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LOCATION OF SOLID BURST WITHIN TWO
ADJACENT SUB-BLOCKS

P. KUMAR DAS

Abstract. The paper studies the existence of linear codes that
locate solid burst errors, which may be confined to one sub-block
or spread over two adjacent sub-blocks. An example of such a
code is also given. Comparisons on the number of parity check
digits required for such linear codes with solid burst detecting and
correcting codes are also provided.

1. Introduction

In coding theory, once it is known that a particular type of error
occurs in a communication channel, codes are constructed taking care
of the specific type of error only rather than general type of error by
default. This will save the time and improve the efficiency of the sys-
tem. It is found that in certain memory systems (e.g. some spacecraft
memories and supercomputer storage systems [2, 7]), the most com-
mon error is solid burst error, i.e., an error in consecutive bits that
are stored physically adjacent in the memory. A solid burst may be
defined as follows:

Definition 1.1. A solid burst of length b is a vector with nonzero
entries in some b consecutive positions and zero elsewhere.

Detection and correction of solid burst was studied in [3]. In [4],
location of solid burst occurring within a single sub-block was
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studied. The concept of location of errors was introduced by Wolf
and Elspas [10] where code is divided into smaller sub-blocks and
identification of corrupted sub-block is possible. Such codes are
referred to as Error-Locating codes (EL-codes). In [4], Das considered
the situation when solid burst is confined to one sub-block only. As
solid burst may start anywhere, it may not be confined to one sub-block
only, but may extend to the next adjacent sub-block. In the case of
recorded data on a continuous surface, defects or dust particles produce
solid bursts, which may affect two adjacent sub-blocks. This motivates
us to work on solid bursts affecting two adjacent sub-blocks. Similar
work in this direction for burst error can be found in [5]. However, in
semiconductor memory, the data are stored in RAM chips, and a data
fragment (called a byte) is stored in each chip which are separated and
independent. In such memory, the presence of error or fault in a chip
does not extend to the adjacent chips [6].

Consider a linear code whose length n = mt is subdivided into m
mutually exclusive sub-blocks of length t. Let

ASBb −EL code : Linear code locating solid bursts of length up to
b (≤ t), which may spread over two adjacent sub-blocks.

Ei : Set of all solid bursts which are confined within the ith sub-block.
Ej,j+1 : Set of all solid bursts which are spread over adjacent j and

j + 1 sub-blocks.
H : Parity check matrix of an ASBb − EL code.

For an (n = mt, n−r)ASBb−EL code, the following three conditions
need to be satisfied.

(1) eHT ̸= 0 for all e ∈ Ei ∪ Ej,j+1 for any i, j.
(2) e1H

T ̸= e2H
T for any e1 ∈ Ei (Ei,i+1), e2 ∈ Ej (Ej,j+1); i ̸= j.

(3) e1H
T ̸= e2H

T for any e1 ∈ Ei, e2 ∈ Ej,j+1.

Note that for b = 1, solid burst can not spread over the adjacent
sub-block, so the ASBb − EL codes coincides with usual solid burst
locating codes [3]. Therefore, we consider b ≥ 2 for the ASBb − EL
codes.

The paper is organized in the following way. Section 1 is the intro-
duction, which gives the basic definition, background and importance
of the study. In Section 2, we give the necessary and sufficient con-
ditions for the existence of ASBb − EL code along with an example.
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In Section 3, we make comparisons among the number of parity check
digits of such EL-codes with solid burst detecting and correcting codes.

2. Conditions for ASBb − EL codes

In this section, we derive necessary and sufficient conditions required
for the existence of an ASBb−EL code. Firstly, we give the necessary
condition. The proof is based on the technique used in Theorem 4.13,
Peterson and Weldon [8].

Theorem 2.1. For an (n = mt, n− r) ASBb − EL code over GF (q),
the number of check digits r required is at least

loqq
[
m(b+ 1)

]
for q = 2

loqq

[
1 +m(q − 1)

b−1∑
i=0

(⌊q − 1

2

⌋)i
+ (m− 1)

b∑
j=2

(⌊q − 1

2

⌋)j]
for q ̸= 2,

where ⌊y⌋ means the greatest integer less than or equal to y.

Proof. We proceed for the proof by counting the total number of syn-
dromes according to Condition (1)− (3) and comparing with the max-
imum number of possible syndromes qr.

