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PERFECTNESS OF THE ANNIHILATOR GRAPH OF
ARTINIAN COMMUTATIVE RINGS

M. ADLIFARD AND SH. PAYROVI∗

Abstract. Let R be a commutative ring and Z(R) be the set of
its zero-divisors. The annihilator graph of R, denoted by AG(R)
is a simple undirected graph whose vertex set is Z(R)∗, the set of
all nonzero zero-divisors of R, and two distinct vertices x and y
are adjacent if and only if annR(xy) ̸= annR(x)∪ annR(y). In this
paper, perfectness of the annihilator graph for some classes of rings
is investigated. More precisely, we show that if R is an Artinian
ring, then AG(R) is perfect.

1. Introduction

One of the most important and active areas in algebraic combina-
torics is study of graphs associated with rings. This field has attracted
the attention of many researchers during the past 20 years. There are
many papers on assigning a graph to a ring, see for instance [1, 2, 4, 5].
Let R be a commutative ring with nonzero identity. The annihilator
graph of R, denoted by AG(R) is a simple undirected graph whose
vertex set is the set of all nonzero zero-divisors of R and two distinct
vertices x and y are adjacent if and only if

annR(xy) ̸= annR(x) ∪ annR(y).

The annihilator graph was first introduced in [4], and some of its
properties have been studied. In [10], it was proved that if R is
a finite direct product of integral domains, then AG(R) is weakly
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perfect. Morover, in [8], for a nonreduced ring R it is shown that
AG(R) is perfect. In this article, we show that if R is a finite direct
product of integral domains or if R is an Artinian ring, then AG(R) is
perfect.

We use the standard terminology for graphs following [12]. Let
G = (V,E) be a graph, where V = V (G) is the set of vertices and
E = E(G) is the set of edges. By G, we mean the complement graph
of G. We write u ∼ v, to denote an edge with ends u, v. The open
neighborhood of a vertex u is defined to be the set

N(u) = {v ∈ V (G) : u is adjacent to v}
and the closed neighborhood of u is the set N [u] = N(u) ∪ {u}. A
graph H = (V0, E0) is called a subgraph of G if V0 ⊆ V and E0 ⊆ E.
Moreover, H is called an induced subgraph by V0, denoted by G[V0],
if V0 ⊆ V (G) and E0 = {{u, v} ∈ E |u, v ∈ V0}. For a graph G a
subset S ⊆ V (G) is called a clique if the subgraph induced on S is
complete. The number of vertices in a largest clique of graph G is
called the clique number of G and is often denoted by ω(G). For a
graph G, let χ(G) denote the chromatic number of G, i.e., the minimal
number of colors which can be assigned to the vertices of G in such a
way that every two adjacent vertices have different colors. Clearly, for
every graph G, ω(G) ≤ χ(G). A graph G is said to be weakly perfect
if ω(G) = χ(G). A perfect graph G is a graph in which the chromatic
number of every induced subgraph equals to the size of a largest clique
of that subgraph.

Throughout this paper, all rings are assumed to be commutative
with nonzero identity. We denote by Z(R) the set of all zero-divisor
elements of R. The set of nilpotent elements of R is denoted by
Nil(R). For every element x of R, we denote the annihilator of x by
annR(x) = {r ∈ R : rx = 0}. For A ⊆ R we let A∗ = A \ {0}. Some
more definitions, properties and notation about commutative rings can
be found in [3, 9, 11].

2. The annihilator graph of Artinian rings is perfect

Let R be an Artinian ring, in this section we show that AG(R) is
perfect. We start with the following lemma, which has a fundamental
role in proving the results of this section.

Lemma 2.1. Let n be a positive integer and let R = R1×· · ·×Rn, where
Ri

∼= Z4, for every 1 ≤ i ≤ n. Let x = (x1, . . . , xn) and y = (y1, . . . , yn)
be two nonzero zero-divisors of R. Then the following statements are
true:
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(1) If Rx ̸⊆ Ry and Ry ̸⊆ Rx, then x ∼ y is an edge of AG(R).
(2) If x ∼ y is an edge of AG(R) and either Rx ⊆ Ry or Ry ⊆ Rx,

then for some 1 ≤ i ≤ n, xi = yi ∈ Nil(Ri)
∗.

