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WEAKLY BAER RINGS

S. MEHRALINEJADIAN, A. MOUSSAVI∗ AND SH. SAHEBI

Abstract. We say that a ring R with unity is left weakly Baer if
the left annihilator of any nonempty subset of R is right s-unital by
right semicentral idempotents, which implies that R modulo the
left annihilator of any nonempty subset is flat. It is shown that,
unlike the Baer or right PP conditions, the weakly Baer property
is inherited by polynomial extensions. Examples are provided to
explain the results.

1. Introduction

Throughout this paper, all rings are associative with identity and
all modules are unital. Recall that R is a Baer ring if the right
annihilator of every nonempty subset of R is generated by an
idempotent. Kaplansky [17] introduced Baer rings to abstract
various properties of AW⋆-algebras and von Neumann algebras. The
class of Baer rings includes the von Neumann algebras.

A ring R is called quasi-Baer if the right annihilator of every right
ideal of R is generated as a right ideal by an idempotent. It is easy to
see that the quasi-Baer property is left-right symmetric for any ring.
Quasi-Baer rings were initially considered by Clark [13] and used to
characterize a finite dimensional algebra over an algebraically closed
field as a twisted semigroup algebra of a matrix unit semigroup.
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Closely related to Baer rings are PP rings. A ring R is called right
(left) PP if every principal right (left) ideal is projective (equivalently,
if the right (left) annihilator of any element of R is generated (as a right
(left) ideal) by an idempotent of R). A ring R is called a PP ring (or
Rickart ring [25, p. 18]), if it is both right and left PP . The concept
of PP ring is not left-right symmetric by Chase [12]. A right PP ring
R is Baer (so PP ) when R is orthogonally finite [27], and a right PP
ring R is PP when R is abelian [14]. Also Von Neumann regular rings
are right (left) PP [15, Theorem 1.1].

Birkenmeier, Kim and Park [7] initiated the concept of principally
quasi-Baer rings. A ring R is called right principally quasi-Baer (or
simply right p.q.-Baer) if the right annihilator of a principal right ideal
is generated by an idempotent. Equivalently, R is right p.q.-Baer if R
modulo the right annihilator of any principal right ideal is projective.
Some examples were given [7] to show that the class of left p.q.-Baer
rings is not contained in the class of right PP rings and the class of
right PP rings is not contained in the class of left p.q.-Baer rings. The
class of p.q.-Baer rings includes all biregular rings, all quasi-Baer rings,
and all abelian PP rings. Further work on Baer and quasi-Baer rings
appeared in [2, 5, 6, 8, 10, 22, 23, 24, 26].

Following Tominaga [29], a left ideal I of a ring R is said to be right
s-unital, if for each a ∈ I there exists an element x ∈ I such that ax = a.
According to Liu and Zhao [19], a ring R is called left APP if the left
annihilator lR(Ra) is right s-unital as an ideal of R for any element
a ∈ R. As a generalization of p.q.-Baer rings, Majidinya et al. [20]
introduced the concept of weakly p.q.-Baer rings. A ring R with unity
is weakly p.q.-Baer if for each a ∈ R there exists a nonempty subset
E of right semicentral idempotents of R such that lR(Ra) =

∪
e∈E Re.

The class of weakly p.q.-Baer rings is a natural subclass of the class of
APP rings and includes both left p.q.-Baer rings and right p.q.-Baer
rings.

In this paper, we introduce and study the notion of left (resp.
right) weakly Baer rings. A ring R with unity is left (resp. right)
weakly Baer if for each A ⊆ R there exists a nonempty subset E of right
(resp. left) semicentral idempotents of R such that lR(A) =

∪
e∈E Re

(resp. rR(A) =
∪

e∈E eR). This implies that R modulo the left (resp.
right) annihilator of any nonempty subset is flat. A ring R is weakly
Baer if it is both left and right weakly Baer. The class of left (resp.
right) weakly Baer rings is a natural subclass of the class of APP
rings and weakly p.q.-Baer rings. Since the class of weakly p.q.-Baer
rings, includes left (resp. right) weakly Baer rings, some results and
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their proofs are similar. It is proved that, the weakly Baer property is
inherited by polynomial extensions and this class of rings is closed
under direct products. Moreover, various classes of left (resp. right)
weakly Baer rings which are neither Baer nor PP nor p.q.-Baer are
constructed.

