Journal of Algebraic Systems

Vol. 11, No. 1, (2023), pp 15-26

THE STRUCTURE OF MODULE LIE DERIVATIONS ON TRIANGULAR BANACH ALGEBRAS

M. R. MIRI, E. NASRABADI* AND A. R. GHORCHIZADEH

Abstract

In this paper, we introduce the concept of module Lie derivations on Banach algebras and study module Lie derivations on unital triangular Banach algebras $\mathcal{T}=\left[\begin{array}{cc}A & M \\ & B\end{array}\right]$ to its dual. Indeed, we prove that every module (linear) Lie derivation $\delta: \mathcal{T} \rightarrow \mathcal{T}^{*}$ can be decomposed as $\delta=d+\tau$, where $d: \mathcal{T} \rightarrow \mathcal{T}^{*}$ is a module (linear) derivation and $\tau: \mathcal{T} \rightarrow Z_{\mathcal{T}}\left(\mathcal{T}^{*}\right)$ is a module (linear) map vanishing at commutators if and only if this happens for the corner algebras A and B.

1. Introduction

Let A and B be Banach algebras and M be a Banach A, B-module that means that M is a left Banach A-module and right Banach B-module. The Banach algebras

$$
\mathcal{T}=\operatorname{Tri}(A, B, M)=\left\{\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]: a \in A, m \in M, b \in B\right\}
$$

with usual multiplication and addition actions in the space of 2×2 matrices and with the following norm

$$
\left\|\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]\right\|:=\|a\|_{A}+\|m\|_{M}+\|b\|_{B} \quad(a \in A, m \in M, b \in B)
$$

are called the triangular Banach algebra.
DOI: 10.22044/JAS.2022.10734.1530.
MSC(2010): Primary: 46H25, 46H20; Secondary: 16W25, 17A36, 47B47.
Keywords: Triangular Banach algebra; Module Lie derivation; Standard Lie derivation. Received: 20 April 2021, Accepted: 6 May 2022.

* Corresponding author.

Forrest and Marcoux [4] studied (continuous) derivations on unital triangular Banach algebra. They also examined the derivations of triangular Banach algebra into its dual spaces in [5]. Amini in [1] investigated module derivations on Banach algebras and then along with Bagha [2] studied the module derivations from Banach algebra to its dual spaces. After that, Nasrabadi and Pourabbas in [7] and [6] studied the module derivations from triangular Banach algebra to its dual spaces.

On the other hand, Cheung [3] considered triangular algebras of $\mathcal{T}=\operatorname{Tri}(A, B, M)$ (without topological structure), where A and B are unital (not necessarly Banach) algebras and M is a faithful A, B-module. They obtained sufficient conditions on \mathcal{T} so that every Lie derivation of \mathcal{T} to \mathcal{T} was a standard Lie derivation.

In this paper, we define module Lie derivation on Banach algebras and for unitanl triangular Banach algebra $\mathcal{T}=\operatorname{Tri}(A, B, M)$, we show that under what conditions these module Lie derivations from \mathcal{T} to its dual (and in a special cases Lie derivations) are standard. In this way, when \mathfrak{A} is a Banach algebra and A and B are Banach \mathfrak{A}-module with compatible actions, and M is a left Banach A - \mathfrak{A}-module and right Banach B - \mathfrak{A}-module, we show that \mathfrak{T}-module Lie derivation $\delta: \mathcal{T} \rightarrow \mathcal{T}^{*}$ can be decomposed as $\delta=d+\tau$, where $d: \mathcal{T} \rightarrow \mathcal{T}^{*}$ is a \mathfrak{T}-module derivation and $\tau: \mathcal{T} \rightarrow Z_{\mathcal{T}}\left(\mathcal{T}^{*}\right)$ is a \mathfrak{T}-module map vanishing at commutators, where $\mathfrak{T}:=\left\{\left[\begin{array}{ll}\alpha & \\ & \alpha\end{array}\right]: \alpha \in \mathfrak{A}\right\}$. Let \mathfrak{A} and A be Banach algebras such that A is a Banach \mathfrak{A}-bimodule with compatible actions, that is

$$
\alpha \cdot(a b)=(\alpha \cdot a) b, \quad a(\alpha \cdot b)=(a \cdot \alpha) b \quad(\alpha \in \mathfrak{A}, a, b \in A),
$$

and the same is true for the right actions (for more details see [1], [6], and [7]).

Let X be a Banach A-bimodule and a Banach \mathfrak{A}-bimodule with compatible actions, that is, for every $\alpha \in \mathfrak{A}, a \in A, x \in X$
$\alpha \cdot(a \cdot x)=(\alpha \cdot a) \cdot x, \quad(a \cdot \alpha) \cdot x=a \cdot(\alpha \cdot x), \quad(a \cdot x) \cdot \alpha=a \cdot(x \cdot \alpha)$,
and the same holds for the right actions. Then we say that X is a Banach A - \mathfrak{A}-module.

Note also that X is an A-bimodule. The center of X on A, is as follows:

$$
Z_{A}(X)=\{x \in X ; a \cdot x=x \cdot a \text { for each } a \in A\} .
$$

If X is a (commutative) Banach $A-\mathfrak{A}$-module, and so is X^{*}, where the actions of A and \mathfrak{A} on X^{*} are defined by

$$
(\alpha \cdot f)(x)=f(x \cdot \alpha),(a \cdot f)(x)=f(x \cdot a)\left(\alpha \in \mathfrak{A}, a \in A, x \in X, f \in X^{*}\right)
$$

and the same holds for the actions of other side.
In particular, if A is a commutative Banach \mathfrak{A}-bimodule, then it is a commutative Banach $A-\mathfrak{A}$-module. In this case, the dual space \mathfrak{A}^{*} is also a commutative Banach A - \mathfrak{A}-module.

