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ABSORBING PRIME MULTIPLICATION MODULES
OVER A PULLBACK RING

F. FARZALIPOUR AND P. GHIASVAND∗

Abstract. The main purpose of this article is to present a new
approach to the classification of all indecomposable absorbing
prime multiplication modules with finite-dimensional top
over pullback rings of two Dedekind domains. First, we give a
complete description of the absorbing prime multiplication
modules over a local Dedekind domain. In fact, we extend the
definition and results given in [9] to a more general absorbing
prime multiplication modules case. Next, we establish a connec-
tion between the absorbing prime multiplication modules and the
pure-injective modules over such rings.

1. Introduction

One of the aims of the modern representation theory is to solve
classification problems for subcategories of modules over a unitary ring
R. Unfortunately, for the vast majority of rings, the classification of
an arbitrary module is infeasible. For example, if R is a pullback
of two local Dedekind domains over a common factor field, then the
classification of all indecomposable pure-injective modules with
infinite-dimensional top over R/rad(R), for any module M over a ring
R we define its top as M/rad(R)M , is somewhat difficult. Why do
we consider pure-injective modules? Pure-injective modules are model-
theoretically typical: for example classification of the complete theories
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of R-modules reduces to classifying the (complete theories of) pure-
injective modules. Also, for some rings, “small” (finite-dimensional,
finitely generated, …) modules are classified and in many cases this
classification can be extended to give a classification of (indecompos-
able) pure-injective modules. Indeed, there is sometimes a strong
connection between infinitely generated pure-injective modules and
some subclasses of finitely generated modules. Therefore, pure-injective
modules are very important (see [12], [18] and [19]). One point of this
paper is to introduce a subclass of pure-injective modules.

In the present article, we introduce a new class of R-modules, called
absorbing prime multiplication modules (see Definition 2.5), and we
study it in detail from the classification problem point of view. We
are mainly interested in case either R is a Dedekind domain or R is
a pullback of two local Dedekind domains. First, we give a complete
description of the absorbing prime multiplication modules over a local
Dedekind domain. Let R be a pullback of two local Dedekind domains
over a common factor field. Next, the main purpose of this paper is
to give a complete description of the indecomposable absorbing prime
multiplication R-modules with finite-dimensional top over R/Rad(R).
In fact, we extend the definition and results given in [9] to a more
general absorbing prime multiplication modules case.

First, we describe all indecomposable separated absorbing prime
multiplication R-modules and then, using this list of separated
absorbing prime multiplication modules, we show that non-separated
indecomposable absorbing prime multiplication R-modules with finite-
dimensional top are factor modules of finite direct sums of separated
indecomposable absorbing prime multiplication R-modules. Then we
use the classification of separated indecomposable absorbing prime
multiplication modules from Section 3, together with results of Levy
[13] on the possibilities for amalgamating finitely generated separated
modules, to classify the non-separated indecomposable absorbing prime
multiplication modules M with finite-dimensional top (see Theorem
4.8). We will see that the non-separated modules may be represented
by certain amalgamation chains of separated indecomposable absorbing
prime multiplication modules (where infinite length absorbing prime
multiplication modules can occur only at the ends) and where
adjacency corresponds to amalgamation in the socles of these
separated absorbing prime multiplication modules.

For the sake of completeness, we state some definitions and notations
used throughout. In this article all rings are commutative with identity
and all modules unitary. Let v1 : R1 −→ R̄ and v2 : R2 −→ R̄ be
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homomorphisms of two local Dedekind domains Ri, i = 1, 2, onto a
common field R̄. Denote the pullback

R = {(r1, r2) ∈ R1 ⊕R2 : v1(r1) = v2(r2)}
by (R1

v1−→ R̄
v2←− R2). Then R is a ring under coordinate-wise

multiplication. Denote the kernel of vi, i = 1, 2, by Pi. Then
Ker(R −→ R̄) = P = P1 × P2, R/P ∼= R̄ ∼= R2/P2,

and P1P2 = P2P1 = 0 (so R is not a domain). Furthermore, for i ̸= j,
0 −→ Pi −→ R −→ Rj −→ 0

is an exact sequence of R-modules (see [14]). An R-module S is defined
to be separated if there exist Ri-modules Si, i = 1, 2, such that S is a
submodule of S1 ⊕ S2 (the latter is made into an R-module by setting
(r1, r2)(s1, s2) = (r1s1, r2s2)). Equivalently, S is separated if it is a
pullback of an R1-module and an R2-module and then, using the same
notation for pullbacks of modules as for rings,

S = (S/P2S −→ S/PS ←− S/P1S)

[14, Corollary 3.3] and S ⊆ (S/P2S) ⊕ (S/P1S). Also, S is separated
if and only if P1S ∩ P2S = 0 [14, Lemma 2.9].