2. Main results

It follows from Theorem 1 of [29] that an ideal I of a ring R is right s-
unital if and only if for any finitely many elements a1, a2, ..., an ∈ I there
exists an element x ∈ I such that ai = aix, 1 ≤ i ≤ n. A submodule N
of a left R-module M is called a pure submodule if L⊗RN → L⊗RM
is a monomorphism for every right R-module L. By [28, Proposition
11.3.13], an ideal I is right s-unital if and only if R

I
is flat as a left

R-module if and only if I is pure as a left ideal of R. Note that if I and
J are right s-unital ideals, then so is I ∩ J . An idempotent e ∈ R is
called left (resp. right) semicentral if xe = exe (resp. ex = exe), for all
x ∈ R [4]. The set of left (resp. right) semicentral idempotents of R is
denoted by Sl(R) (resp. Sr(R)). The set of central idempotent elements
of a ring R is denoted by B(R). Observe that Sl(R) ∩ Sr(R) = B(R),
and if R is semiprime or abelian, then Sl(R) = Sr(R) = B(R), by
[7, Proposition 1.17].

Definition 2.1. A left ideal I of a ring R is said to be right s-unital
by right semicentral idempotents if for every a ∈ I, ae = a for some
e ∈ I∩Sr(R) or equivalently, I = ∪e∈ERe for some nonempty subset E
of Sr(R). The left s-unital right ideal by left semicentral idempotents
may be defined analogously.

Definition 2.2. A ring R is called left weakly Baer if lR(A) is right
s-unital by right semicentral idempotents for all A ⊆ R. The right
weakly Baer rings are defined similarly. A ring R is weakly Baer if it
is both left and right weakly Baer ring.

Note that if R is a commutative Von Neuman regular ring then R
is weakly Baer. For this, let A ⊆ R. Then for a ∈ lR(A), there exists
x ∈ R where a = axa. Let e = xa. It is clear that e is a right
semicentral idempotent and ae = a. So R is a weakly Baer ring.

Example 2.3.
(1) For a field F , let R =< ⊕∞

n=1Fn, 1∏∞
n=1 Fn > be the F -subalgebra

of
∏∞

n=1 Fn generated by ⊕∞
n=1Fn and 1∏∞

n=1 Fn ,
where Fn = F for all n, defined in [18, Example 1. (2)]. Then
R is a commutative Von Neumann regular ring and as it is
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mentioned above, it is weakly Baer. But, by [18, Example 1.
(2)], R is not Baer.

(2) An example of Cohn showed that the matrix ring R = M2(Z)

is a Baer (and hence quasi-Baer) ring [2]. Let A =

(
2 0
0 0

)
be an element of R. Then

lR(A) =

{(
0 a
0 b

)
| a, b ∈ Z

}
= Re

for the unique idempotent e =

(
0 0
0 1

)
, that is not a right

semicentral idempotent of R. So the ring R is not left weakly
Baer.

(3) The ring R =

(
D D
0 D

)
is quasi-Baer (hence left and right

p.q.-Baer) by [24, Proposition 9], where D is a domain which is

not a division ring. Put B =

(
x 0
0 0

)
, which is an element of

R. Then

lR(B) =

{(
0 d1
0 d2

)
| d1, d2 ∈ D

}
,

where each element of lr(B) is right s-unital by the idempotent

e1 =

(
1 d
0 1

)
or e2 =

(
0 1
0 1

)
only, but none of them is

a right semicentral idempotent. So R is not left weakly Baer.
Note that this Example also shows that the class of weakly
p.q.-Baer rings contains the class of left weakly Baer rings
properly.

Theorem 2.4. Let R =

(
A M
0 B

)
be the formal upper triangular

matrix ring and A and B be rings and M be an (A,B)-bimodule. Then
R is left weakly Baer if and only if the following conditions are satisfied:

(1) A and B be left weakly Baer rings.
(2) For each X ⊆ A, N ⊆ M and Y ⊆ B there exist

F ⊆ rR

((
X N
0 Y

))∩
Sr(R),

F1 = {f1 | ∃E1 =

(
f1 k1
0 f2

)
∈ F},

K = {k | ∃E =

(
e1 k
0 e2

)
∈ F}
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and F2 = {h1 | ∃E2 =

(
h1 k2
0 h2

)
∈ F} such that

(a) lB(Y ) =
∪

h2∈F2
Bh2.

