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ACENTRALIZERS OF GROUPS OF ORDER p3

Z. MOZAFAR AND B. TAERI∗

Abstract. Suppose that G is a finite group. The acentralizer
CG(α) of an automorphism α of G, is defined as the subgroup of
fixed points of α, that is CG(α) = {g ∈ G | α(g) = g}. In this
paper we determine the acentralizers of groups of order p3, where
p is a prime number.

1. Introduction

Our notation is standard and taken mainly from [4]. In particular Zn,
Dn and Qn denote the cyclic group of integers modulo n, the dihedral
group of order 2n and the dicyclic group of order 4n, respectively. Let
G be a group. The group of automorphisms of G is denoted by Aut(G).
The symbol G = K⋊H indicates that G is a split extension (semidirect
product) of a normal subgroup K of G by a complement H.
If α ∈ Aut(G), then the acentralizer of α in G which is defined as

CG(α) = {g ∈ G | α(g) = g}
is a subgroup of G. In particular if α = τa is the inner automorphism
of G induced by a ∈ G, then CG(τa) = CG(a) is the centralizer of a in
G. We denote the set of acentralizers of G by Acent(G), that is

Acent(G) = {CG(α) | α ∈ Aut(G)}.
The group G is called n-acentralizer, if |Acent(G)| = n.
Note that since the acentralizer of identity automorphism is G,
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G ∈ Acent(G). It is obvious that G is 1-acentralizer if and only if
|G| ≤ 2. Nasrabadi and Gholamian [3] characterized the n-acentralizer
groups, n ∈ {2, 3, 4, 5}. Seifizadeh et al. [5] characterized n-acentralizer
groups, where n ∈ {6, 7, 8}, and obtained a lower bound on the
number of acentralizer subgroups for p-groups, where p is a prime
number. They showed that if p ̸= 2, then there is no n-acentralizer
p-group, where n ∈ {6, 7}. Moreover, if p = 2, then there is no
6-acentralizer p-group. In [2] we showed that if G is a finite abelian
p-group of rank 2, where p is an odd prime, then the number of
acentralizers of G is equal to the number of subgroups of G. Also
we obtained acentralizers of infinite two-generator abelian groups.

In this paper we compute the acentraizers of finite groups of order
p3, where p is a prime number.

2. Main results

In this section we find the number of acentralizers of groups order p3,
where p is a prime number. From the fundamental theorem of abelian
groups we know that there are three non-isomorphic abelian groups of
order p3, namely Zp3 , Zp2 × Zp and Zp × Zp × Zp. The acentralizers of
such groups are determined in [2]. In fact,

|Acent(Zp × Zp × Zp)| = p8 − p5 + 1,
and if p is an odd prime number, then |Acent(Zp3)| = 4 and

|Acent(Zp2 × Zp)| = 2p+ 4.
Also, |Acent(Z8)| = 3 and |Acent(Z4 × Z2)| = 5.

Thus we must consider non-abelian groups of order p3. It is
well-known that there are exactly two non-isomorphic non-abelian
groups of order p3, where p is an odd prime (see page 178 of [1] or
pages 59-64 of [6]):

G1 := ⟨a, b | ap2 = bp = 1, ba = ap+1b⟩ ∼= Zp2 ⋊ Zp

G2 := ⟨a, b, c | ap = 1, bp = 1, cp = 1, ba = ab, ca = abc, cb = bc⟩
∼= (Zp × Zp)⋊ Zp.

Also D4 and Q2 are non-isomorphic 2-groups of order 23. It easy to see
that |Acent(D4)| = |Acent(Q2)| = 5 (see for example, Theorem 3.6 of
[3]).

