Journal of Algebraic Systems

Vol. 10, No. 2, (2023), pp 335-343

PERFECTNESS OF THE ANNIHILATOR GRAPH OF ARTINIAN COMMUTATIVE RINGS

M. ADLIFARD AND SH. PAYROVI*

Abstract

Let R be a commutative ring and $Z(R)$ be the set of its zero-divisors. The annihilator graph of R, denoted by $A G(R)$ is a simple undirected graph whose vertex set is $Z(R)^{*}$, the set of all nonzero zero-divisors of R, and two distinct vertices x and y are adjacent if and only if $\operatorname{ann}_{R}(x y) \neq \operatorname{ann}_{R}(x) \cup \operatorname{ann}_{R}(y)$. In this paper, perfectness of the annihilator graph for some classes of rings is investigated. More precisely, we show that if R is an Artinian ring, then $A G(R)$ is perfect.

1. Introduction

One of the most important and active areas in algebraic combinatorics is study of graphs associated with rings. This field has attracted the attention of many researchers during the past 20 years. There are many papers on assigning a graph to a ring, see for instance $[1,2,4,5]$. Let R be a commutative ring with nonzero identity. The annihilator graph of R, denoted by $A G(R)$ is a simple undirected graph whose vertex set is the set of all nonzero zero-divisors of R and two distinct vertices x and y are adjacent if and only if

$$
\operatorname{ann}_{R}(x y) \neq \operatorname{ann}_{R}(x) \cup \operatorname{ann}_{R}(y)
$$

The annihilator graph was first introduced in [4], and some of its properties have been studied. In [10], it was proved that if R is a finite direct product of integral domains, then $A G(R)$ is weakly

[^0]perfect. Morover, in [8], for a nonreduced ring R it is shown that $A G(R)$ is perfect. In this article, we show that if R is a finite direct product of integral domains or if R is an Artinian ring, then $A G(R)$ is perfect.

We use the standard terminology for graphs following [12]. Let $G=(V, E)$ be a graph, where $V=V(G)$ is the set of vertices and $E=E(G)$ is the set of edges. By \bar{G}, we mean the complement graph of G. We write $u \sim v$, to denote an edge with ends u, v. The open neighborhood of a vertex u is defined to be the set

$$
N(u)=\{v \in V(G): u \text { is adjacent to } v\}
$$

and the closed neighborhood of u is the set $N[u]=N(u) \cup\{u\}$. A graph $H=\left(V_{0}, E_{0}\right)$ is called a subgraph of G if $V_{0} \subseteq V$ and $E_{0} \subseteq E$. Moreover, H is called an induced subgraph by V_{0}, denoted by $G\left[V_{0}\right]$, if $V_{0} \subseteq V(G)$ and $E_{0}=\left\{\{u, v\} \in E \mid u, v \in V_{0}\right\}$. For a graph G a subset $S \subseteq V(G)$ is called a clique if the subgraph induced on S is complete. The number of vertices in a largest clique of graph G is called the clique number of G and is often denoted by $\omega(G)$. For a graph G, let $\chi(G)$ denote the chromatic number of G, i.e., the minimal number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. Clearly, for every graph $G, \omega(G) \leq \chi(G)$. A graph G is said to be weakly perfect if $\omega(G)=\chi(G)$. A perfect graph G is a graph in which the chromatic number of every induced subgraph equals to the size of a largest clique of that subgraph.

Throughout this paper, all rings are assumed to be commutative with nonzero identity. We denote by $Z(R)$ the set of all zero-divisor elements of R. The set of nilpotent elements of R is denoted by $\operatorname{Nil}(R)$. For every element x of R, we denote the annihilator of x by $\operatorname{ann}_{R}(x)=\{r \in R: r x=0\}$. For $A \subseteq R$ we let $A^{*}=A \backslash\{0\}$. Some more definitions, properties and notation about commutative rings can be found in $[3,9,11]$.

2. The annihilator graph of Artinian Rings is perfect

Let R be an Artinian ring, in this section we show that $A G(R)$ is perfect. We start with the following lemma, which has a fundamental role in proving the results of this section.