(b) For every f1 ∈ F1 where(
f1 k1
0 f2

)
∈ F , f1 ∈ lA(X)

∩
lA(N + k1Y ).

(c) If a ∈ A and m ∈ M such that ax = 0 and aN +mY = 0
then a ∈

∪
f1∈F1

Af1 and m ∈ AK +MF2.

Proof. Let G =

(
X N
0 Y

)
⊆ R. Assume that R is left weakly Baer.

Then there exists F ⊆ lR(G)
∩

Sr(R), lR(G) = ∪E∈FRE. Let

F1 = {f1 | ∃E1 =

(
f1 k1
0 f2

)
∈ F},

K = {k | ∃E =

(
e1 k
0 e2

)
∈ F}

and

F2 = {h2 | ∃E2 =

(
h1 k2
0 h2

)
∈ F}.

By [20, Lemma 2.18], F1 ⊆ Sr(A) and F2 ⊆ Sr(B). Taking N = 0 and
Y = 0, lA(X) =

∪
f1∈F1

Af1. Thus A is left weaky Baer. Similarly B is

left weakly Baer. Let
(

x n
0 y

)
∈ G. Then for

(
γ λ
0 δ

)
∈ F ,(

γx γn+ λy
0 δy

)
= 0.

Since λ = γλ + λδ, λy = γλy, then γ ∈ lA(N + λY ). If a ∈ A and

m ∈ M such that aX = 0 and aN +mY = 0 then
(

a m
0 0

)
∈ lR(G).

Thus there exists
(

γ′ λ′

0 δ′

)
∈ F such that a = aγ′ and aλ′+mδ′ = m.

So a ∈
∪

f1∈F1
Af1 and m ∈ Ak + MF2. Conversely, assume that A

and B are left weakly Baer rings and for G =

(
X N
0 Y

)
⊆ R there

exist F ⊆ rR(G)
∩

Sr(R), F1 ⊆ Sr(A), F2 ⊆ Sr(B) and K ⊆ M such

that conditions (a), (b) and (c) hold. Let
(

a m
0 b

)
∈ lR(G). Then(

ax an+my
0 by

)
= 0 where

(
x n
0 y

)
∈ G. Therefore aX = 0,
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aN + mY = 0 and bY = 0. Thus by (a) and (c), a ∈
∪

f1∈F1
Af1,

b ∈
∪

h2∈F2
Bh2 and m ∈ Ak + MF2. Hence

(
a m
0 b

)
∈

∪
E∈F RE.

So R is left weakly Baer. □

Corollary 2.5. Let R =

(
A A
0 A

)
where A is a left weakly Baer ring

and A = A
P

for a prime ideal P such that A is a left weakly Baer ring
and if Y ⊆ P then lA(Y ) ⊈ P . Then R is left weakly Baer. Morever if
P is not right s-unital by right semicentral idempotents of R then R is
not right weakly Baer.

Proof. Let X,N ⊆ A and Y ⊆ A. Then there exist F1 ⊆ Sr(A) and
F2 ⊆ Sr(A) such that lA(X + N + AY ) =

∪
e1∈F1

Ae1 and
lA(Y ) =

∪
e2∈F2

Ae2. Consider the following cases:
Case 1. Assume that Y ⊆ P . Then lA(Y ) = A. Since A is a prime

ring, by [7, Lemma 2.1] we have, Sr(A) = {0, 1}. If lA(X+N) = 0, then
in Theorem 2.4(ii) take F1 = {0}, K = {1}, F2 = F2. If lA(X+N) ̸= 0,
then F1 = {1}. Now to satisfy Theorem 2.4(ii) take F1 = {1}, K = {0}
and F2 = F2.

Case 2. Assume that Y ⊈ P . Then lA(Y ) = lA(AY ) = {0}.
Therefore F1 = {0}. Since F2Y = {0} ⊆ P , then F2 ⊆ P . Thus
in Thorem 2.4(ii), take F1 = {0}, K = {0} and F2 = F2. Hence in
all cases Theorem 2.4 yields thar R is left weakly Baer. Now suppose
that P is not right s-unital by right semicentral idempotents and let
m =

(
0 1
0 0

)
. Then rR(mR) =

(
A A
0 P

)
and so R is not right

weakly Baer. □
Note that for a ring R, Sr(R) = B(R) if and only if Sl(R) = B(R).