A bounded mapping $T: A \rightarrow X$ is called an \mathfrak{A}-module map if

$$
T\left(a \pm a^{\prime}\right)=T(a) \pm T\left(a^{\prime}\right), \quad T(\alpha \cdot a)=\alpha \cdot T(a), \quad T(a \cdot \alpha)=T(a) \cdot \alpha
$$

where $\alpha \in \mathfrak{A}, a, a^{\prime} \in A$. Note that, τ is an additive and not necessarily linear, so it is not necessarily an \mathfrak{A}-module homomorphism.

Definition 1.1. An \mathfrak{A}-module map $d: A \rightarrow X$ is called an \mathfrak{A}-module derivation if

$$
d\left(a a^{\prime}\right)=a \cdot d\left(a^{\prime}\right)+d(a) \cdot a^{\prime} \quad\left(a, a^{\prime} \in A\right)
$$

Moreover, d is called inner, if there exists $x \in X$, such that

$$
d(a)=\mathbf{a d}_{x}(a):=a \cdot x-x \cdot a \quad(a \in A) .
$$

Definition 1.2. An \mathfrak{A}-module map $\delta: A \rightarrow X$ is called an \mathfrak{A}-module Lie derivation if

$$
\delta\left(\left[a, a^{\prime}\right]\right)=\left[\delta(a), a^{\prime}\right]+\left[a, \delta\left(a^{\prime}\right)\right] \quad\left(a, a^{\prime} \in A\right)
$$

where [,] is Lie product. that is, $\left[a, a^{\prime}\right]=a a^{\prime}-a^{\prime} a$ and

$$
[x, a]=-[a, x]=x a-a x
$$

for every $a, a^{\prime} \in A$ and $x \in X$.
Remark 1.3. The important point to note here is that in all the topics of this paper, if we consider $\mathfrak{A}=\mathbb{C}$, when \mathbb{C}-module actions are natural multiplication, then the words "ß-module" give way to "linear", which is not usually inserted. But in general, every \mathfrak{A}-module (Lie) derivation is not necessarily linear, but its boundedness still implies its norm continuity (since preserved subtraction).

Definition 1.4. An (\mathfrak{A}-module) Lie derivation $\delta: A \rightarrow X$ is called standard if it can be written as the sum of an (\mathfrak{A}-module) derivation and an (\mathfrak{A}-module) mapping with the image in the center of X on A vanishing at commutators.

2. Module Lie Derivations on Triangular Banach Algebras

Let \mathfrak{A}, A, and B be Banach algebras such that A and B are commutative Banach \mathfrak{A}-bimodule with compatible actions. Furthermore, let M be a commutative Banach $(A, B)-\mathfrak{A}$-module, that is, M is a commutative Banach \mathfrak{A}-bimodule, left Banach A-module and right Banach B-module with compatible actions. (for more details see [6] and [7]). Let

$$
\mathcal{T}=\operatorname{Tri}(A, B, M)=\left\{\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right] ; a \in A, b \in B, m \in M\right\}
$$

be equipped with the usual 2×2 matrix addition and formal multiplication and with the norm $\|t\|=\|a\|_{A}+\|b\|_{B}+\|m\|_{M}$ for every $t=\left[\begin{array}{cc}a & m \\ & b\end{array}\right] \in \mathcal{T}$. Then it is a Banach algebra, which is called the triangular Banach algebra. We know that, as a Banach space, \mathcal{T} is isomorphic to the ℓ^{1}-sum of A, B, and M. It is clear that $\mathcal{T}^{*} \simeq A^{*} \oplus B^{*} \oplus M^{*}=\left[\begin{array}{cc}A^{*} & M^{*} \\ & B^{*}\end{array}\right]$. Now we consider

$$
\mathfrak{T}=\left\{\left[\begin{array}{ll}
\alpha & \\
& \alpha
\end{array}\right] ; \alpha \in \mathfrak{A}\right\}
$$

which is a Banach algebra. \mathcal{T} with the 2×2 matrix multiplication is a commutative \mathfrak{T}-bimodule Banach algebra with the module actions:

$$
\left[\begin{array}{cc}
\alpha & \\
& \alpha
\end{array}\right] \cdot\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]=\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right] \cdot\left[\begin{array}{ll}
\alpha & \\
& \alpha
\end{array}\right]=\left[\begin{array}{cc}
\alpha \cdot a & \alpha \cdot m \\
& \alpha \cdot b
\end{array}\right],
$$

where $\left[\begin{array}{ll}\alpha & \\ & \alpha\end{array}\right] \in \mathfrak{T}$ and $\left[\begin{array}{cc}a & m \\ & b\end{array}\right] \in \mathcal{T}$ (for more details see [7]).
According to [5, Section 2.5], we have the following remark.
Remark 2.1. Let $t=\left[\begin{array}{cc}a & m \\ & b\end{array}\right] \in \mathcal{T}$ and $\lambda=\left[\begin{array}{cc}f & h \\ & g\end{array}\right] \in \mathcal{T}^{*}$. Then \mathcal{T}^{*} acts on \mathcal{T} as follows: $\omega(t)=f(a)+h(m)+g(b)$. The module actions of \mathcal{T} on \mathcal{T}^{*} is give by

$$
t \cdot \lambda=\left[\begin{array}{cc}
a . f+m . h & b . h \tag{2.1}\\
& b . g
\end{array}\right] \text { and } \lambda \cdot t=\left[\begin{array}{cc}
f . a & h . a \\
& h . m+g \cdot b
\end{array}\right] .
$$

Thus, \mathcal{T}^{*} becomes a Banach \mathcal{T}-bimodule. Furthermore, since A is a commutative Banach A - \mathfrak{A}-module, B is a commutative Banach B - \mathfrak{A}-module and M is a commutative Banach (A, B) - \mathfrak{A}-module. That is, M is a commutative Banach \mathfrak{A}-bimodule left Banach A-module and
right Banach B-module with compatible actions; therefore, \mathcal{T} (and so \mathcal{T}^{*}) becomes a commutative Banach \mathcal{T} - \mathfrak{T}-bimodule.

