Journal of Algebraic Systems

Vol. 10, No. 2, (2023), pp 345-359

A GRAPH ASSOCIATED TO FILTERS OF A LATTICE

S. EBRAHIMI ATANI, M. KHORAMDEL*, S. DOLATI PISH HESARI, AND M. NIKMARD ROSTAM ALIPOUR

Abstract

Let L be a lattice with the least element 0 and the greatest element 1. In this paper, we associate a graph to filters of L, in which the vertex set is being the set of all non-trivial filters of L, and two distinct vertices F and E are adjacent if and only if $F \cap E \neq\{1\}$. We denote this graph by $\mathcal{G}(L)$. The basic properties and possible structures of $\mathcal{G}(L)$ are studied. Moreover, we characterize the planarity of $\mathcal{G}(L)$.

1. Introduction

The study of algebraic structures, using the properties of graph theory, tends to an exciting research topic in the last decade. There are many papers on assigning a graph to a ring, a semiring and a lattice, see for example $[1,2,5,6,7,9,12,11]$. One of these graphs is the intersection graph. Bosak [5] in 1964 defined the intersection graph of semigroups. In 1969, Csákany and Pollák studied the graph of subgroups of a finite group, in [7]. In 2009, the intersection graph of ideals of a ring was considered by Chakrabarty, Ghosh, Mukherjee and Sen [6]. By using this idea, in [11], the authors investigated the intersection graph of co-ideals of a semiring. In this paper, we introduce intersection graphs of lattices with respect to filters. The intersection graph of filters of a lattice L, denoted by $\mathcal{G}(L)$, is a graph with all elements of

[^0]$$
\mathcal{V}(L)=\{F:\{1\} \neq F \text { is a proper filter of } L\}
$$
as vertices and two distinct vertices F_{1} and F_{2} are adjacent if and only if $F_{1} \cap F_{2} \neq\{1\}$. Let L be a distributive lattice with 1 and 0 . In this paper, we are interested in investigating intersection graphs of filters of lattices and associate which exist in the literature as laid forth in [6]. Here is a brief outline of the article. Among many results in this paper, Section 2 lists some results, and it is proved that $\mathcal{G}(L)$ is empty if and only if $\mathcal{V}(L)=\operatorname{Max}(L)=\left\{P_{1}, P_{2}\right\}$ or $L=\{0,1\}$ and we find independence number of $\mathcal{G}(L)$ by using minimal filters of L. Also, if \mathcal{G} (L) is connected, then $\operatorname{diam}(\mathcal{G}(\mathrm{L})) \leq 2$ and $\operatorname{gr}(\mathcal{G}(\mathrm{L})) \in\{3, \infty\}$. It is shown that $\mathcal{G}(L)$ is finite if and only if $\omega(\mathcal{G}(\mathrm{L}))$ is finite. Moreover, we characterize the filters of L, when $\mathcal{G}(L)$ has a vertex with degree 1 . Section 3 is devoted to investigate the planarity of $\mathcal{G}(L)$.

Now, we recall some definitions of graph theory from [4] which are needed in this paper. For a graph G by $\mathcal{E}(G)$ and $\mathcal{V}(G)$, we denote the set of all edges and vertices, respectively. A graph G is said to be connected if there exists a path between any two distinct vertices. Otherwise, G is called disconnected. The distance between two distinct vertices a and b, denoted by $d(a, b)$, is the length of the shortest path connecting them (if such a path does not exist, then $d(a, b)=\infty$, also $d(a, a)=0)$. The diameter of a graph G, denoted by $\operatorname{diam}(G)$, is equal to

$$
\sup \{d(a, b): a \text { and } b \text { are distinct vertices of } G\} .
$$

A graph is complete if it is connected with diameter less than or equal to one. We denote the complete graph on n vertices by K_{n}. A complete bipartite graph with part sizes m an n is denoted by $K_{m, n}$. Also, we say that G is totally disconnected if no two vertices of G are adjacent. A clique of a graph is a complete subgraph of G and the number of vertices in the largest clique of graph G, denoted by $\omega(G)$, is called the clique number of G. In a graph $G=(\mathcal{V}, \mathcal{E})$, a set $S \subseteq \mathcal{V}$ is an independent set if the subgraph induced by S is totally disconnected. The independence number $\alpha(G)$ is the maximum size of an independent set in G. Note that a graph whose vertices-set is empty is a null graph and a graph whose edge-set is empty is an empty graph.

Let us recall some notions and notations of lattice theory from [3]. By a lattice L we mean a poset (L, \leq) in which every couple elements x, y has a g.l.b. (called the meet of x and y, and written $x \wedge y$) and a l.u.b. (called the join of x and y, and written $x \vee y$). A lattice L is complete when each of its subsets X has a l.u.b. and a g.l.b. in L. Setting $X=L$, we see that any nonvoid complete lattice contains a least element 0 and greatest element 1 (in this case, we say that L
is a lattice with 0 and 1). A lattice L is called a distributive lattice if $(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$ for all a, b, c in L (equivalently, L is distributive if $(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$ for all a, b, c in $L)$. A lattice L is called 1-distributive (resp. 0-distributive) if $a \vee b=1$ and $a \vee c=1$ (resp. $a \wedge b=0$ and $a \wedge c=0$), then $a \vee(b \wedge c)=1$ (resp. $a \wedge(b \vee c)=0$) for all $a, b, c \in L$. A non-empty subset F of a lattice L is called a filter, if for $a \in F, b \in L, a \leq b$ implies $b \in F$, and $x \wedge y \in F$ for all $x, y \in F$ (so if L is a lattice with 1 , then $1 \in F$ and $\{1\}$ is a filter of L). A proper filter F of L is called prime if $x \vee y \in F$, then $x \in F$ or $y \in F$. If F is a filter of a lattice L with 0 , then $0 \in F$ if and only if $F=L$. Let H be a subset of a lattice L. Then the filter generated by H, denoted by $T(H)$ is the intersection of all filters that is containing H. A lattice L with 1 is called L-domain if $a \vee b=1(a, b \in L)$, then $a=1$ or $b=1$. Let L be a lattice. L is called semisimple, if for each proper filter F of L, there exists a filter E of L such that $L=T(F \cup E)$ and $F \cap E=\{1\}$. A filter F of L is minimal (simple) if it has no filters besides the $\{1\}$ and itself. We show the set of all simple (minimal) filters of L by $\operatorname{Min}(L)$. A proper filter P of L is said to be maximal if E is a filter in L with $P \varsubsetneqq E$, then $E=L$. The set of all maximal filters in L is denoted by $\operatorname{Max}(L)$. If L is a lattice, then the Jacobson radical of L, denoted by $\operatorname{Jac}(L)$, is the intersection of all maximal filters of L. Let F, E be filters of L. Then we call E is a complement of F if $F \cap E=\{1\}$ and E is maximal with respect to this property. First we need the following lemma proved in $[3,13]$.

Lemma 1.1. Let L be a lattice.
(a) A non-empty subset F of L is a filter of L if and only if $x \vee z \in F$ and $x \wedge y \in F$ for all $x, y \in F, z \in L$. Moreover, since $x=x \vee(x \wedge y), y=y \vee(x \wedge y)$ and F is a filter, $x \wedge y \in F$ gives $x, y \in F$ for all $x, y \in L$.
(b) If L is 1 -distributive and $x \in L$, then

$$
\left(\{1\}:_{L} x\right)=(1: x)=\{a \in L: a \vee x=1\}
$$

is a filter of L.