For binary case:
Let X be the set of all vectors whose all the first i (i ≤ b) positions

of one sub-block are the nonzero element of the field and the rest are
zero. From Condition (1), we deduce that the elements of X should be
in different cosets due to Condition (1). Again from Condition (2), the
syndromes produced by solid bursts lying in different single sub-block
must be distinct. As the number of elements of X is b and there are
m sub-blocks, so the number of distinct syndromes, excluding the all
zero syndrome, is mb.

Again let Y be the set consisting of the vector such that the
last component of the first sub-block and the first component of the
second sub-block of any two adjacent sub-blocks are the nonzero
element of the field and the rest are zero. Then applying Condition (1)-
(2), the syndrome produced by the element of Y should be nonzero and
syndromes produced by solid bursts lying in different adjacent sub-
blocks must be distinct. Since there is one element in Y and m−1 two
adjacent sub-blocks, the number of distinct syndromes resulting from
two adjacent sub-blocks is m− 1.

Further, from Condition (3), syndromes produced by the vectors of
X and Y should be distinct. Therefore, the total number of distinct
syndromes of solid bursts (whether confined to one sub-block or spread
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over two adjacent sub-blocks) for the ASBb − EL code, excluding the
zero syndrome, is

mb+m− 1.

Hence, we must have

qr ≥ 1 +mb+m− 1 = m(b+ 1). (2.1)

For non-binary case:

Let us consider X to be a set of all those vectors such that the first
position of the initial b consecutive components of any one sub-block is
any nonzero field element and its immediately following i consecutive
components (0 ≤ i ≤ b − 1) are any nonzero element belonging to
{1, 2, . . . , ⌊ q−1

2
⌋} and zero elsewhere.

In this case by Condition (1)-(2), the elements of X would be in
different cosets and the nonzero distinct syndromes produced by the

elements of X is (q − 1)
b−1∑
i=0

(⌊q − 1

2

⌋)i

corresponding to vectors in

any single sub-block. As there are m sub-blocks in all, the number of
distinct syndromes, excluding the zero syndrome, is at least

m(q − 1)
b−1∑
i=0

(⌊q − 1

2

⌋)i

.

Again let Y be the set of those vectors such that the last position
of the first sub-block and the first i consecutive components of the
second sub-block of any two adjacent sub-blocks (1 ≤ i ≤ b − 1) are
any nonzero element belonging to {1, 2, . . . , ⌊ q−1

2
⌋} and zero elsewhere.

Like previous cases applying Condition (1)-(2), the number of dis-
tinct syndromes resulting from the elements of Y , excluding the zeros
syndrome, is given by

(m− 1)
b∑

j=2

(⌊q − 1

2

⌋)j

.

Then by Condition (3), the total number of distinct syndromes of
solid bursts (whether confined to single sub-block or spread over two
adjacent sub-blocks) for the ASBb − EL code is

m(q − 1)
b−1∑
i=0

(⌊q − 1

2

⌋)i

+ (m− 1)
b∑

j=2

(⌊q − 1

2

⌋)j

.
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Therefore, we must have

qr ≥ 1 +m(q − 1)
b−1∑
i=0

(⌊q − 1

2

⌋)i

+ (m− 1)
b∑

j=2

(⌊q − 1

2

⌋)j

. (2.2)

This completes the theorem. □

Remark 2.2. It is worth noticing that the result obtained in Theorem
2.1 is free from t, the length of the sub-block. Thus the bound obtained
in Theorem 2.1 remains valid for all t, so long as b ≤ t and n = mt.

In the following result, a sufficient condition required for the
existence of an ASBb − EL code is derived. The proof is based on
the technique used to establish Varshamov-Gilbert-Sacks bound by
constructing a parity check matrix for such a code (refer Sacks [9], also
Theorem 4.17, Peterson and Weldon [8]). This technique also gives a
method for construction of the code.

Theorem 2.3. For the existence of an (n = mt, n − r) ASBb − EL
code over GF (q), the number of check digits r required for the code is
given by

qr >
b−1∑
i=0

(q − 1)i
{
1 + (m− 1)t

b∑
j=1

(q − 1)j
}
.

