 25]). If x •E y ̸= ∅ for all x, y ∈ H, then (H, •E) is
called C-hypergroupoid. Clearly, a partial C-hypergroupoid (H, •E) is
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a C-hypergroupoid if and only if E ◦ E = H2, so that “◦” is the usual
relation composition.

In this paper we introduce a path hyperoperation which is an
extension of the Corsini’s hyperoperation, obtained from directed
hypergraphs.

3. Path Hyperoperations and Hypergraph Theory

In this section, we introduce path hypergroupoids that are obtained
from directed hypergraphs, which are an extension of the Corsini’s
hypergroupoids and investigate their connections with hypergraph
theory.

Let Γ = (V,E) be a hypergraph. We define the path hyperoperation
◦Γ : V × V → P ∗(V ) for all x, y ∈ V as follows:

x ◦Γ y := {z ∈ V | z belongs to a path from x to y}.
The (partial) hypergroupoid (V, ◦Γ) is called the (partial) path

hypergroupoid corresponding with Γ.
The hyperoperation “◦Γ” on V is called a non-partial hyperopera-

tion if for all x, y ∈ V we have x ◦Γ y ̸= ∅. In this case, the path
hypergroupoid associated with Γ is called non-partial.

It is easy to check that, for any hypergraph Γ = (V,E) and for
all x, y ∈ V , the Corsini product x •E y is a subset of x ◦Γ y i.e.,
x •E y ⊆ x ◦Γ y.

By the definition of the path in a hypergraph we obtain the following
results.

Proposition 3.1. Let Γ = (V,E) be a hypergraph. Then for any
x, y ∈ V , x ◦Γ y ̸= ∅ if and only if there exists a path from x to y.

Proposition 3.2. ([19]) Let G = (V,E) be a graph, then the Corsini
hyperoperation “•E” associated with G, is non-partial if and only if
there exists a path with length 2 between any pair of vertices of G.

This result allows us to prove the following corollary.

Corollary 3.3. Let Γ = (V,E) be a hypergraph and let “◦Γ” be the
associated path hyperoperation with Γ. Then “◦Γ” is a non-partial
hyperoperation if and only if for any x, y ∈ V , there exists a path from
x to y.

Proof. The path hyperoperation associated with Γ is a partial hyper-
operation if and only if x ◦Γ y ̸= ∅ for all x, y ∈ V . Therefore, by
Proposition 3.1, x ◦Γ y ̸= ∅ if and only if there exists a path from x to
y. □
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Directed hypergraphs is a generalization of directed graphs (digraphs).
Directed hypergraphs modelling can be very useful in formal language
theory, relational database theory, scheduling and many other fields.
A directed hypergraph is defined as follows.

A directed hypergraph Γ (or dihypergraph) is a pair (V,E), where V
is a finite set of vertices and E is a set of hyperarcs. A hyperarc E is
an ordered pair (T,H) of disjoint subsets of V . The set T is the tail
set of the hyperarc, while H is called the head set of the hyperarc.

The size of a dihypergraph Γ is defined as |Γ| = Σe∈E|tail(e)|. An
example of a directed hypergraph is illustrated in Figure 1.

Figure 1. A directed hypergraph

In the following definition we state the notion of strong connectivity
of hypergraphs. This concept is a generalization of strong connectiv-
ity of graphs. Hypergraph connectivity can be used in networking,
mobile communication systems, shortest path, database theory, image
processing and numerous other applications.
Definition 3.4. A dihypergraph Γ = (V,E) is called strongly connected
if for every x, y ∈ V there exists at least one directed path between x
and y.

In the sequel we study the connection between the path hyperoper-
ation and hypergraph connectivity.
Theorem 3.5. Let Γ = (V,E) be a dihypergraph. Then Γ is strongly
connected if and only if the associated path hyperoperation is
non-partial.
Proof. Suppose that Γ is a strongly connected hypergraph. Then for
any x, y ∈ V there exists a path between x and y. By Proposition
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3.1 we have x ◦Γ y ̸= ∅ for every x, y ∈ V . Thus the associated path
hyperoperation with Γ is non-partial.

