Journal of Algebraic Systems

Vol. 11, No. 1, (2023), pp 37-43

ACENTRALIZERS OF GROUPS OF ORDER p^{3}

Z. MOZAFAR AND B. TAERI*

Abstract

Suppose that G is a finite group. The acentralizer $C_{G}(\alpha)$ of an automorphism α of G, is defined as the subgroup of fixed points of α, that is $C_{G}(\alpha)=\{g \in G \mid \alpha(g)=g\}$. In this paper we determine the acentralizers of groups of order p^{3}, where p is a prime number.

1. Introduction

Our notation is standard and taken mainly from [4]. In particular \mathbb{Z}_{n}, D_{n} and Q_{n} denote the cyclic group of integers modulo n, the dihedral group of order $2 n$ and the dicyclic group of order $4 n$, respectively. Let G be a group. The group of automorphisms of G is denoted by $\operatorname{Aut}(G)$. The symbol $G=K \rtimes H$ indicates that G is a split extension (semidirect product) of a normal subgroup K of G by a complement H. If $\alpha \in \operatorname{Aut}(G)$, then the acentralizer of α in G which is defined as

$$
C_{G}(\alpha)=\{g \in G \mid \alpha(g)=g\}
$$

is a subgroup of G. In particular if $\alpha=\tau_{a}$ is the inner automorphism of G induced by $a \in G$, then $C_{G}\left(\tau_{a}\right)=C_{G}(a)$ is the centralizer of a in G. We denote the set of acentralizers of G by $\operatorname{Acent}(G)$, that is

$$
\operatorname{Acent}(G)=\left\{C_{G}(\alpha) \mid \alpha \in \operatorname{Aut}(G)\right\}
$$

The group G is called n-acentralizer, if $|\operatorname{Acent}(G)|=n$.
Note that since the acentralizer of identity automorphism is G,

[^0]$G \in \operatorname{Acent}(G)$. It is obvious that G is 1-acentralizer if and only if $|G| \leq 2$. Nasrabadi and Gholamian [3] characterized the n-acentralizer groups, $n \in\{2,3,4,5\}$. Seifizadeh et al. [5] characterized n-acentralizer groups, where $n \in\{6,7,8\}$, and obtained a lower bound on the number of acentralizer subgroups for p-groups, where p is a prime number. They showed that if $p \neq 2$, then there is no n-acentralizer p-group, where $n \in\{6,7\}$. Moreover, if $p=2$, then there is no 6 -acentralizer p-group. In [2] we showed that if G is a finite abelian p-group of rank 2 , where p is an odd prime, then the number of acentralizers of G is equal to the number of subgroups of G. Also we obtained acentralizers of infinite two-generator abelian groups.

In this paper we compute the acentraizers of finite groups of order p^{3}, where p is a prime number.

2. Main Results

In this section we find the number of acentralizers of groups order p^{3}, where p is a prime number. From the fundamental theorem of abelian groups we know that there are three non-isomorphic abelian groups of order p^{3}, namely $\mathbb{Z}_{p^{3}}, \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}$ and $\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. The acentralizers of such groups are determined in [2]. In fact,

$$
\left|\operatorname{Acent}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)\right|=p^{8}-p^{5}+1,
$$

and if p is an odd prime number, then $\left|\operatorname{Acent}\left(\mathbb{Z}_{p^{3}}\right)\right|=4$ and

$$
\mid \text { Acent }\left(\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}\right) \mid=2 p+4
$$

Also, $\left|\operatorname{Acent}\left(\mathbb{Z}_{8}\right)\right|=3$ and $\left|\operatorname{Acent}\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right)\right|=5$.
Thus we must consider non-abelian groups of order p^{3}. It is well-known that there are exactly two non-isomorphic non-abelian groups of order p^{3}, where p is an odd prime (see page 178 of [1] or pages 59-64 of [6]):

$$
\begin{aligned}
G_{1} & :=\left\langle a, b \mid a^{p^{2}}=b^{p}=1, b a=a^{p+1} b\right\rangle \cong \mathbb{Z}_{p^{2}} \rtimes \mathbb{Z}_{p} \\
G_{2} & :=\left\langle a, b, c \mid a^{p}=1, b^{p}=1, c^{p}=1, b a=a b, c a=a b c, c b=b c\right\rangle \\
& \cong\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right) \rtimes \mathbb{Z}_{p} .
\end{aligned}
$$

Also D_{4} and Q_{2} are non-isomorphic 2-groups of order 2^{3}. It easy to see that $\left|\operatorname{Acent}\left(D_{4}\right)\right|=\left|\operatorname{Acent}\left(Q_{2}\right)\right|=5$ (see for example, Theorem 3.6 of [3]).