Proposition 1.2. [10]

(i) If F is a non-zero proper filter of a lattice L, then F is contained in a maximal filter of L.
(ii) Let P be a maximal filter of a distributive lattice L. If $T(P \cup F)=L$ and $P \cap F=\{1\}$ for some filter F of L, then F is a minimal filter of L.
(iii) Assume that L is a distributive lattice and let $\operatorname{Jac}(L)=\{1\}$. If $\operatorname{Max}(L)$ is finite, then L is semisimple.

Proposition 1.3. [8]

(i) If L is a distributive lattice and F_{1}, F_{2}, F_{3} are filters of L with $F_{2} \subseteq F_{1}$, then $F_{1} \cap T\left(F_{2} \cup F_{3}\right)=T\left(F_{2} \cup\left(F_{1} \cap F_{3}\right)\right)$.
(ii) Let H be an arbitrary non-empty subset of a lattice L. Then $T(H)=\left\{x \in L: a_{1} \wedge a_{2} \wedge \cdots \wedge a_{n} \leq x\right.$ for some $\left.a_{i} \in H(1 \leq i \leq n)\right\}$. Moreover, if F is a filter and $A \subseteq F$, then $T(A) \subseteq F$ and $T(F)=F$.

Let F be a proper filter of a lattice L with 0 and 1 . The filter-based identity-summand graph of L with respect to F, denoted by $\Gamma_{F}(L)$, is the graph whose vertices are

$$
I_{F}(L)=\{x \in L \backslash F: x \vee y \in F \text { for some } y \in L \backslash F\},
$$

and distinct vertices x and y are adjacent if and only if $x \vee y \in F$. If $F=\{1\}$, then we put $\Gamma_{\{1\}}(L)=\Gamma(L)$. We need the following proposition proved in [12, Proposition 2.3 and Theorem 3.14 (1)].

Proposition 1.4. (i) If L is 1 -distributive and $\left\{F_{i}\right\}_{i \in \Lambda}$ is the set of all prime filters of L, then $\cap_{i \in \Lambda} F_{i}=\{1\}$ (Take $F=\{1\}$).
(ii) If L is a lattice, then $\omega(\Gamma(L))=|\operatorname{Min}(\{1\})|=|\operatorname{Min}(L)|$.

2. Basic properties of $\mathcal{G}(L)$

Throughout this paper, we shall assume unless otherwise stated, that L is a distributive lattice with 1 and 0 . Our starting point is the following definition:

Definition 2.1. Let L be a lattice. The intersection graph of filters of L, denoted by $\mathcal{G}(L)$, is the graph with all elements of

$$
\mathcal{V}(L)=\{\{1\} \neq F: F \text { is a proper filter of } L\}
$$

as vertices and two distinct vertices F_{1} and F_{2} are adjacent if and only if $F_{1} \cap F_{2} \neq\{1\}$.

Theorem 2.2. Let L be a lattice. Then the following statements hold:
(i) $\mathcal{G}(L)$ is an empty graph if and only if $\mathcal{V}(L)=\operatorname{Max}(L)=\left\{P_{1}, P_{2}\right\}$ or $L=\{0,1\}$.
(ii) $\mathcal{G}(L)$ is a complete graph if and only if L is L-domain.
(iii) If $\alpha(\mathcal{G}(L))$ is finite, then $\alpha(\mathcal{G}(L))=|\operatorname{Min}(L)|$.

Proof. (i) Let $\mathcal{G}(L)$ be an empty graph. If $\operatorname{Max}(L)=\{P\}$, then Lemma 1.2 (i) gives $F \subseteq P$ for each filter F of L; so $F \cap P \neq\{1\}$. Now since $\mathcal{G}(L)$ is an empty graph, P is the only filter of L. Hence by Proposition 1.4 (i), $P=\{1\}$. Let $1 \neq a \in L$ (so $a \notin P)$. Since $P \varsubsetneqq T(\{1, a\}) \subseteq L$, $T(\{1, a\})=L$ gives $a=(1 \wedge a) \leq 0$; hence $a=0$, and so $L=\{0,1\}$. Suppose that $|\operatorname{Max}(L)| \geq 2$. Since $\mathcal{G}(L)$ is empty, $P_{i} \cap P_{j}=\{1\}$ for each
$P_{i}, P_{j} \in \operatorname{Max}(L)$. As $P_{i} \varsubsetneqq T\left(P_{i} \cup P_{j}\right) \subseteq L$, we get $L=T\left(P_{i} \cup P_{j}\right)$ which implies that P_{i} and P_{j} are minimal filters of L by Proposition 1.2 (ii). It is enough to show that $\operatorname{Max}(L)=\left\{P_{i}, P_{j}\right\}$. Suppose to the contrary that $P_{i}, P_{j} \neq P_{k} \in \operatorname{Max}(L)$. Therefore $P_{k} \cap P_{i}=P_{k} \cap P_{j}=\{1\}$. Let $a \in P_{i}$. If $x \in P_{j}$, then $x \vee a \in P_{i} \cap P_{j}=\{1\}$ which implies that $x \in(1: a) ;$ so $P_{j} \subseteq(1: a)$. Similarly, $P_{k} \subseteq(1: a)$. It follows that $P_{j}=(1: a)=P_{k}$, a contradiction. Thus $\operatorname{Max}(L)=\left\{P_{i}, P_{j}\right\}$. As P_{i} and P_{j} are minimal, we get $\mathcal{V}(L)=\operatorname{Max}(L)$. The other implication is clear.
(ii) At first we show that if $a, b \in L$ with $a \neq b$ and $a \vee b=1$, then $T(\{a\}) \cap T(\{b\})=\{1\}$ and $T(\{a\}) \neq T(\{b\})$. If $x \in T(\{a\}) \cap T(\{b\})$, then $a \leq x$ and $b \leq x$ which implies that $1=a \vee b \leq x$; hence $x=1$. If $T(\{a\})=T(\{b\})$, then $a \in T(\{b\})$ and $b \in T(\{a\})$ gives $a \leq b$ and $b \leq a$, a contradiction. Hence $T(\{a\}) \neq T(\{b\})$. Assume that $\mathcal{G}(L)$ is a complete graph and let $a, b \in L$ such that $a \vee b=1$. If $a=b$, then we are done. So we may assume that $a \neq b$. Let $a \neq 1$ and $b \neq 1$. Now $a \vee b=1$ gives $T(\{a\}) \neq T(\{b\})$ and $T(\{a\}) \cap T(\{b\})=\{1\}$ that is a contradiction. The other implication is clear.
(iii) By Proposition 1.4 (ii), $\omega(\Gamma(L))=|\operatorname{Min}(L)|$. It is enough to show that $\alpha(\mathcal{G}(L))=\omega(\Gamma(L))$. Let $\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$ be an independent set in $\mathcal{G}(L)$; so for every i, j with $i \neq j, F_{i} \cap F_{j}=\{1\}$. Let $a_{i} \in F_{i}$ $(1 \leq i \leq n)$. Then $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a vertex set of complete subgraph in $\Gamma(L)$. So $\omega\left(\Gamma(L) \geq \alpha(\mathcal{G}(L))\right.$. Now, let $\left\{a_{1}, a_{2}, \ldots\right\}$ be a clique in $\Gamma(L)$. Then $\left\{T\left(\left\{a_{1}\right\}\right), T\left(\left\{a_{2}\right\}\right), \ldots\right\}$ is an independent set in $\mathcal{G}(L)$. So $\alpha(\mathcal{G}(L)) \geq \omega(\Gamma(L))$. Hence $\alpha(\mathcal{G}(L))=\omega(\Gamma(L))$.
Example 2.3. Let $L=(P(T), \cup, \cap, \subseteq)$, where $P(T)$ is the power set of $T=\{t, z\}$. Then $\operatorname{Max}(L)=\left\{P_{1}, P_{2}\right\}$, where $P_{1}=\{T,\{t\}\}$ and $P_{2}=\{T,\{z\}\}$. It is clear that $\mathcal{G}(L)$ is empty.