Conversely, suppose that the associated path hyperoperation with
Γ, “◦Γ” be non-partial. So, for any x, y ∈ V we have x ◦Γ y ̸= ∅.
Therefore, by Proposition 3.1 there exists a path between x and y.
Thus Γ is strongly connected. □

For a given dihypergraph Γ = (V,E), the strongly connected
component of Γ is called the strongly connected partial hypergraph.
More exactly, a strongly connected component of a hypergraph
Γ = (V,E) is a maximal partial hypergraph Γ

′
= (V

′
, E

′
) such that

there exists a path between every two vertices of V ′ . Thus we have the
following result.
Proposition 3.6. Let Γ = (V,E) be a dihypergraph and x, y ∈ V .
Then x ◦Γ y ̸= ∅ and y ◦Γ x ̸= ∅ if and only if x and y belong to the
common strongly connected component of Γ.
Proof. By Theorem 3.5, the proof is obvious. □

4. Commutative Path Hyperoperations and Hypergraph
Theory

In this section, we analyse some connections between commutative
path hypergroupoids and hypergraphs.

In the following proposition, we state the relation between a path
hyperoperation and cycles of a hypergraph.
Theorem 4.1. Let Γ = (V,E) be a hypergraph and x, y ∈ V . Then
x ◦Γ y ̸= ∅ and y ◦Γ x ̸= ∅ if and only if x and y belong to at least one
same cycle in Γ.
Proof. Suppose that x ◦Γ y ̸= ∅ and y ◦Γ x ̸= ∅, then by Proposition
3.1, there exists a path from x to y and a path from y to x, for any
x, y ∈ V . Therefore, there exists at least one cycle passing through x
and y.

Conversely, suppose that x and y belong to one common cycle in
Γ. Clearly, this cycle can be separated into two paths one from x to
y and other from y to x. Thus, by Proposition 3.1, x ◦Γ y ̸= ∅ and
y ◦Γ x ̸= ∅. □

Now, we obtain the following result by Theorem 4.1 .
Corollary 4.2. Let Γ = (V,E) be a hypergraph and x, y ∈ V . Then Γ is
acyclic if and only if either the path hyperoperation is non-commutative
or x ◦Γ y = y ◦Γ x = ∅ holds.
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This result allows us to prove the following theorem.
Theorem 4.3. Let Γ = (V,E) be a hypergraph such that for all
x, y ∈ V , x ◦Γ y ̸= ∅ and y ◦Γ x ̸= ∅. Then the associated path
hypergroupoid “◦Γ” is commutative.
Proof. We must prove that x ◦Γ y = y ◦Γ x. To prove this, we first need
to show that x ◦Γ y ⊆ y ◦Γ x. Since x ◦Γ y ̸= ∅, it follows that there
exists a vertex z ∈ x ◦Γ y. Thus, there exists a path from x to y in Γ
as follows:

x, e0, x1, e1, . . . , z, ez, . . . , xn, en, y.

Also, since y ◦Γ x ̸= ∅, it follows that there exists a path from y to x in
Γ as follows:

y, e
′

0, y1, e
′

1, . . . , yn, e
′

n, x.

Thus, there exists a path from y to x, passing from z as follows:
y, e

′

0, y1, . . . , yn, e
′

n, x, e0, x1, . . . , z, ez, . . . , xn, en, y, e
′

0, y1, . . . , yn, e
′

n, x.

Therefore, z ∈ y◦Γx holds. Similarly, we can prove that y◦Γx ⊆ x◦Γy.
This completes the proof. □

From Theorem 4.3, it is easy to show the following corollary.
Corollary 4.4. Let Γ = (V,E) be a hypergraph. Then any non-partial
path hypergroupoid associated with Γ is commutative.
Theorem 4.5. Let Γ = (V,E) be a hypergraph such that for all
x, y, z ∈ V , x ◦Γ y ̸= ∅ and y ◦Γ z ̸= ∅. If the associated path
hyperoperation, “◦Γ” is commutative, then x ◦Γ y = y ◦Γ z.
Proof. We first need to show that x ◦Γ y ⊆ y ◦Γ z. Since x ◦Γ y ̸= ∅,
it follows that there is a vertex w ∈ x ◦Γ y. Thus, there exists a path
from x to y in Γ which contains w as follows:

x, e0, x1, e1, . . . , w, ew, . . . , xn, en, y.