(3) If Rx ⊆ Ry and Rx ∩ annR(y) ̸= 0, then x ∼ y is an edge of
AG(R).

Proof. (1) Since Rx ̸⊆ Ry, we may assume that R1x1 ̸⊆ R1y1. Thus, if
x1 ∈ U(R1) = {1, 3}, then

y1 ∈ Nil(R1) = {0, 2}

and if x1 ∈ Nil(R1)
∗ = {2}, then y1 = 0. Hence, clearly

annR1(y1) ̸⊆ annR1(x1)

and so annR(y) ̸⊆ annR(x). Similarly, since Ry ̸⊆ Rx we can get
annR(x) ̸⊆ annR(y). Therefore, x ∼ y is an edge of AG(R), by
[10, Lemma 2.2(1)].

(2) Suppose that Rx ⊆ Ry. Since x ∼ y is an edge of AG(R), by
[10, Lemma 2.1], Rx ∩ annR(y) ̸= 0 and Ry ∩ annR(x) ̸= 0. Now, by
Rx ⊆ Ry and Rx ∩ annR(y) ̸= 0, it follows that

Ry ∩ annR(y) ̸= 0.

This implies that yi ∈ Nil(Ri)
∗ = {2}, for some 1 ≤ i ≤ n.

Without loss of generality, we may assume that y1 ∈ Nil(R1)
∗ = {2}. If

x1 ∈ Nil(R1)
∗ = {2}, then there is nothing to prove. Otherwise, x1 = 0

and R1x1 ∩ annR1(y1) = 0. For other components of x, 2 ≤ j ≤ n, if
xj ∈ U(Rj) = {1, 3}, then yj ∈ U(Rj) = {1, 3} since Rx ⊆ Ry thus
Rjxj ∩ annRj

(yj) = 0. This means that Rx ∩ annR(y) = 0 which is a
contradiction. Hence, xj ∈ Nil(Rj)

∗ = {2}, for some 2 ≤ j ≤ n.
Assume that x2 ∈ Nil(R2)

∗ = {2}. Then

y2 ∈ U(R2) ∪ Nil(R2)
∗ = {1, 2, 3}.

If y2 ∈ U(R2) = {1, 3}, then R2x2 ∩ annR2(y2) = 0. If we continue
this procedure, then we obtain xi = yi ∈ Nil(Ri)

∗ = {2}, for some
1 ≤ i ≤ n.

(3) By [10, Lemma 2.1], we need only to show that Ry∩annR(x) ̸= 0.
Since Rx ∩ annR(y) ̸= 0 and Rx ⊆ Ry so Ry ∩ annR(y) ̸= 0. On the
other hand, since Rx ⊆ Ry we have annR(y) ⊆ annR(x). Hence,
Ry ∩ annR(x) ̸= 0. □

Let n be a positive integer, R = Z2 × · · · × Z2 (n times) and x, y be
distinct elements of Z(R)∗. By a similar argument to that of Lemma
2.1 we can show that x ∼ y is an edge of AG(R) if and only if Rx ̸⊆ Ry
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and Ry ̸⊆ Rx. Moreover, if Rx ⊆ Ry and Rx ∩ annR(y) ̸= 0, then
x ∼ y is an edge of AG(R).
Lemma 2.2. Let R be a ring and x, y ∈ V (AG(R)) such that
annR(x) = annR(y). Then N(x) = N(y).
Proof. Suppose that x ∼ a is an edge of AG(R). So for some r ∈ R,
rax = 0, ra ̸= 0 and rx ̸= 0. Since annR(x) = annR(y), we deduce
that ry ̸= 0 so we have ra ̸= 0, ry ̸= 0 and ray = 0. This means
that y ∼ a is an edge of AG(R) and so N(x) ⊆ N(y). Similarly,
N(y) ⊆ N(x) and hence N(x) = N(y), as desired. Moreover, if x ∼ y,
then N [x] = N [y]. □

In 2006, M. Chudnovsky et al. settled a long standing conjecture
regarding perfect graphs and provided a characterization of perfect
graphs.
Theorem 2.3. [6, The Strong Perfect Graph Theorem] A graph G is
perfect if and only if neither G nor G contains an induced odd cycle of
length at least 5.
Theorem 2.4. Let m,n be positive integers and let