Lemma 2.1. Let n be a positive integer and let $R=R_{1} \times \cdots \times R_{n}$, where $R_{i} \cong \mathbb{Z}_{4}$, for every $1 \leq i \leq n$. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ be two nonzero zero-divisors of R. Then the following statements are true:
(1) If $R x \nsubseteq R y$ and $R y \nsubseteq R x$, then $x \sim y$ is an edge of $A G(R)$.
(2) If $x \sim y$ is an edge of $A G(R)$ and either $R x \subseteq R y$ or $R y \subseteq R x$, then for some $1 \leq i \leq n, x_{i}=y_{i} \in \operatorname{Nil}\left(R_{i}\right)^{*}$.
(3) If $R x \subseteq R y$ and $R x \cap \operatorname{ann}_{R}(y) \neq 0$, then $x \sim y$ is an edge of $A G(R)$.

Proof. (1) Since $R x \nsubseteq R y$, we may assume that $R_{1} x_{1} \nsubseteq R_{1} y_{1}$. Thus, if $x_{1} \in U\left(R_{1}\right)=\{1,3\}$, then

$$
y_{1} \in \operatorname{Nil}\left(R_{1}\right)=\{0,2\}
$$

and if $x_{1} \in \operatorname{Nil}\left(R_{1}\right)^{*}=\{2\}$, then $y_{1}=0$. Hence, clearly

$$
\operatorname{ann}_{R_{1}}\left(y_{1}\right) \nsubseteq \operatorname{ann}_{R_{1}}\left(x_{1}\right)
$$

and so $\operatorname{ann}_{R}(y) \nsubseteq \operatorname{ann}_{R}(x)$. Similarly, since $R y \nsubseteq R x$ we can get $\operatorname{ann}_{R}(x) \nsubseteq \operatorname{ann}_{R}(y)$. Therefore, $x \sim y$ is an edge of $A G(R)$, by [10, Lemma 2.2(1)].
(2) Suppose that $R x \subseteq R y$. Since $x \sim y$ is an edge of $A G(R)$, by [10, Lemma 2.1], $R x \cap \operatorname{ann}_{R}(y) \neq 0$ and $R y \cap \operatorname{ann}_{R}(x) \neq 0$. Now, by $R x \subseteq R y$ and $R x \cap \operatorname{ann}_{R}(y) \neq 0$, it follows that

$$
R y \cap \operatorname{ann}_{R}(y) \neq 0
$$

This implies that $y_{i} \in \operatorname{Nil}\left(R_{i}\right)^{*}=\{2\}$, for some $1 \leq i \leq n$. Without loss of generality, we may assume that $y_{1} \in \operatorname{Nil}\left(R_{1}\right)^{*}=\{2\}$. If $x_{1} \in \operatorname{Nil}\left(R_{1}\right)^{*}=\{2\}$, then there is nothing to prove. Otherwise, $x_{1}=0$ and $R_{1} x_{1} \cap \operatorname{ann}_{R_{1}}\left(y_{1}\right)=0$. For other components of $x, 2 \leq j \leq n$, if $x_{j} \in U\left(R_{j}\right)=\{1,3\}$, then $y_{j} \in U\left(R_{j}\right)=\{1,3\}$ since $R x \subseteq R y$ thus $R_{j} x_{j} \cap \operatorname{ann}_{R_{j}}\left(y_{j}\right)=0$. This means that $R x \cap \operatorname{ann}_{R}(y)=0$ which is a contradiction. Hence, $x_{j} \in \operatorname{Nil}\left(R_{j}\right)^{*}=\{2\}$, for some $2 \leq j \leq n$. Assume that $x_{2} \in \operatorname{Nil}\left(R_{2}\right)^{*}=\{2\}$. Then

$$
y_{2} \in U\left(R_{2}\right) \cup \operatorname{Nil}\left(R_{2}\right)^{*}=\{1,2,3\} .
$$

If $y_{2} \in U\left(R_{2}\right)=\{1,3\}$, then $R_{2} x_{2} \cap \operatorname{ann}_{R_{2}}\left(y_{2}\right)=0$. If we continue this procedure, then we obtain $x_{i}=y_{i} \in \operatorname{Nil}\left(R_{i}\right)^{*}=\{2\}$, for some $1 \leq i \leq n$.
(3) By [10, Lemma 2.1], we need only to show that $R y \cap \operatorname{ann}_{R}(x) \neq 0$. Since $R x \cap \operatorname{ann}_{R}(y) \neq 0$ and $R x \subseteq R y$ so $R y \cap \operatorname{ann}_{R}(y) \neq 0$. On the other hand, since $R x \subseteq R y$ we have $\operatorname{ann}_{R}(y) \subseteq \operatorname{ann}_{R}(x)$. Hence, $R y \cap \operatorname{ann}_{R}(x) \neq 0$.