By hypothesis, since “◦Γ” is commutative, so y ◦Γ x ̸= ∅, thus there
exists at least one path from y to x as follows:

y, e
′

0, y1, e
′

1, . . . , yn, e
′

n, x.

Also, since y ◦Γ z ̸= ∅, thus there exists a path from y to z as follows:
y, e

′′

0 , z1, e
′′

1 , . . . , zn, e
′′

n, z.

Thus, there exists a path from y to z, passing from w as follows:
y, e

′

0, y1, . . . , yn, e
′

n, x, e0, x1, . . . , w, ew, . . . , xn, en, y, e
′′

0 , z1, . . . , zn, e
′′

n, z.

Therefore, w ∈ y ◦Γ z and thus x ◦Γ y ⊆ y ◦Γ z. Similarly, we can prove
that y ◦Γ z ⊆ x ◦Γ y. This completes the proof. □
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5. Equivalence Relation on a Path Hypergroupoid

In this section, we introduce an induced equivalence relation on a
path hypergroupoid associated with a given hypergraph and we prove
that every commutative path hypergroupoid can be obtained as the
disjoint union of a set of non-partial commutative hypergroupoids.

For a given hypergraph Γ = (V,E), we define a relation ∼V on the
associated path hypergroupoid (V, ◦Γ) as follows: for all x, y ∈ V ,

x ∼V y ⇐⇒ x ◦Γ y ̸= ∅.
We have the following proposition:

Proposition 5.1. Let Γ = (V,E) be a hypergraph and “◦Γ” be the
associated path hyperoperation with Γ. If “◦Γ” is commutative, then
∼V is an equivalence relation on V .

Proof. By Theorem 4.3 clearly, ∼V satisfies the symmetric relation.
Also, it is easy to see that the transitive relation holds by Theorem
4.5. To see that ∼V is reflexive, without loss of generality, we may
suppose that Γ be a hypergraph without isolated vertices. It follows
that for any vertex in V , there is at least one incoming hyperedge to
it or one outgoing hyperedge from it. Thus, for any x ∈ V , there is at
least one y ∈ V such that x ◦Γ y ̸= ∅ or y ◦Γ x ̸= ∅. By hypothesis,
since “◦Γ” is commutative, we have: x ◦Γ y = y ◦Γ x ̸= ∅. It follows
that there exists at least one path from x to y and at least one path
from y to x. Therefore, there exists a path from x to x and thus we
have x ◦Γ x ̸= ∅. Hence, ∼V is reflexive and thus ∼V is an equivalence
relation on V . □

The following theorem gives a necessary and sufficient condition for
a characterization of hypergraphs with commutative associated path
hyperoperation.

Theorem 5.2. Let Γ = (V,E) be a hypergraph. Then the associated
path hyperoperation with Γ is commutative, if and only if Γ consists of
a disjoint union of strongly connected hypergraphs.

Proof. Suppose that “◦Γ” is the associated path hyperoperation with
Γ and let “◦Γ” be commutative. Then ∼V is an equivalence relation on
V , by Proposition 5.1. Let V1, V2, . . . , Vn be a partition of V induced
by ∼V i.e.,

V = V1 ∪ V2 ∪ . . . ∪ Vn such that Vi ∩ Vj = ∅,
for all 1 ≤ i, j ≤ n, i ̸= j. We have to show that Γ = (V,E) is
constructed by the disjoint union of strongly connected hypergraphs as
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follows:
Γ1 = (V1, E1),Γ2 = (V2, E2), . . . ,Γn = (Vn, En).