R = R1 × · · · ×Rn ×Rn+1 × · · · ×Rn+m,

where Ri
∼= Z4, for every 1 ≤ i ≤ n, and Ri

∼= Z2, for every
n+ 1 ≤ i ≤ n+m. Then AG(R) is perfect.
Proof. In view of Theorem 2.3, it is enough to show that AG(R) and
AG(R) contain no induced odd cycle of length at least 5. Indeed, we
have the following claims:

Claim 1. AG(R) contains no induced odd cycle of length at least
5. Assume to the contrary,

x1 ∼ x2 ∼ · · · ∼ xk ∼ x1

is an induced odd cycle of length at least 5 in AG(R). Since x1 is not
adjacent to x3, by Lemma 2.1(1) and paragraph after it, we have either
Rx1 ⊆ Rx3 or Rx3 ⊆ Rx1. Without loss of generality, we may assume
that Rx1 ⊆ Rx3. We continue the proof in the following steps.

Step 1. For every 3 ≤ i ≤ k − 1, Rx1 ⊆ Rxi. Since Rx1 ⊆ Rx3,
for i = 3 it is clear. Since x1 is not adjacent to x4, by Lemma 2.1(1)
and paragraph after it, we have either Rx1 ⊆ Rx4 or Rx4 ⊆ Rx1.
If Rx4 ⊆ Rx1, then since Rx1 ⊆ Rx3, we have Rx4 ⊆ Rx3. By
Rx4∩annR(x3) ̸= 0 and Rx4 ⊆ Rx1 it follows that Rx1∩annR(x3) ̸= 0.
This, together with Lemma 2.1(3) imply that x1, x3 are adjacent that
is a contradiction. So Rx1 ⊆ Rx4 and thus the Step 1 is true for
i = 4, also. Again, for i = 5 we have Rx1 ⊆ Rx5 or Rx5 ⊆ Rx1. If
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Rx5 ⊆ Rx1, then we have Rx5 ⊆ Rx4 since Rx1 ⊆ Rx4. Now, from
Rx5∩annR(x4) ̸= 0 and Rx5 ⊆ Rx1 it follows that Rx1∩annR(x4) ̸= 0.
This fact together with Lemma 2.1(3) imply that x1, x4 are adjacent
that is a contradiction. So Rx1 ⊆ Rx5. By a similar argument on can
show that Rx1 ⊆ Rxi, for every 6 ≤ i ≤ k − 1.

Step 2. For every 4 ≤ i ≤ k, Rx2 ⊆ Rxi. By the Step 1 we
have Rx1 ⊆ Rx4 and Lemma 2.1(1) shows that either Rx2 ⊆ Rx4 or
Rx4 ⊆ Rx2. If Rx4 ⊆ Rx2, then we have Rx4 ∩ annR(x2) ̸= 0 since
Rx1 ⊆ Rx4 and Rx1 ∩ annR(x2) ̸= 0. This fact together with Lemma
2.1(3), imply that x2 is adjacent to x4, a contradiction. So Rx2 ⊆ Rx4.
Next, we show that Rx2 ⊆ Rx5. If Rx5 ⊆ Rx2, then Rx2∩annR(x4) ̸= 0
because Rx5 ∩ annR(x4) ̸= 0 also by Rx2 ⊆ Rx4 it follows that x2 is
adjacent to x4 that is a contradiction. Hence, Rx2 ⊆ Rx5. Similarly,
Rx2 ⊆ Rxi, for every 4 ≤ i ≤ k.