Proposition 2.2. The center of \mathcal{T}^{*} on \mathcal{T} is given by

$$
Z_{\mathcal{T}}\left(\mathcal{T}^{*}\right)=\left\{\left[\begin{array}{cc}
f & 0 \\
& g
\end{array}\right] ; \quad f \in Z_{A}\left(A^{*}\right), \quad g \in Z_{B}\left(B^{*}\right)\right\} .
$$

Proof. Suppose that $f \in Z_{A}\left(A^{*}\right)$ and $g \in Z_{B}\left(B^{*}\right)$. It is easy to verify $\left[\begin{array}{ll}f & 0 \\ & g\end{array}\right] \in Z_{\mathcal{T}}\left(\mathcal{T}^{*}\right)$.

Conversely, if $\left[\begin{array}{cc}f & h \\ & g\end{array}\right] \in Z_{\mathcal{T}}\left(\mathcal{T}^{*}\right)$, by (2.1), we have

$$
\begin{aligned}
{\left[\begin{array}{ll}
0 & 0 \\
& 0
\end{array}\right] } & =\left[\begin{array}{ll}
f & h \\
& g
\end{array}\right]\left[\begin{array}{ll}
1_{A} & 0 \\
& 0
\end{array}\right]-\left[\begin{array}{ll}
1_{A} & 0 \\
& 0
\end{array}\right]\left[\begin{array}{ll}
f & h \\
& g
\end{array}\right] \\
& =\left[\begin{array}{ll}
f-f & h \\
& 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & h \\
& 0
\end{array}\right] .
\end{aligned}
$$

Therefore, $h=0$. So if $\left[\begin{array}{ll}f & 0 \\ & g\end{array}\right] \in Z_{\mathcal{T}}\left(\mathcal{T}^{*}\right)$, for every arbitrary $a \in A$ and $b \in B$, we have

$$
\begin{aligned}
{\left[\begin{array}{ll}
0 & 0 \\
& 0
\end{array}\right] } & =\left[\begin{array}{ll}
f & 0 \\
& g
\end{array}\right]\left[\begin{array}{ll}
a & 0 \\
& b
\end{array}\right]-\left[\begin{array}{ll}
a & 0 \\
& b
\end{array}\right]\left[\begin{array}{ll}
f & 0 \\
& g
\end{array}\right] \\
& =\left[\begin{array}{cc}
f a & 0 \\
& g b
\end{array}\right]-\left[\begin{array}{cc}
a f & 0 \\
& b g
\end{array}\right] \\
& =\left[\begin{array}{cc}
f a-a f & 0 \\
& g b-b g
\end{array}\right] .
\end{aligned}
$$

Thus, $f a=a f$ and $g b=b g$, that means $f \in Z_{A}\left(A^{*}\right)$ and $g \in Z_{B}\left(B^{*}\right)$.

3. Main Results

All over this section, A is an unital commutative Banach A - \mathfrak{A}-module, B is an unital commutative Banach B - \mathfrak{A}-module, M is a commutative Banach (A, B) - \mathfrak{A}-module (M is a commutative Banach \mathfrak{A}-bimodule, left Banach A-module and right Banach B-module) and $\mathcal{T}=\left[\begin{array}{cc}A & M \\ & B\end{array}\right]$ is the triangular Banach algebra associated with A, M, and B, which becomes an unital commutative Banach \mathcal{T} - \mathfrak{T}-module.

Proposition 3.1. The map $\delta: \mathcal{T} \longrightarrow \mathcal{T}^{*}$ is a (T-module) Lie derivation if and only if δ is of the form

$$
\delta\left(\left[\begin{array}{cc}
a & m \tag{3.1}\\
& b
\end{array}\right]\right)=\left[\begin{array}{cc}
l_{A}(a)+h_{B}(b)-m m_{0} & m_{0} a-b m_{0} \\
& l_{B}(b)+h_{A}(a)+m_{0} m
\end{array}\right]
$$

where $m_{0} \in M^{*}, l_{A}: A \longrightarrow A^{*}$ and $l_{B}: B \longrightarrow B^{*}$ are (\mathfrak{A}-module) Lie derivations, $h_{A}: A \longrightarrow Z_{B}\left(B^{*}\right)$ and $h_{B}: B \longrightarrow Z_{A}\left(A^{*}\right)$ are (\mathfrak{A}-module) maps satisfying $h_{A}\left(\left[a, a^{\prime}\right]\right)=0$ and $h_{B}\left(\left[b, b^{\prime}\right]\right)=0$.

Proof. Due to remark 1.3, we provide the proof in the general state (module state). For convenience, for every $a \in A, b \in B$, and $m \in M$, we symbolize $\boldsymbol{p}=\left[\begin{array}{ll}1_{A} & 0 \\ & 0\end{array}\right], \boldsymbol{q}=\left[\begin{array}{cc}0 & 0 \\ & 1_{B}\end{array}\right], \boldsymbol{a}=\left[\begin{array}{ll}a & 0 \\ & 0\end{array}\right], \boldsymbol{m}=\left[\begin{array}{cc}0 & m \\ & 0\end{array}\right]$ and $\boldsymbol{b}=\left[\begin{array}{ll}0 & 0 \\ & b\end{array}\right]$. Also

$$
\begin{gathered}
\delta(\boldsymbol{p})=\left[\begin{array}{ll}
\phi_{\boldsymbol{p}} & \varphi_{\boldsymbol{p}} \\
& \psi_{\boldsymbol{p}}
\end{array}\right], \quad \delta(\boldsymbol{q})=\left[\begin{array}{ll}
\phi_{\boldsymbol{q}} & \varphi_{\boldsymbol{q}} \\
& \psi_{\boldsymbol{q}}
\end{array}\right] \\
\delta(\boldsymbol{a})=\left[\begin{array}{cc}
\phi_{\boldsymbol{a}} & \varphi_{\boldsymbol{a}} \\
& \psi_{\boldsymbol{a}}
\end{array}\right], \quad \delta(\boldsymbol{m})=\left[\begin{array}{ll}
\phi_{\boldsymbol{m}} & \varphi_{\boldsymbol{m}} \\
& \psi_{\boldsymbol{m}}
\end{array}\right], \quad \delta(\boldsymbol{b})=\left[\begin{array}{ll}
\phi_{\boldsymbol{b}} & \varphi_{\boldsymbol{b}} \\
& \psi_{\boldsymbol{b}}
\end{array}\right] .
\end{gathered}
$$