Let n be a positive integer, $R=\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$ (n times) and x, y be distinct elements of $Z(R)^{*}$. By a similar argument to that of Lemma 2.1 we can show that $x \sim y$ is an edge of $A G(R)$ if and only if $R x \nsubseteq R y$
and $R y \nsubseteq R x$. Moreover, if $R x \subseteq R y$ and $R x \cap \operatorname{ann}_{R}(y) \neq 0$, then $x \sim y$ is an edge of $A G(R)$.

Lemma 2.2. Let R be a ring and $x, y \in V(A G(R))$ such that $\operatorname{ann}_{R}(x)=\operatorname{ann}_{R}(y)$. Then $N(x)=N(y)$.
Proof. Suppose that $x \sim a$ is an edge of $A G(R)$. So for some $r \in R$, $r a x=0, r a \neq 0$ and $r x \neq 0$. Since $\operatorname{ann}_{R}(x)=\operatorname{ann}_{R}(y)$, we deduce that $r y \neq 0$ so we have $r a \neq 0, r y \neq 0$ and ray $=0$. This means that $y \sim a$ is an edge of $A G(R)$ and so $N(x) \subseteq N(y)$. Similarly, $N(y) \subseteq N(x)$ and hence $N(x)=N(y)$, as desired. Moreover, if $x \sim y$, then $N[x]=N[y]$.

In 2006, M. Chudnovsky et al. settled a long standing conjecture regarding perfect graphs and provided a characterization of perfect graphs.

Theorem 2.3. [6, The Strong Perfect Graph Theorem] A graph G is perfect if and only if neither G nor \bar{G} contains an induced odd cycle of length at least 5.

Theorem 2.4. Let m, n be positive integers and let

$$
R=R_{1} \times \cdots \times R_{n} \times R_{n+1} \times \cdots \times R_{n+m},
$$

where $R_{i} \cong \mathbb{Z}_{4}$, for every $1 \leq i \leq n$, and $R_{i} \cong \mathbb{Z}_{2}$, for every $n+1 \leq i \leq n+m$. Then $A G(R)$ is perfect.
Proof. In view of Theorem 2.3, it is enough to show that $A G(R)$ and $\overline{A G(R)}$ contain no induced odd cycle of length at least 5 . Indeed, we have the following claims:

Claim 1. $A G(R)$ contains no induced odd cycle of length at least 5. Assume to the contrary,

$$
x_{1} \sim x_{2} \sim \cdots \sim x_{k} \sim x_{1}
$$

is an induced odd cycle of length at least 5 in $A G(R)$. Since x_{1} is not adjacent to x_{3}, by Lemma 2.1(1) and paragraph after it, we have either $R x_{1} \subseteq R x_{3}$ or $R x_{3} \subseteq R x_{1}$. Without loss of generality, we may assume that $R x_{1} \subseteq R x_{3}$. We continue the proof in the following steps.

Step 1. For every $3 \leq i \leq k-1, R x_{1} \subseteq R x_{i}$. Since $R x_{1} \subseteq R x_{3}$, for $i=3$ it is clear. Since x_{1} is not adjacent to x_{4}, by Lemma 2.1(1) and paragraph after it, we have either $R x_{1} \subseteq R x_{4}$ or $R x_{4} \subseteq R x_{1}$. If $R x_{4} \subseteq R x_{1}$, then since $R x_{1} \subseteq R x_{3}$, we have $R x_{4} \subseteq R x_{3}$. By $R x_{4} \cap \operatorname{ann}_{R}\left(x_{3}\right) \neq 0$ and $R x_{4} \subseteq R x_{1}$ it follows that $R x_{1} \cap \operatorname{ann}_{R}\left(x_{3}\right) \neq 0$. This, together with Lemma 2.1(3) imply that x_{1}, x_{3} are adjacent that is a contradiction. So $R x_{1} \subseteq R x_{4}$ and thus the Step 1 is true for $i=4$, also. Again, for $i=5$ we have $R x_{1} \subseteq R x_{5}$ or $R x_{5} \subseteq R x_{1}$. If
$R x_{5} \subseteq R x_{1}$, then we have $R x_{5} \subseteq R x_{4}$ since $R x_{1} \subseteq R x_{4}$. Now, from $R x_{5} \cap \operatorname{ann}_{R}\left(x_{4}\right) \neq 0$ and $R x_{5} \subseteq R x_{1}$ it follows that $R x_{1} \cap \operatorname{ann}_{R}\left(x_{4}\right) \neq 0$. This fact together with Lemma 2.1(3) imply that x_{1}, x_{4} are adjacent that is a contradiction. So $R x_{1} \subseteq R x_{5}$. By a similar argument on can show that $R x_{1} \subseteq R x_{i}$, for every $6 \leq i \leq k-1$.