Proposition 2.6. A left (resp. right) weakly Baer ring R is semiprime
if and only if Sr(R) = B(R).

Proof. Let R be a semiprime left weakly Baer ring and e ∈ Sr(R).
Since e ∈ Sr(R), then eR(1 − e) is an ideal by [7, Lemma 1.1]. Note
that eR(1 − e) is nilpotent and so eR(1 − e) = 0 by semiprimeness of
R. Also since e ∈ Sr(R), (1 − e)Re = 0. So e ∈ B(R). Conversely,
assume that Sr(R) = B(R) and aRa = 0 for some element a ∈ R.
Then a ∈ lR(Ra). Hence there exists a cenral idempotent e ∈ lR(Ra)
such that a = ae. Therefore a = ae = ea = 0. So R is semiprime. The
right case follows similarly. □
Corollary 2.7. Commutative weakly Baer rings are reduced.
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Example 2.4 of [19] was given to show that quasi-Armendariz rings
need not to be APP. In fact there exists a commutative reduced ring
which is not weakly Baer. Regarding to [3], a ring R satisfies the
insertion of factors property (IFP) if and only if rR(x) is an ideal
of R for all x ∈ R. Note that every ring with IFP is abelian. By
Proposition 2.6 every abelian left (resp. right) weakly Baer ring is
semiprime. Hence every left (resp. right) weakly Baer ring with IFP
is semiprime. Also every abelian Baer ring is left (resp. right) weakly
Baer and so semiprime. It is clear that every left (right) weakly Baer
ring is weakly p.q-Baer and so a left APP-ring. By [16], R is called
quasi-Armendariz if whenever

f(x) =
∑n

i=0 aix
i, g(x) =

∑m
j=0 bjx

j ∈ R[x]

satisfy f(x)R[x]g(x) = 0, then aiRbj = 0 for every i and j. Since
every left APP ring is quasi-Armendariz by [19, Proposition 2.3], then
every left weakly Baer ring is quasi-Armendariz. On the other hand,
Example 2.4 of [19] shows that there exists a quasi-Armendariz ring
that is no left APP and so it is not left weakly Baer.

The following example shows that there exists a class of APP rings
which are not left weakly Baer, so the class of APP rings contains the
class of left weakly Baer rings properly.

Example 2.8. For a field F , let Fn = F for n = 1, 2, ... and
S = M2(

∏∞
n=1 Fi). Let

R =

( ∏∞
n=1 Fn ⊕∞

n=1 Fn

⊕∞
n=1 Fn < ⊕∞

n=1 Fn, 1 >

)
,

which is a subring of S, where (⊕∞
n=1 Fn, 1) is the F -algebra generated

by ⊕∞
n=1 Fn and 1∏∞

n=1 Fn . Then by [7, Example 1.6], R is a semiprime
PP ring. So by [19, Proposition 2.3] R is an APP ring. We show that R
is not left weakly Baer (note that by Proposition 2.6, in a semiprime left
weakly Baer ring every right or left semicentral idempotent is cenral).
Let a = (an) ∈

∏∞
n=1 Fn with

an =

{
1 if n is odd
0 otherwise

and A =

(
a 0
0 0

)
. Let also b = (bn) ∈

∏∞
n=1 Fn with

bn =

{
0 if n is odd
1 otherwise

and B =

(
b 0
0 0

)
. It is clear that A ∈ lR(B). If R is a left weakly

Baer ring, then there exists a central idempotent
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E =

(
e1 0
0 e1

)
∈ lR(B),

such that A = AE. Hence ae1 = a and e1b = 0. Let
e1 = (x1, x2, ..., xn, x, x, ...).

Since
e1b = (x1, x2, ..., xn, x, x, ...)(0, 1, 0, 1, ...) = 0,

we have x = x2i = 0 for each i. Therefore e1 = (x1, 0, ..., x2k+1, 0, 0, ...),
where 2k + 1 is the biggest odd number which is not greater than n.
On the other hand

a = ae1

= (1, 0, 1, 0, ...)(x1, 0, x3, 0, ..., x2k+1, 0, 0, ...)

= (x1, 0, x3, 0, ..., x2k+1, 0, 0, ...)

which is a contradiction. This shows that R is not left weakly Baer
and the result follows.

