Journal of Algebraic Systems

Vol. 11, No. 1, (2023), pp 1-14

STRUCTURE OF ZERO-DIVISOR GRAPHS ASSOCIATED TO RING OF INTEGER MODULO n

S. PIRZADA*, A. ALTAF AND S. KHAN

Abstract

For a commutative ring R with identity $1 \neq 0$, let $Z^{*}(R)=Z(R) \backslash\{0\}$ be the set of non-zero zero-divisors of R, where $Z(R)$ is the set of all zero-divisors of R. The zero-divisor graph of R, denoted by $\Gamma(R)$, is a simple graph whose vertex set is $Z^{*}(R)=Z(R) \backslash\{0\}$ and two vertices of $Z^{*}(R)$ are adjacent if and only if their product is 0 . In this article, we find the structure of the zero-divisor graphs $\Gamma\left(\mathbb{Z}_{n}\right)$, for $n=p^{N_{1}} q^{N_{2}} r$, where $2<p<q<r$ are primes and N_{1} and N_{2} are positive integers.

1. Introduction

A graph is denoted by $G=G(V(G), E(G))$, where $V(G)$ is the vertex set and $E(G)$ is the edge set of G. Througout we consider simple and finite graphs. The order and the size of G are the cardinalities of $V(G)$ and $E(G)$, respectively. The neighborhood of a vertex v, denoted by $N(v)$, is the set of vertices of G adjacent to v. The degree of v, denoted by d_{v}, is the cardinality of $N(v)$. A graph G is called r-regular, if degree of every vertex is r.

Let R be a commutative ring with non-zero identity $1 \neq 0$. Let $Z^{*}(R)=Z(R) \backslash\{0\}$ be the set of non-zero zero-divisors of R, where $Z(R)$ is the set of all zero-divisors of R. An element $x \in R$, $x \neq 0$, is known as zero-divisor of R if we can find $y \in R, y \neq 0$, such that $x y=0$. Beck [3] introduced the concept of zero-divisor

[^0]graphs of commutative rings and included 0 in the definition. Later Anderson and Livingston [1] modified the definition of zero-divisor graphs by excluding 0 of the ring in the zero-divisor set and defined the edges between two nonzero zero-divisors if and only if their product is zero. Recent work on zero-divisor graphs can be seen in $[2,1,7]$ and the references therein. In $G, x \sim y$ denotes that the vertices x and y are adjacent and $x y$ denotes an edge. The complete graph is denoted by K_{n} and the complete bipartite graph by $K_{a, b}$. Other undefined notations and terminology can be seen in [5, 6].

The authors in [12] obtained the structure of the zero-divisor graphs $\Gamma\left(\mathbb{Z}_{n}\right)$ for $n=p^{N_{1}} q^{N_{2}}$, where $p<q$ are primes and N_{1}, N_{2} are positive integers.

The rest of the paper is organized as follows. In Section 2, we mention some preliminaries. In Section 3, we obtain the structure of zero-divisor graphs $\Gamma\left(\mathbb{Z}_{n}\right)$, for $n=p^{N_{1}} q^{N_{2}} r$, where $2<p<q<r$ are primes and N_{1} and N_{2} are positive integers. Moreover, the different types of spectrum of zero-divisor graphs can be seen in $[8,9,11,10]$.

2. Preliminaries

We begin with the following definition.
Definition 2.1 (Joined union). Let G be a graph of order n having vertex set $\{1,2, \ldots, n\}$ and G_{i} be disjoint graphs of order n_{i} $1 \leq i \leq n$. The graph $G\left[G_{1}, G_{2}, \ldots, G_{n}\right]$ is formed by taking the graphs $G_{1}, G_{2}, \ldots, G_{n}$ and joining each vertex of G_{i} to every vertex of G_{j} whenever i and j are adjacent in G.

We note that G and $G\left[G_{1}, G_{2}, \ldots, G_{n}\right]$ are of the same diameter. This graph operation is known by different names in the literature, like G-join, generalized composition, generalized join, joined union and here we follow the latter name.

Let n be a positive integer and let $\tau(n)$ denote the number of positive factors of n. Note that $d \mid n$ denotes d divides n. The Euler's totient function, or Euler's phi function, denoted by $\phi(n)$, is the number of positive integers less or equal to n and relatively prime to n. We say that n is in canonical decomposition if $n=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{l}^{n_{l}}$, where $l, n_{1}, n_{2}, \ldots, n_{l}$ are positive integers and $p_{1}, p_{2}, \ldots, p_{l}$ are distinct primes.

The following fundamental observations will be used in the sequel.
Lemma 2.2. If n is in canonical decomposition $p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{r}^{n_{r}}$, then

$$
\tau(n)=\left(n_{1}+1\right)\left(n_{2}+1\right) \ldots\left(n_{r}+1\right) .
$$

Theorem 2.3. The Euler's totient function ϕ satisfies the following.
(i) ϕ is multiplicative, that is $\phi(p q)=\phi(p) \phi(q)$, whenever p and q are relatively prime.
(ii) $\sum_{d \mid n} \phi(d)=n$.
(iii) For prime $p, \sum_{i=1}^{l} \phi\left(p^{l}\right)=p^{l}-1$.

For a positive integer n, \mathbb{Z}_{n} represents the set of congruence classes $\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}$ of integer modulo n.

An integer d dividing n is a proper divisor of n if and only if $1<d<n$. Let Υ_{n} be the simple graph with vertex set as the proper divisor set $\left\{d_{1}, d_{2}, \ldots, d_{t}\right\}$ of n, where two vertices are adjacent provided $d_{i} d_{j}$ is a multiple of n. Evidently, this graph is a connected graph [4]. If $p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{r}^{n_{r}}$ is the canonical decomposition of n, by Lemma 2.2, it follows that the order of Υ_{n} is given by

$$
\left|V\left(\Upsilon_{n}\right)\right|=\left(n_{1}+1\right)\left(n_{2}+1\right) \ldots\left(n_{r}+1\right)-2
$$

For $1 \leq i \leq t$, let $A_{d_{i}}=\left\{r \in \mathbb{Z}_{n}:(r, n)=d_{i}\right\}$, where (r, n) is the greatest common divisor of r and n. We observe that $A_{d_{i}} \cap A_{d_{j}}=\phi$, when $i \neq j$. So, the sets $A_{d_{1}}, A_{d_{2}}, \ldots, A_{d_{t}}$ are pairwise disjoint and partition the vertex set of $\Gamma\left(\mathbb{Z}_{n}\right)$ as $V\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=A_{d_{1}} \cup A_{d_{2}} \cup \cdots \cup A_{d_{t}}$. From the definition of $A_{d_{i}}$, a vertex of $A_{d_{i}}$ is adjacent to the vertex of $A_{d_{j}}$ in $\Gamma\left(\mathbb{Z}_{n}\right)$ provided that $n \mid d_{i} d_{j}$, for $i, j \in\{1,2, \ldots, t\}$ (see [4]).

The following result by Young [13] gives the cardinality of $A_{d_{i}}$.
Lemma 2.4. [13] For a divisor d of n, the cardinality of the set A_{d} is equal to $\phi\left(\frac{n}{d_{i}}\right)$.