First we find the acentralizers of G_{1}. Elementary calculations show that in G_{1}, for all integers x, y, n, with $1 \leq x \leq p^{2}-1$ and $1 \leq y \leq p-1$, we have

$$
b^{y} a^{x}=a^{x+x y p} b^{y}, \quad\left(a^{x} b^{y}\right)^{n}=a^{n x+\frac{n(n-1)}{2} x y p} b^{n y}
$$

Lemma 2.1. (see pages $62-64$ of [6]) Non-trivial subgroups of G_{1} are $\left\langle a^{p}, b\right\rangle,\langle b\rangle,\left\langle a^{p} b^{l}\right\rangle,\left\langle a b^{l}\right\rangle$, where $0 \leq l \leq p-1$. In particular G_{1} has $2 p+4$ subgroups. The subgroups of order p are $\langle b\rangle,\left\langle a^{p} b^{l}\right\rangle$, where $0 \leq l \leq p-1$. The cyclic subgroups of order p^{2} are $\left\langle a b^{l}\right\rangle$, where $0 \leq l \leq p-1$. Also $\left\langle a^{p}, b\right\rangle$ is the unique elementary abelian subgroup of order p^{2}.
Theorem 2.2. (see pages 25-29 of [6]) We have $\left|\operatorname{Aut}\left(G_{1}\right)\right|=p^{3}(p-1)$, in fact

$$
\operatorname{Aut}\left(G_{1}\right)=\left\{\varphi_{i, j, m} \mid i \in \mathbb{Z}_{p^{2}}, i \not \equiv 0 \quad(\bmod p), \quad j, m \in \mathbb{Z}_{p}\right\}
$$

where

$$
\begin{equation*}
\varphi_{i, j, m}\left(a^{x} b^{y}\right)=a^{x i+\frac{x(x-1)}{2} i j p+y p m} b^{x j+y} \tag{2.1}
\end{equation*}
$$

for all $0 \leq x \leq p^{2}-1$ and $0 \leq y \leq p-1$.
Lemma 2.3. The identity subgroup is not an acentralizer for any automorphism of G_{1}.

Proof. Suppose, contrary that, there exists an automorphism $\varphi_{i, j, m}$ of G_{1} such that $C_{G_{1}}\left(\varphi_{i, j, m}\right)=\{1\}$. Thus $\varphi_{i, j, m}$ fixes only the identity element. If p divides $i-1$, then since $a^{p^{2}}=b^{p}=1$, from (2.1) we have

$$
\varphi_{i, j, m}\left(a^{p}\right)=a^{p i+\frac{p(p-1)}{2} i j p} b^{p j}=a^{p i}\left(a^{p^{2}}\right)^{\frac{(p-1) i j}{2}}=a^{p},
$$

which is a contradiction. Now if p does not divide $i-1$, then the equation $(i-1) x \equiv-m(\bmod p)$ has a solution (see for example Proposition 4 on page 10 of [1]). Thus there exists $0<k<p-1$ such that $p \mid k(i-1)+m$. But since

$$
\varphi_{i, j, m}\left(a^{k p} b\right)=a^{k p i+\frac{k p(k p-1)}{2} i j p+m p} b^{k p j+1}=a^{k p} b a^{p(k(i-1)+m)} \neq a^{k p} b,
$$

we see that $p \nmid k(i-1)+m$, which is a contradiction. Thus the identity subgroup cannot be an acentralizer.