If a left (resp. right) ideal J of a ring R is a left (resp. right) direct
summand of R, then J = Re (resp. J = eR) for some idempotent
e ∈ R. We say an ideal J of a ring R is a left (resp. right) ring direct
summand of R, if J = Re (resp. J = eR ) for some e ∈ Sr(R) (resp.
e ∈ Sl(R)).

Remark 2.9. By [7, Lemma 1.1], for every idempotent e ∈ R, Re is an
ideal of R if and only if e ∈ Sr(R). So by Definition 2.2, it is clear that
R is left weakly Baer if and only if lR(A) is a union of left ring direct
summands of R, for every A ⊆ R.

Theorem 2.10. Let R be a left weakly Baer ring. Then for every
subset A of R, there exists a subset E ⊆ Sl(R) such that A ⊆

∩
e∈E eR

and
(∩e∈EeR) ∩ lR(A) = ∪f∈E(∩e∈EeR(1− f)).

Proof. The proof is similar Theorem 2.8 of [20]. □

The following example shows that there is another large class of (even
commutative) weakly Baer rings which are neither Baer nor PP.

Example 2.11. Let A be a commutative Baer ring and P be a nonzero
prime ideal of A. Let a0 ∈ P be an element of A such that lA(a0) = 0.
Let

R = {(a, b) | a ∈ A, b ∈ ⊕∞
i=1Qi},
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where Qi = A/P for each i, b = (bi)
∞
i=1 and bi = bi+P ∈ Qi. Then R is

a commutative ring with addition pointwise and multiplication defined
by (z, y) ˙(t, x) = (zt, zx+ ty+xy), for every z, t ∈ A and x, y ∈ ⊕∞

i=1Qi.
We claim that R is a commutative weakly Baer ring which is neither
p.q.-Baer nor PP .

Proof. The proof is similar Example 2.4 of [21]. □
Note that every domain which is not a field satisfies conditions of

Example 2.11.

Lemma 2.12. Let J be a left ideal of a ring R, a1, . . . , an ∈ J . Assume
that there exist e1, . . . , en ∈ Sr(R) ∩ J , such that aiei = ai for each
i = 1, . . . , n. Then there exists e ∈ Sr(R) such that aie = ai, for each
i = 1, . . . , n. In particular, a left ideal J is right s-unital by right
semicentral idempotents if and only if for any a1, . . . , an ∈ J , there
exists an idempotent e ∈ J ∩ Sr(R) such that aie = ai, for each i.

Proof. It is enough to prove for n = 2. Let a, b ∈ J and for some
e, f ∈ Sr(R) ∩ J , ae = a and bf = b. It is clear that

(e+ f − ef) ∈ Sr(R) ∩ J .

Then a(e+ f − ef) = ae+ af − aef = a+ af − af = a and
b(e+ f − ef) = be+ bf − bef

= bfe+ b− bef

= bfef + b− bfef

= b.

In particular, let J be a left ideal which is right s-unital by right
semicentral idempotents and assume that a1, ..., an ∈ J . Then for each
1 ≤ i ≤ n, there exists an ei ∈ J ∩ Sr(R), such that ai = aiei, and so
there exists e ∈ J ∩ Sr(R) such that ai = aie. The converse is clear,
and the proof is complete. □
Remark 2.13. Note that if e1, e2 ∈ Sr(R), then e1e2, e2e1 ∈ Sr(R) too.
Also if the left ideals I and J are right s-unital by right semicentral
idempotents, then so is I ∩ J . To see this, let x ∈ I ∩ J . Then xe1 = x
and xe2 = x, for some right semicentral idempotents e1 ∈ I and e2 ∈ J .
Let e = e1e2 = e1e2e1, then xe = x and e ∈ I ∩J ∩Sr(R). Hence if the
left ideals I1, . . . , In are right s-unital by right semicentral idempotents,
for some positive integer n, then so is I = ∩n

i=1Ii.

Proposition 2.14. If R is a left weakly Baer then eRe is a left weakly
Baer ring, for every nonzero idempotent e of R.
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Proof. Assume that R is a left weakly Baer ring. Let B ⊆ eRe and
a ∈ leRe(B). So there exists a right semicentral idempotent z ∈ lR(B)
such that az = a. Let e′ = eze. Then

ae′ = a(eze) = (ae)(ze) = a(ze) = (az)e = ae = a.