The proof begins with the following six claims.
Claim 1: $\phi_{m}=-m \varphi_{p}, \psi_{m}=\varphi_{p} m$ and $\varphi_{m}=0$.

$$
\begin{aligned}
{\left[\begin{array}{ll}
\phi_{\boldsymbol{m}} & \varphi_{m} \\
& \psi_{\boldsymbol{m}}
\end{array}\right] } & =\delta(\boldsymbol{m})=\delta([\boldsymbol{p}, \boldsymbol{m}]) \\
& =[\delta(\boldsymbol{p}), \boldsymbol{m}]+[\boldsymbol{p}, \delta(\boldsymbol{m})] \\
& =\delta(\boldsymbol{p}) \boldsymbol{m}-\boldsymbol{m} \delta(\boldsymbol{p})+\boldsymbol{p} \delta(\boldsymbol{m})-\delta(\boldsymbol{m}) \boldsymbol{p} \\
& =\left[\begin{array}{ll}
\phi_{\boldsymbol{p}} & \varphi_{p} \\
& \psi_{\boldsymbol{p}}
\end{array}\right]\left[\begin{array}{cc}
0 & m \\
& 0
\end{array}\right]-\left[\begin{array}{cc}
0 & m \\
& 0
\end{array}\right]\left[\begin{array}{ll}
\phi_{\boldsymbol{p}} & \varphi_{\boldsymbol{p}} \\
& \psi_{\boldsymbol{p}}
\end{array}\right] \\
& +\left[\begin{array}{cc}
1_{A} & 0 \\
& 0
\end{array}\right]\left[\begin{array}{ll}
\phi_{\boldsymbol{m}} & \varphi_{m} \\
& \psi_{\boldsymbol{m}}
\end{array}\right]-\left[\begin{array}{cc}
\phi_{\boldsymbol{m}} & \varphi_{m} \\
& \psi_{\boldsymbol{m}}
\end{array}\right]\left[\begin{array}{cc}
1_{A} & 0 \\
& 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
-m \varphi_{\boldsymbol{p}} & 0 \\
& \varphi_{\boldsymbol{p}} m
\end{array}\right]+\left[\begin{array}{cc}
0 & -\varphi_{\boldsymbol{m}} \\
& 0
\end{array}\right]=\left[\begin{array}{cc}
-m \varphi_{\boldsymbol{p}} & -\varphi_{\boldsymbol{m}} \\
& \varphi_{\boldsymbol{p}} m
\end{array}\right],
\end{aligned}
$$

therefore, $\phi_{\boldsymbol{m}}=-m \varphi_{\boldsymbol{p}}, \psi_{\boldsymbol{m}}=\varphi_{\boldsymbol{p}} m$ and $\varphi_{\boldsymbol{m}}=0$.
Claim 2: $a \phi_{p}=\phi_{\boldsymbol{p}} a, \varphi_{a}=\varphi_{\boldsymbol{p}} a$.

$$
\begin{aligned}
{\left[\begin{array}{ll}
0 & 0 \\
& 0
\end{array}\right] } & =\delta([\boldsymbol{a}, \boldsymbol{p}])=[\delta(\boldsymbol{a}), \boldsymbol{p}]+[\boldsymbol{a}, \delta(\boldsymbol{p})] \\
& =\left[\begin{array}{ll}
\phi_{\boldsymbol{a}} & \varphi_{\boldsymbol{a}} \\
& \psi_{\boldsymbol{a}}
\end{array}\right]\left[\begin{array}{cc}
1_{A} & 0 \\
& 0
\end{array}\right]-\left[\begin{array}{cc}
1_{A} & 0 \\
& 0
\end{array}\right]\left[\begin{array}{ll}
\phi_{\boldsymbol{a}} & \varphi_{\boldsymbol{a}} \\
& \psi_{\boldsymbol{a}}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\left[\begin{array}{ll}
a & 0 \\
& 0
\end{array}\right]\left[\begin{array}{ll}
\phi_{\boldsymbol{p}} & \varphi_{\boldsymbol{p}} \\
& \psi_{\boldsymbol{p}}
\end{array}\right]-\left[\begin{array}{ll}
\phi_{\boldsymbol{p}} & \varphi_{\boldsymbol{p}} \\
& \psi_{\boldsymbol{p}}
\end{array}\right]\left[\begin{array}{ll}
a & 0 \\
& 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
\phi_{\boldsymbol{a}} & \varphi_{a} \\
& 0
\end{array}\right]-\left[\begin{array}{ll}
\phi_{\boldsymbol{a}} & 0 \\
& 0
\end{array}\right]+\left[\begin{array}{cc}
a \phi_{\boldsymbol{p}} & 0 \\
& 0
\end{array}\right]-\left[\begin{array}{cc}
\phi_{\boldsymbol{p}} a & \varphi_{\boldsymbol{p}} a \\
& 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
a \phi_{\boldsymbol{p}}-\phi_{\boldsymbol{p}} a & \varphi_{a}-\varphi_{\boldsymbol{p}} a \\
& 0
\end{array}\right]
\end{aligned}
$$

that shows, $a \phi_{\boldsymbol{p}}=\phi_{\boldsymbol{p}} a$ and $\varphi_{\boldsymbol{a}}=\varphi_{\boldsymbol{p}} a$.
Claim 3: $b \psi_{\boldsymbol{p}}=\psi_{\boldsymbol{p}} b, \varphi_{\boldsymbol{b}}=-b \varphi_{\boldsymbol{p}}$.