We note that the induced subgraphs $\Gamma\left(A_{d_{i}}\right)$ of $\Gamma\left(\mathbb{Z}_{n}\right)$ are either cliques or null graphs, as can be seen below [4].

Lemma 2.5. For the positive integer n and its proper d_{i}, the following statements hold.
(i) If $i \in\{1,2, \ldots, t\}$, then the subgraph $\Gamma\left(A_{d_{i}}\right)$ of $\Gamma\left(\mathbb{Z}_{n}\right)$ on $A_{d_{i}}$ is either the complete graph $K_{\phi\left(\frac{n}{d_{i}}\right)}$ or its complement $\bar{K}_{\phi\left(\frac{n}{d_{i}}\right)}$. Also, $\Gamma\left(A_{d_{i}}\right)$ is $K_{\phi\left(\frac{n}{d_{i}}\right)}$ provided d_{i}^{2} is a multiple of n.
(ii) For distinct i, j in $\{1,2, \ldots, t\}$, a vertex of $A_{d_{i}}$ is adjacent to all of $A_{d_{j}}$ or none of the vertices in $A_{d_{j}}$.
(iii) For distinct i, j in $\{1,2, \ldots, t\}$, a vertex of $A_{d_{i}}$ is adjacent to a vertex of $A_{d_{j}}$ in $\Gamma\left(\mathbb{Z}_{n}\right)$ provided $d_{i} d_{j}$ is a multiple of n.

The graph formed in part (iii) of Lemma 2.5 is known as $\mathcal{G}\left(A\left(d_{i}\right)\right)$ graph. Clearly, $\Gamma\left(\mathbb{Z}_{n}\right)$ can be expressed as a joined union of complete graphs and empty graphs.
Lemma 2.6. [4] For induced subgraph $\Gamma\left(A_{d_{i}}\right)$ of $\Gamma\left(\mathbb{Z}_{n}\right)$ with $A_{d_{i}}$ vertices, for $1 \leq i \leq t$, the zero-divisor graph is

$$
\Gamma\left(\mathbb{Z}_{n}\right)=\Upsilon_{n}\left[\Gamma\left(A_{d_{1}}\right), \Gamma\left(A_{d_{2}}\right), \ldots, \Gamma\left(A_{d_{t}}\right)\right] .
$$

3. Structure of the zero-divisor graph $\Gamma\left(\mathbb{Z}_{p^{N_{1}} q^{N_{2} r}}\right)$

We begin with the following result which gives the structure of $\Gamma\left(\mathbb{Z}_{P^{N} q r}\right)$, where N is an even number.

Theorem 3.1. Let $\Gamma\left(\mathbb{Z}_{n}\right)$ be a zero-divisor graph of order $n=p^{N} q$, where $2<p<q<r$ are primes and $N=2 m$, m is any positive integer. Then

$$
\begin{align*}
\Gamma\left(\mathbb{Z}_{n}\right)=\Upsilon_{n} & {\left[\bar{K}_{\phi\left(p^{2 m-1} q r\right)}, \bar{K}_{\phi\left(p^{2 m-2} q r\right)}, \bar{K}_{\phi\left(p^{2 m-3} q r\right)}, \ldots, \bar{K}_{\phi(p q r)},\right.} \\
& \bar{K}_{\phi\left(p^{2 m} r\right)}, \bar{K}_{\phi\left(p^{2 m} q\right)}, \bar{K}_{\phi\left(p^{2 m-1} r\right)}, \bar{K}_{\phi\left(p^{2 m-2} r\right)}, \ldots, \bar{K}_{\phi(r)}, \\
& \bar{K}_{\phi\left(p^{2 m-1} q\right)}, \bar{K}_{\phi\left(p^{2 m-2} q\right)}, \ldots, \bar{K}_{\phi(q)}, \bar{K}_{\phi\left(p^{2 m-1}\right)}, \bar{K}_{\phi\left(p^{2 m-2}\right)}, \ldots, \\
& \left.\bar{K}_{\phi\left(p^{m+1}\right)}, K_{\phi\left(p^{m}\right)}, K_{\phi\left(p^{m-1}\right)}, \ldots, K_{\phi\left(p^{2}\right)}, K_{\phi(p)}\right] . \tag{3.1}
\end{align*}
$$

Proof. Let $n=p^{N} q r$, where $2<p<q<r$ are primes and $N=2 m, m$ is any positive integer. Then the proper divisors of n are

$$
\begin{align*}
& p, p^{2}, p^{3}, \ldots, p^{m}, \ldots, p^{N} \\
& q, r, p q, p r, q r \\
& p^{2} q, p^{3} q, \ldots, p^{m} q, \ldots, p^{2 m} q \\
& p^{2} r, p^{3} r, \ldots, p^{m} r, \ldots, p^{2 m} r \\
& p q r, p^{2} q r, \ldots, p^{m} q r, \ldots, p^{2 m-1} q r . \tag{3.2}
\end{align*}
$$

Therefore, by Lemma 2.2, the order of Υ_{n} is

$$
(2 m+1)(1+1)(1+1)=4(2 m+1) .
$$

Now, by the definition of Υ_{n}, we have

$$
\begin{aligned}
p & \sim p^{2 m-1} q r \\
p^{2} & \sim p^{2 m-2} q r, p^{2 m-1} q r \\
& \vdots \\
p^{m} & \sim p^{m} q r, p^{m+1} q r, \ldots, p^{2 m-1} q r
\end{aligned}
$$

$$
p^{2 m-1} \sim p^{2 m-2} q r, p^{2 m-3} q r, \ldots, p^{2} q r, p q r .
$$

The iteration of the adjacency relation is given as

$$
p^{i} \sim p^{j} q r, \quad i+j \geq N, i, j=1,2,3, \ldots, N .
$$

By the similar arguments as above, the other adjacency relations are given by

$$
\begin{aligned}
q & \sim p^{N} r, & & r \sim p^{N} q \\
p^{i} q & \sim p^{j} r, & & i+j \geq N, i, j=1,2,3, \ldots, N \\
p^{i} r & \sim p^{j} q, & & i+j \geq N, i, j=1,2,3, \ldots, N \\
p^{i} q r & \sim p^{j} q r, & & i+j \geq N, i, j=1,2,3, \ldots, N .
\end{aligned}
$$

Now, by Lemma 2.4, cardinalities of $\left|A_{d_{i}}\right|$, where i is in 3.2 and $j=1,2,3, \ldots, N$ are given by

$$
\begin{aligned}
&\left|A_{d_{p^{i}}}\right|=\phi\left(p^{2 m-i} q r\right), \quad\left|A_{d_{q}}\right|=\phi\left(p^{2 m} r\right), \quad\left|A_{d_{r}}\right|=\phi\left(p^{2 m} q\right), \\
&\left|A_{d_{p^{i} q}}\right|=\phi\left(p^{2 m-i} r\right), \quad\left|A_{d_{p^{i}} r}\right|=\phi\left(p^{2 m-i} q\right),\left|A_{d_{p^{i} q r}}\right|=\phi\left(p^{2 m-i}\right) .
\end{aligned}
$$