If R is a pullback ring, then every R-module is an epimorphic
image of a separated R-module, indeed every R-module has a
“minimal” such representation: a separated representation of an R-
module M is an epimorphism φ : S −→ M of R-modules where S is
separated and, if φ admits a factorization φ : S

f−→ S ′ −→ M with
S ′ separated, then f is one-to-one. The module K = Ker(φ) is then
an R̄-module, since R̄ = R/P and PK = 0 [14, Proposition 2.3]. An
exact sequence 0 −→ K −→ S −→ M −→ 0 of R-modules with S
separated and K an R̄-module is a separated representation of M if
and only if PiS ∩ K = 0 for each i and K ⊆ PS [14, Proposition
2.3]. Every module M has a separated representation, which is unique
up to isomorphism [14, Theorem 2.8]. Moreover, R-homomorphisms
lift to a separated representation, preserving epimorphisms and
monomorphisms [14, Theorem 2.6].

Definition 1.1. (a) Let N be a submodule of an R-module M .
Then the ideal {r ∈ R : rM ⊆ N} is denoted by (N : M).
Moreover, (0 : M) is the annihilator of M .

(b) A proper submodule N of an R-module M is said to be primary
(resp., prime) if whenever rm ∈ N , for some r ∈ R, m ∈ M ,
then m ∈ N or rn ∈ (N : M) for some positive integer n
(resp., m ∈ N or r ∈ (N : M)), so Rad(N : M) = P (resp.,
(N : M) = P ′) is a prime ideal of R, and N is said to be a
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P -primary (resp., P ′-prime) submodule. The set of all primary
submodules (resp., prime submodules) in an R-module M is
denoted pSpec(M) (resp., Spec(M)).

(c) A proper submodule N of an R-module M is called 2-absorbing,
if for a, b ∈ R and m ∈M , abm ∈ N implies that ab ∈ (N : M)
or am ∈ N or bm ∈ N . So (N : M) is a 2-absorbing ideal of
R. The set of all 2-absorbing submodules in an R-module M is
denoted by 2− abSpec(M) (see [17]).

(d) A proper ideal I of a commutative ring R is said to be 1-
absorbing prime, if for all non-unit elements a, b, c ∈ R, abc ∈ I,
then ab ∈ I or c ∈ I [21].

(e) A proper submodule N of an R-module M is said to be 1-
absorbing prime, if for all non-unit elements a, b ∈ R and
m ∈ M , abm ∈ N , then m ∈ N or ab ∈ (N : M). The
set of all 1-absorbing prime submodules in an R-module M is
denoted by abpSpec(M).
An R-module M is called 1-absorbing prime, if its zero
submodule is a 1-absorbing prime submodule of M .

(f) An R-module M is defined to be a multiplication module if for
each submodule N of M , N = IM , for some ideal I of R. In
this case, we can take I = (N : M).

(g) An R-module M is defined to be a weak multiplication module if
Spec(M) = ∅ or for every prime submodule N of M , N = IM ,
for some ideal I of R (see [9]).

(h) An R-module M is defined to be a primary multiplication
module if pSpec(M) = ∅ or for every primary submodule N
of M , N = IM , for some ideal I of R [6].

(i) An R-module M is defined to be a 2-absorbing multiplica-
tion module if 2 − abSpec(M) = ∅ or for every 2-absorbing
submodule N of M , N = IM , for some ideal I of R (see [10]).

(j) An R-module M is defined to be a semiprime multiplication
module if for every semiprime submodule N of M , N = IM ,
for some ideal I of R (see [7]).

(k) A submodule N of an R-module M is called pure submodule, if
any finite system of equations over N which is solvable in M is
also solvable in N . A submodule N of an R-module M is called
relatively divisible (or an RD-submodule) in M if rN = N∩rM
for all r ∈ R (see [18, 19]).

(l) An exact sequence of R-modules 0 −→ A
α−→ B

β−→ C −→ 0
is pure exact, if the image of α is pure in B.
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(m) An R-module M is said to be injective relative to an exact
sequence 0 −→ A

α−→ B
β−→ C −→ 0 if for any homomorphism

f : A −→ M there exists a homomorphism g : B −→ M such
that g ◦ α = f .

(n) An R-module M is pure-injective if it has the injective property
relative to all pure exact sequences (see [18, 19]).

(o) An R-module M is called algebraically compact, if every finitely
solvable family of linear equations over R in M has a
simultaneous.

Remark 1.2. (i) An R-module is pure-injective if and only if it is
algebraically compact (see [20]).

(ii) Let R be a Dedekind domain, M an R-module and N a
submodule of M . Then N is pure in M if and only if
IN = N ∩ IM for each ideal I of R. Moreover, N is pure
in M if and only if N is an RD-submodule of M [19].

2. Absorbing prime multiplication modules over a local
Dedekind domain

The aim of this section is to classify absorbing prime multiplica-
tion modules over a local Dedekind domain. First, we collect basic
properties of absorbing prime multiplication modules.