$$
\begin{aligned}
{\left[\begin{array}{ll}
0 & 0 \\
& 0
\end{array}\right] } & =\delta([\boldsymbol{b}, \boldsymbol{p}])=[\delta(\boldsymbol{b}), \boldsymbol{p}]+[\boldsymbol{b}, \delta(\boldsymbol{p})] \\
& =\left[\begin{array}{ll}
\phi_{\boldsymbol{b}} & \varphi_{\boldsymbol{b}} \\
& \psi_{\boldsymbol{b}}
\end{array}\right]\left[\begin{array}{ll}
1_{A} & 0 \\
& 0
\end{array}\right]-\left[\begin{array}{ll}
1_{A} & 0 \\
& 0
\end{array}\right]\left[\begin{array}{ll}
\phi_{\boldsymbol{b}} & \varphi_{\boldsymbol{b}} \\
& \psi_{\boldsymbol{b}}
\end{array}\right] \\
& +\left[\begin{array}{ll}
0 & 0 \\
& b
\end{array}\right]\left[\begin{array}{ll}
\phi_{\boldsymbol{p}} & \varphi_{\boldsymbol{p}} \\
& \psi_{\boldsymbol{p}}
\end{array}\right]-\left[\begin{array}{ll}
\phi_{\boldsymbol{p}} & \varphi_{\boldsymbol{p}} \\
& \psi_{\boldsymbol{p}}
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
& b
\end{array}\right] \\
& =\left[\begin{array}{cc}
\phi_{\boldsymbol{b}} & \varphi_{\boldsymbol{b}} \\
& 0
\end{array}\right]-\left[\begin{array}{ll}
\phi_{\boldsymbol{b}} & 0 \\
& 0
\end{array}\right]+\left[\begin{array}{cc}
0 & b \varphi_{\boldsymbol{b}} \\
& b \psi_{\boldsymbol{p}}
\end{array}\right]-\left[\begin{array}{cc}
0 & 0 \\
& b \psi_{\boldsymbol{p}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & \varphi_{\boldsymbol{b}}+b \varphi_{\boldsymbol{p}} \\
& b \psi_{\boldsymbol{p}}-\psi_{\boldsymbol{p}} b
\end{array}\right],
\end{aligned}
$$

so $b \psi_{\boldsymbol{p}}=\psi_{\boldsymbol{p}} b$ and $\varphi_{\boldsymbol{b}}=-b \varphi_{\boldsymbol{p}}$.
Claim 4: $\phi_{\boldsymbol{b}} \in Z_{A}\left(A^{*}\right)$ and $\psi_{\boldsymbol{a}} \in Z_{B}\left(B^{*}\right)$.

$$
\begin{aligned}
{\left[\begin{array}{ll}
0 & 0 \\
& 0
\end{array}\right] } & =\delta([\boldsymbol{a}, \boldsymbol{b}])=[\delta(\boldsymbol{a}), \boldsymbol{b}]+[\boldsymbol{a}, \delta(\boldsymbol{b})] \\
& \left.\left.=\left[\begin{array}{ll}
\phi_{\boldsymbol{a}} & \varphi_{\boldsymbol{a}} \\
& \psi_{\boldsymbol{a}}
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
& b
\end{array}\right]\right]+\left[\begin{array}{cc}
a & 0 \\
& 0
\end{array}\right],\left[\begin{array}{cc}
\phi_{\boldsymbol{b}} & \varphi_{\boldsymbol{b}} \\
& \psi_{\boldsymbol{b}}
\end{array}\right]\right] \\
& =\left[\begin{array}{cc}
0 & -b \varphi_{\boldsymbol{a}} \\
\psi_{\boldsymbol{a}} b-b \psi_{\boldsymbol{a}}
\end{array}\right]+\left[\begin{array}{cc}
a \phi_{\boldsymbol{b}}-\phi_{\boldsymbol{b}} a & -\varphi_{\boldsymbol{b}} a \\
& 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
{\left[a, \phi_{\boldsymbol{b}}\right]} & -b \varphi_{\boldsymbol{a}}-\varphi_{\boldsymbol{b}} a \\
{\left[\psi_{\boldsymbol{a}}, b\right]}
\end{array}\right]
\end{aligned}
$$

thus, $\left[a, \phi_{\boldsymbol{b}}\right]=0$ and $\left[\psi_{\boldsymbol{a}}, b\right]=0$. Since $a \in A$ and $b \in B$ are arbitrary, we show that, $\phi_{\boldsymbol{b}} \in Z_{A}\left(A^{*}\right)$ and $\psi_{\boldsymbol{a}} \in Z_{B}\left(B^{*}\right)$. Note that, equation $-b \varphi_{a}-\varphi_{\boldsymbol{b}} a=0$ confirms the second part of claims 2 and 3.