Theorem 2.4. Every non-identity subgroup of

$$
G=G_{1}:=\left\langle a, b \mid a^{p^{2}}=b^{p}=1, b a=a^{p+1} b\right\rangle
$$

is an acentralizer of an automorphism of G. In particular,

$$
|\operatorname{Acent}(G)|=2 p+3
$$

Proof. In what follows we use (2.1) frequently without explicit reference. For any non-identity subgroup H of G we find an automorphism $\varphi_{i, j, m}$ of G such that $H=C_{G}\left(\varphi_{i, j, m}\right)$. Recall that the integer i must be chosen so that $i \in \mathbb{Z}_{p^{2}}$ and $i \not \equiv 0(\bmod p)$, that is $i=k p+r$, for some integers k and r with $0 \leq k \leq p-1$ and $1 \leq r \leq p-1$.

Let $H:=\left\langle a^{p}, b\right\rangle$. We put $i=p+1$ and $j=m=0$. Then

$$
\varphi_{i, j, m}\left(a^{p}\right)=a^{p(p+1)}=a^{p}
$$

and $\varphi_{i, j, m}(b)=b$. Thus $H \leq C_{G}\left(\varphi_{i, j, m}\right)$. Now since $a^{p+1} b \in G-H$ and $\varphi_{i, j, m}\left(a^{p+1} b\right)=a^{(p+1)(p+1)} b \neq a^{p+1} b$, we see that $C_{G}\left(\varphi_{i, j, m}\right)$ is a proper subgroup of G. Since $|G|=p^{3}$ and $|H|=p^{2}$, it follows that $C_{G}\left(\varphi_{i, j, m}\right)=H$.

Let $H:=\left\langle a b^{l}\right\rangle$, where $0 \leq l \leq p-1$. Put $i=l p+1, j=0$ and $m=p-1$. Then $\varphi_{i, j, m}\left(a b^{l}\right)=a^{p l+1+l p(p-1)} b^{l}=a b^{l}$ and so $H \leq C_{G}\left(\varphi_{i, j, m}\right)$. Since $a^{p+1} b \in G-H$ and

$$
\varphi_{i, j, m}\left(a^{p+1} b\right)=a^{(p+1)(p l+1)+p(p-1)} b=a^{p l+1} b \neq a^{p+1} b,
$$

we see that $C_{G}\left(\varphi_{i, j, m}\right)$ is a proper subgroup of G. Since $|G|=p^{3}$ and $|H|=p^{2}$, it follows that $C_{G}\left(\varphi_{i, j, m}\right)=H$.

Let $H:=\langle b\rangle$. Then $\varphi_{2,0,0}(b)=b$. Since $\varphi_{2,0,0}\left(a^{w} b^{t}\right)=a^{2 w} b^{t} \neq a^{w} b^{t}$ $(0 \leq w, t \leq p-1,(w, t) \neq(0,1))$, we have $C_{G}\left(\varphi_{i, 0,0}\right)=\langle b\rangle$.

Now let $H:=\left\langle a^{p} b^{l}\right\rangle$, where $0 \leq l \leq p-1$. First suppose that $l=0$. If we put $i=p+1$ and $j=m=1$, then have

$$
\varphi_{i, j, m}\left(a^{p}\right)=a^{p(p+1)+\frac{p^{2}(p-1)}{2}(p+1)} b^{p}=a^{p} .
$$

Thus $H=\left\langle a^{p}\right\rangle \leq C_{G}\left(\varphi_{i, j, m}\right)$. We see that $\varphi_{i, j, m}(b)=a^{p} b \neq b$ and $\varphi_{i, j, m}\left(a b^{t}\right)=a^{(p+1)+t p} b^{1+t} \neq a b^{t}$, for all $0 \leq t \leq p-1$. Since $b, a b^{t} \in G-H$, for all $0 \leq t \leq p-1$, it follows that $C_{G}\left(\varphi_{i, j, m}\right)$ is not of order p^{2} and so $C_{G}\left(\varphi_{i, j, m}\right)=H$. Now suppose that $1 \leq l \leq p-1$. Let $i=2, j=1$ and $m \neq 0$ such that $l m \equiv-1(\bmod p)($ such m exists by Proposition 4 on page 10 of [1]). Then