Also, by Lemma 2.5, the induced subgraphs $\Gamma\left(A_{d_{i}}\right)$'s are

$$
\begin{aligned}
\Gamma\left(A_{d_{p^{i} q r}}\right) & = \begin{cases}K_{\phi\left(p^{2 m-i}\right)}, & \text { for } i=m, m+1, \ldots, 2 m \\
\bar{K}_{\phi\left(p^{2 m-i}\right)}, & \text { for } i=1,2, \ldots, m-1\end{cases} \\
\Gamma\left(A_{d_{q}}\right) & \left.=\bar{K}_{\phi\left(p^{2 m} r\right.}\right) \\
\Gamma\left(A_{d_{r}}\right) & =\bar{K}_{\phi\left(p^{2 m} q\right)} \\
\Gamma\left(A_{d_{p^{i} q}}\right) & =\bar{K}_{\phi\left(p^{2 m-i} r\right)}, i=1,2,3, \ldots, 2 m, \\
\Gamma\left(A_{d_{p^{i} r}}\right) & =\bar{K}_{\phi\left(p^{2 m-i} q\right)}, i=1,2,3, \ldots, 2 m, \\
\Gamma\left(A_{d_{p^{i}}}\right) & \left.=\bar{K}_{\phi\left(p^{2 m-i} q r\right.}\right), i=1,2,3, \ldots, 2 m,
\end{aligned}
$$

where we avoid the induced subgraph $\Gamma\left(A_{p^{N} q r}\right)$ corresponding to the divisor $p^{N} q r$. Thus, by Lemma 2.6, the structure of the zero-divisor graph $\Gamma\left(\mathbb{Z}_{n}\right)$ is given as in 3.1. This completes the proof.

Now, we obtain the structure of $\Gamma\left(\mathbb{Z}_{p^{N} q r}\right)$, when $N=2 m+1$ is odd.
Theorem 3.2. Let $\Gamma\left(\mathbb{Z}_{n}\right)$ be the zero-divisor graph of order $n=p^{N} q$, where $2<p<q<r$ are primes and $N=2 m+1$ is a positive integer and $m \geq 1$. Then

$$
\Gamma\left(\mathbb{Z}_{n}\right)=\Upsilon_{n}\left[\bar{K}_{\phi\left(p^{N-1} q r\right)}, \bar{K}_{\phi\left(p^{N-2} q r\right)}, \ldots, \bar{K}_{\phi(p q r)}\right), \bar{K}_{\phi\left(p^{N} r\right)}, \bar{K}_{\phi\left(p^{N} q\right)}
$$

$$
\begin{align*}
& \bar{K}_{\phi\left(p^{N-1} r\right)}, \bar{K}_{\phi\left(p^{N-2} r\right)}, \ldots, \bar{K}_{\phi(r)}, \bar{K}_{\phi\left(p^{N-1} q\right)}, \\
& \bar{K}_{\phi\left(p^{N-2} q\right)}, \ldots, \bar{K}_{\phi(q)}, \bar{K}_{\phi(p)}, \bar{K}_{\phi\left(p^{2}\right)}, \ldots, \bar{K}_{\phi\left(p^{m}\right)}, \\
& \left.K_{\phi\left(p^{m+1}\right)}, K_{\phi\left(p^{m+2}\right)}, \ldots K_{\phi\left(p^{N}\right)}\right] . \tag{3.3}
\end{align*}
$$

Proof. Let $n=p^{N} q r$, where $2<p<q<r$ are primes and $N=2 m+1$ is positive odd integer and $m \geq 1$. Then the proper divisors of n are given as

$$
\begin{align*}
& p, p^{2}, p^{3}, \ldots, p^{m}, p^{m+1}, \ldots, p^{N} \\
& q, r, p q, p^{2} q, \ldots, p^{m} q, p^{m+1} q, \ldots, p^{N} q, \\
& p r, p^{2} r, p^{3} r, \ldots, p^{m} r, p^{m+1}, \ldots, p^{N} r \\
& q r, p q r, p^{2} q r, \ldots, p^{m} q r, p^{m+1} q r, \ldots, p^{N-1} q r . \tag{3.4}
\end{align*}
$$

Now, by Lemma 2.2, the order of Υ_{n} is

$$
(2 m+1+1)(1+1)(1+1)=8(m+1)
$$

where $m \geq 1$.
Therefore, by definition of Υ_{n}, we have

$$
\begin{aligned}
p & \sim p^{N-1} q r \\
p^{2} & \sim p^{N-2} q r, p^{N-1} q r \\
& \vdots \\
p^{m} & \sim p^{m+1} q r \\
& \vdots
\end{aligned}
$$

The iterations of the adjacency relations are given as

$$
\begin{aligned}
p^{i} & \sim p^{j} q r, & & i+j \geq 2 m+1 \text { and } i, j=1,2,3, \ldots, N . \\
p^{i} q & \sim p^{j} r, & & i+j \geq 2 m+1 \text { and } i, j=1,2,3, \ldots, N . \\
p^{i} r & \sim p^{j} r, & & i+j \geq 2 m+1 \text { and } i, j=1,2,3, \ldots, N . \\
p^{i} q r & \sim p^{j} q r, & & i+j \geq 2 m+1 \text { and } i, j=1,2,3, \ldots, N .
\end{aligned}
$$

Now, by Lemma 2.4, the cardinalities of $\left|A_{d_{i}}\right|$, where i is given by 3.4 and $j=1,2,3, \ldots, N$, are given by

$$
\begin{aligned}
\left|A_{d_{p j}}\right| & =\phi\left(p^{N-j} q r\right), & \left|A_{d_{p^{j} q}}\right| & =\phi\left(p^{N-j} r\right), \\
\left|A_{d_{p} j_{r}}\right| & =\phi\left(p^{N-j} q\right), & \left|A_{d_{p^{j} q r}}\right| & =\phi\left(p^{N-j}\right) .
\end{aligned}
$$

Thus, by Lemma 2.5 , the induced subgraphs $\Gamma\left(A_{d_{i}}\right)$ are given by

$$
\begin{aligned}
& \Gamma\left(A_{d_{p} j_{q} r}\right)= \begin{cases}K_{\phi\left(p^{N-j}\right)}, & j=1,2,3, \ldots, m . \\
\bar{K}_{\phi\left(p^{N-j}\right)}, & j=m+1, m+2, \ldots, N,\end{cases} \\
& \Gamma\left(A_{d_{p^{j}}}\right)=\bar{K}_{\phi\left(p^{N-j} q r\right)}, j=1,2,3, \ldots, N, \\
& \Gamma\left(A_{d_{p^{j} q}}\right)=\bar{K}_{\phi\left(p^{N-j} r\right)}, j=1,2,3, \ldots, N, \\
& \Gamma\left(A_{d_{p j_{r}}}\right)=\bar{K}_{\phi\left(p^{N-j} q\right)}, j=1,2,3, \ldots, N, \\
& \Gamma\left(A_{d_{q}}\right)=\bar{K}_{\phi\left(p^{N} r\right)}, \\
& \Gamma\left(A_{d_{r}}\right)=\bar{K}_{\phi\left(p^{N} q\right)}
\end{aligned}
$$

where we avoid the induced subgraph $\Gamma\left(A_{p^{N} q r}\right)$ corresponding to the divisor $p^{N} q r$. Thus, by Lemma 2.6, the structure of the zero-divisor graph $\Gamma\left(\mathbb{Z}_{n}\right)$ is given as in 3.3, which proves the result.