Proof. We shall prove the result by constructing an appropriate
(n − k) × n parity check matrix H for the desired code. Suppose
that the columns of the first m− 1 sub-blocks of H and the first t− 1
columns h(m−1)t+1, h(m−1)t+2, . . . , hn−1 of the mth sub-block have been
appropriately added. Now we lay down the conditions to add the col-
umn hn of the mth sub-block of the matrix H, satisfying Condition
(1)–(3):

According to Condition (1), the nth the column hn should not be a
linear sum of immediately preceding l − 1 columns, where l ≤ b. The
number of such columns that hn should not be equal to, including the
vector of all zeros, is (refer Das [3])

b−1∑
i=0

(q − 1)i. (2.3)

According to Condition (2), the syndrome resulting from any solid
burst of length up to b confined to a single sub-block or two adjacent
sub-blocks must be distinct from the syndrome resulting likewise from
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a solid burst of length up to b within any other single sub-block. In
this case, the column hn can not be equal to, is (refer Das [4])

b−1∑
i=0

(q − 1)i × (m− 1)
b∑

j=1

(t− j + 1)(q − 1)j. (2.4)

Further, according to Condition (3), the syndrome resulting from the
occurrence of any solid burst of length up to b confined to a single sub-
block or two adjacent sub-blocks must be distinct from the syndrome
resulting likewise from solid burst of length up to b confined to any
other two adjacent sub-blocks. In this case, hn should not be a linear
sum of immediately preceding l − 1 columns (l ≤ b), together with
any linear sums of b or less consecutive columns in any two previous
adjacent sub-blocks. Then, hn can be added provided that

hn ̸= (u1hn−1 + u2hn−2 + · · ·+ ul−2hn−l+2 + ul−1hn−l+1) (2.5)
+(vihi + vi+1hi+1 + · · ·+ vi+p−1hi+p−1)

where l, p ≤ b, ui ∈ GF (q) \ {0} and vi ∈ GF (q) are such that the
hi’s are any b or less consecutive columns spread over any two previous
adjacent sub-blocks.

The number of ways in which the coefficients ui’s of (2.5) can be
selected is given by (2.3) and the number of coefficients vi’s in two
adjacent sub-blocks, excluding the vector of all zeros, is given by

b∑
i=2

(q − 1)i +
b∑

i=3

(q − 1)i + · · ·+
b∑

i=b

(q − 1)i =
b∑

j=2

(j − 1)(q − 1)j . (2.6)

Since there are m− 1 adjacent sub-blocks, therefore number of vi’s is

(m− 1)
b∑

j=2

(j − 1)(q − 1)j. (2.7)

So, the number of linear combinations on R.H.S. of (2.5) is
b−1∑
i=0

(q − 1)i(m− 1)
b∑

j=2

(j − 1)(q − 1)j. (2.8)

Thus for detection and location of solid burst of length up to b, the
number of nonzero columns that hn can not be equal to is

Expr.(2.3) + Expr.(2.4) + Expr.(2.8)
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i.e.
b−1∑
i=0

(q − 1)i +

b−1∑
i=0

(q − 1)i(m− 1)

b∑
j=1

(t− j + 1)(q − 1)j

+

b−1∑
i=0

(q − 1)i(m− 1)

b∑
j=2

(j − 1)(q − 1)j

=

b−1∑
i=0

(q − 1)i
{
1 + (m− 1)

[ b∑
j=1

(t− j + 1)(q − 1)j +

b∑
j=2

(j − 1)(q − 1)j
]}

=

b−1∑
i=0

(q − 1)i
{
1 + (m− 1)t

b∑
j=1

(q − 1)j
}
.

Thus, for the required code, hn can not be this many combinations.
Therefore, hn can be added to the mth sub-block of H provided that

qr >

b−1∑
i=0

(q − 1)i
{
1 + (m− 1)t

b∑
j=1

(q − 1)j
}
.

This completes the theorem. □
Example 2.4. Consider a (16, 10) binary code with the 6× 16 matrix
H by taking m = 4, t = 4, b = 2, q = 2 in Theorem 2.3.

H =


1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1


The above code can locate any solid burst of length up to 2. It can be
verified from Error Pattern-Syndrome Table 1 that all the syndromes
of solid bursts of length up to 2, whether confined to one sub-block or
two adjacent sub-blocks are nonzero and distinct.