$$
\varphi_{i, j, m}\left(a^{p} b^{l}\right)=a^{p(2+l m)+(p-1) p^{2}} b^{l+p}=a^{p} b^{l}
$$

and therefore $H=\left\langle a^{p} b^{l}\right\rangle \leq C_{G}\left(\varphi_{i, j, m}\right)$. We see that

$$
\varphi_{i, j, m}\left(a^{p}\right)=a^{2 p+(p-1) p^{2}} b^{p} \neq a^{p}, \varphi_{i, j, m}(b)=a^{m p} b \neq b
$$

and $\varphi_{i, j, m}\left(a b^{t}\right)=a^{2+t m p} b^{1+t} \neq a b^{t}$, for all $0 \leq t \leq p-1$. Since $a^{p}, b, a b^{t} \in G-H$, for all $0 \leq t \leq p-1$, it follows that

$$
C_{G}\left(\varphi_{i, j, m}\right)=\left\langle a^{p} b^{l}\right\rangle .
$$

Thus we showed that every non-identity subgroup is the acentralizer of an automorphism of G, and therefore $|\operatorname{Acent}(G)|=2 p+3$.

Now we obtain the acentralizers of G_{2}. Elementary calculations show that, for all integers x, y, z, n, where $1 \leq x, y, z \leq p-1$, we have

$$
c^{z} a^{x}=a^{x} b^{x z} c^{z}, \quad\left(a^{x} c^{z}\right)^{n}=a^{n x} b^{x z \frac{n(n-1)}{2}} c^{n z} .
$$

Lemma 2.5. (pages 59-62 of [6]) Non-trivial subgroups of G_{2} are $\langle a, b\rangle$, $\left\langle b, a^{u} c\right\rangle,\langle b\rangle,\left\langle a b^{v}\right\rangle,\left\langle a^{u} b^{v} c\right\rangle$, where $0 \leq u, v \leq p-1$. In particular G_{2} has $p^{2}+2 p+4$ subgroups. The subgroups of order p are $\langle b\rangle,\left\langle a b^{v}\right\rangle$, $\left\langle a^{u} b^{v} c\right\rangle$, where $0 \leq u, v \leq p-1$. The elementary abelian subgroups of order p^{2} are $\langle a, b\rangle$ and $\left\langle b, a^{u} c\right\rangle$, where $0 \leq u \leq p-1$.

Theorem 2.6. (see pages 32-34 of [6]) We have

$$
\left|\operatorname{Aut}\left(G_{2}\right)\right|=p^{3}\left(p^{2}-1\right)(p-1)
$$

so that,

$$
\begin{aligned}
\operatorname{Aut}\left(G_{2}\right)= & \left\{\varphi_{(i, j, k), m,(q, r, s)} \mid i, j, k, m, q, r, s \in \mathbb{Z}_{p},\right. \\
& m \not \equiv 0 \quad(\bmod p), \quad m \equiv s i-k q \quad(\bmod p)\}
\end{aligned}
$$

where, for all $0 \leq x, y, z \leq p-1$,

$$
\begin{equation*}
\varphi_{(i, j, k), m,(q, r, s)}\left(a^{x} b^{y} c^{z}\right)=a^{i x+q z} b^{x j+y m+z r+k q x z+\frac{x(x-1)}{2} k i+\frac{z(z-1)}{2} s q} c^{k x+s z} . \tag{2.2}
\end{equation*}
$$

Theorem 2.7. Every subgroup of

$$
G:=G_{2}=\left\langle a, b, c \mid a^{p}=1, b^{p}=1, c^{p}=1, b a=a b, c a=a b c, c b=b c\right\rangle
$$

is an acentralizer of an automorphism of G. In particular,

$$
|\operatorname{Acent}(G)|=p^{2}+2 p+4
$$

Proof. In what follows we use (2.2) frequently without explicit reference. For any subgroup H of G we find an automorphism $\varphi:=\varphi_{(i, j, k), m,(q, r, s)}$ of G such that $H=C_{G}(\varphi)$.