A cycle of a graph is a path such that the start and end vertices are the same. For a graph G, it is well-known that if G contains a cycle, then $\operatorname{gr}(G) \leq 2 \operatorname{diam}(G)+1$.

Theorem 2.4. (i) If L is a lattice such that $\mathcal{G}(L)$ is not empty, then $\mathcal{G}(L)$ is connected and $\operatorname{diam}(\mathcal{G}(L)) \leq 2$.
(ii) If L is a lattice, then $\operatorname{gr}(\mathcal{G}(L)) \in\{3, \infty\}$.

Proof. (i) Let F_{1} and F_{2} be distinct elements of $\mathcal{V}(L)$. We need to show there is a path connects F_{1} and F_{2}, if $F_{1} \cap F_{2} \neq\{1\}$, then we are done. So we may assume that $F_{1} \cap F_{2}=\{1\}$. By Proposition 1.2 (i), there exist maximal filters P_{1}, P_{2} of L such that $F_{1} \subseteq P_{1}$ and $F_{2} \subseteq P_{2}$. If $F_{1} \cap P_{2} \neq\{1\}$, then $F_{1}-P_{2}-F_{2}$ is a path between F_{1} and F_{2}. If $F_{2} \cap P_{1} \neq\{1\}$, then $F_{1}-P_{1}-F_{2}$ is a path between F_{1} and F_{2}. If
$F_{1} \cap P_{2}=\{1\}$ and $F_{2} \cap P_{1}=\{1\}$, then F_{1} and F_{2} are minimal filters of L by Proposition 1.2 (ii) since $T\left(F_{1} \cup P_{2}\right)=L=T\left(F_{2} \cup P_{1}\right)$. We show that $T\left(F_{1} \cup F_{2}\right) \neq L$. Assume to the contrary, $T\left(F_{1} \cup F_{2}\right)=L$. Then by Proposition 1.3 (i),

$$
P_{1}=P_{1} \cap L=P_{1} \cap T\left(F_{1} \cup F_{2}\right)=T\left(F_{1} \cup\left(P_{1} \cap F_{2}\right)\right)=T\left(F_{1}\right)=F_{1} .
$$

Similarly, $P_{2}=F_{2}$. If $p \in P_{1}$, then $P_{2} \subseteq(1: p)$; thus $P_{2}=(1: p)=P_{1}$, a contradiction. So $T\left(F_{1} \cup F_{2}\right)$ is a proper filter of L and

$$
F_{1}-T\left(F_{1} \cup F_{2}\right)-F_{2}
$$

is a path between F_{1} and F_{2}. Hence $\operatorname{diam}(\mathcal{G}(L)) \leq 2$.
(ii) Suppose that $\mathcal{G}(L)$ contains a cycle. We may assume that $\operatorname{gr}(\mathcal{G}(L)) \leq 5$. Suppose that $\operatorname{gr}(\mathcal{G}(L))=n$, where $n \in\{4,5\}$ and let $F_{1}-F_{2} \ldots F_{n}-F_{1}$ be a cycle of minimum length in $\mathcal{G}(L)$. Since F_{1} is not adjacent to $F_{3}, F_{1} \cap F_{3}=\{1\}$. We show that $F_{1} \cap F_{2} \neq F_{2}$. Otherwise, $F_{2} \subseteq F_{1}$ gives $F_{2} \cap F_{3} \subseteq F_{1} \cap F_{3}=\{1\}$, a contradiction. If $F_{1} \cap F_{2} \neq F_{1}$, then $F_{1}-F_{1} \cap F_{2}-F_{2}-F_{1}$ is a cycle in $\mathcal{G}(L)$ that is a contradiction. So we may assume that $F_{1} \cap F_{2}=F_{1}$. Hence $F_{1} \subseteq F_{2}$. Since F_{2}, F_{4} are not adjacent, $F_{2} \cap F_{4}=\{1\}$. Clearly, $F_{2} \cap F_{3} \neq F_{3}$. If $F_{2} \cap F_{3} \neq F_{2}$, then $F_{2}-F_{2} \cap F_{3}-F_{3}-F_{2}$ is a cycle in $\mathcal{G}(L)$ which is a contradiction. So $F_{2} \cap F_{3}=F_{2}$; hence $F_{2} \subseteq F_{3}$. It follows that $F_{1} \cap F_{3}=F_{1} \neq\{1\}$, a contradiction. Therefore, there must be a shorter cycle in $\mathcal{G}(L)$ and $\operatorname{gr}(\mathcal{G}(L))=3$.

The following example shows that the condition "distributive" is not superficial, in Theorem 2.4.

Example 2.5. Let L be the lattice as in Figure 1.

Figure 1.

Since $a \wedge(b \vee d) \neq(a \wedge b) \vee(a \wedge d)$, L is not distributive. Set $S_{1}=\{a, c, 1\}, S_{2}=\{b, c, 1\}$ and $S_{3}=\{1, d\}$. Then S_{1}, S_{2} and S_{3} are
maximal filters of L. It is clear that another filter of L is $S_{4}=\{1, c\}$ and $\mathcal{G}(L)$ is not connected.

The degree of a vertex a in the graph G is the number of edges of G incident with a and denoted by $\operatorname{deg}(a)$.

Theorem 2.6. Let L be a lattice. Then $\mathcal{G}(L)$ is finite if and only if $\operatorname{deg}(P)$ is finite for some maximal filter P of L.

Proof. At first we show that there is at most one filter F of L such that P is not adjacent to F. Let F_{1} and F_{2} be filters of L such that $F_{1} \cap P=F_{2} \cap P=\{1\}$. Then $T\left(F_{1} \cup P\right)=L=T\left(F_{2} \cup P\right)$; so F_{1}, F_{2} are minimal filters of L by Proposition 1.2 (ii). So there exist $a \in F_{1}, b \in F_{2}$ and $p_{1}, p_{2} \in P$ such that $a \wedge p_{1} \leq 0$ and $b \wedge p_{2} \leq 0 ;$ hence $a \wedge p_{1}=0$ and $b \wedge p_{2}=0$. Since $a \vee b \in F_{1} \cap F_{2}=\{1\}$, $a \vee b=1$. By assumption, $\left(p_{1} \wedge p_{2}\right) \wedge a=0$ and $\left(p_{1} \wedge p_{2}\right) \wedge b=0$ gives $\left(p_{1} \wedge p_{2}\right) \wedge(a \vee b)=p_{1} \wedge p_{2}=0 \in P$ which is a contradiction. It follows that $\operatorname{deg}(P)=|\mathcal{G}(\mathrm{L})|-1$ or $\operatorname{deg}(P)=|\mathcal{G}(\mathrm{L})|-2$; hence $\mathcal{G}(L)$ is finite if and only if $\operatorname{deg}(P)$ is finite.