Step 3. Rx3 ⊆ Rx1. By Lemma 2.1(1), we have either
Rx3 ⊆ Rx5 or Rx5 ⊆ Rx3. If Rx5 ⊆ Rx3, then Rx5 ∩ annR(x3) ̸= 0
since Rx2∩annR(x3) ̸= 0 and by the Step 2, Rx2 ⊆ Rx5 this contradicts
to Lemma 2.1(3). Hence, Rx3 ⊆ Rx5. Now, we show that Rx3 ⊆ Rx6.
If Rx6 ⊆ Rx3, then Rx6 ∩ annR(x3) ̸= 0 since Rx2 ∩ annR(x3) ̸= 0
and Rx2 ⊆ Rx6 that is a contradiction. Hence, Rx3 ⊆ Rx6. Similarly,
we can show that Rx3 ⊆ Rxi, for every 7 ≤ i ≤ k. Now, suppose
that Rx1 ⊆ Rx3. Then since for every 5 ≤ i ≤ k, Rx3 ⊆ Rxi, we have
Rx1 ⊆ Rx3 ⊆ Rxk. Since Rx1∩annR(xk) ̸= 0 thus Rx3∩annR(xk) ̸= 0,
a contradiction. So Rx3 ⊆ Rx1 and by the Step 1, Rx3 = Rx1. This
implies that annR(x3) = annR(x1) so by Lemma 2.2, N(x3) = N(x1).
Thus x4 ∈ N(x3) = N(x1) and x1 ∼ x2 ∼ x3 ∼ x4 ∼ x1 is a cycle of
length 4 that is a contradiction. Therefore, AG(R) contains no induced
odd cycle of length at least 5.

Claim 2. AG(R) contains no induced odd cycle of length at least
5. Assume to the contrary,

x1 ∼ x2 ∼ · · · ∼ xk ∼ x1

is an induced odd cycle of length at least 5 in AG(R). In view of
Lemma 2.1, we may assume that Rx1 ⊆ Rx2. If Rx2 ⊆ Rx3, then
since Rx1 ∩ annR(x3) ̸= 0, we have Rx2 ∩ annR(x3) ̸= 0. Thus x2 is
adjacent to x3 in AG(R), a contradiction. So

Rx1 ⊆ Rx2 and Rx3 ⊆ Rx2.

Assume that Rx4 ⊆ Rx3. Then since Rx4 ∩ annR(x2) ̸= 0 we have
Rx3∩annR(x2) ̸= 0. So by Lemma 2.1, x2 is adjacent to x3 in AG(R), a
contradiction. Thus Rx3 ⊆ Rx4. If Rx4 ⊆ Rx5, then since Rx3 ⊆ Rx4

and Rx3 ∩ annR(x5) ̸= 0 we have Rx4 ∩ annR(x5) ̸= 0 so x4, x5 are
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adjacent in AG(R), a contradiction. Thus
Rx3 ⊆ Rx4 and Rx5 ⊆ Rx4.

Since k is odd, if we continue this procedure, then we obtain
Rxk−2 ⊆ Rxk−1 and Rxk ⊆ Rxk−1.

Now, assume that Rx1 ⊆ Rxk. Then we get Rxk ∩ annR(xk−1) ̸= 0
since Rx1 ∩ annR(xk−1) ̸= 0. Thus by Lemma 2.1, xk is adjacent to
xk−1 in AG(R), a contradiction. So Rxk ⊆ Rx1. But in this case from
Rxk ∩ annR(x2) ̸= 0 it follows that Rx1 ∩ annR(x2) ̸= 0. Hence, x1 is
adjacent to x2 in AG(R), a contradiction. Therefore, AG(R) contains
no induced odd cycle of length at least 5. □

Let G be a graph and x be a vertex of G and let G′ be obtained from
G by adding a vertex x′ and joining it to x and all the neighbors of x.
We say that G′ is obtained from G by expanding the vertex x to an
edge x ∼ x′. Hence, V (G′) = V (G) ∪ {x′} and

E(G′) = E(G) ∪ {x′ ∼ y : y ∈ N [x]}.

Lemma 2.5. ([7, Lemma 5.5.5]) Any graph obtained from a perfect
graph by expanding a vertex is again perfect.

Lemma 2.6. Let G be a graph x, y ∈ V (G) such that N(x) = N(y).
Then G is perfect if and only if G \ {x} is perfect.

Proof. Let G be a graph and x, y ∈ V (G) such that N(x) = N(y). We
show that, G is perfect if and only if G \ {x} is perfect. One side is
obvious. So we may assume that G \ {x} is perfect and show that G
is perfect. Suppose that G is not perfect and look a contradiction. By
Theorem 2.3, there is an induced odd cycle of length at least 5 in G
such as

x1 ∼ x2 ∼ · · · ∼ xn ∼ x1.