Since zB = 0, we have e′B = ezeB = ezB = 0. Thus e′ ∈ leRe(B).
Clearly e′ is right semicentral in eRe. So, the ring eRe is left weakly
Baer. □

Now we show that, unlike the Baer or right PP conditions, the
weakly Baer property is inherited by polynomial extensions.

Theorem 2.15. A ring R is left weakly Baer ring if and only if R[x]
is left weakly Baer ring.

Proof. Let R be a left weakly Baer ring and B = A[x] ⊆ R[x] such that

A = {ai | ∃f =
∑n

i=0 aix
i ∈ B}.

Let g(x) =
∑m

j=0 bjx
j ∈ lR[x](B). By [19, Proposition 2.3], R is quasi-

Armendariz and then R is a reduced ring. Hence by [2, Corollary 2],
lR[x](B) = lR(A)[x]. So bj ∈ lR(A) for every 0 ⩽ j ⩽ n. Since R is left
weakly Baer there exists ej ∈ lR(A) ∩ Sr(R) such that bjej = bj. Then
by Lemma 2.12, there exists e ∈ lR(A)∩Sr(R) and bje = bj. Therefore
g(x)e = g(x) for e ∈ lR[x](B)∩Sr(R[x]) and so R[x] is left weakly Baer.
Conversely, Suppose that R[x] is a left weakly Baer ring and b ∈ lR(A)
for some subset A ⊆ R. Then bf(x) = 0 for every f(x) ∈ A[x] and
hence b ∈ lR[x](A[x]). Since R[x] is left weakly Baer, be(x) = b for some

e(x) =
∑n

i=0 eix
i ∈ lR[x](A[x]) ∩ Sr(R[x]).

So be0 = b and e0 ∈ rR(A). Since e(x) ∈ Sr(R[x]),

e(x)R[x](1− e(x)) = 0.

Hence e0R(1 − e0) = 0 and therefore e0 ∈ Sr(R). So R is left weakly
Baer and the proof is complete. □

There exists a commutative von Neumann regular ring R (hence
weakly Baer), such that R[[x]] is not weakly Baer. For example, let R
be the ring that defined in [19, Example 2.4]. Then R is a commutative
von Neumann regular ring. But by [19, Example 2.4], R[[x]] is not
weakly Baer.

Theorem 2.16. Let I be an index set and Ri is a ring, for each i ∈ I.
Then, the ring

∏
i∈I Ri is left weakly Baer if and only if Ri is left weakly

Baer for each i ∈ I.
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Proof. The proof is similar to that of [19, Proposition 3.1]. □
By the following example, we can obtain a rich class of weakly Baer

rings which are not Baer.

Example 2.17. Let R be a left weakly Baer ring which is not Baer
and I a nonempty index set. Then by Theorem 2.15 R[x] is left weakly
Baer. But R[x] is not Baer by [2, Theorem B]. Also, by Theorem 2.16,∏

i∈I Ri is left weakly Baer which is not Baer by [11, Proposition 3.1.5],
where Ri = R for each i ∈ I.

Lemma 2.18. A left ideal J of a ring R is right s-unital if and only
if for any a1, a2, . . . , an ∈ J , there exists an element e ∈ J such that
ai = aie for each 1 ≤ i ≤ n.

Proof. The proof follows from [29, Theorem 1]. □
Proposition 2.19. Let I be a left ideal of a ring R. If I is right s-unital
and finitely generated as a left ideal, then I = Re for an idempotent
e ∈ R.

Proof. Let I be finitely generated as a left ideal by elements
a1, a2, . . . , an ∈ R.

Since I is right s-unital by Lemma 2.18, ai = aia for 1 ≤ i ≤ n and
some a ∈ I. It is clear that I = Ra. Since I is right s-unital, ara = a
for some r ∈ R. Then (ra)2 = rara = ra. Hence ra is an idempotent
element. On the other hand Ra = Rara ⊆ Rra ⊆ I. So I = Rra and
the proof is complete. □
Corollary 2.20. Let R be a left weakly Baer ring. If lR(A) is finitely
generated as a left ideal for all A ⊆ R, then R is a Baer ring.

Proposition 2.21. (1) A ring R is left weakly Baer if and only if
for each A ⊆ R, lR(A) =

∑
e∈E Re for some E ⊆ Sr(R).