Step 2. For every $4 \leq i \leq k, R x_{2} \subseteq R x_{i}$. By the Step 1 we have $R x_{1} \subseteq R x_{4}$ and Lemma 2.1(1) shows that either $R x_{2} \subseteq R x_{4}$ or $R x_{4} \subseteq R x_{2}$. If $R x_{4} \subseteq R x_{2}$, then we have $R x_{4} \cap \operatorname{ann}_{R}\left(x_{2}\right) \neq 0$ since $R x_{1} \subseteq R x_{4}$ and $R x_{1} \cap \operatorname{ann}_{R}\left(x_{2}\right) \neq 0$. This fact together with Lemma 2.1(3), imply that x_{2} is adjacent to x_{4}, a contradiction. So $R x_{2} \subseteq R x_{4}$. Next, we show that $R x_{2} \subseteq R x_{5}$. If $R x_{5} \subseteq R x_{2}$, then $R x_{2} \cap \operatorname{ann}_{R}\left(x_{4}\right) \neq 0$ because $R x_{5} \cap \operatorname{ann}_{R}\left(x_{4}\right) \neq 0$ also by $R x_{2} \subseteq R x_{4}$ it follows that x_{2} is adjacent to x_{4} that is a contradiction. Hence, $R x_{2} \subseteq R x_{5}$. Similarly, $R x_{2} \subseteq R x_{i}$, for every $4 \leq i \leq k$.

Step 3. $R x_{3} \subseteq R x_{1}$. By Lemma 2.1(1), we have either $R x_{3} \subseteq R x_{5}$ or $R x_{5} \subseteq R x_{3}$. If $R x_{5} \subseteq R x_{3}$, then $R x_{5} \cap \operatorname{ann}_{R}\left(x_{3}\right) \neq 0$ since $R x_{2} \cap \operatorname{ann}_{R}\left(x_{3}\right) \neq 0$ and by the Step $2, R x_{2} \subseteq R x_{5}$ this contradicts to Lemma 2.1(3). Hence, $R x_{3} \subseteq R x_{5}$. Now, we show that $R x_{3} \subseteq R x_{6}$. If $R x_{6} \subseteq R x_{3}$, then $R x_{6} \cap \operatorname{ann}_{R}\left(x_{3}\right) \neq 0$ since $R x_{2} \cap \operatorname{ann}_{R}\left(x_{3}\right) \neq 0$ and $R x_{2} \subseteq R x_{6}$ that is a contradiction. Hence, $R x_{3} \subseteq R x_{6}$. Similarly, we can show that $R x_{3} \subseteq R x_{i}$, for every $7 \leq i \leq k$. Now, suppose that $R x_{1} \subseteq R x_{3}$. Then since for every $5 \leq i \leq k, R x_{3} \subseteq R x_{i}$, we have $R x_{1} \subseteq R x_{3} \subseteq R x_{k}$. Since $R x_{1} \cap \operatorname{ann}_{R}\left(x_{k}\right) \neq 0$ thus $R x_{3} \cap \operatorname{ann}_{R}\left(x_{k}\right) \neq 0$, a contradiction. So $R x_{3} \subseteq R x_{1}$ and by the Step $1, R x_{3}=R x_{1}$. This implies that $\operatorname{ann}_{R}\left(x_{3}\right)=\operatorname{ann}_{R}\left(x_{1}\right)$ so by Lemma 2.2, $N\left(x_{3}\right)=N\left(x_{1}\right)$. Thus $x_{4} \in N\left(x_{3}\right)=N\left(x_{1}\right)$ and $x_{1} \sim x_{2} \sim x_{3} \sim x_{4} \sim x_{1}$ is a cycle of length 4 that is a contradiction. Therefore, $A G(R)$ contains no induced odd cycle of length at least 5 .