Theorem 2.7. Let L be a lattice. Then $\mathcal{G}(L)$ is finite if and only if $\omega(\mathcal{G}(L))$ is finite.

Proof. By assumption, it suffices to show that if $\omega(\mathcal{G}(\mathrm{L}))$ is finite, then $\mathcal{G}(L)$ is finite. At first we show that if F_{1}, F_{2} and F_{3} are minimal filters of L, then $T\left(F_{1} \cup F_{2}\right) \neq T\left(F_{1} \cup F_{3}\right)$. Assume to the contrary, $T\left(F_{1} \cup F_{2}\right)=T\left(F_{1} \cup F_{3}\right)$. Let $1 \neq a \in F_{2}$. Then $a \in T\left(F_{1} \cup F_{3}\right)$ gives $a=(b \wedge c) \vee a \leq a \vee b$ and $a=(b \wedge c) \vee a \leq a \vee c$ for some $b \in F_{1}$ and $c \in F_{3}$ which implies that $c \vee a, b \vee a \in F_{2}$ since F_{2} is a filter; hence $c \vee a \in F_{2} \cap F_{3}=\{1\}$ and $b \vee a \in F_{2} \cap F_{1}=\{1\}$. Thus $b, c \in(1: a)$ gives $b \wedge c \in(1: a)$ since $(1: a)$ is a filter; so $a=(b \wedge c) \vee a=1$, a contradiction. Thus $T\left(F_{1} \cup F_{2}\right) \neq T\left(F_{1} \cup F_{3}\right)$. Now we claim that the number of minimal filters of L is finite. Assume to the contrary, let $\left\{F_{i}\right\}_{i \in \Lambda}$ be an infinite set of minimal filters of L. Clearly, $T\left(F_{i} \cup F_{j}\right) \neq T\left(F_{i} \cup F_{k}\right)$ for $i, j, k \in \Lambda$. Hence for minimal filter F_{i} of L we have the infinite complete subgraph $\left\{T\left(F_{i} \cup F_{j}\right)\right\}_{j \in \Lambda}$ which is a contradiction. Therefore L contains only finite number of minimal filters. Since $\omega(\mathcal{G}(\mathrm{L}))$ is finite, each filter of L contains a minimal filter. Now if $\mathcal{G}(L)$ is infinite, then there are infinite filters which contain common minimal filter which is a contradiction.

Proposition 2.8. Let L be a lattice. If $\operatorname{Max}(L)=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ with $\cap_{i=1}^{n} P_{i}=\{1\}$, then each filter of L is of the form $\cap_{i \in \Lambda} P_{i}$, where $\Lambda \subseteq\{1,2, \ldots, n\}$.

Proof. Let F be a filter of L. If there exists exactly one filter, say P_{1}, of L such that $F \nsubseteq P_{1}$, then $T\left(F \cup P_{1}\right)=L$ and $F \subseteq \cap_{i=2}^{n} P_{i}$. Therefore

$$
\cap_{i=2}^{n} P_{i}=\cap_{i=2}^{n} P_{i} \cap T\left(F \cup P_{1}\right)=T\left(F \cup\left(\cap_{i=2}^{n} P_{i} \cap P_{1}\right)\right)=T(F)=F
$$

by Proposition 1.3 (i). So we may assume that there exist at least two maximal filters P_{i}, P_{j} of L such that $F \nsubseteq P_{i}, P_{j}$. Let $F \subseteq \cap_{i \in \Lambda} P_{i}$ and $F \nsubseteq \cup_{\Lambda^{\prime}} P_{i}$, where $\Lambda \subseteq\{1,2, \ldots, n\}$ and $\Lambda^{\prime}=\{1,2, \ldots, n\} \backslash \Lambda$. At first we show $L=T\left(F \cup\left(\cap_{i \in \Lambda^{\prime}} P_{i}\right)\right)$. Clearly, $0 \in L=T\left(F \cup P_{i}\right)$ for each $i \in \Lambda^{\prime}$. So for each $i \in \Lambda^{\prime}$, there exist $a_{i} \in F$ and $p_{i} \in P_{i}$ such that $\left(a_{i} \wedge p_{i}\right) \leq 0 ;$ so $a_{i} \wedge p_{i}=0$. If $\Lambda^{\prime}=\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}$, then

$$
a_{i_{1}} \wedge a_{i_{2}} \wedge \cdots \wedge a_{i_{t}} \wedge p_{i_{1}}=0, \ldots, a_{i_{1}} \wedge a_{i_{2}} \wedge \cdots \wedge a_{i_{t}} \wedge p_{i_{t}}=0
$$

hence $\left(a_{i_{1}} \wedge a_{i_{2}} \wedge \cdots \wedge a_{i_{t}}\right) \wedge\left(p_{i_{1}} \vee p_{i_{2}} \vee \cdots \vee p_{i_{t}}\right)=0$. This implies $0 \in T\left(F \cup\left(\cap_{i \in \Lambda^{\prime}} P_{i}\right)\right)$; thus $L=T\left(F \cup\left(\cap_{i \in \Lambda^{\prime}} P_{i}\right)\right)$. Then $F \subseteq \cap_{i \in \Lambda} P_{i}$ gives

$$
\begin{aligned}
\cap_{i \in \Lambda} P_{i} & =T\left(F \cup\left(\cap_{i \in \Lambda^{\prime}} P_{i}\right)\right) \cap\left(\cap_{i \in \Lambda} P_{i}\right) \\
& =T\left(F \cup\left(\left(\cap_{i \in \Lambda} P_{i}\right) \cap\left(\cap_{i \in \Lambda^{\prime}} P_{i}\right)\right)\right) \\
& =T(F) \\
& =F
\end{aligned}
$$

by Proposition 1.3 (i).
Theorem 2.9. Let L be a lattice. If $\operatorname{Max}(L)=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ with $\cap_{i=1}^{n} P_{i}=\{1\}$, then $\omega(\mathcal{G}(L))=2^{n-1}-1$.
Proof. Let $A_{i}=\left\{P_{1}, \ldots, P_{i-1}, P_{i+1}, \ldots, P_{n}\right\}$ and $P\left(A_{i}\right)$, the power set of $A_{i}(1 \leq i \leq n)$. For each $D_{i} \in P\left(A_{i}\right)$, set $S_{D_{i}}=\vee_{B \in D_{i}} B$ (so it is a filter of $L)$. Then the subgraph of $\mathcal{G}(L)$ with vertex set $\left\{S_{D_{i}}\right\}_{D_{i} \in P\left(A_{i}\right)}$ is a complete subgraph of $\mathcal{G}(L)$ (if S_{X} and S_{Y} are two non-adjacent filter of L for $X, Y \in P\left(A_{i}\right)$, then there is a maximal filter which is not adjacent to more than one filter of L that is a contradiction). Since $\left|P\left(A_{i}\right) \backslash\left\} \mid=2^{n-1}-1, \omega(\mathcal{G}(L)) \geq 2^{n-1}-1\right.\right.$. By Proposition 2.8, L has $2^{n}-2$ proper filter. An inspection will show that all filters of L has complement. Now, let

