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A GRAPH ASSOCIATED TO FILTERS OF A LATTICE

S. EBRAHIMI ATANI, M. KHORAMDEL∗, S. DOLATI PISH HESARI, AND
M. NIKMARD ROSTAM ALIPOUR

Abstract. Let L be a lattice with the least element 0 and the
greatest element 1. In this paper, we associate a graph to filters
of L, in which the vertex set is being the set of all non-trivial
filters of L, and two distinct vertices F and E are adjacent if and
only if F ∩ E ̸= {1}. We denote this graph by G(L). The basic
properties and possible structures of G (L) are studied. Moreover,
we characterize the planarity of G (L).

1. Introduction

The study of algebraic structures, using the properties of graph
theory, tends to an exciting research topic in the last decade. There
are many papers on assigning a graph to a ring, a semiring and a
lattice, see for example [1, 2, 5, 6, 7, 9, 12, 11]. One of these graphs
is the intersection graph. Bosak [5] in 1964 defined the intersection
graph of semigroups. In 1969, Csákany and Pollák studied the graph of
subgroups of a finite group, in [7]. In 2009, the intersection graph of
ideals of a ring was considered by Chakrabarty, Ghosh, Mukherjee and
Sen [6]. By using this idea, in [11], the authors investigated the inter-
section graph of co-ideals of a semiring. In this paper, we introduce
intersection graphs of lattices with respect to filters. The intersection
graph of filters of a lattice L, denoted by G (L), is a graph with all
elements of
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V(L) = {F : {1} ̸= F is a proper filter of L}
as vertices and two distinct vertices F1 and F2 are adjacent if and only
if F1 ∩ F2 ̸= {1}. Let L be a distributive lattice with 1 and 0. In this
paper, we are interested in investigating intersection graphs of filters
of lattices and associate which exist in the literature as laid forth in
[6]. Here is a brief outline of the article. Among many results in this
paper, Section 2 lists some results, and it is proved that G(L) is empty
if and only if V(L) = Max(L) = {P1, P2} or L = {0, 1} and we find
independence number of G(L) by using minimal filters of L. Also, if G
(L) is connected, then diam(G(L)) ≤ 2 and gr(G(L)) ∈ {3,∞}. It is
shown that G (L) is finite if and only if ω(G(L)) is finite. Moreover, we
characterize the filters of L, when G (L) has a vertex with degree 1.
Section 3 is devoted to investigate the planarity of G (L).

Now, we recall some definitions of graph theory from [4] which are
needed in this paper. For a graph G by E (G) and V (G), we denote
the set of all edges and vertices, respectively. A graph G is said to
be connected if there exists a path between any two distinct vertices.
Otherwise, G is called disconnected. The distance between two distinct
vertices a and b, denoted by d(a, b), is the length of the shortest path
connecting them (if such a path does not exist, then d(a, b) = ∞,
also d(a, a) = 0). The diameter of a graph G, denoted by diam(G), is
equal to

sup{d(a, b) : a and b are distinct vertices of G}.
A graph is complete if it is connected with diameter less than or equal
to one. We denote the complete graph on n vertices by Kn. A complete
bipartite graph with part sizes m an n is denoted by Km,n. Also, we
say that G is totally disconnected if no two vertices of G are adjacent.
A clique of a graph is a complete subgraph of G and the number of
vertices in the largest clique of graph G, denoted by ω(G), is called
the clique number of G. In a graph G = (V , E), a set S ⊆ V is an
independent set if the subgraph induced by S is totally disconnected.
The independence number α(G) is the maximum size of an independent
set in G. Note that a graph whose vertices-set is empty is a null graph
and a graph whose edge-set is empty is an empty graph.

Let us recall some notions and notations of lattice theory from [3].
By a lattice L we mean a poset (L,≤) in which every couple elements
x, y has a g.l.b. (called the meet of x and y, and written x ∧ y) and
a l.u.b. (called the join of x and y, and written x ∨ y). A lattice L
is complete when each of its subsets X has a l.u.b. and a g.l.b. in
L. Setting X = L, we see that any nonvoid complete lattice contains
a least element 0 and greatest element 1 (in this case, we say that L
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is a lattice with 0 and 1). A lattice L is called a distributive lattice
if (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for all a, b, c in L (equivalently, L is
distributive if (a∧ b)∨ c = (a∨ c)∧ (b∨ c) for all a, b, c in L). A lattice
L is called 1-distributive (resp. 0-distributive) if a∨ b = 1 and a∨ c = 1
(resp. a∧b = 0 and a∧c = 0), then a∨(b∧c) = 1 (resp. a∧(b∨c) = 0)
for all a, b, c ∈ L. A non-empty subset F of a lattice L is called a filter,
if for a ∈ F , b ∈ L, a ≤ b implies b ∈ F , and x ∧ y ∈ F for all x, y ∈ F
(so if L is a lattice with 1, then 1 ∈ F and {1} is a filter of L). A proper
filter F of L is called prime if x∨y ∈ F , then x ∈ F or y ∈ F . If F is a
filter of a lattice L with 0, then 0 ∈ F if and only if F = L. Let H be a
subset of a lattice L. Then the filter generated by H, denoted by T (H)
is the intersection of all filters that is containing H. A lattice L with 1
is called L-domain if a∨ b = 1 (a, b ∈ L), then a = 1 or b = 1. Let L be
a lattice. L is called semisimple, if for each proper filter F of L, there
exists a filter E of L such that L = T (F ∪ E) and F ∩ E = {1}. A
filter F of L is minimal (simple) if it has no filters besides the {1} and
itself. We show the set of all simple (minimal) filters of L by Min(L).
A proper filter P of L is said to be maximal if E is a filter in L with
P ⫋ E, then E = L. The set of all maximal filters in L is denoted
by Max(L). If L is a lattice, then the Jacobson radical of L, denoted
by Jac(L), is the intersection of all maximal filters of L. Let F,E be
filters of L. Then we call E is a complement of F if F ∩E = {1} and E
is maximal with respect to this property. First we need the following
lemma proved in [3, 13].