Claim 2. $\overline{A G(R)}$ contains no induced odd cycle of length at least 5. Assume to the contrary,

$$
x_{1} \sim x_{2} \sim \cdots \sim x_{k} \sim x_{1}
$$

is an induced odd cycle of length at least 5 in $\overline{A G(R)}$. In view of Lemma 2.1, we may assume that $R x_{1} \subseteq R x_{2}$. If $R x_{2} \subseteq R x_{3}$, then since $R x_{1} \cap \operatorname{ann}_{R}\left(x_{3}\right) \neq 0$, we have $R x_{2} \cap \operatorname{ann}_{R}\left(x_{3}\right) \neq 0$. Thus x_{2} is adjacent to x_{3} in $A G(R)$, a contradiction. So

$$
R x_{1} \subseteq R x_{2} \text { and } R x_{3} \subseteq R x_{2}
$$

Assume that $R x_{4} \subseteq R x_{3}$. Then since $R x_{4} \cap \operatorname{ann}_{R}\left(x_{2}\right) \neq 0$ we have $R x_{3} \cap \operatorname{ann}_{R}\left(x_{2}\right) \neq 0$. So by Lemma 2.1, x_{2} is adjacent to x_{3} in $A G(R)$, a contradiction. Thus $R x_{3} \subseteq R x_{4}$. If $R x_{4} \subseteq R x_{5}$, then since $R x_{3} \subseteq R x_{4}$ and $R x_{3} \cap \operatorname{ann}_{R}\left(x_{5}\right) \neq 0$ we have $R x_{4} \cap \operatorname{ann}_{R}\left(x_{5}\right) \neq 0$ so x_{4}, x_{5} are
adjacent in $A G(R)$, a contradiction. Thus

$$
R x_{3} \subseteq R x_{4} \text { and } R x_{5} \subseteq R x_{4} .
$$

Since k is odd, if we continue this procedure, then we obtain

$$
R x_{k-2} \subseteq R x_{k-1} \text { and } R x_{k} \subseteq R x_{k-1}
$$

Now, assume that $R x_{1} \subseteq R x_{k}$. Then we get $R x_{k} \cap \operatorname{ann}_{R}\left(x_{k-1}\right) \neq 0$ since $R x_{1} \cap \operatorname{ann}_{R}\left(x_{k-1}\right) \neq 0$. Thus by Lemma 2.1, x_{k} is adjacent to x_{k-1} in $A G(R)$, a contradiction. So $R x_{k} \subseteq R x_{1}$. But in this case from $R x_{k} \cap \operatorname{ann}_{R}\left(x_{2}\right) \neq 0$ it follows that $R x_{1} \cap \operatorname{ann}_{R}\left(x_{2}\right) \neq 0$. Hence, x_{1} is adjacent to x_{2} in $A G(R)$, a contradiction. Therefore, $\overline{A G(R)}$ contains no induced odd cycle of length at least 5 .

Let G be a graph and x be a vertex of G and let G^{\prime} be obtained from G by adding a vertex x^{\prime} and joining it to x and all the neighbors of x. We say that G^{\prime} is obtained from G by expanding the vertex x to an edge $x \sim x^{\prime}$. Hence, $V\left(G^{\prime}\right)=V(G) \cup\left\{x^{\prime}\right\}$ and

$$
E\left(G^{\prime}\right)=E(G) \cup\left\{x^{\prime} \sim y: y \in N[x]\right\}
$$

Lemma 2.5. ([7, Lemma 5.5.5]) Any graph obtained from a perfect graph by expanding a vertex is again perfect.