First we find the acentralizers of G1. Elementary calculations show
that in G1, for all integers x, y, n, with 1 ≤ x ≤ p2−1 and 1 ≤ y ≤ p−1,
we have

byax = ax+xypby, (axby)n = anx+
n(n−1)

2
xypbny.
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Lemma 2.1. (see pages 62-64 of [6]) Non-trivial subgroups of G1 are
⟨ap, b⟩, ⟨b⟩, ⟨apbl⟩, ⟨abl⟩, where 0 ≤ l ≤ p−1. In particular G1 has 2p+4
subgroups. The subgroups of order p are ⟨b⟩, ⟨apbl⟩, where 0 ≤ l ≤ p−1.
The cyclic subgroups of order p2 are ⟨abl⟩, where 0 ≤ l ≤ p − 1. Also
⟨ap, b⟩ is the unique elementary abelian subgroup of order p2.
Theorem 2.2. (see pages 25-29 of [6]) We have |Aut(G1)| = p3(p−1),
in fact

Aut(G1) = {φi,j,m | i ∈ Zp2 , i ̸≡ 0 (mod p), j,m ∈ Zp},
where

φi,j,m(a
xby) = axi+

x(x−1)
2

ijp+ypmbxj+y (2.1)
for all 0 ≤ x ≤ p2 − 1 and 0 ≤ y ≤ p− 1.
Lemma 2.3. The identity subgroup is not an acentralizer for any
automorphism of G1.
Proof. Suppose, contrary that, there exists an automorphism φi,j,m of
G1 such that CG1(φi,j,m) = {1}. Thus φi,j,m fixes only the identity
element. If p divides i− 1, then since ap

2
= bp = 1, from (2.1) we have

φi,j,m(a
p) = api+

p(p−1)
2

ijpbpj = api
(
ap

2) (p−1)ij
2 = ap,

which is a contradiction. Now if p does not divide i − 1, then the
equation (i − 1)x ≡ −m (mod p) has a solution (see for example
Proposition 4 on page 10 of [1]). Thus there exists 0 < k < p − 1
such that p | k(i− 1) +m. But since

φi,j,m(a
kpb) = akpi+

kp(kp−1)
2

ijp+mpbkpj+1 = akpbap(k(i−1)+m) ̸= akpb,

we see that p ∤ k(i−1)+m, which is a contradiction. Thus the identity
subgroup cannot be an acentralizer. □
Theorem 2.4. Every non-identity subgroup of

G = G1 := ⟨a, b | ap2 = bp = 1, ba = ap+1b⟩
is an acentralizer of an automorphism of G. In particular,

|Acent(G)| = 2p+ 3.
Proof. In what follows we use (2.1) frequently without explicit
reference. For any non-identity subgroup H of G we find an
automorphism φi,j,m of G such that H = CG(φi,j,m). Recall that the
integer i must be chosen so that i ∈ Zp2 and i ̸≡ 0 (mod p), that
is i = kp + r, for some integers k and r with 0 ≤ k ≤ p − 1 and
1 ≤ r ≤ p− 1.

Let H := ⟨ap, b⟩. We put i = p+ 1 and j = m = 0. Then
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φi,j,m(a
p) = ap(p+1) = ap

and φi,j,m(b) = b. Thus H ≤ CG(φi,j,m). Now since ap+1b ∈ G − H
and φi,j,m(a

p+1b) = a(p+1)(p+1)b ̸= ap+1b, we see that CG(φi,j,m) is a
proper subgroup of G. Since |G| = p3 and |H| = p2, it follows that
CG(φi,j,m) = H.

Let H := ⟨abl⟩, where 0 ≤ l ≤ p − 1. Put i = lp + 1, j = 0 and
m = p − 1. Then φi,j,m(ab

l) = apl+1+lp(p−1)bl = abl and so
H ≤ CG(φi,j,m). Since ap+1b ∈ G−H and

φi,j,m(a
p+1b) = a(p+1)(pl+1)+p(p−1)b = apl+1b ̸= ap+1b,

we see that CG(φi,j,m) is a proper subgroup of G. Since |G| = p3 and
|H| = p2, it follows that CG(φi,j,m) = H.

Let H := ⟨b⟩. Then φ2,0,0(b) = b. Since φ2,0,0(a
wbt) = a2wbt ̸= awbt

(0 ≤ w, t ≤ p− 1, (w, t) ̸= (0, 1)), we have CG(φi,0,0) = ⟨b⟩.
Now let H := ⟨apbl⟩, where 0 ≤ l ≤ p− 1. First suppose that l = 0.

If we put i = p+ 1 and j = m = 1, then have

φi,j,m(a
p) = ap(p+1)+

p2(p−1)
2

(p+1)bp = ap.