The next result gives the structure of $\Gamma\left(\mathbb{Z}_{p^{N_{1}} q^{N_{2 r}}}\right)$, where $N_{1}=2 m_{1}+1$ is odd and $N_{2}=2 m_{2}$ is even.

Theorem 3.3. Let $\Gamma\left(\mathbb{Z}_{n}\right)$ be the zero-divisor graph of order $n=p^{N_{1}} q^{N_{2}} r$, where $2<p<q<r$ are primes, $N_{1}=2 m_{1}+1$ and $N_{2}=2 m_{2}$ are positive integers and $m_{1}, m_{2} \geq 1$. Then

$$
\begin{align*}
\Gamma\left(\mathbb{Z}_{n}\right)=\Upsilon_{n} & \bar{K}_{\phi\left(p^{N_{1}-1} q^{N_{2} r}\right)}, \bar{K}_{\phi\left(p^{N_{1}-2} q^{N_{2} r}\right)}, \ldots, \bar{K}_{\phi\left(p q^{N_{2} r}\right)}, \\
& \bar{K}_{\phi\left(q^{N_{2} r}\right)}, \bar{K}_{\phi\left(p^{N_{1} q^{N_{2}-1} r}\right)}, \bar{K}_{\phi\left(p^{N_{1} q^{N_{2}-2} r}\right)}, \ldots, \bar{K}_{\phi\left(p^{N_{1} q r}\right)}, \\
& \bar{K}_{\phi\left(p^{N_{1} r}\right)}, K_{\phi(q)}, K_{\phi\left(q^{2}\right)}, \ldots, K_{\phi\left(q^{m_{2}}\right)}, \bar{K}_{\phi\left(q^{m_{2}+1}\right)}, \\
& \bar{K}_{\phi\left(q^{m_{2}+2}\right)}, \ldots, \bar{K}_{\phi\left(q^{2 m_{2}}\right)}, \\
& K_{\phi(p)}, K_{\phi\left(p^{2}\right)}, \ldots, K_{\phi\left(p^{m_{1}}\right)}, \ldots, \\
& K_{\phi\left(p q^{m_{2}}\right)}, \ldots, K_{\phi\left(p^{\left.m_{1} q\right)}\right.}, \ldots, K_{\phi\left(p^{\left.m_{1} q^{m_{2}}\right)},\right.}, \bar{K}_{\phi\left(p^{m_{1}+1} q^{m_{2}}\right)}, \\
& \bar{K}_{\phi\left(p^{m_{1}+1} q^{m_{2}+1}\right)}, \ldots, \bar{K}_{\phi\left(p^{2 m_{1}+1} q^{2 m_{2}}\right)}, \bar{K}_{\phi(r)}, \\
& \bar{K}_{\phi(p q r)}, \bar{K}_{\phi\left(p^{2} q r\right)}, \bar{K}_{\phi\left(p q^{2} r\right)}, \ldots, \bar{K}_{\phi\left(p^{\left.m_{1} q^{m_{2} r}\right)}\right.}, \ldots, \\
& \left.\bar{K}_{\phi\left(p^{2 m_{1}+1} q^{2 m_{2}-1} r\right)}, \ldots, \bar{K}_{\phi\left(p^{\left.2 m_{1} q^{2 m_{2} r}\right)}\right.}\right] . \tag{3.5}
\end{align*}
$$

Proof. Let $n=p^{N_{1}} q^{N_{2}} r$, where $2<p<q<r$ are primes, $N_{1}=2 m_{1}+1$ and $N_{2}=2 m_{2}$ are positive integers with $m_{1}, m_{2} \geq 1$. Then the proper
divisors of n are

$$
\begin{align*}
& p, p^{2}, \ldots, p^{m_{1}}, p^{m_{1}+1}, \ldots, p^{2 m_{1}+1} \\
& q, q^{2}, \ldots, q^{m_{2}}, q^{m_{2}+1}, \ldots, q^{2 m_{2}} \\
& r, p q, p^{2} q, \ldots, p^{m_{1}} q, \ldots, p^{2 m_{1}+1} q \\
& p q^{2}, \ldots, p q^{2 m_{2}}, \ldots, p^{2 m_{1}+1} q^{2 m_{2}}, \\
& p r, \ldots, p^{2 m_{1}+1} r \\
& q r, \ldots, q^{2 m_{2}} r, p q r, \ldots, p^{m_{1}} q^{m_{2}} r, \ldots, p^{2 m_{1}+1} q^{2 m_{2}-1} r, \\
& p^{2 m_{1}} q^{2 m_{2}} r=p^{N_{1}-1} q^{N_{2}} r . \tag{3.6}
\end{align*}
$$

Therefore, by Lemma 2.2, the order of

$$
\Upsilon_{n}=\left(N_{1}+1\right)\left(N_{2}+1\right)(1+1)=2\left(N_{1}+1\right)\left(N_{2}+1\right) .
$$

Now, by the definition of Υ_{n}, we have

$$
\begin{aligned}
p & \sim p^{N_{1}-1} q^{N_{2}} r \\
p^{2} & \sim p^{N_{1}-2} q^{N_{2}} r, p^{N_{1}-1} q^{N_{2}} r, \\
& \vdots \\
p^{m_{1}} & \sim p^{m_{1}+1} q^{N_{2}} r \\
& \vdots
\end{aligned}
$$

The iterations of the adjacency relations are given as

$$
\begin{aligned}
p^{i} & \sim p^{j} q^{N_{2}} r, \quad i+j \geq 2 m_{1}+1, i, j=1,2,3, \ldots, 2 m_{1}+1, \\
q^{i} & \sim p^{N} q^{j} r, \quad i+j \geq 2 m_{2}, i, j=1,2,3, \ldots, 2 m_{2}, \\
p q^{i} & \sim p^{k} q^{j} r, \quad i+j \geq 2 m_{2}, i, j=1,2,3, \ldots, 2 m_{2}, k \geq 2 m_{1}, \\
& \vdots \\
p^{m_{1}} q^{i} & \sim p^{k} q^{j} r, \quad i+j \geq 2 m_{2}, \quad k \geq m_{1}+1, i, j=1,2,3, \ldots, 2 m_{2}, \\
& \vdots \\
p^{2 m_{1}+1} q^{i} & \sim p^{k} q^{j} r, \quad i+j \geq 2 m_{2}, \quad k \geq 0, i, j=1,2,3, \ldots, 2 m_{2}, \\
& \vdots \\
p^{t} q^{s} r & \sim p^{t^{\prime}} q^{s^{\prime}} r, \quad t+t^{\prime} \geq 2 m_{1}+1, s+s^{\prime} \geq 2 m_{2} .
\end{aligned}
$$