(2) Suppose that R is left weakly Baer. Then R is not Baer if and
only if there exists A ⊆ R and E ⊆ Sr(R) where

lR(A) =
∑

e∈E Re

but for each E ′ ⊆ E which is finite, lR(A) ̸=
∑

e∈E′ Re.

Proof. (1) Suppose that R ia left weakly Baer. The result follows
from definitions 2.1 and 2.2. Conversely suppose that A ⊆ R.
Then lR(A) =

∑
e∈E Re for some E ⊆ Sr(R). Let y ∈ lR(A).

Then y ∈
∑

e∈F Re for some finite subset F ⊆ E. From [9,
Proposition 1.3],

∑
e∈F Re = Rf for some f ∈ Sr(R). Hence

lR(A) =
∪

e∈H Re for H ⊆ Sr(R). So R is left weakly Baer.
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(2) Suppose that R is not Baer. Then for some A ⊆ R,
lR(A) ̸= Re where e is an idempotent. Since R is left weakly
Baer, lR(A) =

∑
e∈E Re for some E ⊆ Sr(R), where E can not

be a finite set by Proposition 2.19. Conversely, suppose that
there exist A ⊆ R and E ⊆ Sr(R) such that lR(A) =

∑
e∈E Re

but lR(A) ̸=
∑

e∈E′ Re for each finite subet E ′ of E. If R is
Baer, then lR(A) = Rf for an idempotent f ∈ I(R). Hence
f ∈

∑
e∈F Re for finite subset F of E. This is a contradiction

and the result follows.
□

Corollary 2.22. Let R be a left weakly Baer ring and assume that R
satisfies the ACC on left (resp. right) ring direct summands. Then R
is a Baer ring.

Proof. It follows from Propositions 2.19 and 2.21. □

Note that Example 2.11 shows that in Corollary 2.22 the condition
ACC on right or left ring direct summands is not redundant. Let R
be a ring and M a left (resp. right) R-module. Denote by u.dim(RM)
(resp. u.dim(MR)) the uniform dimension of M as left (resp. right)
R-module. For a ring R, if u.dim(RR) < ∞, then R satisfies ACC on
left ring direct summands and ACC on right ring direct summands.
So by Corollary 2.22, we have the following.

Corollary 2.23. If R is a left weakly Baer ring with u.dim(RR) < ∞,
then R is a Baer ring.

Acknowledgments
The authors thank the referee for his/her constructive comments. This
paper is supported by Islamic Azad University Central Tehran Branch
(IAUCTB). The authors want to thank the authority of IAUCTB for
their support to complete this research.

References
1. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm.

Algebra, 26(7) (1998), 2265–2272.
2. E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral.

Math. Soc., 18 (1974), 470–473.
3. H. E. Bell, Near-rings in which each element is a power of itself, Bull. Aust.

Math. Soc., 2 (1970), 363–368.



WEAKLY BAER RINGS 373

4. G. F. Birkenmeier, Idempotents and completely semiprime ideals, Comm.
Algebera, 11 (1983), 567–580.

5. G. F. Birkenmeier, J. Y. Kim and J. K. Park, A sheaf representation of
quasi-Baer rings, J. Pure. Appl. Algebra, 146 (2000), 209–223.

6. G. F. Birkenmeier, J. Y. Kim and J. K. Park, On quasi-Baer rings, Contemp.
Math., 259 (2000), 67–92.

7. G. F. Birkenmeier, J. Y. Kim and J. K. Park, Principally quasi-Baer rings,
Comm. Algebra, 29(2) (2001), 639–660.

8. G. F. Birkenmeier, J. Y. Kim and J. K. Park, Quasi-Baer ring extensions and
biregular rings, Bull. Aust. Math. Soc., 61 (2000), 39–52.

9. G. F. Birkenmeier, J. Y. Kim and J. K. Park, Semicentral reduced algebras, in
International Symp. Ring Theory, eds. G. F. Birkenmeier, J. K. Park and Y.
S. Park, Birkhauser, Boston, 2001.

10. G. F. Birkenmeier and J. K. Park, Triangular matrix representations of ring
extensions, J. Algebra, 265(2) (2003), 457–477.