$$
\Omega=\left\{F_{1}, F_{2}, \ldots\right\}
$$

be a complete subgraph of $\mathcal{G}(L)$. We partition the filters of L in parts $V_{1}, V_{2}, \ldots, V_{2^{n-1}-1}$ such that each part contains the filter F and its complement. Now if $|\Omega|>2^{n-1}-1$, then at least two of the elements of Ω are in the same part which is a contradiction. So

$$
\omega(\mathcal{G}(\mathrm{L}))=2^{n-1}-1 .
$$

Theorem 2.10. Let L be a lattice. Then the following hold:
(i) If $\mathcal{G}(L)$ contains a vertex F with degree 1 , then F is maximal if and only if $|\mathcal{V}(L)|=2$.
(ii) If $\mathcal{G}(L)$ contains a vertex F with degree 1 , then F is not maximal and $\operatorname{Max}(L)=\{P\}$ if and only if $\mathcal{V}(L)=\{F, P\}$ or $\mathcal{V}(L)=\{F, E, P\}$, where $P \in \operatorname{Max}(L)$ and $F, E \in \operatorname{Min}(L)$.
(iii) If $\mathcal{G}(L)$ contains a vertex F with degree 1 , then F is not maximal and $|\operatorname{Max}(L)| \neq 1$ if and only if $\mathcal{V}(L)=\left\{F, E, P, P^{\prime}\right\}$, where $P, P^{\prime} \in \operatorname{Max}(L)$ and $F, E \in \operatorname{Min}(L)$.

Proof. (i) Let F be a vertex of L with degree 1. At first we show that $|\operatorname{Max}(L)| \leq 2$. Suppose to the contrary that $F, P_{1}, P_{2} \in \operatorname{Max}(L)$. Since F is a maximal filter, there is at most one filter E of L such that $E \cap F=\{1\}$. If E is maximal, then E and F are minimal filters by Proposition 1.2 (ii); hence $\mathcal{G}(L)$ is an empty graph which is a contradiction. So we may assume that E is not maximal. So $F \cap P_{1} \neq\{1\}$ and $F \cap P_{2} \neq\{1\}$ which makes the degree of F more than 1 and it is a contradiction. Thus $|\operatorname{Max}(L)| \leq 2$. If $|\operatorname{Max}(L)|=2$, then $F \cap P \neq\{1\}$ for some maximal filter P of L; so F is adjacent to P and $P \cap F$ which is a contradiction. Thus $\operatorname{Max}(L)=\{F\}$. Now $\operatorname{deg}(F)=1$ gives $|\mathcal{V}(L)|=2$. The other implication is clear.
(ii) Clearly, $F \subseteq P$ (so $F \cap P \neq\{1\}$). Since $\operatorname{deg}(F)=1, F$ is a minimal filter of L. We claim that $|\operatorname{Min}(L)| \leq 2$. If $F, E, G \in \operatorname{Min}(L)$, then $F \cap E=\{1\}$ and $F \cap G=\{1\}$. Now $F \subseteq T(F \cup E)$ and $F \subseteq T(F \cup G)$ gives a contradiction since $\operatorname{deg}(F)=1$. Thus $|\operatorname{Min}(L)| \leq 2$. If $\operatorname{Min}(L)=1$ (so $\operatorname{Min}(L)=\{F\})$, then we show that the graph $\mathcal{G}(L)$ has two vertices F and P. Suppose G is another filter of L. If $F \subseteq G$, then $G=F$ or $G=P$ since $\operatorname{deg}(F)=1$; hence $\mathcal{V}(L)=\{F, P\}$. If $F \nsubseteq G$, then $\operatorname{Min}(L)=\{F\}$ implies $E \varsubsetneqq G$ for some filter E of L. Since F is minimal, $E \vee F=\{1\}$; so there is an element $x \in E$ such that $x \notin F$. So $x \in F \cup E$ and

$$
F \varsubsetneqq F \cup E \subseteq T(F \cup E) \subseteq P
$$

gives $T(F \cup E)=P$ since $\operatorname{deg}(F)=1$. As $E \subseteq G$,

$$
G=G \cap P=G \cap T(E \cup F)=T(E \cup(G \vee F))=T(E)=E
$$

by Proposition 1.3 (i), a contradiction. Therefore $F \subseteq G$ and $\mathcal{V}(L)=\{F, P\}$. Now suppose that $\operatorname{Min}(L)=\{F, E\}$. Clearly, $T(E \cup F)=P$. We claim that for each filter H of L, H adjacent to F or E. If $H \vee F=\{1\}$, then $F \varsubsetneqq H \cup F \subseteq T(H \cup F)$ which implies that $\operatorname{deg}(F) \neq 1$, a contradiction. Thus $F \vee H \neq\{1\}$ or $E \cap H \neq\{1\}$.

Since $\operatorname{deg}(F)=1$ and F is minimal, we get $H \vee F=\{1\}$; hence $E \vee H \neq\{1\}$. Since $E \subseteq H$, Proposition 1.3 (i) gives

$$
H=H \cap P=H \cap T(E \cup F)=T(E \cup(F \cap H))=E ;
$$

hence $\mathcal{V}(L)=\{F, E, P\}$. Conversely, if $\mathcal{V}(L)=\{F, P\}$, then $F \subseteq P$; so $\operatorname{deg}(F)=1$. If $\mathcal{V}(L)=\{F, E, P\}$, then $F, E \subseteq P$ and $E \vee F=\{1\}$; so $\operatorname{deg}(F)=1=\operatorname{deg}(E)$.
(iii) At first we show that if F is a minimal filter of a lattice L, then there is at most one maximal filter P such that F is not adjacent to P. Suppose the result is false. Assume that there are two maximal filters P_{1} and P_{2} such that $P_{1} \cap F=\{1\}$ and $P_{2} \cap F=\{1\}$; so

$$
T\left(F \cup P_{1}\right)=L=T\left(F \cup P_{2}\right) .
$$

Then there exist $a, b \in F, p_{1} \in P_{1}$ and $p_{2} \in P_{2}$ such that $a \wedge p_{1} \leq 0$ and $b \wedge p_{2} \leq 0$ which implies that $a \wedge p_{1}=0=b \wedge p_{2}$. Therefore $a \wedge b \wedge p_{1}=0$ and $a \wedge b \wedge p_{2}=0$ gives

$$
(a \wedge b) \wedge\left(p_{1} \vee p_{2}\right)=0 \in T\left(F \cap\left(P_{1} \cap P_{2}\right) ;\right.
$$

hence $T\left(F \cap\left(P_{1} \cap P_{2}\right)=L\right.$. By Proposition 1.3 (i), since $P_{1} \cap P_{2} \subseteq P_{1}$, we have

$$
\begin{aligned}
P_{1} & =P_{1} \cap T\left(F \cup\left(P_{1} \vee P_{2}\right)\right) \\
& =T\left(\left(P_{1} \cap P_{2}\right) \cup\left(P_{1} \cap F\right)\right) \\
& =T\left(P_{1} \cap P_{2}\right) \\
& =P_{1} \cap P_{2}
\end{aligned}
$$