Thus, by Lemma 2.4, the cardinalities of $\left|A_{d_{i}}\right|$, where

$$
i=1,2, \ldots, 2 m_{1}+1=N_{1}, j=1,2, \ldots, 2 m_{2}=N_{2},
$$

are given by

$$
\begin{aligned}
& \left|A_{p^{i} q^{j} r}\right|=\phi\left(p^{N_{1}-i} q^{N_{2}-j}\right), \quad\left|A_{p^{i} q^{j}}\right|=\phi\left(p^{N_{1}-i} q^{N_{2}-j} r\right), \\
& \left|A_{p^{i}}\right|=\phi\left(p^{N_{1}-i} q^{N_{2}} r\right), \quad\left|A_{q^{j}}\right|=\phi\left(p^{N_{1}} q^{N_{2}-j} r\right), \\
& \left|A_{r}\right|=\phi\left(p^{N_{1}} q^{N_{2}}\right), \quad\left|A_{p^{i} r}\right|=\phi\left(p^{N_{1}-i} q^{N_{2}}\right), \\
& \left|A_{q^{j} r}\right|=\phi\left(p^{N_{1}} q^{N_{2}-j}\right) .
\end{aligned}
$$

Therefore, by Lemma 2.6, the induced subgraphs $\Gamma\left(A_{d_{i}}\right)$, where d_{i} is from Equation 3.6, are given by

$$
\begin{aligned}
\Gamma\left(A_{d_{p^{i}}}\right) & =\bar{K}_{\phi\left(p^{N_{1}-i} q^{N_{2}}\right)}, 1 \leq i \leq 2 m_{1}+1, \\
\Gamma\left(A_{d_{q}}\right) & =\bar{K}_{\phi\left(p^{N_{1} q^{N_{2}-j} r}\right)}, 1 \leq j \leq 2 m_{2}, \\
\Gamma\left(A_{d_{p^{N_{1}}}}\right) & = \begin{cases}K_{\phi\left(q^{j}\right)}, & 1 \leq j \leq m_{2}, \\
\bar{K}_{\phi\left(q^{j}\right)}, & m_{2}+1 \leq j \leq 2 m_{2},\end{cases} \\
\Gamma\left(A_{d_{q^{N_{2}}}}\right) & = \begin{cases}\bar{K}_{\phi\left(p^{i}\right)}, & m_{1}+1 \leq i \leq 2 m_{1}+1, \\
K_{\phi\left(p^{i}\right)}, & 1 \leq i \leq m_{1},\end{cases} \\
\Gamma\left(A_{d_{r}}\right) & = \begin{cases}\bar{K}_{\phi\left(p^{i} q^{j}\right)}, & m_{1}+1 \leq i \leq 2 m_{1}+1, \text { and } \\
& m_{2}+1 \leq j \leq 2 m_{2}, \\
K_{\phi\left(p^{i} q^{j}\right)}, & 1 \leq i \leq m_{1}, \text { and } 1 \leq j \leq m_{2},\end{cases} \\
\Gamma\left(A_{d_{p^{N_{1} q^{N_{2}}}}}\right) & =\bar{K}_{\phi(r)},
\end{aligned}
$$

where we avoid the induced subgraph $\Gamma\left(A_{p^{N_{1}} q^{N_{2}}}\right)$ corresponding to the divisor $p^{N_{1}} q^{N_{2}} r$. Thus, by Lemma 2.6, the structure of the zero-divisor graph $\Gamma\left(\mathbb{Z}_{n}\right)$ is given by 3.5.

The following result gives the structure of $\Gamma\left(\mathbb{Z}_{p^{N_{1}} q^{N_{2}}}\right)$, where $N_{1}=2 m_{1}$ is even and $N_{2}=2 m_{2}+1$ is odd. The proof is similar to the arguments as in the above theorems.

Theorem 3.4. Let $\Gamma\left(\mathbb{Z}_{n}\right)$ be the zero-divisor graph of order $n=p^{N_{1}} q^{N_{2}} r$, where $2<p<q<r$ are primes, $N_{1}=2 m_{1}$ and $N_{2}=2 m_{2}+1$ are positive integers and $m_{1}, m_{2} \geq 1$. Then

$$
\begin{aligned}
& \Gamma\left(\mathbb{Z}_{n}\right)= \Upsilon_{n} \\
&\left.\bar{K}_{\phi\left(p^{N_{1}-1} q^{N_{2} r}\right)}, \bar{K}_{\phi\left(p^{N_{1}-2} q^{N_{2} r}\right)}, \ldots, \bar{K}_{\phi\left(p q^{N_{2} r}\right)}, \bar{K}_{\phi\left(q^{N_{2} r}\right)}\right) \\
& \bar{K}_{\phi\left(p^{N_{1} q^{N_{2}-1} r}\right)}, \bar{K}_{\phi\left(p^{N_{1} q^{N_{2}-2} r}\right)}, \ldots, \bar{K}_{\phi\left(p^{N_{1} q r}\right)}, \bar{K}_{\phi\left(p^{N_{1} r}\right)}, \\
& K_{\phi(q)}, K_{\phi\left(q^{2}\right)}, \ldots, K_{\phi\left(q^{m_{2}-1}\right)}, \bar{K}_{\phi\left(q^{m_{2}}\right)}, \\
& \bar{K}_{\phi\left(q^{m_{2}+1}\right)}, \bar{K}_{\phi\left(q^{m_{2}+2}\right)}, \ldots, \bar{K}_{\phi\left(q^{2 m_{2}}\right)},
\end{aligned}
$$

$$
\begin{aligned}
& K_{\phi(p)}, K_{\phi\left(p^{2}\right)}, \ldots, K_{\phi\left(p^{m_{1}}\right)}, \ldots, \\
& K_{\phi\left(p q^{m_{2}}\right)}, \ldots, K_{\phi\left(p^{m_{1} q}\right)}, \ldots, K_{\phi\left(p^{m_{1} q^{m_{2}}}\right)}, \\
& \bar{K}_{\phi\left(p^{m_{1}+1} q^{m_{2}}\right)}, \bar{K}_{\phi\left(p^{m_{1}+1} q^{m_{2}+1}\right)}, \ldots, \bar{K}_{\phi\left(p^{2 m_{1}} q^{2 m_{2}+1}\right)}, \\
& \bar{K}_{\phi(r)}, \bar{K}_{\phi(p q r)}, \bar{K}_{\phi\left(p^{2} q r\right)}, \bar{K}_{\phi\left(p q^{2} r\right)}, \ldots, \\
& \left.\bar{K}_{\phi\left(p^{\left.m_{1} q^{m} m_{2} r\right)}\right.}, \ldots, \bar{K}_{\phi\left(p^{2 m_{1}-1} q^{2 m_{2}+1} r\right)}, \ldots, \bar{K}_{\phi\left(p^{\left.2 m_{1} q^{2 m_{2} r}\right)}\right.}\right] .
\end{aligned}
$$

Now, we obtain the structure of $\Gamma\left(\mathbb{Z}_{p^{N_{1}} q^{N_{2}}}\right)$, where both $N_{1}=2 m_{1}$ and $N_{2}=2 m_{2}$ are even.