Lemma 1.1. Let L be a lattice.
(a) A non-empty subset F of L is a filter of L if and only if x∨z ∈ F

and x ∧ y ∈ F for all x, y ∈ F , z ∈ L. Moreover, since
x = x ∨ (x ∧ y), y = y ∨ (x ∧ y) and F is a filter, x ∧ y ∈ F
gives x, y ∈ F for all x, y ∈ L.

(b) If L is 1-distributive and x ∈ L, then
({1} :L x) = (1 : x) = {a ∈ L : a ∨ x = 1}

is a filter of L.

Proposition 1.2. [10]
(i) If F is a non-zero proper filter of a lattice L, then F is contained

in a maximal filter of L.
(ii) Let P be a maximal filter of a distributive lattice L. If

T (P ∪ F ) = L and P ∩ F = {1} for some filter F of L, then F
is a minimal filter of L.

(iii) Assume that L is a distributive lattice and let Jac(L) = {1}. If
Max(L) is finite, then L is semisimple.
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Proposition 1.3. [8]
(i) If L is a distributive lattice and F1, F2, F3 are filters of L with

F2 ⊆ F1, then F1 ∩ T (F2 ∪ F3) = T (F2 ∪ (F1 ∩ F3)).
(ii) Let H be an arbitrary non-empty subset of a lattice L. Then

T (H) = {x ∈ L : a1∧a2∧· · ·∧an ≤ x for some ai ∈ H (1 ≤ i ≤ n)}.
Moreover, if F is a filter and A ⊆ F , then T (A) ⊆ F and
T (F ) = F .

Let F be a proper filter of a lattice L with 0 and 1. The filter-based
identity-summand graph of L with respect to F , denoted by ΓF (L), is
the graph whose vertices are

IF (L) = {x ∈ L \ F : x ∨ y ∈ F for some y ∈ L \ F},
and distinct vertices x and y are adjacent if and only if x ∨ y ∈ F .
If F = {1}, then we put Γ{1}(L) = Γ(L). We need the following
proposition proved in [12, Proposition 2.3 and Theorem 3.14 (1)].
Proposition 1.4. (i) If L is 1-distributive and {Fi}i∈Λ is the set

of all prime filters of L, then ∩i∈ΛFi = {1} (Take F = {1}).
(ii) If L is a lattice, then ω(Γ(L)) = |Min({1})| = |Min(L)|.

2. Basic properties of G (L)

Throughout this paper, we shall assume unless otherwise stated, that
L is a distributive lattice with 1 and 0. Our starting point is the
following definition:
Definition 2.1. Let L be a lattice. The intersection graph of filters of
L, denoted by G(L), is the graph with all elements of

V(L) = {{1} ̸= F : F is a proper filter of L}
as vertices and two distinct vertices F1 and F2 are adjacent if and only
if F1 ∩ F2 ̸= {1}.
Theorem 2.2. Let L be a lattice. Then the following statements hold:

(i) G(L) is an empty graph if and only if V(L) = Max(L) = {P1, P2}
or L = {0, 1}.

(ii) G(L) is a complete graph if and only if L is L-domain.
(iii) If α(G(L)) is finite, then α(G(L)) = |Min(L)|.

Proof. (i) Let G(L) be an empty graph. If Max(L) = {P}, then Lemma
1.2 (i) gives F ⊆ P for each filter F of L; so F ∩ P ̸= {1}. Now since
G(L) is an empty graph, P is the only filter of L. Hence by Proposition
1.4 (i), P = {1}. Let 1 ̸= a ∈ L (so a /∈ P ). Since P ⫋ T ({1, a}) ⊆ L,
T ({1, a}) = L gives a = (1 ∧ a) ≤ 0; hence a = 0, and so L = {0, 1}.
Suppose that |Max(L)| ≥ 2. Since G(L) is empty, Pi∩Pj = {1} for each
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Pi, Pj ∈ Max(L). As Pi ⫋ T (Pi∪Pj) ⊆ L, we get L = T (Pi∪Pj) which
implies that Pi and Pj are minimal filters of L by Proposition 1.2 (ii).
It is enough to show that Max(L) = {Pi, Pj}. Suppose to the contrary
that Pi, Pj ̸= Pk ∈ Max(L). Therefore Pk ∩ Pi = Pk ∩ Pj = {1}. Let
a ∈ Pi. If x ∈ Pj, then x ∨ a ∈ Pi ∩ Pj = {1} which implies that
x ∈ (1 : a); so Pj ⊆ (1 : a). Similarly, Pk ⊆ (1 : a). It follows that
Pj = (1 : a) = Pk, a contradiction. Thus Max(L) = {Pi, Pj}. As Pi

and Pj are minimal, we get V(L) = Max(L). The other implication is
clear.