11. G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Extensions of Rings and Modules,
Birkh¨auser, New York, 2013.

12. S. A. Chase, Generalization of triangular matrices, Nagoya Math. J., 18 (1961),
13–25.

13. W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J., 34
(1967), 417–423.

14. S. Endo, Note on P.P. rings, Nagoya Math. J., 17 (1960), 167–170.
15. K. R. Goodearl, Von Neumann Regular Rings, Krieger, Malabar, 1991.
16. Y. Hirano, On annihilator ideals of a polynomail ring over noncommutative

ring, J. Pure Appl. Algebra, 168(1) (2002), 45–52.
17. I. Kaplansky, Rings of Operators, Benjamin, New York, 1965.
18. Y. Lee, N. K. Kim and C. Y. Hong, Counterexamples on baer rings, Comm.

Algebra, 25(2) (1997), 497–507.
19. Z. Liu and R. Zhao, A generalization of PP-rings and p.q.-Baer rings, Glasgow

Math. J., 48(2) (2006), 217–229.
20. A. Majidinya, A. Moussavi, Weakly principally quasi-Baer rings, J. Algebra

Appl., 15(1) (2016), Article ID: 1650002 .
21. A. Majidinya, A. Moussavi and K. Paykan, Generalized APP-rings, Comm.

Algebra, 41(12) (2013), 4722–4750.
22. A. C. Mewborn, Regular rings and Baer rings, Math. Z., 121 (1971), 211–219.
23. A. R. Nasr-Isfahani, A. Moussavi, On ore extensions of quasi-Baer rings, J.

Algebra Appl., 7(2) (2008), 211–224.
24. A. Pollingher and A. Zaks, On Baer and quasi-Baer rings, Duke Math. J., 37

(1970), 127–138.
25. C. E. Rickart, Banach algebras with an adjoint operation, Ann. of Math., 47(2)

(1946), 528–550.
26. S. T. Rizvi and C. S. Roman, Baer and quasi Baer modules, Comm. Algebra,

32(1) (2004), 103–123.
27. L. W. Small, Semihereditary rings, Bull. Amer. Math. Soc., 73 (1967), 656–658.
28. B. Stenstrom, Rings of Quotients, Springer-Verlag, Berlin, Heidelberg, 1975.
29. H. Tominaga, On s-unital rings, Math. J. Okayama Univ., 18 (1976), 117–134.



374 MEHRALINEJADIAN, MOUSSAVI AND SAHEBI

Somaye Mehralinejadian
Department of Mathematics, Central Tehran Branch, Islamic Azad University,
Tehran, Iran.
Email: som.mehralinejadian.sci@iauctb.ac.ir

Ahmad Moussavi
Department of Mathematics, Central Tehran Branch, Islamic Azad University,
Tehran, Iran,
and
Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares
University, P.O. Box 14115-134, Tehran, Iran.
Email: moussavi.a@azad.ac.ir
Email: moussavi.a@modares.ac.ir

Shervin Sahebi
Department of Mathematics, Central Tehran Branch, Islamic Azad University,
Tehran, Iran.
Email: sahebi@iauctb.ac.ir



Journal of Algebraic Systems

WEAKLY BAER RINGS

S. MEHRALINEJADIAN, A. MOUSSAVI AND SH. SAHEBI

ضعیف بئر حلقه های

صاحبی١ شروین و موسوی٢,١ احمد مهرعلی نژادیان١، سمیه

ایران تهران، اسلامی، آزاد دانشگاه مرکز، تهران واحد ریاضی، ١گروه

ایران تهران، مدرس، تربیت دانشگاه ریاضی، علوم دانشکده محض، ریاضی ٢گروه

چپ ضعیف را بئر R حلقه است. گرفته قرار مطالعه مورد و معرفی ضعیف بئر حلقه های مقاله، این در
راست نیم مرکزی خودتوان های با راست s-یکال ،R از ناتهی زیرمجموعه هر چپ پوچ ساز اگر نامیم
خاصیت های برخلاف است. تخت ناتهی، زیرمجموعه هر چپ پوچ ساز پیمانه به R صورت این در باشد،
همچنین مقاله این در می برند. ارث به را ضعیف بئر ویژگی چند جمله ای، توسیع های راست، PP یا بئر

است. شده ارائه نتایج شرح برای مثال هایی

چپ s-یکال ایده آل ،APP حلقه ضعیف، p.q-بئر حلقه چپ، ضعیف بئر حلقه کلیدی: کلمات
(راست).
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