Let $H:=\langle a, b\rangle$. We put $i=m=s=q=1, j=k=r=0$. Then $\varphi(a)=a$ and $\varphi(b)=b$. Thus $H \leq C_{G}(\varphi)$. Since $a b c \in G-H$ and $\varphi(a b c)=a^{2} b c \neq a b c$, it follows that $C_{G}(\varphi)$ is a proper subgroup of G and so $C_{G}(\varphi)=H$.

Let $H:=\left\langle b, a^{u} c\right\rangle$, where $0 \leq u \leq p-1$. We put $i=j=m=s=1$, $k=q=0$ and $r=p-u$. Then we have $\varphi(b)=b$ and

$$
\varphi\left(a^{u} c\right)=a^{u} b^{u+r} c=a^{u} c .
$$

Thus $H \leq C_{G}(\varphi)$. Since $a \in G-H$ and $\varphi(a)=a b \neq a$, it follows that $C_{G}(\varphi)$ is a proper subgroup of G and so $C_{G}(\varphi)=H$.

Let $H:=\langle b\rangle$. We put $m=1, k=q=j=r=0$ and choose $s, i \in \mathbb{Z}_{p}-\{0,1\}$ such that $s i \equiv 1(\bmod p)$. Then we have $\varphi(b)=b$ and so $H \leq C_{G}(\varphi)$. Since

$$
\varphi\left(a^{w} b^{t}\right)=a^{i w} b^{t} \neq a^{w} b^{t}(0 \leq w, t \leq p-1,(w, t) \neq(0,1))
$$

and $\varphi\left(a^{w} b^{t} c\right)=a^{i w} b^{t} c^{s} \neq a^{w} b^{t} c(0 \leq w, t \leq p-1)$, it follows that H is not of order p^{2}. Hence $H=C_{G}(\varphi)$.

Now $H:=\left\langle a b^{v}\right\rangle$, where $0 \leq v \leq p-1$. We put $i=1, k=q=r=0$, $s=m=2$ and $j=p-v$. Then $\varphi\left(a b^{v}\right)=a b^{p+v}=a b^{v}$ and so $H \leq C_{G}(\varphi)$. Since

$$
\varphi\left(a^{u} b^{w}\right)=a^{u} b^{u(p-v)+2 w} \neq a^{u} b^{w}
$$

$(0 \leq u, w \leq p-1,(u, w) \neq(1, v),(u, w) \neq(0,0))$ and

$$
\varphi\left(a^{u} b^{w} c\right)=a^{u} b^{u(p-v)+2 w} c^{2} \neq a^{u} b^{w} c(0 \leq u, w \leq p-1)
$$

it follows that H is not of order p^{2}. Hence $H=C_{G}(\varphi)$.
Let $H:=\left\langle b^{v} c\right\rangle$, where $0 \leq v \leq p-1$. We put

$$
i=m=2, j=k=q=0, s=1
$$

and $r=p-v$. Then $\varphi\left(b^{v} c\right)=b^{p+v} c=b^{v} c$ and so $H \leq C_{G}(\varphi)$. Since

$$
\varphi\left(a^{u} b^{w}\right)=a^{2 u} b^{2 w} \neq a^{u} b^{w}(0 \leq u, w \leq p-1,(u, w) \neq(0,0))
$$

and

$$
\varphi\left(a^{u} b^{w} c\right)=a^{2 u} b^{p-v+2 w} c \neq a^{u} b^{w} c(0 \leq u, w \leq p-1,(u, w) \neq(0, v))
$$

it follows that $C_{G}(\varphi)$ is not of order p^{2}. Hence $H=C_{G}(\varphi)$.
Let $H:=\left\langle a^{u} c\right\rangle$, where $1 \leq u \leq p-1$. We put $i=m=2$, $k=j=r=0, s=1$ and $q=p-u$. Then $\varphi\left(a^{u} c\right)=a^{2 u+p-u} c=a^{u} c$ and so $H \leq C_{G}(\varphi)$. Since

$$
\varphi\left(a^{w} b^{v}\right)=a^{2 w} b^{2 v} \neq a^{w} b^{v}(0 \leq w, v \leq p-1,(w, v) \neq(0,0))
$$