(ii) At first we show that if a, b ∈ L with a ̸= b and a ∨ b = 1, then
T ({a}) ∩ T ({b}) = {1} and T ({a}) ̸= T ({b}). If x ∈ T ({a}) ∩ T ({b}),
then a ≤ x and b ≤ x which implies that 1 = a ∨ b ≤ x; hence x = 1.
If T ({a}) = T ({b}), then a ∈ T ({b}) and b ∈ T ({a}) gives a ≤ b and
b ≤ a, a contradiction. Hence T ({a}) ̸= T ({b}). Assume that G (L) is
a complete graph and let a, b ∈ L such that a ∨ b = 1. If a = b, then
we are done. So we may assume that a ̸= b. Let a ̸= 1 and b ̸= 1. Now
a ∨ b = 1 gives T ({a}) ̸= T ({b}) and T ({a}) ∩ T ({b}) = {1} that is a
contradiction. The other implication is clear.

(iii) By Proposition 1.4 (ii), ω(Γ(L)) = |Min(L)|. It is enough to
show that α(G(L)) = ω(Γ(L)). Let {F1, F2, . . . , Fn} be an independent
set in G(L); so for every i, j with i ̸= j, Fi ∩ Fj = {1}. Let ai ∈ Fi

(1 ≤ i ≤ n). Then {a1, a2, . . . , an} is a vertex set of complete subgraph
in Γ(L). So ω(Γ(L) ≥ α(G(L)). Now, let {a1, a2, ...} be a clique in
Γ(L). Then {T ({a1}), T ({a2}), . . . } is an independent set in G(L). So
α(G(L)) ≥ ω(Γ(L)). Hence α(G(L)) = ω(Γ(L)). □
Example 2.3. Let L = (P (T ),∪,∩,⊆), where P (T ) is the power set
of T = {t, z}. Then Max(L) = {P1, P2}, where P1 = {T, {t}} and
P2 = {T, {z}}. It is clear that G (L) is empty.

A cycle of a graph is a path such that the start and end vertices are
the same. For a graph G, it is well-known that if G contains a cycle,
then gr(G) ≤ 2diam(G) + 1.
Theorem 2.4. (i) If L is a lattice such that G(L) is not empty,

then G(L) is connected and diam(G(L)) ≤ 2.
(ii) If L is a lattice, then gr(G(L)) ∈ {3,∞}.

Proof. (i) Let F1 and F2 be distinct elements of V(L). We need to show
there is a path connects F1 and F2, if F1 ∩F2 ̸= {1}, then we are done.
So we may assume that F1 ∩ F2 = {1}. By Proposition 1.2 (i), there
exist maximal filters P1, P2 of L such that F1 ⊆ P1 and F2 ⊆ P2. If
F1 ∩ P2 ̸= {1}, then F1 − P2 − F2 is a path between F1 and F2. If
F2 ∩ P1 ̸= {1}, then F1 − P1 − F2 is a path between F1 and F2. If
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F1∩P2 = {1} and F2∩P1 = {1}, then F1 and F2 are minimal filters of
L by Proposition 1.2 (ii) since T (F1 ∪P2) = L = T (F2 ∪P1). We show
that T (F1 ∪ F2) ̸= L. Assume to the contrary, T (F1 ∪ F2) = L. Then
by Proposition 1.3 (i),

P1 = P1 ∩ L = P1 ∩ T (F1 ∪ F2) = T (F1 ∪ (P1 ∩ F2)) = T (F1) = F1.

Similarly, P2 = F2. If p ∈ P1, then P2 ⊆ (1 : p); thus P2 = (1 : p) = P1,
a contradiction. So T (F1 ∪ F2) is a proper filter of L and

F1 − T (F1 ∪ F2)− F2

is a path between F1 and F2. Hence diam(G(L)) ≤ 2.
(ii) Suppose that G(L) contains a cycle. We may assume that

gr(G(L)) ≤ 5. Suppose that gr(G(L)) = n, where n ∈ {4, 5} and
let F1 − F2 . . . Fn − F1 be a cycle of minimum length in G(L). Since
F1 is not adjacent to F3, F1 ∩ F3 = {1}. We show that F1 ∩ F2 ̸= F2.
Otherwise, F2 ⊆ F1 gives F2 ∩ F3 ⊆ F1 ∩ F3 = {1}, a contradiction. If
F1 ∩ F2 ̸= F1, then F1 − F1 ∩ F2 − F2 − F1 is a cycle in G(L) that is a
contradiction. So we may assume that F1 ∩ F2 = F1. Hence F1 ⊆ F2.
Since F2, F4 are not adjacent, F2 ∩ F4 = {1}. Clearly, F2 ∩ F3 ̸= F3.
If F2 ∩ F3 ̸= F2, then F2 − F2 ∩ F3 − F3 − F2 is a cycle in G(L) which
is a contradiction. So F2 ∩ F3 = F2; hence F2 ⊆ F3. It follows that
F1∩F3 = F1 ̸= {1}, a contradiction. Therefore, there must be a shorter
cycle in G(L) and gr(G(L)) = 3. □

The following example shows that the condition “distributive” is not
superficial, in Theorem 2.4.

Example 2.5. Let L be the lattice as in Figure 1.