Lemma 2.6. Let G be a graph $x, y \in V(G)$ such that $N(x)=N(y)$. Then G is perfect if and only if $G \backslash\{x\}$ is perfect.
Proof. Let G be a graph and $x, y \in V(G)$ such that $N(x)=N(y)$. We show that, G is perfect if and only if $G \backslash\{x\}$ is perfect. One side is obvious. So we may assume that $G \backslash\{x\}$ is perfect and show that G is perfect. Suppose that G is not perfect and look a contradiction. By Theorem 2.3, there is an induced odd cycle of length at least 5 in G such as

$$
x_{1} \sim x_{2} \sim \cdots \sim x_{n} \sim x_{1} .
$$

If $x_{i} \neq x$, for all $1 \leq i \leq n$, then

$$
x_{1} \sim x_{2} \sim \cdots \sim x_{n} \sim x_{1}
$$

is an induced odd cycle of length at least 5 in $G \backslash\{x\}$, a contradiction. So we may assume that $x_{1}=x$. This implies that

$$
x_{2}, x_{n} \in N(x)=N(y)
$$

and hence we get

$$
y \sim x_{2} \sim \cdots \sim x_{n} \sim y
$$

is an induced odd cycle of length at least 5 in $G \backslash\{x\}$, again a contradiction. Note that $y \neq x_{i}$, for all $2 \leq i \leq n$, otherwise we get a cycle of length less than n. So G contains no induced odd cycle
of length at least 5 . As above, by a similar argument one can show that \bar{G} contains no induced odd cycle of length at least 5 . Therefore, G is perfect. Now, let $N[x]=N[y]$. In this case G is obtained from G^{\prime} by expanding the vertex y to an edge $x \sim y$. So by Lemma 2.3, G is perfect if and only if $G^{\prime}=G \backslash\{x\}$ is perfect.
Remark 2.7. Let G be a graph $x_{1}, y_{1} \in V(G)$ such that either $N\left(x_{1}\right)=N\left(y_{1}\right)$ or $N\left[x_{1}\right]=N\left[y_{1}\right]$. Then, according to Lemmas 2.5, 2.6, G is perfect whenever $G \backslash\left\{x_{1}\right\}$ is perfect. Also, for $x_{2}, y_{2} \in V(G) \backslash\left\{x_{1}\right\}$, if either $N\left(x_{2}\right)=N\left(y_{2}\right)$ or $N\left[x_{2}\right]=N\left[y_{2}\right]$, then $G \backslash\left\{x_{1}\right\}$ is perfect whenever $G \backslash\left\{x_{1}, x_{2}\right\}$ is perfect. So for $y \in V(G), A \subseteq V(G)$ and $x \in A$. If either $N(x)=N(y)$ or $N[x]=N[y]$, then $G \backslash A$ is perfect whenever $G \backslash(A \backslash\{x\})$ is perfect. Hence, G is perfect whenever $G \backslash(A \backslash\{x\})$ is perfect.

Using these results, we show that if R is an Artinian ring, then $A G(R)$ is perfect.

Theorem 2.8. Let R be an Artinian ring. Then $A G(R)$ is perfect.
Proof. If R is local, then in view of [4, Theorem 3.10], $A G(R)$ is complete and so is perfect. Now, assume that R is not local. Thus

$$
R=R_{1} \times \cdots \times R_{n} \times R_{n+1} \times \cdots \times R_{n+m},
$$

where R_{i} is a non-reduced Artinian local ring, for every $1 \leq i \leq n$, and is a field, for every $n+1 \leq i \leq n+m$, see [3, Theorem 8.7]. Note that for

$$
x=\left(x_{1}, \ldots, x_{n}, x_{n+1} \ldots, x_{n+m}\right) \in R,
$$

$x_{i} \in \operatorname{Nil}\left(R_{i}\right) \cup U\left(R_{i}\right)$, for all $1 \leq i \leq n$ and $x_{i} \in\{0\} \cup U\left(R_{i}\right)$, for every $n+1 \leq i \leq n+m$. Define the relation \simeq on $V(A G(R))$ as follows: for

$$
\begin{aligned}
& x=\left(x_{1}, \ldots, x_{n}, x_{n+1} \ldots, x_{n+m}\right) \\
& y=\left(y_{1}, \ldots, y_{n}, y_{n+1} \ldots, y_{n+m}\right) \in V(A G(R))
\end{aligned}
$$

we say $x \simeq y$ whenever the following three conditions hold:
(1) $x_{i}=0$ if and only if $y_{i}=0$, for every $1 \leq i \leq n+m$.
(2) $x_{i} \in \operatorname{Nil}\left(R_{i}\right)^{*}$ if and only if $y_{i} \in \operatorname{Nil}\left(R_{i}\right)^{*}$, for every $1 \leq i \leq n$.
(3) $x_{i} \in U\left(R_{i}\right)$ if and only if $y_{i} \in U\left(R_{i}\right)$, for every $1 \leq i \leq n+m$.