and

$$
\varphi\left(a^{w} b^{v} c\right)=a^{p-u+2 w} b^{2 v} c \neq a^{w} b^{v} c(0 \leq u, w \leq p-1,(w, v) \neq(u, 0))
$$

it follows that $C_{G}(\varphi)$ is not of order p^{2}. Hence $H=C_{G}(\varphi)$.
Let $H:=\left\langle a^{u} b^{v} c\right\rangle$, where $1 \leq u, v \leq p-1$. We put $i=m=2, s=1$, $k=j=0, r=p-v$ and $q=p-u$. Then

$$
\varphi\left(a^{u} b^{v} c\right)=a^{2 u+(p-u)} b^{2 v+p-v} c=a^{u} b^{v} c
$$

and therefore $H \leq C_{G}(\varphi)$. Since

$$
\varphi\left(a^{w} b^{t}\right)=a^{2 w} b^{2 t} \neq a^{w} b^{t}(0 \leq w, t \leq p-1,(w, t) \neq(0,0))
$$

and $\varphi\left(a^{w} b^{t} c\right)=a^{p-u+2 w} b^{p+2 t-v} c \neq a^{w} b^{t} c(0 \leq w, t \leq p-1)$, it follows that $C_{G}(\varphi)$ is not of order p^{2}. Hence $H=C_{G}(\varphi)$.

Finally we consider the identity subgroup. We put

$$
m=s=i=q=2, k=1
$$

and $r=j=0$. Then $\varphi(1)=\varphi\left(a^{p}\right)=1$ and for every $1 \neq x \in G$, $\varphi(x) \neq x$. Thus $C_{G}(\varphi)=1$.

Therefore $|\operatorname{Acent}(G)|=p^{2}+2 p+4$.

Acknowledgments

The authors gratefully thank two anonymous referees for careful reading of the article and their invaluable comments.

References

1. D. Dummit and M. Foote, Abstract algebra, 3rd Edition-Wiley, United States of America, 2004.
2. Z. Mozafar and B. Taeri, Acentralizers of abelian groups of rank 2, Hacet. J. Math. Stat., 49 (2020), 273-281.
3. M. M. Nasrabadi and A. Gholamian, On finite n-acentralizers groups, Comm. Algebra, 43 (2015), 378-383.
4. D. J. S. Robinson, A course in the theory of groups, 2nd ed., New York: SpringerVerlag, 1996.
5. P. Seifizadeh, A. Gholamian, A. A. Farokhniaee and M. M. Nasrabadi, On the autocentralizer subgroups of finite p-groups, Turkish J. Math., 44 (2020), 1802-1812.
6. G. S. Ståhl, J. Laine, and G. Behm, On p-group of low power order, Bachelors thesis, KTH Royal Institute of Technology, 2010.

Zahra Mozafar

Department of Mathematical Sciences, Isfahan University of Technology, P. O. Box 84156-83111, Isfahan, Iran.
Email: z.mozafar@math.iut.ac.ir

Bijan Taeri

Department of Mathematical Sciences, Isfahan University of Technology, P. O. Box 84156-83111, Isfahan, Iran.
Email: b.taeri@iut.ac.ir

Journal of Algebraic Systems

ACENTRALIZERS OF GROUPS OF ORDER p^{3}

Z．MOZAFAR AND B．TAERI
$p^{〔}{ }^{〔}$ خودريختى－مركزسازهاى گروههاى مرتبا
زهرا مظفر＇و بيثن طائرى＇
「，「׳انشكده علوم رياضى، دانشگاه صنعتى اصفهان، اصفهان، ايران
 متشكل از نقاط ثابت α تعريف مىكنيه، يعنى خودريختى－مركزسازهاى گروههاى مرتبهى می كلمات كليدى：خودريختى، مركزساز، خودريختى－مركزساز، گروه متناهى．

[^0]: DOI: 10.22044/JAS.2022.11069.1547.
 MSC(2010): Primary: 20D45; Secondary: 20D25.
 Keywords: Automorphism; Centralizer; Acentralizer; Finite group. Received: 6 August 2021, Accepted: 24 June 2022.

 * Corresponding author.