1

c

a b

0

d

L

Figure 1.

Since a ∧ (b ∨ d) ̸= (a ∧ b) ∨ (a ∧ d), L is not distributive. Set
S1 = {a, c, 1}, S2 = {b, c, 1} and S3 = {1, d}. Then S1, S2 and S3 are
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maximal filters of L. It is clear that another filter of L is S4 = {1, c}
and G(L) is not connected.

The degree of a vertex a in the graph G is the number of edges of G
incident with a and denoted by deg(a).

Theorem 2.6. Let L be a lattice. Then G(L) is finite if and only if
deg(P ) is finite for some maximal filter P of L.

Proof. At first we show that there is at most one filter F of L such
that P is not adjacent to F . Let F1 and F2 be filters of L such that
F1 ∩ P = F2 ∩ P = {1}. Then T (F1 ∪ P ) = L = T (F2 ∪ P ); so
F1, F2 are minimal filters of L by Proposition 1.2 (ii). So there exist
a ∈ F1, b ∈ F2 and p1, p2 ∈ P such that a ∧ p1 ≤ 0 and b ∧ p2 ≤ 0;
hence a ∧ p1 = 0 and b ∧ p2 = 0. Since a ∨ b ∈ F1 ∩ F2 = {1},
a ∨ b = 1. By assumption, (p1 ∧ p2) ∧ a = 0 and (p1 ∧ p2) ∧ b = 0 gives
(p1∧ p2)∧ (a∨ b) = p1∧ p2 = 0 ∈ P which is a contradiction. It follows
that deg(P ) = |G(L)| − 1 or deg(P ) = |G(L)| − 2; hence G(L) is finite
if and only if deg(P ) is finite. □

Theorem 2.7. Let L be a lattice. Then G (L) is finite if and only if
ω(G(L)) is finite.

Proof. By assumption, it suffices to show that if ω(G(L)) is finite, then
G (L) is finite. At first we show that if F1, F2 and F3 are minimal
filters of L, then T (F1 ∪ F2) ̸= T (F1 ∪ F3). Assume to the contrary,
T (F1 ∪ F2) = T (F1 ∪ F3). Let 1 ̸= a ∈ F2. Then a ∈ T (F1 ∪ F3)
gives a = (b ∧ c) ∨ a ≤ a ∨ b and a = (b ∧ c) ∨ a ≤ a ∨ c for some
b ∈ F1 and c ∈ F3 which implies that c ∨ a, b ∨ a ∈ F2 since F2 is
a filter; hence c ∨ a ∈ F2 ∩ F3 = {1} and b ∨ a ∈ F2 ∩ F1 = {1}.
Thus b, c ∈ (1 : a) gives b ∧ c ∈ (1 : a) since (1 : a) is a filter; so
a = (b ∧ c) ∨ a = 1, a contradiction. Thus T (F1 ∪ F2) ̸= T (F1 ∪ F3).
Now we claim that the number of minimal filters of L is finite. Assume
to the contrary, let {Fi}i∈Λ be an infinite set of minimal filters of L.
Clearly, T (Fi∪Fj) ̸= T (Fi∪Fk) for i, j, k ∈ Λ. Hence for minimal filter
Fi of L we have the infinite complete subgraph {T (Fi ∪ Fj)}j∈Λ which
is a contradiction. Therefore L contains only finite number of minimal
filters. Since ω(G(L)) is finite, each filter of L contains a minimal filter.
Now if G(L) is infinite, then there are infinite filters which contain
common minimal filter which is a contradiction. □

Proposition 2.8. Let L be a lattice. If Max(L) = {P1, P2, . . . , Pn}
with ∩n

i=1Pi = {1}, then each filter of L is of the form ∩i∈ΛPi, where
Λ ⊆ {1, 2, . . . , n}.
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Proof. Let F be a filter of L. If there exists exactly one filter, say P1,
of L such that F ⊈ P1, then T (F ∪P1) = L and F ⊆ ∩n

i=2Pi. Therefore
∩n

i=2Pi = ∩n
i=2Pi ∩ T (F ∪ P1) = T (F ∪ (∩n

i=2Pi ∩ P1)) = T (F ) = F

by Proposition 1.3 (i). So we may assume that there exist at least two
maximal filters Pi, Pj of L such that F ⊈ Pi, Pj. Let F ⊆ ∩i∈ΛPi and
F ⊈ ∪Λ′Pi, where Λ ⊆ {1, 2, ..., n} and Λ′ = {1, 2, . . . , n} \ Λ. At first
we show L = T (F ∪ (∩i∈Λ′Pi)). Clearly, 0 ∈ L = T (F ∪ Pi) for each
i ∈ Λ′. So for each i ∈ Λ′, there exist ai ∈ F and pi ∈ Pi such that
(ai ∧ pi) ≤ 0; so ai ∧ pi = 0. If Λ′ = {i1, i2, ..., it}, then

ai1 ∧ ai2 ∧ · · · ∧ ait ∧ pi1 = 0, . . . , ai1 ∧ ai2 ∧ · · · ∧ ait ∧ pit = 0;

hence (ai1 ∧ ai2 ∧ · · · ∧ ait) ∧ (pi1 ∨ pi2 ∨ · · · ∨ pit) = 0. This implies
0 ∈ T (F ∪ (∩i∈Λ′Pi)); thus L = T (F ∪ (∩i∈Λ′Pi)). Then F ⊆ ∩i∈ΛPi

gives
∩i∈ΛPi = T (F ∪ (∩i∈Λ′Pi)) ∩ (∩i∈ΛPi)