Thus H = ⟨ap⟩ ≤ CG(φi,j,m). We see that φi,j,m(b) = apb ≠ b
and φi,j,m(ab

t) = a(p+1)+tpb1+t ̸= abt, for all 0 ≤ t ≤ p − 1. Since
b, abt ∈ G−H, for all 0 ≤ t ≤ p− 1, it follows that CG(φi,j,m) is not of
order p2 and so CG(φi,j,m) = H. Now suppose that 1 ≤ l ≤ p− 1. Let
i = 2, j = 1 and m ̸= 0 such that lm ≡ −1 (mod p) (such m exists by
Proposition 4 on page 10 of [1]). Then

φi,j,m(a
pbl) = ap(2+lm)+(p−1)p2bl+p = apbl

and therefore H = ⟨apbl⟩ ≤ CG(φi,j,m). We see that

φi,j,m(a
p) = a2p+(p−1)p2bp ̸= ap, φi,j,m(b) = ampb ̸= b

and φi,j,m(ab
t) = a2+tmpb1+t ̸= abt, for all 0 ≤ t ≤ p − 1. Since

ap, b, abt ∈ G−H, for all 0 ≤ t ≤ p− 1, it follows that

CG(φi,j,m) = ⟨apbl⟩.

Thus we showed that every non-identity subgroup is the acentralizer
of an automorphism of G, and therefore |Acent(G)| = 2p+ 3. □

Now we obtain the acentralizers of G2. Elementary calculations show
that, for all integers x, y, z, n, where 1 ≤ x, y, z ≤ p− 1, we have

czax = axbxzcz, (axcz)n = anxbxz
n(n−1)

2 cnz.
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Lemma 2.5. (pages 59-62 of [6]) Non-trivial subgroups of G2 are ⟨a, b⟩,
⟨b, auc⟩, ⟨b⟩, ⟨abv⟩, ⟨aubvc⟩, where 0 ≤ u, v ≤ p − 1. In particular G2

has p2 + 2p + 4 subgroups. The subgroups of order p are ⟨b⟩, ⟨abv⟩,
⟨aubvc⟩, where 0 ≤ u, v ≤ p− 1. The elementary abelian subgroups of
order p2 are ⟨a, b⟩ and ⟨b, auc⟩, where 0 ≤ u ≤ p− 1.

Theorem 2.6. (see pages 32-34 of [6]) We have
|Aut(G2)| = p3(p2 − 1)(p− 1)

so that,

Aut(G2) = {φ(i,j,k),m,(q,r,s) | i, j, k,m, q, r, s ∈ Zp,

m ̸≡ 0 (mod p), m ≡ si− kq (mod p)}

where, for all 0 ≤ x, y, z ≤ p− 1,

φ(i,j,k),m,(q,r,s)(a
xbycz) = aix+qzbxj+ym+zr+kqxz+

x(x−1)
2

ki+
z(z−1)

2
sqckx+sz.

(2.2)

Theorem 2.7. Every subgroup of
G := G2 = ⟨a, b, c | ap = 1, bp = 1, cp = 1, ba = ab, ca = abc, cb = bc⟩

is an acentralizer of an automorphism of G. In particular,
|Acent(G)| = p2 + 2p+ 4.

Proof. In what follows we use (2.2) frequently without explicit
reference. For any subgroup H of G we find an automorphism
φ := φ(i,j,k),m,(q,r,s) of G such that H = CG(φ).

Let H := ⟨a, b⟩. We put i = m = s = q = 1, j = k = r = 0. Then
φ(a) = a and φ(b) = b. Thus H ≤ CG(φ). Since abc ∈ G − H and
φ(abc) = a2bc ̸= abc, it follows that CG(φ) is a proper subgroup of G
and so CG(φ) = H.

Let H := ⟨b, auc⟩, where 0 ≤ u ≤ p− 1. We put i = j = m = s = 1,
k = q = 0 and r = p− u. Then we have φ(b) = b and

φ(auc) = aubu+rc = auc.

Thus H ≤ CG(φ). Since a ∈ G−H and φ(a) = ab ̸= a, it follows that
CG(φ) is a proper subgroup of G and so CG(φ) = H.