Theorem 3.5. Let $\Gamma\left(\mathbb{Z}_{n}\right)$ be the zero-divisor graph of order $n=p^{N_{1}} q^{N_{2}} r$, where $2<p<q<r$ are primes, $N_{1}=2 m_{1}$ and $N_{2}=2 m_{2}>2$ with $N_{2}<N_{1}$ are positive integers and $m_{1}, m_{2}>1$. Then

$$
\begin{align*}
\Gamma\left(\mathbb{Z}_{n}\right)=\Upsilon_{n} & \bar{K}_{\phi\left(p^{N-1} q^{N_{2} r}\right)}, \bar{K}_{\phi\left(p^{N_{1}-2} q^{N_{2} r}\right)}, \ldots, \bar{K}_{\phi\left(q^{N_{2} r}\right)}, \\
& \left.\bar{K}_{\phi\left(p^{N_{1}} q^{N_{2}-1} r\right.}\right), \bar{K}_{\phi\left(p^{N_{1} q^{N_{2}-2} r}\right)}, \ldots, \bar{K}_{\phi\left(p^{N_{1} r}\right)}, \\
& K_{\phi(p)}, \bar{K}_{\phi\left(p^{2}\right)}, \ldots, \bar{K}_{\phi\left(p^{N_{1}}\right)}, \\
& K_{\phi(q)}, K_{\phi\left(q^{2}\right)}, \ldots, K_{\phi\left(q^{m_{2}}\right)}, \\
& \bar{K}_{\phi\left(p^{m_{2}+1}\right)}, \bar{K}_{\phi\left(p^{m_{2}+2}\right)}, \ldots, \bar{K}_{\phi\left(p^{2 m_{2}}\right)}, \\
& K_{\phi(p q)}, K_{\phi\left(p^{2} q\right)}, \ldots, K_{\phi\left(p^{\left.m_{1} q^{m_{2}}\right)}\right.}, \bar{K}_{\phi\left(p^{m_{1}+1} q\right)}, \\
& \left.\bar{K}_{\phi\left(p^{m_{1}+1} q^{m_{2}+1}\right)}, \ldots, \bar{K}_{\phi\left(p^{2 m_{1}} q^{2 m_{2}}\right)}, \bar{K}_{\phi(r)}\right] . \tag{3.7}
\end{align*}
$$

Proof. Let $n=p^{N_{1}} q^{N_{2}} r$, where $2<p<q<r$ are primes, $N_{1}=2 m_{1}$ and $N_{2}=2 m_{2}>2, N_{2}<N_{1}$ are positive integers with $m_{1}, m_{2}>1$. Then the proper divisors of n are

$$
\begin{aligned}
& p, p^{2}, \ldots, p^{m_{1}}, p^{m_{1}+1}, \ldots, p^{2 m_{1}}, \\
& q, q^{2}, \ldots, q^{m_{2}}, q^{m_{2}+1}, \ldots, q^{2 m_{2}}, r, \\
& p q, p q^{2}, \ldots, p q^{2 m_{2}}, p^{2} q, p^{2} q^{2}, \ldots, p^{2 m_{1}} q^{2 m_{2}}, \\
& p r, \ldots, p^{2 m_{1}} r, q r, \ldots, q^{2 m_{2}} r \\
& p q r, p^{2} q r, \ldots, p^{2 m_{1}} q r, \ldots, p^{2 m_{1}} q^{2 m_{2}-1} r, p^{2 m_{1}-1} q^{2 m_{2}} r .
\end{aligned}
$$

Therefore, by Lemma 2.2, the order of Υ_{n} is

$$
\left(N_{1}+1\right)\left(N_{2}+1\right)(1+1)=2\left(N_{1}+1\right)\left(N_{2}+1\right) .
$$

Also, by the definition of Υ_{n}, we have

$$
\begin{aligned}
p & \sim p^{N_{1}-1} q^{N_{2}} r \\
p^{2} & \sim p^{N_{1}-2} q^{N_{2}} r, p^{N_{1}-1} q^{N_{2}} r, \\
& \vdots \\
p^{m_{1}} & \sim p^{m_{1}} q^{N_{2}} r
\end{aligned}
$$

$$
\vdots
$$

The iterations of the adjacency relations are given as

$$
\begin{aligned}
p^{i} & \sim p^{j} q^{N_{2}} r, i+j \geq 2 m_{1}, i, j=1,2,3, \ldots, 2 m_{1}, \\
q^{i} & \sim p^{N_{1}} q^{j} r, i+j \geq 2 m_{2}, i, j=1,2,3, \ldots, 2 m_{2}, \\
p q^{i} & \sim p^{k} q^{j} r, i+j \geq 2 m_{2}, k \geq 2 m_{1}-1, \\
& \vdots \\
p^{m_{1}} q^{i} & \sim p^{k} q^{j} r, i+j \geq 2 m_{2}, k \geq m_{1}, i, j=1,2,3, \ldots, 2 m_{2}, \\
& \vdots \\
p^{2 m_{1}} q^{i} & \sim p^{k} q^{j} r, i+j \geq 2 m_{2}, k \geq 0, i, j=1,2,3, \ldots, 2 m_{2}, \\
& \vdots \\
p^{t} q^{s} r & \sim p^{t^{\prime}} q^{s^{\prime}} r, t+t^{\prime} \geq 2 m_{1}, s+s^{\prime} \geq 2 m_{2} .
\end{aligned}
$$

For $i=1,2,3, \ldots, 2 m_{1}, j=1,2,3, \ldots, 2 m_{2}$, by Lemma 2.4, the cardinalities of $A_{d_{i}}$ are given by

$$
\begin{aligned}
\left|A_{p^{i} q j r}\right| & =\phi\left(p^{N_{1}-i} q^{N_{2}-j}\right),\left|A_{p^{i} q j}\right|=\phi\left(p^{N_{1}-i} q^{N_{2}-j} r\right), \\
\left|A_{p^{i}}\right| & =\phi\left(p^{N_{1}-i} q^{N_{2}} r\right), \ldots,\left|A_{q^{j} r}\right|=\phi\left(p^{N_{1}} q^{N_{2}-j} r\right), \\
\left|A_{p^{i} r}\right| & =\phi\left(p^{N_{1}-i} q^{N_{2}}\right), \ldots,\left|A_{q^{j} r}\right|=\phi\left(p^{N_{1}} q^{N_{2}-j}\right), \ldots, \\
\left|A_{r}\right| & =\phi\left(p^{N_{1}} q^{N_{2}}\right),\left|A_{p^{N_{1}} q^{N_{2}}}\right|=\phi(r),
\end{aligned}
$$