= T (F ∪ ((∩i∈ΛPi) ∩ (∩i∈Λ′Pi)))

= T (F )

= F

by Proposition 1.3 (i). □
Theorem 2.9. Let L be a lattice. If Max(L) = {P1, P2, . . . , Pn} with
∩n

i=1Pi = {1}, then ω(G(L)) = 2n−1 − 1.
Proof. Let Ai = {P1, . . . , Pi−1, Pi+1, . . . , Pn} and P (Ai), the power set
of Ai (1 ≤ i ≤ n). For each Di ∈ P (Ai), set SDi

= ∨B∈Di
B (so it is a

filter of L). Then the subgraph of G (L) with vertex set {SDi
}Di∈P (Ai)

is a complete subgraph of G(L) (if SX and SY are two non-adjacent
filter of L for X,Y ∈ P (Ai), then there is a maximal filter which is not
adjacent to more than one filter of L that is a contradiction). Since
|P (Ai) \ {}| = 2n−1 − 1, ω(G(L)) ≥ 2n−1 − 1. By Proposition 2.8, L
has 2n − 2 proper filter. An inspection will show that all filters of L
has complement. Now, let

Ω = {F1, F2, . . . }
be a complete subgraph of G(L). We partition the filters of L in parts
V1, V2, . . . , V2n−1−1 such that each part contains the filter F and its
complement. Now if |Ω| > 2n−1 − 1, then at least two of the elements
of Ω are in the same part which is a contradiction. So

ω(G(L)) = 2n−1 − 1.
□
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Theorem 2.10. Let L be a lattice. Then the following hold:
(i) If G(L) contains a vertex F with degree 1, then F is maximal

if and only if | V(L)| = 2.
(ii) If G(L) contains a vertex F with degree 1, then F is not

maximal and Max(L) = {P} if and only if V(L) = {F, P}
or V(L) = {F,E, P}, where P ∈ Max(L) and F,E ∈ Min(L).

(iii) If G(L) contains a vertex F with degree 1, then F is not maximal
and |Max(L)| ̸= 1 if and only if V(L) = {F,E, P, P ′}, where
P, P ′ ∈ Max(L) and F,E ∈ Min(L).

Proof. (i) Let F be a vertex of L with degree 1. At first we show
that |Max(L)| ≤ 2. Suppose to the contrary that F, P1, P2 ∈ Max(L).
Since F is a maximal filter, there is at most one filter E of L such
that E ∩ F = {1}. If E is maximal, then E and F are minimal
filters by Proposition 1.2 (ii); hence G(L) is an empty graph which
is a contradiction. So we may assume that E is not maximal. So
F ∩ P1 ̸= {1} and F ∩ P2 ̸= {1} which makes the degree of F more
than 1 and it is a contradiction. Thus |Max(L)| ≤ 2. If |Max(L)| = 2,
then F ∩ P ̸= {1} for some maximal filter P of L; so F is adjacent
to P and P ∩ F which is a contradiction. Thus Max(L) = {F}. Now
deg(F ) = 1 gives | V(L)| = 2. The other implication is clear.

(ii) Clearly, F ⊆ P (so F ∩ P ̸= {1}). Since deg(F ) = 1, F is a
minimal filter of L. We claim that |Min(L)| ≤ 2. If F,E,G ∈ Min(L),
then F ∩ E = {1} and F ∩ G = {1}. Now F ⊆ T (F ∪ E) and
F ⊆ T (F ∪ G) gives a contradiction since deg(F ) = 1. Thus
|Min(L)| ≤ 2. If Min(L) = 1 (so Min(L) = {F}), then we show
that the graph G(L) has two vertices F and P . Suppose G is another
filter of L. If F ⊆ G, then G = F or G = P since deg(F ) = 1; hence
V(L) = {F, P}. If F ⊈ G, then Min(L) = {F} implies E ⫋ G for some
filter E of L. Since F is minimal, E ∨ F = {1}; so there is an element
x ∈ E such that x /∈ F . So x ∈ F ∪ E and

F ⫋ F ∪ E ⊆ T (F ∪ E) ⊆ P

gives T (F ∪ E) = P since deg(F ) = 1. As E ⊆ G,

G = G ∩ P = G ∩ T (E ∪ F ) = T (E ∪ (G ∨ F )) = T (E) = E

by Proposition 1.3 (i), a contradiction. Therefore F ⊆ G and
V(L) = {F, P}. Now suppose that Min(L) = {F,E}. Clearly,
T (E ∪ F ) = P . We claim that for each filter H of L, H adjacent
to F or E. If H ∨F = {1}, then F ⫋ H ∪F ⊆ T (H ∪F ) which implies
that deg(F ) ̸= 1, a contradiction. Thus F ∨H ̸= {1} or E ∩H ̸= {1}.
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Since deg(F ) = 1 and F is minimal, we get H ∨ F = {1}; hence
E ∨H ̸= {1}. Since E ⊆ H, Proposition 1.3 (i) gives

H = H ∩ P = H ∩ T (E ∪ F ) = T (E ∪ (F ∩H)) = E;

hence V(L) = {F,E, P}. Conversely, if V(L) = {F, P}, then F ⊆ P ;
so deg(F ) = 1. If V(L) = {F,E, P}, then F,E ⊆ P and E ∨ F = {1};
so deg(F ) = 1 = deg(E).