Claim 5: $\phi_{\left[a, a^{\prime}\right]}=\left[\phi_{\boldsymbol{a}}, a^{\prime}\right]+\left[a, \phi_{\boldsymbol{a}^{\prime}}\right]$ and $\psi_{\left[\boldsymbol{a}, \boldsymbol{a}^{\prime}\right]}=0$.

$$
\begin{aligned}
{\left[\begin{array}{cc}
\phi_{\left[a, a^{\prime}\right]} & \varphi_{\left[a, a^{\prime}\right]} \\
\psi_{\left[a, a^{\prime}\right]}
\end{array}\right] } & =\delta\left(\left[\begin{array}{ll}
\left.a, a^{\prime}\right] & 0 \\
& 0
\end{array}\right]\right)=\delta\left(\left[\boldsymbol{a}, \boldsymbol{a}^{\prime}\right]\right) \\
& =\left[\begin{array}{ll}
\phi_{\boldsymbol{a}} & \varphi_{\boldsymbol{a}} \\
& \psi_{\boldsymbol{a}}
\end{array}\right]\left[\begin{array}{ll}
a^{\prime} & 0 \\
& 0
\end{array}\right]-\left[\begin{array}{ll}
a^{\prime} & 0 \\
& 0
\end{array}\right]\left[\begin{array}{ll}
\phi_{\boldsymbol{a}} & \varphi_{\boldsymbol{a}} \\
& \psi_{\boldsymbol{a}}
\end{array}\right] \\
& +\left[\begin{array}{ll}
a & 0 \\
& 0
\end{array}\right]\left[\begin{array}{ll}
\phi_{\boldsymbol{a}^{\prime}} & \varphi_{\boldsymbol{a}^{\prime}} \\
& \psi_{\boldsymbol{a}^{\prime}}
\end{array}\right]-\left[\begin{array}{ll}
\phi_{\boldsymbol{a}^{\prime}} & \varphi_{\boldsymbol{a}^{\prime}} \\
& \psi_{\boldsymbol{a}^{\prime}}
\end{array}\right]\left[\begin{array}{ll}
a & 0 \\
& 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
\phi_{\boldsymbol{a}} a^{\prime}-a^{\prime} \phi_{\boldsymbol{a}}+a \phi_{\boldsymbol{a}^{\prime}}-\phi_{\boldsymbol{a}^{\prime}} a & \varphi_{\boldsymbol{a}} a^{\prime}-\varphi_{\boldsymbol{a}^{\prime}} a \\
& 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
{\left[\phi_{\boldsymbol{a}}, a^{\prime}\right]+\left[a, \phi_{\boldsymbol{a}^{\prime}}\right]} & \varphi_{\boldsymbol{a}} a^{\prime}-\varphi_{\boldsymbol{a}^{\prime}} \\
\end{array}\right],
\end{aligned}
$$

this shows that, $\phi_{\left[a, a^{\prime}\right]}=\left[\phi_{\boldsymbol{a}}, a^{\prime}\right]+\left[a, \phi_{\boldsymbol{a}^{\prime}}\right]$ and $\psi_{\left[a, a^{\prime}\right]}=0$.
Claim 6: $\psi_{\left[b, b^{\prime}\right]}=\left[\psi_{\boldsymbol{b}}, b^{\prime}\right]+\left[b, \psi_{\boldsymbol{b}^{\prime}}\right]$ and $\phi_{\left[b, b^{\prime}\right]}=0$.
Proof is similar to claim 5 .
We now begin the main body of proof. Define

$$
\begin{array}{rll}
l_{A}: A \rightarrow A & \text { by } & \delta_{A}(a):=\phi_{\boldsymbol{a}}, \\
l_{B}: B \rightarrow B & \text { by } & l_{B}(b):=\psi_{\boldsymbol{b}}, \\
h_{A}: A \rightarrow Z_{B}\left(B^{*}\right) & \text { by } & h_{A}(a):=\psi_{\boldsymbol{a}}, \\
h_{B}: B \rightarrow Z_{A}\left(A^{*}\right) & \text { by } & h_{B}(b):=\phi_{\boldsymbol{b}}, \\
& \text { and } & \\
m_{0} \in M^{*} & \text { by } & m_{0}:=\varphi_{\boldsymbol{p}} .
\end{array}
$$

Claims $\mathbf{1}$ to $\mathbf{6}$, show that (3.1) is valid. Let δ is a \mathfrak{T}-module map. For every $\left[\begin{array}{ll}\alpha & \\ & \alpha\end{array}\right] \in \mathfrak{T}$ and $\left[\begin{array}{cc}a & m \\ & b\end{array}\right] \in \mathcal{T}$, we have

$$
\left[\begin{array}{cc}
\alpha & \tag{3.2}\\
& \alpha
\end{array}\right] \delta\left(\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]\right)=\delta\left(\left[\begin{array}{cc}
\alpha & \\
& \alpha
\end{array}\right]\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]\right)
$$

Now by (3.1) and replacing 0 instead of b and m in (3.2), we get

$$
\left[\begin{array}{cc}
\alpha l_{A}(a) & \left(\alpha m_{0}\right)(a) \\
& \alpha h_{A}(a)
\end{array}\right]=\left[\begin{array}{cc}
l_{A}(\alpha a) & m_{0}(\alpha a) \\
& h_{A}(\alpha a)
\end{array}\right] .
$$

that shows, l_{A} and h_{A} are \mathfrak{A}-module map. Similarly, by (3.1) and replacing 0 instead of a and m in (3.2), we can show that l_{B} and h_{B} are \mathfrak{A}-module maps.