Thus, by Lemma 2.5, the induced subgraphs $\Gamma\left(A_{d_{p^{i}}}\right)$ are given by

$$
\begin{aligned}
\Gamma\left(A_{d_{p^{i}}}\right) & =\bar{K}_{\phi\left(p^{N_{1}-i} q^{N_{2} r}\right)}, i=1,2,3, \ldots, 2 m_{1}, \\
\Gamma\left(A_{d_{q^{j}}}\right) & =\bar{K}_{\phi\left(p^{N_{1} q^{N_{2}-j} r}\right)}, j=1,2,3, \ldots, 2 m_{2}, \\
\Gamma\left(A_{d_{p^{i} q^{N_{2}}}}\right) & =\bar{K}_{\phi\left(p^{k}\right)}, i=1,2,3, \ldots, 2 m_{1}, \text { and } 2 \leq k \leq 2 m_{1}, \\
\Gamma\left(A_{d_{p^{N_{1}-1} q^{N_{2}}}}\right) & =K_{\phi(p)},
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma\left(A_{d_{p^{N_{1} q^{j}}}}\right)= \begin{cases}K_{\phi\left(q^{k}\right)}, & j=1,2,3, \ldots, 2 m_{2} \text { and } \\
1 \leq k \leq m_{2}, \\
\bar{K}_{\phi\left(q^{s}\right)}, & j=1,2,3, \ldots, 2 m_{2} \text { and } \\
& m_{2}+1 \leq s \leq 2 m_{2}\end{cases} \\
& \Gamma\left(A_{d_{p^{i} q^{j}}}\right)= \begin{cases}K_{\phi\left(p^{k} q^{s}\right)}, & 1 \leq i \leq 2 m_{1}, 1 \leq j \leq 2 m_{2} \\
\bar{K}_{\phi\left(p^{k} q^{s}\right)}, & 1 \leq k \leq m_{1} \text { and } 1 \leq s \leq m_{2} \\
& m_{1}+1 \leq k \leq 2 m_{1}, 1 \leq j \leq 2 m_{2} \\
& m_{2}+1 \leq s \leq 2 m_{2}\end{cases} \\
& \Gamma\left(A_{d_{p^{N_{1}} q^{N_{2}}}}\right)=\bar{K}_{\phi(r)} .
\end{aligned}
$$

where we avoid the induced subgraph $\Gamma\left(A_{p^{N_{1}} q^{N_{2}}}\right)$ corresponding to the divisor $p^{N_{1}} q^{N_{2}} r$. Thus, by Lemma 2.6, the structure of zero-divisor graph $\Gamma\left(\mathbb{Z}_{n}\right)$ is given as in 3.7.

We have the following observations.
Corollary 3.6. Let $\Gamma\left(\mathbb{Z}_{n}\right)$ be the zero-divisor graph of order $n=p^{N_{1}} q^{N_{2}} r$, where $2<p<q<r$ are primes, $N_{1}=2 m_{1}$ and $N_{2}=2 m_{2}$ are positive integers. If $N_{1}=N_{2}$, then the structure of the zero-divisor graph $\Gamma\left(\mathbb{Z}_{n}\right)$ is given as

$$
\begin{aligned}
\Gamma\left(\mathbb{Z}_{n}\right)=\Upsilon_{n} & \bar{K}_{\phi\left(p^{N_{1}-1} q^{N_{2} r}\right)}, \bar{K}_{\phi\left(p^{N_{1}-2} q^{N_{2} r}\right)}, \ldots, \bar{K}_{\phi\left(p q^{N_{2} r}\right)}, \bar{K}_{\phi\left(q^{N_{2} r}\right)}, \\
& \left.\bar{K}_{\phi\left(p^{N_{1} q^{N_{2}-1} r}\right)}, \bar{K}_{\phi\left(p^{N_{1}} q^{N_{2}-2} r\right)}, \ldots, \bar{K}_{\phi\left(p^{N_{1} q r}\right.}\right) \\
& K_{\phi\left(p^{m_{1}}\right)}, \bar{K}_{\phi(p)}, \ldots, \bar{K}_{\phi\left(p^{m_{1}-1}\right)}, \bar{K}_{\phi\left(p^{m_{1}+1}\right)}, \ldots, \\
& \bar{K}_{\phi\left(p^{N_{1}}\right)}, K_{\phi\left(q^{m_{2}}\right)}, \bar{K}_{\phi(q)}, \ldots, \bar{K}_{\phi\left(q^{m_{2}-1}\right)}, \bar{K}_{\phi\left(q^{m_{2}+1}\right)}, \ldots, \\
& \bar{K}_{\phi\left(q^{M}\right)}, K_{\phi(p q)}, K_{\phi\left(p^{2} q\right)}, \ldots, K_{\phi\left(p^{m_{1} q^{m} 2}\right)}, \bar{K}_{\phi\left(p^{m_{1}+1} q\right)}, \\
& \left.\bar{K}_{\phi\left(p^{m_{1}+1} q^{m_{2}+1}\right)}, \ldots, \bar{K}_{\phi\left(p^{2 m_{1}} q^{2 m_{2}}\right)}, \bar{K}_{\phi(r)}\right] .
\end{aligned}
$$

Corollary 3.7. Let $\Gamma\left(\mathbb{Z}_{n}\right)$ be the zero-divisor graph of order $n=p^{N_{1}} q^{N_{2}} r$, where $2<p<q<r$ are primes, $N_{1}=2 m_{1}$ and $N_{2}=2$ are positive integers. Then the structure of the zero-divisor graph $\Gamma\left(\mathbb{Z}_{n}\right)$ is given as

$$
\begin{gathered}
\Gamma\left(\mathbb{Z}_{n}\right)=\Upsilon_{n}\left[\bar{K}_{\phi\left(p^{N_{1}-1} q^{2} r\right)}, \bar{K}_{\phi\left(p^{N_{1}-2} q^{2} r\right)}, \ldots, \bar{K}_{\phi\left(p q^{2} r\right)}, \bar{K}_{\phi\left(p^{N_{1} q r}\right)},\right. \\
\bar{K}_{\phi\left(p^{N_{1} r}\right)}, K_{\phi(p)}, K_{\phi\left(p^{2}\right)}, \ldots, K_{\phi\left(p^{m_{1}}\right)},
\end{gathered}
$$

$$
\begin{aligned}
& \bar{K}_{\phi\left(p^{m_{1}+1}\right.}, \ldots, \bar{K}_{\phi\left(p^{2 m_{1}}\right)}, K_{\phi(q)}, \bar{K}_{\phi\left(q^{2}\right)}, \\
& K_{\phi(p q)}, K_{\phi\left(p^{2} q\right)}, \ldots, K_{\phi\left(p^{m_{1} q^{2}}\right)}, \bar{K}_{\phi\left(p^{m_{1}+1} q\right)}, \\
& \left.\bar{K}_{\phi\left(p^{m_{1}+1} q^{m_{2}+1}\right)}, \ldots, \bar{K}_{\phi\left(p^{2 m_{1} q^{2}}\right)}, \bar{K}_{\phi(r)}\right] .
\end{aligned}
$$

The structure of $\Gamma\left(\mathbb{Z}_{p^{N_{1}} q^{N_{2} r}}\right)$, where both $N_{1}=2 m_{1}+1$ and $N_{2}=2 m_{2}+1$ are odd, is as follows. The proof is similar to Theorems 3.1 and 3.2.