(iii) At first we show that if F is a minimal filter of a lattice L, then
there is at most one maximal filter P such that F is not adjacent to P .
Suppose the result is false. Assume that there are two maximal filters
P1 and P2 such that P1 ∩ F = {1} and P2 ∩ F = {1}; so

T (F ∪ P1) = L = T (F ∪ P2).

Then there exist a, b ∈ F , p1 ∈ P1 and p2 ∈ P2 such that a ∧ p1 ≤ 0
and b ∧ p2 ≤ 0 which implies that a ∧ p1 = 0 = b ∧ p2. Therefore
a ∧ b ∧ p1 = 0 and a ∧ b ∧ p2 = 0 gives

(a ∧ b) ∧ (p1 ∨ p2) = 0 ∈ T (F ∩ (P1 ∩ P2);

hence T (F ∩ (P1 ∩P2) = L. By Proposition 1.3 (i), since P1 ∩P2 ⊆ P1,
we have

P1 = P1 ∩ T (F ∪ (P1 ∨ P2))

= T ((P1 ∩ P2) ∪ (P1 ∩ F ))

= T (P1 ∩ P2)

= P1 ∩ P2

which is a contradiction. Hence |Max(L)| = 2. Let Max(L) = {P1, P2}
and F ⊆ P1. Clearly, F ∩ P2 = {1}. We claim that for every
non-maximal filter G of L, T (G∪F ) ̸= L. Assume to the contrary, let
T (G∪F ) = L. Then F ⊆ P1 gives P1 = P1∩T (G∪F ) = T (F∪(G∩P1)).
If G ⊆ P1, then P1 = L which is a contradiction. If G ⊆ P2, then

P2 = P2 ∩ T (F ∪G) = T (G ∪ (F ∩ P2)) = T (G) = G,

a contradiction. Thus T (G ∪ G) ̸= L. Now since deg(F ) = 1, F ⊆ P1

and F ⊆ T (F ∪G), we get T (F ∪G) = P1 for each non-maximal filter
G of L. Take G ⊆ P2. Again G ⊆ P2 gives

P1 ∩ P2 = P2 ∩ T (P1 ∪G) = T (G ∪ (P2 ∩G)) = G;

hence V(L) = {F, P1, P2, P1∩P2}. Conversely, let V(L) = {F,E, P ′, P}.
If P ∩ P ′ = {1}, then P and P ′ are minimal filters of L; hence G(L) is
an empty graph (since E and F are minimal filters), a contradiction.
Thus P ∩P ′ ̸= {1} is a filter of L such that it is either F or E. We may
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assume that P ∩ P ′ = F ; so F ⊆ P, P ′. On the other hand E ⊆ P , so
E ⊈ P ′. Therefore E ∩ P ′ = {1}; hence deg(E) = 1. □
Theorem 2.11. Assume that L is a lattice and let G(L) be a complete
r-partite graph. Then at most one part has more than two vertex. In
particular, |V(L)| = r or r + 1.
Proof. Suppose Min(L) = {Fi}i∈Λ. As Fi∩Fj = {1}, all minimal filters
of L are in the same part, say V1. We claim that there is at most two
minimal filters in this part. Assume that Fi, Fj and Fk are distinct
minimal filters of L and let c ∈ T (Fi ∪ Fj) ∩ Fk. Then

(a ∧ b) ∨ c = c = (a ∨ c) ∧ (b ∨ c) ∈ Fk

for some a ∈ Fi and b ∈ Fj. By Lemma 1.1 (a), a ∨ c ∈ Fi ∩ Fk = {1}
and b ∨ c ∈ Fj ∩ Fk = {1}; hence c = 1. Thus T (Fi ∪ Fj) ∩ Fk = {1}.
But G(L) is complete r-partite implies T (Fi∪Fj)∩Fi = {1} which is a
contradiction. Hence there is at most two filters in the part V1. Now we
show that other parts contain only one filter. Let E be a non-minimal
filter of L. Since G(L) is complete r-partite, E contains a minimal
filter, say E1. If there exists a minimal filter E2 such that E2 ⊈ E,
then E ∩ E2 = {1} implies E ∈ V1 which is a contradiction. Hence all
non-minimal filters contain all minimal filters in the part V1. Therefore
for all filters E,F which are not minimal E ∩F ̸= {1}. Hence the only
part which has more than one vertex is V1. The in particular statement
is clear. □

3. Planarity of G (L)

In this section, we characterize all planar graph G(L). Recall that
a planar graph is a graph that can be embedded on the plane, that
is, it can be drawn on the plane in such a way that its edges intersect
only at their endpoints. Kuratowski provided a nice characterization
of planar graphs, which now is known as Kuratowski’s Theorem: A
graph is planar if and only if it does not contain a subdivision of K5 or
K3,3.
Proposition 3.1. Assume that L is a lattice and let G(L) is a planar
graph. Then |max(L)| ≤ 3. Moreover, if |max(L)| = 3, then L is
semi-simple with | V(L) | = 6.
Proof. Suppose on the contrary, P1, P2, P3, P4 ∈ Max(L). If for each
filter F of L, F ∩ P1 ̸= {1}, then P1 ∩ P2 ∩ P3 ̸= {1} and
Pi ∩Pj ̸= {1} for each Pi, Pj ∈ Max(L); so the induced subgraph G(L)
on {P1, P2, P3, P1∩P2, P1∩P2∩P3} is isomorphic to K5, by Kuratowski’s
Theorem G(L) is not planar which is impossible. If there exists a filter
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F such that F ∩ P1 = {1}, then T (F ∪ P1) = L gives F is minimal.
As a minimal filter, F is not adjacent to at most one maximal filter, so
we may assume that F ∩ P1 = {1}. Thus {F, P2, P3, P4, P2 ∩ P3 ∩ P4}
makes K5 in G(L) that is a contradiction.