It is easy to see that \simeq is an equivalence relation on $V(A G(R))$. Let $[x]$ denote the equivalence class of x and let x^{\prime} and $x^{\prime \prime}$ be two elements of $[x]$. Since $x^{\prime} \simeq x^{\prime \prime}$ we have $\operatorname{ann}_{R}\left(x^{\prime}\right)=\operatorname{ann}_{R}\left(x^{\prime \prime}\right)$ so Lemma 2.2 implies that $N\left(x^{\prime}\right)=N\left(x^{\prime \prime}\right)$ on $V(A G(R)) \backslash\left\{x^{\prime}, x^{\prime \prime}\right\}$. Now, if x^{\prime} is not adjacent to $x^{\prime \prime}$, then by Lemma 2.6, $A G(R)$ is perfect if and only if $A G(R) \backslash\left\{x^{\prime}\right\}$ is perfect. If x^{\prime} is adjacent to $x^{\prime \prime}$, then by Lemma 2.5, $A G(R)$ is perfect
if and only if $A G(R) \backslash\left\{x^{\prime}\right\}$ is perfect. We continue this procedure and we obtain $A G(R)$ is perfect if and only if $A G(R) \backslash\left\{[x] \backslash\left\{x^{\prime}\right\}\right\}$ is perfect. We do this for all equivalence classes and get $A G(R)$ is perfect if and only if $A G(R)[A]$ is perfect, where A is a subset of $V(A G(R))$ such that for every equivalence class $[x],|A \cap[x]|=1$. Hence, $A G(R)[A]$ is an annihilator graph with $3^{n} 2^{m}-2$ vertices.

Assume that $S=S_{1} \times \cdots \times S_{n} \times S_{n+1} \times \cdots \times S_{n+m}$, where $S_{i} \cong \mathbb{Z}_{4}$, for every $1 \leq i \leq n, S_{i} \cong \mathbb{Z}_{2}$, for every $n+1 \leq i \leq n+m$. By a similar argument as above one can show that $A G(S)$ is perfect if and only if $A G(S)[B]$ is perfect. Here

$$
\begin{aligned}
B= & \left\{\left(x_{1}, \ldots, x_{n}, x_{n+1} \ldots, x_{n+m}\right) \in V(A G(S)) \mid x_{i} \in\{0,1,2\}\right. \\
& \left.\quad \text { for } 1 \leq i \leq n \text { and } x_{i} \in\{0,1\} \text { for } n+1 \leq i \leq n+m\right\} \\
\subseteq & Z(S)^{*}
\end{aligned}
$$

and $A G(S)[B]$ is an annihilator graph with $3^{n} 2^{m}-2$ vertices. In view of Theorem 2.4, $A G(S)$ is perfect so $A G(S)[B]$ is perfect. Now, we can easily get the graph homomorphism $\phi: A G(R)[A] \longrightarrow A G(S)[B]$ by the rule $\phi\left(\left(x_{1}, \cdots, x_{n}, x_{n+1} \cdots, x_{n+m}\right)\right)=\left(y_{1}, \cdots, y_{n}, y_{n+1} \cdots, y_{n+m}\right)$, where $x_{i}=0$ if and only if $y_{i}=0$ and $x_{i} \in U\left(R_{i}\right)$ if and only if $y_{i} \in U\left(S_{i}\right)=\{1\}$, for every $1 \leq i \leq n+m, x_{i} \in \operatorname{Nil}\left(R_{i}\right)^{*}$ if and only if $y_{i} \in \operatorname{Nil}\left(S_{i}\right)^{*}=\{2\}$, for every $1 \leq i \leq n$, is an isomorphism. Hence, $A G(S)[B] \cong A G(R)[A]$. Thus $A G(R)[A]$ is perfect and so $A G(R)$ is perfect. This completes the proof.

Theorem 2.9. Let n be a positive integer and let $R=D_{1} \times \cdots \times D_{n}$, where D_{i} is an integral domain, for every $1 \leq i \leq n$. Then $A G(R)$ is perfect.