Theorem 3.8. Let $\Gamma\left(\mathbb{Z}_{n}\right)$ be the zero-divisor graph of order $n=p^{N_{1}} q^{N_{2}} r$, where $2<p<q<r$ are primes, $N_{1}=2 m_{1}+1$ and $N_{2}=2 m_{2}+1$ are positive integers, and $2 m_{1}+1 \leq 2 m_{2}+1$. Then

$$
\begin{aligned}
\Gamma\left(\mathbb{Z}_{n}\right)=\Upsilon_{n} & \left.\bar{K}_{\phi\left(p^{N_{1}-1} q^{N_{2} r}\right)}, \bar{K}_{\phi\left(p^{N_{1}-2} q^{N_{2} r}\right)}, \ldots, \bar{K}_{\phi\left(p q^{N_{2} r}\right)}\right) \\
& \bar{K}_{\phi\left(p^{N_{1} q^{N_{2}-1} r}\right)}, \bar{K}_{\phi\left(p^{N_{1} q^{N_{2}-2} r}\right)}, \ldots, \bar{K}_{\phi\left(p^{N_{1} q r}\right)}, \bar{K}_{\phi\left(p^{N_{1} r}\right)}, \\
& \left.K_{\phi(p)}, K_{\phi\left(p^{2}\right)}, \ldots, K_{\phi\left(p^{m_{1}}\right)}, \bar{K}_{\phi\left(p^{m_{1}+1}\right)}, \ldots, \bar{K}_{\phi\left(p^{2 m_{1}+1}\right)}\right) \\
& K_{\phi(q)}, K_{\phi\left(q^{2}\right)}, \ldots, K_{\phi\left(q^{m_{2}}\right)}, \\
& \bar{K}_{\phi\left(p^{m_{2}+1}\right)}, \bar{K}_{\phi\left(p^{m_{2}+2}\right)}, \ldots, \bar{K}_{\phi\left(p^{2 m_{2}+1}\right)}, \\
& K_{\phi(p q)}, K_{\phi\left(p^{2} q\right)}, \ldots, K_{\phi\left(p^{m_{1}} q^{m_{2}}\right)}, \bar{K}_{\phi\left(p^{m_{1}+1} q\right)}, \\
& \left.\bar{K}_{\phi\left(p^{m_{1}+1} q^{m_{2}+1}\right)}, \ldots, \bar{K}_{\phi\left(p^{2 m_{1}+1} q^{2 m_{2}+1}\right)}, \bar{K}_{\phi(r)}\right]
\end{aligned}
$$

Acknowledgments

The authors are grateful to the anonymous referees for their valuable suggestions.

References

1. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
2. D. F. Anderson and D. Weber, The zero-divisor graph of a commutative ring without identity, Int. Elect. J. Algebra, 223 (2018), 176-202.
3. I. Beck, Coloring of a commutative rings, J. Algebra, 116 (1988), 208-226.
4. S. Chattopadhyay, K. L. Patra and B. K. Sahoo, Laplacian eigenvalues of the zero-divisor graph of the ring \mathbb{Z}_{n}, Linear Algebra Appl., 584 (2020), 267-286.
5. D. M. Cvetković, P. Rowlison and S. Simić, An Introduction to Theory of Graph Spectra, Spectra of Graphs. Theory and Application, Lonndon Math. S. Student Text, 75. Cambridge University Press, Inc. UK, 2010.
6. S. Pirzada, An Introduction to Graph Theory, Universities Press, Orient BlackSwan, Hyderabad, 2012.
7. S. Pirzada, M. Aijaz and M. Imran, On zero-divisor graphs of the ring \mathbb{Z}_{n}, Afrika Matematika, 31 (2020), 727-737.
8. S. Pirzada, Bilal A. Rather, M. Aijaz and T. A. Chishti, On distance signless Laplacian spectrum of graphs and spectrum of zero divisor graphs of Z_{n}, Linear Multilinear Algebra (2020), https://doi.org/10.1080/03081087.2020.1838425.
9. S. Pirzada, Bilal A. Rather and T. A. Chishti, On distance Laplacian spectrum of zero divisor graphs of \mathbb{Z}_{n}, Carpathian Math. Publ., 13(1) (2021), 48-57.
10. S. Pirzada, Bilal A. Rather, Rezwan Ul Shaban and Merajuddin, On signless Laplacian spectrum of the zero divisor graph of the ring Z_{n}, Korean J. Math., 29(1) (2021), 13-24.
11. S. Pirzada, Bilal A. Wani and A. Somasundaram, On the eigenvalues of zero divisor graph associated to finite commutative ring $Z_{p^{M} q^{N}}$, AKCE Int. J. Graphs Comb., 18(1) (2021), 1-16.
12. Bilal A. Rather, S. Pirzada, T. A. Naikoo and Yilun Shang, On Laplacian eigenvalues of the zero-divisor graph associated to the ring of integers modulo n, Mathematics, 9 (2021), 482, https://doi.org/10.3390/math9050482.
13. M. Young, Adjacency matrices of zero-divisor graphs of integer modulo n, Involve, 8 (2015), 753-761.

Shariefuddin Pirzada

Department of Mathematics, University of Kashmir, Srinagar, India.
Email: pirzadasd@kashmiruniversity.ac.in

Aaqib Altaf

Department of Mathematics, University of Kashmir, Srinagar, India.
Email: aaqibwaniwani777@gmail.com

Saleem Khan

Department of Mathematics, University of Kashmir, Srinagar, India.
Email: khansaleem1727@gmail.com

Journal of Algebraic Systems

STRUCTURE OF ZERO-DIVISOR GRAGHS ASSOCIATED TO RING OF INTEGER MODULO n

S. PIRZADA, A. ALTAF AND S. KHAN

بررسى ساختار گرافهاى مقسومعليه صفر وابسته به حلقهى اعداد صحيح به پيمانه n
شريف الدين پيرزاده’ ، عاقب الطاف‘ و سليم خان「
†,ヶ, ז, گروه رياضى، دانشگاه كشمير، سرينگر، هند
براى حلقهى جابهجايى يكدار R R با صفر R باشد و مىدهيم، گراف سادهاى است كه مجموعهى رئوس آن برابر است با R با رأس از (R) Z^{*} با هم مجاورند اگر و تنها اگر حاصلضرب آنها گرافهاى مقسوم عليه صفر و ${ }^{\text {و و }}$ و اعداد صحيح مثبت هستند، را مورد بررسى قرار مىدهيم.

كلمات كليدى: گراف مقسومعليه صفر، حلقهى جابهجايی، حلقه به پيمانه اعداد صحيح، اجتماع الحاقى.

[^0]: DOI: 10.22044/JAS.2022.11719.1599.
 MSC(2010): Primary: 65F05; Secondary: 46L05, 11Y50.
 Keywords: Zero-divisor graph; Commutative ring; Integer modulo ring; Joined union. Received: 3 March 2022, Accepted: 23 April 2022.

 * Corresponding author.