which is a contradiction. Hence $|\operatorname{Max}(L)|=2$. Let $\operatorname{Max}(L)=\left\{P_{1}, P_{2}\right\}$ and $F \subseteq P_{1}$. Clearly, $F \cap P_{2}=\{1\}$. We claim that for every non-maximal filter G of $L, T(G \cup F) \neq L$. Assume to the contrary, let $T(G \cup F)=L$. Then $F \subseteq P_{1}$ gives $P_{1}=P_{1} \cap T(G \cup F)=T\left(F \cup\left(G \cap P_{1}\right)\right)$. If $G \subseteq P_{1}$, then $P_{1}=L$ which is a contradiction. If $G \subseteq P_{2}$, then

$$
P_{2}=P_{2} \cap T(F \cup G)=T\left(G \cup\left(F \cap P_{2}\right)\right)=T(G)=G,
$$

a contradiction. Thus $T(G \cup G) \neq L$. Now since $\operatorname{deg}(F)=1, F \subseteq P_{1}$ and $F \subseteq T(F \cup G)$, we get $T(F \cup G)=P_{1}$ for each non-maximal filter G of L. Take $G \subseteq P_{2}$. Again $G \subseteq P_{2}$ gives

$$
P_{1} \cap P_{2}=P_{2} \cap T\left(P_{1} \cup G\right)=T\left(G \cup\left(P_{2} \cap G\right)\right)=G ;
$$

hence $\mathcal{V}(L)=\left\{F, P_{1}, P_{2}, P_{1} \cap P_{2}\right\}$. Conversely, let $\mathcal{V}(L)=\left\{F, E, P^{\prime}, P\right\}$. If $P \cap P^{\prime}=\{1\}$, then P and P^{\prime} are minimal filters of L; hence $\mathcal{G}(L)$ is an empty graph (since E and F are minimal filters), a contradiction. Thus $P \cap P^{\prime} \neq\{1\}$ is a filter of L such that it is either F or E. We may
assume that $P \cap P^{\prime}=F$; so $F \subseteq P, P^{\prime}$. On the other hand $E \subseteq P$, so $E \nsubseteq P^{\prime}$. Therefore $E \cap P^{\prime}=\{1\}$; hence $\operatorname{deg}(E)=1$.

Theorem 2.11. Assume that L is a lattice and let $\mathcal{G}(L)$ be a complete r-partite graph. Then at most one part has more than two vertex. In particular, $|\mathcal{V}(L)|=r$ or $r+1$.
Proof. Suppose $\operatorname{Min}(L)=\left\{F_{i}\right\}_{i \in \Lambda}$. As $F_{i} \cap F_{j}=\{1\}$, all minimal filters of L are in the same part, say V_{1}. We claim that there is at most two minimal filters in this part. Assume that F_{i}, F_{j} and F_{k} are distinct minimal filters of L and let $c \in T\left(F_{i} \cup F_{j}\right) \cap F_{k}$. Then

$$
(a \wedge b) \vee c=c=(a \vee c) \wedge(b \vee c) \in F_{k}
$$

for some $a \in F_{i}$ and $b \in F_{j}$. By Lemma 1.1 (a), $a \vee c \in F_{i} \cap F_{k}=\{1\}$ and $b \vee c \in F_{j} \cap F_{k}=\{1\}$; hence $c=1$. Thus $T\left(F_{i} \cup F_{j}\right) \cap F_{k}=\{1\}$. But $\mathcal{G}(L)$ is complete r-partite implies $T\left(F_{i} \cup F_{j}\right) \cap F_{i}=\{1\}$ which is a contradiction. Hence there is at most two filters in the part V_{1}. Now we show that other parts contain only one filter. Let E be a non-minimal filter of L. Since $\mathcal{G}(L)$ is complete r-partite, E contains a minimal filter, say E_{1}. If there exists a minimal filter E_{2} such that $E_{2} \nsubseteq E$, then $E \cap E_{2}=\{1\}$ implies $E \in V_{1}$ which is a contradiction. Hence all non-minimal filters contain all minimal filters in the part V_{1}. Therefore for all filters E, F which are not minimal $E \cap F \neq\{1\}$. Hence the only part which has more than one vertex is V_{1}. The in particular statement is clear.

3. Planarity of $\mathcal{G}(L)$

In this section, we characterize all planar graph $\mathcal{G}(L)$. Recall that a planar graph is a graph that can be embedded on the plane, that is, it can be drawn on the plane in such a way that its edges intersect only at their endpoints. Kuratowski provided a nice characterization of planar graphs, which now is known as Kuratowski's Theorem: A graph is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$.

Proposition 3.1. Assume that L is a lattice and let $\mathcal{G}(L)$ is a planar graph. Then $|\max (L)| \leq 3$. Moreover, if $|\max (L)|=3$, then L is semi-simple with $|\mathcal{V}(L)|=6$.

Proof. Suppose on the contrary, $P_{1}, P_{2}, P_{3}, P_{4} \in \operatorname{Max}(L)$. If for each filter F of $L, F \cap P_{1} \neq\{1\}$, then $P_{1} \cap P_{2} \cap P_{3} \neq\{1\}$ and $P_{i} \cap P_{j} \neq\{1\}$ for each $P_{i}, P_{j} \in \operatorname{Max}(L)$; so the induced subgraph $\mathcal{G}(L)$ on $\left\{P_{1}, P_{2}, P_{3}, P_{1} \cap P_{2}, P_{1} \cap P_{2} \cap P_{3}\right\}$ is isomorphic to K_{5}, by Kuratowski's Theorem $\mathcal{G}(L)$ is not planar which is impossible. If there exists a filter
F such that $F \cap P_{1}=\{1\}$, then $T\left(F \cup P_{1}\right)=L$ gives F is minimal. As a minimal filter, F is not adjacent to at most one maximal filter, so we may assume that $F \cap P_{1}=\{1\}$. Thus $\left\{F, P_{2}, P_{3}, P_{4}, P_{2} \cap P_{3} \cap P_{4}\right\}$ makes K_{5} in $\mathcal{G}(L)$ that is a contradiction.

Let $\operatorname{Max}(L)=\left\{P_{1}, P_{2}, P_{3}\right\}$. If $\operatorname{Jac}(L) \neq\{1\}$, then

$$
\left\{P_{1}, P_{2}, P_{3}, P_{1} \cap P_{2}, P_{1} \cap P_{2} \cap P_{3}\right\}
$$

makes K_{5} in $\mathcal{G}(L)$ which is impossible. So we may assume that $\operatorname{Jac}(L)=\{1\}$; hence L is a semi-simple lattice by Proposition 1.2 (iii). Now for each $i(1 \leq i \leq 3)$, there exists a filter F_{i} such that $T\left(P_{i} \cup F_{i}\right)=L$ and $P_{i} \cap F_{i}=\{1\}$; thus F_{i} is simple for $i=1,2,3$. As $T\left(F_{1} \cup F_{2} \cup F_{3}\right) \nsubseteq P_{i}$ for each $P_{i} \in \operatorname{Max}(L)$, we get $T\left(F_{1} \cup F_{2} \cup F_{3}\right)=L$ (because every filter must be contained in a maximal filter). We can assume that $F_{1} \subseteq P_{2}, F_{2} \subseteq P_{3}$ and $F_{3} \subseteq P_{1}$. Since $F_{1} \cap P_{1}=\{1\}$, $P_{1} \cap F_{2} \neq\{1\}$. Now F_{2} is simple gives, $F_{2} \subseteq P_{1}$. By Proposition 1.3 (i), $F_{3} \subseteq P_{1}$ gives

$$
\begin{aligned}
P_{1} & =P_{1} \cap T\left(F_{3} \cup\left(F_{1} \cup F_{2}\right)\right) \\
& =T\left(F_{3} \cup\left(\left(F_{1} \cup F_{2}\right) \cap P_{1}\right)\right) \\
& =T\left(F_{3} \cup\left(\left(P_{1} \cap F_{1}\right) \cup\left(P_{1} \cap F_{2}\right)\right)\right) \\
& =T\left(F_{3} \cup F_{2}\right) .
\end{aligned}
$$