Conversely, let l_{A}, l_{B}, h_{A} and h_{B} are \mathfrak{A}-module maps. Let $\omega=\left[\begin{array}{ll}\alpha & \\ & \alpha\end{array}\right] \in \mathfrak{T}$ and $t=\left[\begin{array}{cc}a & m \\ & b\end{array}\right] \in \mathcal{T}$, since M is a commutative \mathfrak{A}-bimodule, by reusing (3.1) we have

$$
\begin{aligned}
\delta(\omega t) & =\left[\begin{array}{cc}
l_{A}(\alpha a)+h_{B}(\alpha b)-\alpha m m_{0} & m_{0}(\alpha a)-\alpha b m_{0} \\
& l_{B}(\alpha b)+h_{A}(\alpha a)+m_{0}(\alpha m)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\alpha l_{A}(a)+\alpha h_{B}(b)-\alpha m m_{0} & \left(\alpha m_{0}\right)(a)-\alpha b m_{0} \\
& \alpha l_{B}(b)+\alpha h_{A}(a)+\left(\alpha m_{0}\right)(m)
\end{array}\right] \\
& =\left[\begin{array}{ll}
\alpha & \\
& \alpha
\end{array}\right]\left[\begin{array}{cc}
l_{A}(a)+h_{B}(b)-m m_{0} & m_{0} a-b m_{0} \\
& l_{B}(b)+h_{A}(a)+m_{0} m
\end{array}\right] \\
& =\left[\begin{array}{ll}
\alpha & \\
& \alpha
\end{array}\right] \delta\left(\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]\right) \\
& =\omega \delta(t),
\end{aligned}
$$

that shows, δ is a \mathfrak{T}-module map and the proof is complete.
By remark 1.3, a special form of the previous proposition is as follows, which we omit to prove

Proposition 3.2. A map $\delta: \mathcal{T} \longrightarrow \mathcal{T}^{*}$ is a Lie derivation if and only if δ is of the form

$$
\delta\left(\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]\right)=\left[\begin{array}{cc}
l_{A}(a)+h_{B}(b)-m m_{0} & m_{0} a-b m_{0} \\
& l_{B}(b)+h_{A}(a)+m_{0} m
\end{array}\right],
$$

where $m_{0} \in M^{*}, l_{A}: A \longrightarrow A^{*}$ and $l_{B}: B \longrightarrow B^{*}$ are Lie derivations, $h_{A}: A \longrightarrow Z_{B}\left(B^{*}\right)$ and $h_{B}: B \longrightarrow Z_{A}\left(A^{*}\right)$ are linear maps vanishing on each commutator.

Theorem 3.3. Let $\delta: \mathcal{T} \longrightarrow \mathcal{T}^{*}$ be a (T-module) Lie derivation as above. Then, δ is standard if and only if both $l_{A}: A \longrightarrow A^{*}$ and $l_{B}: B \longrightarrow B^{*}$ are standard.

Proof. We provide the proof in the general state (module state). Suppose \mathfrak{T}-module Lie derivation $\delta: \mathcal{T} \rightarrow \mathcal{T}^{*}$ is standard, written as $d+\tau$, where $d: \mathcal{T} \rightarrow \mathcal{T}^{*}$ is an \mathfrak{T}-module derivation and $\tau: \mathcal{T} \rightarrow Z_{\mathcal{T}}\left(\mathcal{T}^{*}\right)$ is an \mathfrak{T}-module map vanishing on each commutator. According to [7, Lemma 1.1], there exist \mathfrak{A}-module derivations $l_{A}^{\prime}: A \rightarrow A^{*}$ and $l_{B}^{\prime}: B \rightarrow B^{*}$ and an element $\gamma \in M^{*}$ such that

$$
d\left(\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]\right)=\left[\begin{array}{cc}
l_{A}^{\prime}(a)-m \gamma & \gamma a-b \gamma \\
& l_{B}^{\prime}(b)+\gamma m
\end{array}\right] .
$$

It is easy to show that $\gamma=m_{0}$. Now we have,

$$
\begin{aligned}
\tau\left(\left[\begin{array}{ll}
a & 0 \\
& 0
\end{array}\right]\right) & =\delta\left(\left[\begin{array}{ll}
a & 0 \\
& 0
\end{array}\right]\right)-d\left(\left[\begin{array}{ll}
a & 0 \\
& 0
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
\left(l_{A}-l_{A}^{\prime}\right)(a) & 0 \\
h_{A}(a)
\end{array}\right]
\end{aligned}
$$

So we observe that,

$$
\left[\begin{array}{cc}
\left(l_{A}-l_{A}^{\prime}\right)(a) & 0 \\
& h_{A}(a)
\end{array}\right] \in Z_{\mathcal{T}}\left(\mathcal{T}^{*}\right)=\left[\begin{array}{cc}
Z_{A}\left(A^{*}\right) & \\
& Z_{B}\left(B^{*}\right)
\end{array}\right] .
$$

This means that, $\left(l_{A}-l_{A}^{\prime}\right)(a) \in Z_{A}\left(A^{*}\right)$. We now define maps $\tau_{A}: A \rightarrow Z_{A}\left(A^{*}\right)$ by $\tau_{A}(a)=\left(l_{A}-l_{A}^{\prime}\right)(a)$. Since l_{A} and l_{A}^{\prime} are \mathfrak{A}-module Lie derivations, τ_{A} is an \mathfrak{A}-module (Lie derivation) map such that

$$
\begin{aligned}
\tau_{A}\left(\left[a, a^{\prime}\right]\right) & =\left[\tau_{A}(a), a^{\prime}\right]+\left[a, \tau_{A}\left(a^{\prime}\right)\right] \\
& =\tau_{A}(a) a^{\prime}-a^{\prime} \tau_{A}(a)+a \tau_{A}\left(a^{\prime}\right)-\tau_{A}\left(a^{\prime}\right) a \\
& =\tau_{A}(a) a^{\prime}-\tau_{A}(a) a^{\prime}+\tau_{A}\left(a^{\prime}\right) a-\tau_{A}\left(a^{\prime}\right) a \\
& =0
\end{aligned}
$$

where the third equation holds because of $\tau_{A}(A) \subseteq Z_{A}\left(A^{*}\right)$. This means that τ_{A} is vanishing on each commutator. Therefore, the decomposition of $l_{A}=l_{A}^{\prime}+\tau_{A}$ requires all the conditions to be standard. Similarly we can show that, l_{B} is standard.