Let Max(L) = {P1, P2, P3}. If Jac(L) ̸= {1}, then

{P1, P2, P3, P1 ∩ P2, P1 ∩ P2 ∩ P3}

makes K5 in G(L) which is impossible. So we may assume that
Jac(L) = {1}; hence L is a semi-simple lattice by Proposition 1.2
(iii). Now for each i (1 ≤ i ≤ 3), there exists a filter Fi such that
T (Pi ∪ Fi) = L and Pi ∩ Fi = {1}; thus Fi is simple for i = 1, 2, 3. As
T (F1∪F2∪F3) ⊈ Pi for each Pi ∈ Max(L), we get T (F1∪F2∪F3) = L
(because every filter must be contained in a maximal filter). We can
assume that F1 ⊆ P2, F2 ⊆ P3 and F3 ⊆ P1. Since F1 ∩ P1 = {1},
P1 ∩ F2 ̸= {1}. Now F2 is simple gives, F2 ⊆ P1. By Proposition 1.3
(i), F3 ⊆ P1 gives

P1 = P1 ∩ T (F3 ∪ (F1 ∪ F2))

= T (F3 ∪ ((F1 ∪ F2) ∩ P1))

= T (F3 ∪ ((P1 ∩ F1) ∪ (P1 ∩ F2)))

= T (F3 ∪ F2).

So P1 = T (F3 ∪ F2). Similarly, Pi = T (Fj ∪ Fk) for k, j ̸= i. Now
let E be a filter of L which is not minimal and maximal. Since G(L)
is planar, E contains a simple filter, say F1. Clearly if F2 ⊆ E, then
F1 ∪ F2 ⊆ E gives T (F1 ∪ F2) ⊆ E. But T (F1 ∪ F2) = P3 implies
E = M3 which is a contradiction. Similarly, if F3 ⊆ E, E = M2, a
contradiction. So F2 ∩ E = F3 ∩ E = {1}. Let x ∈ E ∩ T (F2 ∪ F3).
Then

x = (a ∧ b) ∨ x = (x ∨ a) ∧ (x ∨ b) ∈ E

for some a ∈ F2 and b ∈ F3. It follows that x∨a, x∨b ∈ E which implies
that x∨a = 1 = x∨b; hence x = 1. Thus E∩T (F2∪F3) = E∩P1 = {1}.
Now by Proposition 1.2 (ii), E is simple which is a contradiction. Thus
V(L) = {F1, F2, F3, P1, P2, P3}. □

Theorem 3.2. Assume that L is a lattice and let G(L) be a planar
graph. Then |V(L)| ≤ 7.

Proof. Since G(L) is a planar, |Max(L)| ≤ 3 and if |Max(L)| = 3, then
|V(L)| = 6 by Proposition 3.1. So we may assume that Max(L)| ≤ 2.
Now we split the proof into two cases. .
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Case 1. Max(L)| = 2. At first we show that |Min(L)| ≤ 2. Suppose
the result is false and let Min(L) = {F,E,G}. Then T (F∪E), T (F∪G)
and T (E ∪G) are proper filters of L and

T (F ∪ E) ̸= T (F ∪G) ̸= T (E ∪G)

(see Theorem 2.7). Let Max(L) = {P1, P2}. Since every proper filter of
L is contained in a maximal filter, without lose of generality, Suppose
T (F ∪ E) and T (F ∪ G) contained in P1; so F,E,G ⊆ P1. Also, we
know that for a maximal filter P2, there is at most one minimal filter
which is not contained in P2. Let F,E ⊆ P2. Then

{P1, T (F ∪ E), P2, E, F, T (F ∪K)}

makes K3,3 as a subgraph of G(L), which is impossible. Thus
|Min(L)| ≤ 2. Now we show that |V(L)| ≤ 5. Assume to the
contrary, |V(L) | ≥ 6. If Min(L) = {F}, then G(L) is a planar gives
F ⊆ H for each filter H of L; hence G(L) is a complete graph, which
is a contradiction. So we may assume that Min(L) = {F,E}.

If P1 ∩ P2 is a minimal filter of L, we put P1 ∩ P2 = F . Then
E ∩ F = {1} gives either E ⊈ P1 or E ⊈ P2. Let E ⊈ P2 (so E ⊆ P1).
Then P2 ⫋ T (E ∪ P2) gives T (E ∪ P2) = L. Since E ⊆ P1, we get

P1 = P1 ∩ T (E ∪ P2) = T (E ∪ (P1 ∩ P2)) = T (E ∪ F ).