If xi ̸= x, for all 1 ≤ i ≤ n, then
x1 ∼ x2 ∼ · · · ∼ xn ∼ x1

is an induced odd cycle of length at least 5 in G \ {x}, a contradiction.
So we may assume that x1 = x. This implies that

x2, xn ∈ N(x) = N(y)

and hence we get
y ∼ x2 ∼ · · · ∼ xn ∼ y

is an induced odd cycle of length at least 5 in G \ {x}, again a
contradiction. Note that y ̸= xi, for all 2 ≤ i ≤ n, otherwise we
get a cycle of length less than n. So G contains no induced odd cycle
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of length at least 5. As above, by a similar argument one can show
that G contains no induced odd cycle of length at least 5. Therefore,
G is perfect. Now, let N [x] = N [y]. In this case G is obtained from G′

by expanding the vertex y to an edge x ∼ y. So by Lemma 2.3, G is
perfect if and only if G′ = G \ {x} is perfect. □
Remark 2.7. Let G be a graph x1, y1 ∈ V (G) such that either
N(x1) = N(y1) or N [x1] = N [y1]. Then, according to Lemmas 2.5, 2.6,
G is perfect whenever G\{x1} is perfect. Also, for x2, y2 ∈ V (G)\{x1},
if either N(x2) = N(y2) or N [x2] = N [y2], then G \ {x1} is perfect
whenever G \ {x1, x2} is perfect. So for y ∈ V (G), A ⊆ V (G) and
x ∈ A. If either N(x) = N(y) or N [x] = N [y], then G \ A is
perfect whenever G\ (A\{x}) is perfect. Hence, G is perfect whenever
G \ (A \ {x}) is perfect.

Using these results, we show that if R is an Artinian ring, then
AG(R) is perfect.
Theorem 2.8. Let R be an Artinian ring. Then AG(R) is perfect.
Proof. If R is local, then in view of [4, Theorem 3.10], AG(R) is
complete and so is perfect. Now, assume that R is not local. Thus

R = R1 × · · · ×Rn ×Rn+1 × · · · ×Rn+m,

where Ri is a non-reduced Artinian local ring, for every 1 ≤ i ≤ n, and
is a field, for every n + 1 ≤ i ≤ n + m, see [3, Theorem 8.7]. Note
that for

x = (x1, . . . , xn, xn+1 . . . , xn+m) ∈ R,

xi ∈ Nil(Ri) ∪ U(Ri), for all 1 ≤ i ≤ n and xi ∈ {0} ∪ U(Ri), for every
n+1 ≤ i ≤ n+m. Define the relation ≃ on V (AG(R)) as follows: for

x = (x1, . . . , xn, xn+1 . . . , xn+m),

y = (y1, . . . , yn, yn+1 . . . , yn+m) ∈ V (AG(R))

we say x ≃ y whenever the following three conditions hold:
(1) xi = 0 if and only if yi = 0, for every 1 ≤ i ≤ n+m.
(2) xi ∈ Nil(Ri)

∗ if and only if yi ∈ Nil(Ri)
∗, for every 1 ≤ i ≤ n.

(3) xi ∈ U(Ri) if and only if yi ∈ U(Ri), for every 1 ≤ i ≤ n+m.
It is easy to see that ≃ is an equivalence relation on V (AG(R)). Let [x]
denote the equivalence class of x and let x′ and x′′ be two elements of
[x]. Since x′ ≃ x′′ we have annR(x

′) = annR(x
′′) so Lemma 2.2 implies

that N(x′) = N(x′′) on V (AG(R))\{x′, x′′}. Now, if x′ is not adjacent
to x′′, then by Lemma 2.6, AG(R) is perfect if and only if AG(R)\{x′}
is perfect. If x′ is adjacent to x′′, then by Lemma 2.5, AG(R) is perfect
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if and only if AG(R) \ {x′} is perfect. We continue this procedure and
we obtain AG(R) is perfect if and only if AG(R)\{[x]\{x′}} is perfect.
We do this for all equivalence classes and get AG(R) is perfect if and
only if AG(R)[A] is perfect, where A is a subset of V (AG(R)) such
that for every equivalence class [x], |A ∩ [x]| = 1. Hence, AG(R)[A] is
an annihilator graph with 3n2m − 2 vertices.