Conversely, suppose $\delta: \mathcal{T} \rightarrow \mathcal{T}^{*}$ is a \mathfrak{T}-module Lie derivation of the form (3.1) and l_{A} and l_{B} are standard, that is, $l_{A}=l_{A}^{\prime}+\tau_{A}$ and $l_{B}=l_{B}^{\prime}+\tau_{B}$, which $l_{A}^{\prime}: A \rightarrow A^{*}$ and $l_{B}^{\prime}: B \rightarrow B^{*}$ are \mathfrak{A}-module Lie derivations and $\tau_{A}: A \rightarrow Z_{A}\left(A^{*}\right)$ and $\tau_{B}: B \rightarrow Z_{B}\left(B^{*}\right)$ are \mathfrak{A}-module maps vanishing at commutators. According to [7, Lemma 1.1], the mapping $d: \mathcal{T} \rightarrow \mathcal{T}^{*}$ defined by

$$
d\left(\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]\right):=\left[\begin{array}{cc}
l_{A}^{\prime}(a)-m m_{0} & m_{0} a-b m_{0} \\
& l_{B}^{\prime}(b)+m_{0} m
\end{array}\right],
$$

is \mathfrak{T}-module derivation. Now define the map $\tau: \mathcal{T} \rightarrow Z_{\mathcal{T}}\left(\mathcal{T}^{*}\right)$ by

$$
\tau\left(\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]\right):=\left[\begin{array}{cc}
h_{B}(b)+\tau_{A}(a) & 0 \\
& h_{A}(a)+\tau_{B}(b)
\end{array}\right] .
$$

Clearly, $\delta=d+\tau$ and τ is a \mathfrak{T}-module map, because h_{A}, h_{B}, τ_{A}, and τ_{B} are \mathfrak{A}-module maps. Now to complete the proof it suffices to show that τ is vanishing at commutators. Assuming

$$
t=\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right], t=\left[\begin{array}{cc}
a^{\prime} & m^{\prime} \\
& b^{\prime}
\end{array}\right] \in \mathcal{T}
$$

we have

$$
\begin{aligned}
\tau\left(\left[t, t^{\prime}\right]\right) & =\tau\left(\left[\begin{array}{cc}
{\left[a, a^{\prime}\right]} & a m^{\prime}+m b^{\prime}-a^{\prime} m-m^{\prime} b \\
{\left[b, b^{\prime}\right]} &
\end{array}\right]\right. \\
& =\left[\begin{array}{cc}
h_{B}\left(\left[b, b^{\prime}\right]\right)+\tau_{A}\left(\left[a, a^{\prime}\right]\right) & h_{A}\left(\left[a, a^{\prime}\right]\right)+\tau\left(\left[b, b^{\prime}\right]\right)
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0 \\
0
\end{array}\right] .
\end{aligned}
$$

Therefore, δ is standard.
Finally, as a direct consequence of Proposition 3.1 and Theorem 3.3, the following theorem is obtained

Theorem 3.4. Every (T-module) Lie derivation on \mathcal{T} is standard if and only if every (\mathfrak{A}-module) Lie derivation on corner algebras A and B is standard.

Remark 3.5. The authors of this paper speculate that the results of this paper are also correct for the case where A and B has a bounded approximate identity.

Acknowledgments

The authors sincerely thank the anonymous referee for his/her careful reading, constructive comments and fruitful suggestions to improve the quality of this paper.

References

1. M. Amini, Module amenability for semigroup algebras, Semigroup Forum, 69 (2004), 243-254.
2. M. Amini and D. E. Bagha, Weak module amenability for semigroup algebras, Semigroup Forum, 71 (2005), 18-26.
3. W. Cheung, Lie derivations of triangular algebras, Linear Multilinear Algebra, 51(3) (2003), 299-310.
4. B. E. Forrest and L. W. Marcoux, Derivation of triangular Banach algebras, Indiana University Mathematics Society, 45 (1996), 441-462.
5. B. E. Forrest and L. W. Marcoux, Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc., 354 (2002), 1435-1452.
6. E. Nasrabadi, Weak module amenability of triangular Banach algebras II, Math. Slovaca, 69(2) (2019), 425-432.
7. A. Pourabbas and E. Nasrabadi, Weak module amenability of triangular Banach algebras, Math. Slovaca, 61 (2011), 949-958.

Mohammad Reza Miri
Department of Mathematics, University of Birjand, P.O. Box 9717434765 , Birjand, Iran.
Email: mrmiri@birjand.ac.ir

Ebrahim Nasrabadi

Department of Mathematics, University of Birjand, P.O. Box 9717434765 , Birjand, Iran.
Email: nasrabadi@birjand.ac.ir

Ali Reza Ghorchizadeh

Department of Mathematics, University of Birjand, P.O. Box 9717434765 , Birjand, Iran.
Email: alireza.ghorchizadeh@birjand.ac.ir

Journal of Algebraic Systems

THE STRUCTURE OF MODULE LIE DERIVATIONS ON TRIANGULAR BANACH ALGEBRAS

M. R. MIRI, E. NASRABADI AND A. R. GHORCHIZADEH
ساختار اشتقاقهاى لى مدولى روى جبرهاى مثلثى باناخ

محمد رضا ميرى' ، ابراهيم نصرآبادى「 و عليرضا قورجی زادهr
r,r, r, گروه رياضى، دانشگاه بيرجند، بيرجند، ايران

در اين مقاله، ما مفهوم اشتقاقهاى لى مدولى روى جبرهاى باناخ را معرفى مىكينيم. همجنين، اشتقاقهاى لى مدولى از جبر مثلثى باناخ يكاني,
隹 $d: \mathcal{T} \rightarrow \mathcal{T}^{*}$ كه روى جابجاكرها صفر مىشود اگر و تنها اگر اين اتفاق براى هركدام از جبرهاى كوشهاى A و B ر رخ

كلمات كليدى: جبر مثلثى باناخ، اشتقاق لى مدولى، اشتقاق لى استاندارد.