Proof. Assume that $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ are two vertices of $A G(R)$. Define the relation \simeq on $V(A G(R))$ as follows: $x \simeq y$ whenever

$$
x_{i}=0 \text { if and only if } y_{i}=0,
$$

for every $1 \leq i \leq n$. It is easily seen that \simeq is an equivalence relation on $V(A G(R))$ so $V(A G(R))$ is a union of $\left(2^{n}-2\right)$ distinct equivalence classes. Let $[x]$ denote the equivalence class of

$$
x \in V(A G(R))
$$

and $a, b \in[x]$. Then it is easy to see that $\operatorname{ann}_{R}(a)=\operatorname{ann}_{R}(b)$ so $N(a)=N(b)$, by Lemma 2.2. This fact together with a not being adjacent to b, implies that $A G(R)$ is perfect whenever $A G(R) \backslash([x] \backslash\{a\})$
is perfect, see Remark 2.7. We do this for all equivalence classes and get $A G(R)$ is perfect if and only if $A G(R)[A]$ is perfect, where

$$
A=\left\{\left(x_{1}, \ldots, x_{n}\right) \in V(A G(R)) \mid x_{i} \in\{0,1\} \text { for all } 1 \leq i \leq n\right\} \subseteq Z(R)^{*}
$$

In view of Theorem 2.4, $A G(S)$ for $S=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$ (n times), is perfect. Furthermore, it is easy to see that $A G(S) \cong A G(R)[A]$. Hence, $A G(R)[A]$ is perfect and so $A G(R)$ is perfect.

Acknowledgments

The authors would like to thank the referee for a careful reading of our paper and insightful comments which saved us from several errors.

References

1. D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
2. D. D. Anderson, M. Nassr, Becks coloring of a commutative ring, J. Algebra, 159 (1993), 500-514.
3. M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, AddisonWesley, 1969.
4. A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra, 42 (2014), 108-121.
5. I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
6. M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Annals Math., 164 (2006), 51-229.
7. R. Diestel, Graph Theory, Springer Verlag, 2005.
8. Sh. Ebrahimi, A. Tehranian and R. Nikandish, On perfect annihilator graphs of commutative rings, Discrete Math. Algorithms Appl., (2020), Article ID: 2050060, 7 pp.
9. J. A. Huckaba, Commutative Rings with Zero-Divisors, Marcel Dekker, 1988.
10. R. Nikandish, M. J. Nikmehr, M. Bakhtyiari, Coloring of the annihilator graph of a commutative ring, J. Algebra Appl., 15 (2016), Article ID: 1650124, 13 pp.
11. R. Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, 2000.
12. D. B. West, Introduction to Graph Theory, Prentice Hall, 2001.

Maryam Adlifard

Department of Mathematics, Roudbar Branch, Islamic Azad University, Roudbar, Iran.
Email: m.adlifard@gmail.com

Shiroyeh Payrovi

Department of Mathematics, Imam Khomeini International University, P.O. Box 34149-1-6818, Qazvin, Iran.
Email: shpayrovi@sci.ikiu.ac.ir

Journal of Algebraic Systems

PERFECTNESS OF THE ANNIHILATOR GRAPH OF ARTINIAN COMMUTATIVE RINGS

> M. ADLIFARD AND SH. PAYROVI
> تام بودن گراف پوجّساز حلقههاى جابهجايى آرتينى
> مريي عدلىفرد' و شيرويه پيروى「
> اگروه رياضى، دانشگاه آزاد اسلامى واحد رودبار، رودبار، ايران
> 「گروه رياضى، دانشكده علوم پايه، دانشگاه بينالمللى امام خمينى، قزوين، ايران

فرض كنيد R يكى حلقه جابهجايى و $Z(R)$ مجموعه مقسوم عليههاى صفر R باشد．گراف پوتمساز

 حلقهها مورد بررسى قرار مىگیيرد．بهطور دقيقتر، نشان مىدهيميم كه اگر R R يكى حلقه آرتينى باشد، آنگاه AG（R）

كلمات كليدى：حلقه آرتينى، گراف پوجّساز، تام بودن．

[^0]: DOI: 10.22044/JAS.2022.11358.1571.
 MSC(2010): Primary: 05C17; Secondary: 05C69.
 Keywords: Artinian ring; Annihilator graph; Perfectness.
 Received: 3 November 2021, Accepted: 12 April 2022.

 * Corresponding author.