Assume that S = S1 × · · · × Sn × Sn+1 × · · · × Sn+m, where Si
∼= Z4,

for every 1 ≤ i ≤ n, Si
∼= Z2, for every n+1 ≤ i ≤ n+m. By a similar

argument as above one can show that AG(S) is perfect if and only if
AG(S)[B] is perfect. Here

B =
{
(x1, . . . , xn, xn+1 . . . , xn+m) ∈ V (AG(S)) | xi ∈ {0, 1, 2}

for 1 ≤ i ≤ n and xi ∈ {0, 1} for n+ 1 ≤ i ≤ n+m
}

⊆ Z(S)∗

and AG(S)[B] is an annihilator graph with 3n2m − 2 vertices. In view
of Theorem 2.4, AG(S) is perfect so AG(S)[B] is perfect. Now, we can
easily get the graph homomorphism ϕ : AG(R)[A] −→ AG(S)[B] by
the rule ϕ((x1, · · · , xn, xn+1 · · · , xn+m)) = (y1, · · · , yn, yn+1 · · · , yn+m),
where xi = 0 if and only if yi = 0 and xi ∈ U(Ri) if and only if
yi ∈ U(Si) = {1}, for every 1 ≤ i ≤ n +m, xi ∈ Nil(Ri)

∗ if and only
if yi ∈ Nil(Si)

∗ = {2}, for every 1 ≤ i ≤ n, is an isomorphism. Hence,
AG(S)[B] ∼= AG(R)[A]. Thus AG(R)[A] is perfect and so AG(R) is
perfect. This completes the proof. □

Theorem 2.9. Let n be a positive integer and let R = D1 × · · · ×Dn,
where Di is an integral domain, for every 1 ≤ i ≤ n. Then AG(R) is
perfect.

Proof. Assume that x = (x1, . . . , xn) and y = (y1, . . . , yn) are two
vertices of AG(R). Define the relation ≃ on V (AG(R)) as follows:
x ≃ y whenever

xi = 0 if and only if yi = 0,

for every 1 ≤ i ≤ n. It is easily seen that ≃ is an equivalence
relation on V (AG(R)) so V (AG(R)) is a union of (2n − 2) distinct
equivalence classes. Let [x] denote the equivalence class of

x ∈ V (AG(R))

and a, b ∈ [x]. Then it is easy to see that annR(a) = annR(b) so
N(a) = N(b), by Lemma 2.2. This fact together with a not being
adjacent to b, implies that AG(R) is perfect whenever AG(R)\([x]\{a})
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is perfect, see Remark 2.7. We do this for all equivalence classes and
get AG(R) is perfect if and only if AG(R)[A] is perfect, where
A = {(x1, . . . , xn) ∈ V (AG(R))|xi ∈ {0, 1} for all 1 ≤ i ≤ n} ⊆ Z(R)∗.

In view of Theorem 2.4, AG(S) for S = Z2 × Z2 × · · · × Z2 (n times),
is perfect. Furthermore, it is easy to see that AG(S) ∼= AG(R)[A].
Hence, AG(R)[A] is perfect and so AG(R) is perfect. □
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PERFECTNESS OF THE ANNIHILATOR GRAPH OF ARTINIAN
COMMUTATIVE RINGS

M. ADLIFARD AND SH. PAYROVI

آرتینی جابه جایی حلقه های پوچ ساز گراف بودن تام

پیروی٢ شیرویه و عدلی فرد١ مریم

ایران رودبار، رودبار، واحد اسلامی آزاد دانشگاه ریاضی، ١گروه

ایران قزوین، خمینی، امام بین المللی دانشگاه پایه، علوم دانشکده ریاضی، ٢گروه

R پوچ ساز گراف باشد. R صفر علیه های مقسوم مجموعه Z(R) و جابه جایی حلقه یک R کنید فرض
،Z(R)∗ آن رئوس مجموعه که است غیرجهت دار و ساده گرافی و می شود داده نشان AG(R) نماد با
فقط و هرگاه مجاورند آن از y و x متمایز راس دو و است ،R ناصفر صفر علیه های مقسوم مجموعه
از کلاس ها برخی برای پوچ ساز گراف بودن تام مقاله، این در .ann(xy) ̸= ann(x)∪ann(y) هرگاه
آن گاه باشد، آرتینی حلقه یک R اگر که می دهیم نشان دقیق تر، به طور می گیرد. قرار بررسی مورد حلقه ها

است. تام گراف یک AG(R)

بودن. تام پوچ ساز، گراف آرتینی، حلقه  کلیدی: کلمات
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