So $P_{1}=T\left(F_{3} \cup F_{2}\right)$. Similarly, $P_{i}=T\left(F_{j} \cup F_{k}\right)$ for $k, j \neq i$. Now let E be a filter of L which is not minimal and maximal. Since $\mathcal{G}(L)$ is planar, E contains a simple filter, say F_{1}. Clearly if $F_{2} \subseteq E$, then $F_{1} \cup F_{2} \subseteq E$ gives $T\left(F_{1} \cup F_{2}\right) \subseteq E$. But $T\left(F_{1} \cup F_{2}\right)=P_{3}$ implies $E=M_{3}$ which is a contradiction. Similarly, if $F_{3} \subseteq E, E=M_{2}$, a contradiction. So $F_{2} \cap E=F_{3} \cap E=\{1\}$. Let $x \in E \cap T\left(F_{2} \cup F_{3}\right)$. Then

$$
x=(a \wedge b) \vee x=(x \vee a) \wedge(x \vee b) \in E
$$

for some $a \in F_{2}$ and $b \in F_{3}$. It follows that $x \vee a, x \vee b \in E$ which implies that $x \vee a=1=x \vee b$; hence $x=1$. Thus $E \cap T\left(F_{2} \cup F_{3}\right)=E \cap P_{1}=\{1\}$. Now by Proposition 1.2 (ii), E is simple which is a contradiction. Thus $\mathcal{V}(L)=\left\{F_{1}, F_{2}, F_{3}, P_{1}, P_{2}, P_{3}\right\}$.

Theorem 3.2. Assume that L is a lattice and let $\mathcal{G}(L)$ be a planar graph. Then $|\mathcal{V}(L)| \leq 7$.

Proof. Since $\mathcal{G}(L)$ is a planar, $|\operatorname{Max}(L)| \leq 3$ and if $|\operatorname{Max}(L)|=3$, then $|\mathcal{V}(L)|=6$ by Proposition 3.1. So we may assume that $\operatorname{Max}(L) \mid \leq 2$. Now we split the proof into two cases. .

Case 1. $\operatorname{Max}(L) \mid=2$. At first we show that $|\operatorname{Min}(L)| \leq 2$. Suppose the result is false and let $\operatorname{Min}(L)=\{F, E, G\}$. Then $T(F \cup E), T(F \cup G)$ and $T(E \cup G)$ are proper filters of L and

$$
T(F \cup E) \neq T(F \cup G) \neq T(E \cup G)
$$

(see Theorem 2.7). Let $\operatorname{Max}(L)=\left\{P_{1}, P_{2}\right\}$. Since every proper filter of L is contained in a maximal filter, without lose of generality, Suppose $T(F \cup E)$ and $T(F \cup G)$ contained in P_{1}; so $F, E, G \subseteq P_{1}$. Also, we know that for a maximal filter P_{2}, there is at most one minimal filter which is not contained in P_{2}. Let $F, E \subseteq P_{2}$. Then

$$
\left\{P_{1}, T(F \cup E), P_{2}, E, F, T(F \cup K)\right\}
$$

makes $K_{3,3}$ as a subgraph of $\mathcal{G}(L)$, which is impossible. Thus $|\operatorname{Min}(L)| \leq 2$. Now we show that $|\mathcal{V}(L)| \leq 5$. Assume to the contrary, $|\mathcal{V}(L)| \geq 6$. If $\operatorname{Min}(L)=\{F\}$, then $\mathcal{G}(L)$ is a planar gives $F \subseteq H$ for each filter H of L; hence $\mathcal{G}(L)$ is a complete graph, which is a contradiction. So we may assume that $\operatorname{Min}(L)=\{F, E\}$.

If $P_{1} \cap P_{2}$ is a minimal filter of L, we put $P_{1} \cap P_{2}=F$. Then $E \cap F=\{1\}$ gives either $E \nsubseteq P_{1}$ or $E \nsubseteq P_{2}$. Let $E \nsubseteq P_{2}$ (so $E \subseteq P_{1}$). Then $P_{2} \varsubsetneqq T\left(E \cup P_{2}\right)$ gives $T\left(E \cup P_{2}\right)=L$. Since $E \subseteq P_{1}$, we get

$$
P_{1}=P_{1} \cap T\left(E \cup P_{2}\right)=T\left(E \cup\left(P_{1} \cap P_{2}\right)\right)=T(E \cup F)
$$

Let H be a filter of L which is not minimal and maximal. We claim that $E \nsubseteq H$. Assume to the contrary, $E \subseteq H$. Then $H \nsubseteq P_{2}$; hence $H \subseteq P_{1}$ and $T\left(P_{2} \cup H\right)=L$. If $P_{2} \cap H=\{1\}$, then H is minimal by Proposition 1.2 (ii), a contradiction. Thus $P_{2} \cap H \neq\{1\}$. Also $H \cap P_{2}=\left(H \cap P_{1}\right) \cap P_{2}=H \cap F \neq\{1\}$ which implies that $F \subseteq H$. Then $E \cup F \subseteq H$ gives $P_{1}=T(E \cup F) \subseteq H$; hence $H=P_{1}$, which is impossible. Thus $E \nsubseteq H$. since $\mathcal{G}(L)$ is a planar graph and H is not minimal, H contains minimal filter F. We show that $T(E \cup H) \neq P_{1}, L$. If $T(E \cup H)=P_{1}$, then $H \subseteq P_{1}$ gives

$$
P_{1}=T\left(H \cup\left(P_{1} \cap P_{2}\right)\right)=T(H \cup F)=T(H)=H
$$

a contradiction. If $T(E \cup H)=L$, then $H \varsubsetneqq P_{1}$ (for if $H \subseteq P_{1}$, then $E \cup H \subseteq P_{1}$; so $T(E \cup H)=L \subseteq P_{1}$, a contradiction). Thus $H \subseteq P_{2}$ and $T\left(H \cup P_{1}=L\right.$. As $H \subseteq P_{2}$,

$$
P_{2}=P_{2} \cap T\left(H \cup P_{1}\right)=T\left(H \cap\left(P_{1} \cap P_{2}\right)\right)=T(H \cap F)=H
$$