Let H := ⟨b⟩. We put m = 1, k = q = j = r = 0 and choose
s, i ∈ Zp − {0, 1} such that si ≡ 1 (mod p). Then we have φ(b) = b
and so H ≤ CG(φ). Since

φ(awbt) = aiwbt ̸= awbt (0 ≤ w, t ≤ p− 1, (w, t) ̸= (0, 1))
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and φ(awbtc) = aiwbtcs ̸= awbtc (0 ≤ w, t ≤ p− 1), it follows that H is
not of order p2. Hence H = CG(φ).

Now H := ⟨abv⟩, where 0 ≤ v ≤ p− 1. We put i = 1, k = q = r = 0,
s = m = 2 and j = p − v. Then φ(abv) = abp+v = abv and so
H ≤ CG(φ). Since

φ(aubw) = aubu(p−v)+2w ̸= aubw

(0 ≤ u,w ≤ p− 1, (u,w) ̸= (1, v), (u,w) ̸= (0, 0)) and
φ(aubwc) = aubu(p−v)+2wc2 ̸= aubwc (0 ≤ u,w ≤ p− 1),

it follows that H is not of order p2. Hence H = CG(φ).
Let H := ⟨bvc⟩, where 0 ≤ v ≤ p− 1. We put

i = m = 2, j = k = q = 0, s = 1

and r = p− v. Then φ(bvc) = bp+vc = bvc and so H ≤ CG(φ). Since
φ(aubw) = a2ub2w ̸= aubw (0 ≤ u,w ≤ p− 1, (u,w) ̸= (0, 0))

and
φ(aubwc) = a2ubp−v+2wc ̸= aubwc (0 ≤ u,w ≤ p− 1, (u,w) ̸= (0, v)),

it follows that CG(φ) is not of order p2. Hence H = CG(φ).
Let H := ⟨auc⟩, where 1 ≤ u ≤ p − 1. We put i = m = 2,

k = j = r = 0, s = 1 and q = p − u. Then φ(auc) = a2u+p−uc = auc
and so H ≤ CG(φ). Since

φ(awbv) = a2wb2v ̸= awbv (0 ≤ w, v ≤ p− 1, (w, v) ̸= (0, 0))
and
φ(awbvc) = ap−u+2wb2vc ̸= awbvc (0 ≤ u,w ≤ p− 1, (w, v) ≠ (u, 0)),

it follows that CG(φ) is not of order p2. Hence H = CG(φ).
Let H := ⟨aubvc⟩, where 1 ≤ u, v ≤ p− 1. We put i = m = 2, s = 1,

k = j = 0, r = p− v and q = p− u. Then
φ(aubvc) = a2u+(p−u)b2v+p−vc = aubvc

and therefore H ≤ CG(φ). Since
φ(awbt) = a2wb2t ̸= awbt (0 ≤ w, t ≤ p− 1, (w, t) ̸= (0, 0))

and φ(awbtc) = ap−u+2wbp+2t−vc ̸= awbtc (0 ≤ w, t ≤ p − 1), it follows
that CG(φ) is not of order p2. Hence H = CG(φ).

Finally we consider the identity subgroup. We put
m = s = i = q = 2, k = 1
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and r = j = 0. Then φ(1) = φ(ap) = 1 and for every 1 ̸= x ∈ G,
φ(x) ̸= x. Thus CG(φ) = 1.

Therefore |Acent(G)| = p2 + 2p+ 4. □
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p٣ مرتبه گروه های خودریختی-مرکزسازهای

طائری٢ بیژن و مظفر١ زهرا

ایران اصفهان، اصفهان، صنعتی دانشگاه ریاضی، علوم ١,٢دانشکده

زیرگروه برابر را G از α خودریختی یک خودریختی-مرکزساز باشد. متناهی گروه یک G کنید فرض
مقاله این در .CG(α) = {g ∈ G | α(g) = g} یعنی می کنیم، تعریف α ثابت نقاط از متشکل

می کنیم. محاسبه را است، اول عدد یک p آن در که ،p٣ مرتبه ی گروه های خودریختی-مرکزسازهای

متناهی. گروه خودریختی-مرکزساز، مرکزساز، خودریختی، کلیدی: کلمات
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