Table 1: Error Pattern-Syndrome

Error Patterns Syndromes Error Patterns Syndromes
1st sub-block 3rd sub-block

1000 0000 0000 0000 100000 0000 0000 1000 0000 000010
0100 0000 0000 0000 010000 0000 0000 0100 0000 000001
0010 0000 0000 0000 100000 0000 0000 0010 0000 000010
0001 0000 0000 0000 010000 0000 0000 0001 0000 000001
1100 0000 0000 0000 110000 0000 0000 1100 0000 000011
0110 0000 0000 0000 110000 0000 0000 0110 0000 000011

Contd...
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Table 1 – Error Pattern-Syndrome
Error Patterns Syndromes Error Patterns Syndromes

0011 0000 0000 0000 110000 0000 0000 0011 0000 000011
2nd sub-block 4rd sub-block

0000 1000 0000 0000 001000 0000 0000 0000 1000 101000
0000 0100 0000 0000 000100 0000 0000 0000 0100 010100
0000 0010 0000 0000 001000 0000 0000 0000 0010 001010
0000 0001 0000 0000 000100 0000 0000 0000 0001 000101
0000 1100 0000 0000 001100 0000 0000 0000 1100 111100
0000 0110 0000 0000 001100 0000 0000 0000 0110 011110
0000 0011 0000 0000 001100 0000 0000 0000 0011 001111
1st and 2nd sub-blocks 2st and 3rd sub-blocks
0001 1000 0000 0000 011000 0000 0001 1000 0000 000110
3st and 4nd sub-blocks
0000 0000 0001 1000 101001

3. Comparisons of information rates

In this section, we make comparisons between the necessary and
sufficient number of check digits required for ASBb − EL codes with
the solid burst detecting and correcting codes [3]. First, we give a
comparison among the necessary number of check digits required for a
code discussed in Theorem 1 [3], Theorem 2.1 and Theorem 3 [3].

Table 1: Comparison of necessary number of check digits for solid burst
detecting, locating & correcting codes for q = 3

m t b n r r r
Theorem 1 [3] Theorem 2.1 Theorem 3 [3]

2 6 3 12 2 3 5
3 6 3 18 2 3 5
4 6 3 24 2 4 6
5 6 3 30 2 4 6
6 6 3 36 2 4 6
7 6 3 42 2 4 6
8 6 3 48 2 4 6
9 6 3 54 2 4 7
10 6 3 60 2 4 7
11 6 3 66 2 5 7
12 6 3 72 2 5 7
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Figure 1: Comparison of necessary number of check digits for solid burst
detecting, locating & correcting codes for q = 3
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It is evident from Table 1 and Figure 1 that the necessary number of
check digits required for an ASBb−EL code lie between the necessary
number of check digits required for solid burst detecting and correcting
linear codes.

Now, we give the comparison on the sufficient number of check
digits required for a code discussed in Theorem 2 [3], Theorem 2.3
and Theorem 4 [3].

Table 2: Comparison of sufficient number of check digits for solid burst
detecting, locating & correcting codes for q = 3

m t b n r r r
Theorem 2 [3] Theorem 2.3 Theorem 4 [3]

2 6 3 12 2 6 8
3 6 3 18 2 7 9
4 6 3 24 2 7 9
5 6 3 30 2 8 9
6 6 3 36 2 8 9
7 6 3 42 2 8 9
8 6 3 48 2 8 10
9 6 3 54 2 8 10
10 6 3 60 2 8 10
11 6 3 66 2 8 10
12 6 3 72 2 8 10
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Figure 2: Comparison of sufficient number of check digits for solid burst
detecting, locating & correcting codes for q = 3
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From Table 2 and Figure 2, we find that the sufficient number of
check digits required for an ASBb −EL code also lie between those of
solid burst detecting and correcting linear codes.

Conclusion

The paper obtains necessary and sufficient conditions for an ASBb−
EL code. It justifies that error location concept is a midway concept
between error detection and correction. As the information rate of
an ASBb − EL code is less than a solid burst correcting linear code,
the ASBb − EL codes will be more efficient if the location of error is
sufficient. This study may be extended to other types of errors as well.
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متصل بلاک زیر دو در کپه ای خطای مکان

داس کومار پانکاج

هند آسام، نپام، تزپور، دانشگاه ریاضی، علوم گروه

به مکان این می شود. مطالعه می کنند، مشخص را کپه ای خطای مکان که خطی کدهای وجود مقاله این در
مقایسه است. شده آورده نیز کدی چنین از نمونه ای است. شده محدود مجاور بلوک دو یا بلوک زیر یک
کپه ای خطای تصحیح و تشخیص کدهای با خطی کدهای چنین برای نیاز مورد توازن آزمون ارقام تعداد

است. شده ارائه نیز

EL-کد. خطا، الگوی کپه ای، خطای توازن، آزمون ماتریس کليد ی: کلمات
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