which is impossible. Therefore $T(E \cup H) \neq P_{1}, L$. Hence

$$
\mathcal{V}(L)=\left\{F, H, F_{3}, T(H \cup E), P_{1}, P_{2}\right\}
$$

makes K_{5} in $\mathcal{G}(L)$, which is a contradiction.
So we may assume that $P_{1} \cap P_{2}$ is not a minimal filter. Then there is a simple filter F such that $F \subseteq P_{1} \cap P_{2}$. Let G be another filter of L. Let $E \subseteq P_{1} \cap P_{2}$. Since G is not simple, it contains a simple filter. If $F \subseteq G$, then $\left\{F, G, P_{1} \cap P_{2}, P_{1}, P_{2}\right\}$ makes K_{5}, which is a contradiction. If $E \subseteq G$, then $\left\{E, G, P_{1} \cap P_{2}, P_{1}, P_{2}\right\}$ makes K_{5}, which is a contradiction. So we may assume that $E \varsubsetneqq P_{1} \cap P_{2}$. Then $E \nsubseteq P_{1}$ or $E \varsubsetneqq P_{2}$. We may assume that $E \varsubsetneqq P_{2}$; hence $E \subseteq P_{1}$. As $E \nRightarrow P_{2}$, $T(F \cup E) \neq P_{1} \cap P_{2}$. Also, $T(F \cup E) \neq P_{1}$ (if $T(F \cup E)=P_{1}$, then $F \subseteq P_{2}$ gives

$$
P_{1} \cap P_{2}=P_{2} \cap T(E \cup F)=T\left(F \cup\left(E \cap P_{2}\right)\right)=T(F)=F,
$$

a contradiction. Hence $\left\{F, P_{1}, P_{2}, T(E \cup F), P_{1} \cap P_{2}\right\}$ makes K_{5} in $\mathcal{G}(L)$, which is a contradiction. Thus $|\mathcal{V}(L)| \leq 5$.

Case 2. $\operatorname{Max}(L)=\{P\}$. If $\operatorname{Min}(L)=\{F, E\}$, then we show that $|\mathcal{V}(L)| \leq 5$. If $T(F \cup E)=P$, then $\mathcal{V}(L)=\{F, E, P\}$ and we are done. So we may assume that $T(F \cup E) \neq P$. Let G, H be another filters of L. If $F \subseteq G, H$, then $\{F, G, H, T(F \cup E), P\}$ makes K_{5} in $\mathcal{G}(L)$, a contradiction. Suppose $E \nsubseteq G, F \nsubseteq H$. So $F \subseteq G, E \subseteq H$. Clearly, $T(E \cup G) \neq T(F \cup H) \neq P$. Hence $\{F, G, T(F \cup H), T(F \cup E), P\}$ makes K_{5}, a contradiction. If $\operatorname{Min}(L)=\{F, E, G\}$, then show that $|\mathcal{V}(L)| \leq 7$. If $T(F \cup E \cup G) \neq P$, then

$$
\{T(F \cup E), T(F \cup G), T(F \cup E \cup G), P, F\}
$$

makes K_{5} in $\mathcal{G}(L)$ which is a contradiction. So we may assume that $T(F \cup E \cup G)=P$. Let H be a filter of L. Since $\mathcal{G}(L)$ is a planar, H contains a minimal filter, say F. If $H \cap E=\{1\}=H \cap G$, Then

$$
\begin{aligned}
H & =H \cap P \\
& =H \cap T(F \cup E \cup G) \\
& =T(F \cup(H \cap(E \cup G))) \\
& =T(F) \\
& =F .
\end{aligned}
$$

If $F, E \subseteq H$ with $H \cap G=\{1\}$, then by the similar way $H=T(F \cup E)$. Similarly, if $F, E, G \subseteq H$, then $H=P$. Hence

$$
\mathcal{V}(L)=\{F, E, G, T(F \cup E), T(F \cup G), T(E \cup G), P\}
$$

Acknowledgments

The authors would like to thank the referee for the careful reading of the manuscript and the helpful comments.

References

1. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative rings, J. Algebra, 217 (1999) 434-447.
2. I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988) 208-226.
3. G. Birkhoff, Lattice theory, Amer. Math. Soc., 1973.
4. J. A. Bondy, U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, 244, Springer, New York, 2008.
5. J. Bosak, The graphs of semigroups, in Theory of Graphs and its Applications, Academic Press, New York, 1964, pp. 119-125.
6. I. Chakrabarty, S. Ghosh, T. K. Mukherjee, M. K. Sen, Intersection graphs of ideals of rings, Discrete Math., 309 (2009) 5381-5392.
7. B. Csákány, G. Pollák, The graph of subgroups of a finite group, Czechoslovak Math. J., 19 (1969) 241-247.
8. S. Ebrahimi Atani and M. Chenari, Supplemented property in the lattices, Serdica Math. J., 46 (2020), 73-88.
9. S. Ebrahimi Atani, S. Dolati Pish Hesari and M. Khoramdel, The identitysummand graph of commutative semirings, J. Korean Math. Soc., 51 (2014) 189-202.
10. S. Ebrahimi Atani, S. Dolati Pish Hesari, M. Khoramdel and M. Nikmard Rostamalipour, Semisimple lattice with respect to filter theory, to appear in J. Algebra Relat. Topics.
11. S. Ebrahimi Atani, S. Dolati Pish Hesari, M. Khoramdel and Z. E. Sarvandi, Intersection graphs of co-ideals of semirings, Commun. Fac. Sci. Univ. Auk. Ser. A1 Math. Stat., 68(1) (2018) 840-851.
12. S. Ebrahimi Atani, S. Dolati Pish Hesari, M. Khoramdel and M. Sedghi Shanbeh Bazari, A semiprime filter-based identity-summand graph of a lattice, Le Matematiche, Vol. LXX III (2018), 297-318.
13. S. Ebrahimi Atani and M. Sedghi Shanbeh Bazari, On 2-absorbing filters of lattices, Discuss. Math. Gen. Algebra Appl., 36 (2016) 157-168.

Shahabaddin Ebrahimi Atani

Department of Mathematics, University of Guilan, P.O. Box 1914, Rasht, Iran.
Email: ebrahimi@guilan.ac.ir

Mehdi Khoramdel

Department of Mathematics, University of Guilan, P.O. Box 1914, Rasht, Iran.
Email: mehdikhoramdel@gmail.com
Saboura Dolati Pish Hesari
Department of Mathematics, University of Guilan, P.O. Box 1914, Rasht, Iran.
Email: saboura_dolati@yahoo.com

Mahsa Nikmard Rostam Alipour

Department of Mathematics, University of Guilan, P.O. Box 1914, Rasht, Iran.
Email:mhs.nikmard@gmail.com

Journal of Algebraic Systems

A GRAPH ASSOCIATED TO FILTERS OF A LATTICE

S. EBRAHIMI ATANI, M. KHORAMDELl, S. DOLATI PISH HESARI, AND M. NIKMARD ROSTAM ALIPOUR

$$
\begin{aligned}
& \text { گراف مرتبط با فيلترهاى يك مشبكه } \\
& \text { شهابالدين ابراهيمى آتانى'، مهدى خرمدل‘، صبورا دولتى پيشحصارىّ } \\
& \text { و مهسا نيكمرد رستمعلىيور }
\end{aligned}
$$

فرض كنيد L يكى مشبكه باشد كه داراى كوچكترين عضو هْ و بزركترين عضو \ مىباشد. در اين مقاله،

 مىدهيم. خواص اساسى و ساختار اين گراف را مورد مطالعه قرار مىدهيم. علاوه براين، مسطح بودن اين گراف را بررسى مىكنيم.
كلمات كليدى: مشبكه، فيلتر، گراف اشتراكى.

[^0]: DOI: 10.22044/JAS.2022.10633.1526.
 MSC(2010): Primary: 06B35; Secondary: 05C25.
 Keywords: Lattice; Filter; Intersection graph.
 Received: 11 March 2021, Accepted: 23 April 2022.

 * Corresponding author.