Let H be a filter of L which is not minimal and maximal. We claim
that E ⊈ H. Assume to the contrary, E ⊆ H. Then H ⊈ P2; hence
H ⊆ P1 and T (P2 ∪ H) = L. If P2 ∩ H = {1}, then H is minimal
by Proposition 1.2 (ii), a contradiction. Thus P2 ∩ H ̸= {1}. Also
H ∩ P2 = (H ∩ P1) ∩ P2 = H ∩ F ̸= {1} which implies that F ⊆ H.
Then E ∪ F ⊆ H gives P1 = T (E ∪ F ) ⊆ H; hence H = P1, which is
impossible. Thus E ⊈ H. since G (L) is a planar graph and H is not
minimal, H contains minimal filter F . We show that T (E∪H) ̸= P1, L.
If T (E ∪H) = P1, then H ⊆ P1 gives

P1 = T (H ∪ (P1 ∩ P2)) = T (H ∪ F ) = T (H) = H,

a contradiction. If T (E ∪H) = L, then H ⫋ P1 (for if H ⊆ P1, then
E ∪H ⊆ P1; so T (E ∪H) = L ⊆ P1, a contradiction). Thus H ⊆ P2

and T (H ∪ P1 = L. As H ⊆ P2,

P2 = P2 ∩ T (H ∪ P1) = T (H ∩ (P1 ∩ P2)) = T (H ∩ F ) = H,

which is impossible. Therefore T (E ∪H) ̸= P1, L. Hence

V(L) = {F,H, F3, T (H ∪ E), P1, P2}
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makes K5 in G(L), which is a contradiction.
So we may assume that P1 ∩ P2 is not a minimal filter. Then there

is a simple filter F such that F ⊆ P1 ∩ P2. Let G be another filter
of L. Let E ⊆ P1 ∩ P2. Since G is not simple, it contains a simple
filter. If F ⊆ G, then {F,G, P1 ∩ P2, P1, P2} makes K5, which is a
contradiction. If E ⊆ G, then {E,G, P1 ∩ P2, P1, P2} makes K5, which
is a contradiction. So we may assume that E ⫋ P1 ∩P2. Then E ⫋ P1

or E ⫋ P2. We may assume that E ⫋ P2; hence E ⊆ P1. As E ⫋ P2,
T (F ∪ E) ̸= P1 ∩ P2. Also, T (F ∪ E) ̸= P1 (if T (F ∪ E) = P1, then
F ⊆ P2 gives

P1 ∩ P2 = P2 ∩ T (E ∪ F ) = T (F ∪ (E ∩ P2)) = T (F ) = F ,
a contradiction. Hence {F, P1, P2, T (E∪F ), P1∩P2} makes K5 in G(L),
which is a contradiction. Thus |V(L)| ≤ 5.

Case 2. Max(L) = {P}. If Min(L) = {F,E}, then we show that
|V(L) | ≤ 5. If T (F ∪E) = P , then V(L) = {F,E, P} and we are done.
So we may assume that T (F ∪ E) ̸= P . Let G,H be another filters
of L. If F ⊆ G,H, then {F,G,H, T (F ∪ E), P} makes K5 in G(L), a
contradiction. Suppose E ̸⊆ G, F ̸⊆ H. So F ⊆ G, E ⊆ H. Clearly,
T (E ∪ G) ̸= T (F ∪ H) ̸= P . Hence {F,G, T (F ∪ H), T (F ∪ E), P}
makes K5, a contradiction. If Min(L) = {F,E,G}, then show that
|V(L) | ≤ 7. If T (F ∪ E ∪G) ̸= P , then

{T (F ∪ E), T (F ∪G), T (F ∪ E ∪G), P, F}
makes K5 in G(L) which is a contradiction. So we may assume that
T (F ∪ E ∪G) = P . Let H be a filter of L. Since G(L) is a planar, H
contains a minimal filter, say F . If H ∩ E = {1} = H ∩G, Then

H = H ∩ P

= H ∩ T (F ∪ E ∪G)

= T (F ∪ (H ∩ (E ∪G)))

= T (F )

= F.

If F,E ⊆ H with H∩G = {1}, then by the similar way H = T (F ∪E).
Similarly, if F,E,G ⊆ H, then H = P . Hence

V(L) = {F,E,G, T (F ∪ E), T (F ∪G), T (E ∪G), P}.
□
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مشبکه یک فیلترهای با مرتبط گراف

پیش حصاری٣ دولتی صبورا خرم دل٢، مهدی آتانی١، ابراهیمی شهاب الدین
رستم علی پور۴ نیکمرد مهسا و

ایران گیلان، گیلان، دانشگاه ریاضی، علوم ١,٢,٣,۴دانشکده

مقاله، این در می باشد. ١ عضو بزرگترین و ٠ عضو کوچکترین دارای که باشد مشبکه یک L کنید فرض
غیر بدیهی فیلترهای همه مجموعه آن، رئوس مجموعه که می کنیم مرتبط L مشبکه فیلترهای به را گرافی
نمایش G(L) نماد با را گراف این .F ∩ E ̸= {١} هرگاه مجاورند E و F رأس دو و است L از
بودن مسطح براین، علاوه می دهیم. قرار مطالعه مورد را گراف این ساختار و اساسی خواص می دهیم.

می کنیم. بررسی را گراف این

اشتراکی. گراف فیلتر، مشبکه، کلیدی: کلمات
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