Assume that x, y ∈ Vi, 1 ≤ i ≤ n, then x ∼V y and thus, there exists
a path from x to y. Therefore, the partial hypergraph Γi = (Vi, Ei)
is strongly connected for any 1 ≤ i ≤ n. Now we prove that for any
x ∈ Vi and y ∈ Vj, 1 ≤ i, j ≤ n, i ̸= j, there does not exist a path
from x to y. Suppose that such a path exists. Thus x ◦Γ y ̸= ∅ and so
x ∼V y which leads to a contradiction because Vi and Vj are different
partition classes of ∼V . Hence, Γ is constructed by the disjoint union
of Γi where 1 ≤ i ≤ n.

Conversely, suppose that Γ consists of the disjoint union of n strongly
connected hypergraphs as follows:

Γ1 = (V1, E1),Γ2 = (V2, E2), . . . ,Γn = (Vn, En).

where,
V = V1 ∪ V2 ∪ . . . ∪ Vn such that Vi ∩ Vj = ∅,

for all 1 ≤ i, j ≤ n, i ̸= j. Now we have to show that “◦Γ” is commu-
tative i.e., for all x, y ∈ V , x ◦Γ y = y ◦Γ x. Let x, y ∈ Vi, 1 ≤ i ≤ n.
Since Γi = (Vi, Ei) is strongly connected, by Proposition 3.6 we have
x◦Γy ̸= ∅ and y◦Γx ̸= ∅, also by Theorem 4.3, we obtain x◦Γy = y◦Γx.
Now we consider that x and y belong to different strongly connected
components Γi and Γj. Since Γ consists of the disjoint union of n
strongly connected hypergraphs Γ1, . . . ,Γn, therefore, there exists no
path from x to y or from y to x. It follows that x ◦Γ y = y ◦Γ x = ∅.
Hence, “◦Γ” is commutative. □

6. Applications of Path Hyperoperations

In this section, we describe application of the path hyperoperations
in designing mixed-model assembly lines.

Nowadays, mixed-model assembly lines are found in many industrial
environments. With the grown trend towards product variability and
shorter life cycle, mixed-model assembly lines are replacing the tradi-
tional single-model assembly lines. In marketplaces where product life
cycles are short, and product variety requests are high, many different
models of a product should be constructed in relatively small lot sizes
and reach the customer in a short lead-time. Also, assembly lines must
still attain high productivity, similar quality and low assembly cost [6].

In a mixed-model assembly line, setup times and costs are decreased
sufficiently enough to be ignored, so that various products are jointly
produced in intermixed product sequences on the same line. As a
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result, usually, all models are variations of the same base product and
only differ in special customizable product attributes, that are called
options. During the configuration sketching of an assembly line, that
is generally known as the assembly line balancing problem (ALB-P)
has to be solved which specifies the assignment of tasks and all their
required resources to the workstations of the line [5]. The design of
such a system requires the assignment of special tasks to workstations
with regard to a given set of precedence constraints. The so obtained
assembly sequence, which can be visualized by digraphs, are usually
called precedence graphs [20].

The introduced path hyperoperation is utilized in order to construct
the precedence graph of a special product with respect to a known
set of precedence relations. Furthermore, a similar procedure is also
employed in order to design the joint precedence graph of two or more
precedence graphs which encompass all their characteristics.
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ابرگراف نظریه  با آن ها ارتباط و مسیر ابرعمل های

لطیفی٢ مهدی بیات١و رضا

ایران تهران، (ص)، خاتم الانبیاء دانشگاه پایه، علوم دانشکده ریاضی، ١,٢گروه

معرفی ابرعمل از تعمیمی که می کنیم معرفی را ابرگراف یک با متناظر مسیر، ابرعمل یک مقاله این در
خصوصیات از برخی و ابرگراف نظریه و مسیر ابرعمل بین رابطه  همچنین است. کرسینی توسط شده

گرفت. خواهند قرار مطالعه مورد مرتبط،

جهت دار. ابرگراف جزئی، ابرعمل مسیر، ابرعمل ابرگراف، کلیدی: کلمات
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