Note that every prime submodule is a 1-absorbing prime
submodule and every 1-absorbing prime submodule is a 2-absorbing
prime submodule. But the converse of each of them does not
necessarily hold in general. See the following examples.
Example 2.1. (1-absorbing prime submodule that is not prime)
Consider Z4-module Z4[X] and the submodule N = ⟨X⟩. Thus N is
a 1-absorbing prime submodule, but N is not a prime submodule of
Z4[X].
Example 2.2. (2-absorbing submodule that is not 1-absorbing
prime) Consider Z-module Z30 and the cyclic submodule N = ⟨6⟩. It
is clear that N = ⟨6⟩ is a 2-absorbing submodule of Z30, but it is not
a 1-absorbing prime submodule of Z30. Indeed, 2 × 2 × 3 ∈ ⟨6⟩ but
4 ̸∈ (N : Z30) and 3 ̸∈ ⟨6⟩.
Proposition 2.3. Let M be an R-module. Then

(i) If N is a 1-absorbing prime submodule of M , then (N : M) is
a 1-absorbing prime ideal of R.

(ii) If N is a 1-absorbing prime submodule of M and I, J are ideals
of R and K is a submodule of M such that IJK ⊆ N , then
K ⊆ N or IJ ⊆ (N : M).
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(iii) Let K ⊂ N be submodules of M . Then N is a 1-absorbing
prime submodule of M if and only if N/K is a 1-absorbing
prime submodule of M/K.

(iv) If N is a 1-absorbing prime submodule of M , then M/N is a
1-absorbing prime R-module.

Proof. The proof is straightforward. □
Lemma 2.4. Let M be an R-module, N a 1-absorbing prime submodule
of M and I an ideal of R with I ⊂ (0 : M). Then N is a 1-absorbing
prime submodule of M as an R/I-module.
Proof. Let (a+I)(b+I)m ∈ N for some m ∈M and a+I, b+I ∈ R/I.
Then abm ∈ N , hence m ∈ N or ab ∈ (N : M) since N a 1-absorbing
prime submodule of M . Thus m ∈ N or ab+ I ∈ (N :R/I M). □
Definition 2.5. Let R be a commutative ring. An R-module M is said
to be an absorbing prime multiplication module, if abpSpec(M) = ∅ or
for every 1-absorbing prime submodule N of M , N = IM , for some
ideal I of R.

We have the class of 2-absorbing multiplication modules contains
the class of absorbing prime multiplication modules, and the class
of absorbing prime multiplication modules contains the class of weak
multiplication modules.
Lemma 2.6. Let M be an absorbing prime multiplication module over
a commutative ring R. Then the following hold:

(i) If I is an ideal of R and N is a non-zero R-submodule of M with
I ⊆ (N : M), then M/N is an absorbing prime multiplication
R/I-module.

(ii) If N is a submodule of M , then M/N is an absorbing prime
multiplication R-module.

(iii) Every direct summand of M is an absorbing prime multiplica-
tion module.

Proof. (i) Let K/N be a 1-absorbing prime submodule of M/N . Then
by Proposition 2.3, K is a 1-absorbing prime submodule of M , then
K = (K : M)M . An inspection will show that

K/N = (K/N :R/I M/N)M/N .
(ii) Take I = 0 in (i).
(iii) It follows from (ii). □

Lemma 2.7. Let R and R′ be commutative rings, f : R → R′ an
epimorphism and M an R′-module. Then the following hold:
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(i) If M is a 1-absorbing prime as an R-module, then M is
1-absorbing prime as an R′-module.

(ii) If N is a 1-absorbing prime R-submodule of M , then N is a
1-absorbing prime R′-submodule of M .

(iii) If M is an absorbing prime multiplication R′-module, then M
is an absorbing prime multiplication R-module.

Proof. (i) It is obvious.
(ii) Clearly, M/N is a 1-absorbing prime R-module, so M/N is a

1-absorbing prime R′-module by (i), hence N is a 1-absorbing prime
R′-submodule of M .

(iii) Let N be a 1-absorbing prime R-submodule of M . Then N
is a 1-absorbing prime R′-submodule of M by (ii), so N = I ′M for
some ideal I ′ of R′. Set I = f−1(I ′). Then I is an ideal of R and
f(I) = f(f−1(I ′)) = I ′ ∩ f(R) = I ′, hence IM = f(I)M = N . □
Proposition 2.8. Let R be a local Dedekind domain with unique
maximal ideal P = ⟨p⟩. Then

(i) E = E(R/P ), the injective hull of R/P , is an absorbing prime
multiplication R-module.

(ii) Q(R), the field of fractions of R, is an absorbing prime
multiplication R-module.

Proof. (i) By [3, Lemma 2.6], every non-zero proper submodule L of
E is of the form L = An = (0 :E P n) (n ≥ 1), L = An = Ran and
PAn+1 = An. However, no An is a 1-absorbing prime submodule of E,
for if n is a positive integer, then P 2An+2 = An, but An+2 ⊈ An and
P 2 ⊈ (An : E) = 0. Now we conclude that abpSpec(E) = ∅. Thus E is
an absorbing prime multiplication module.

(ii) Clearly, 0 is a 1-absorbing prime (prime) submodule of Q(R).
To show that 0 is the only 1-absorbing prime submodule of Q(R),
we assume the contrary and let N be a non-zero 1-absorbing prime
submodule of Q(R). Since N is a non-zero submodule, there exists
0/1 ̸= a/b, where a, b ∈ R, so that a/b ∈ N . Clearly, 1/ab ̸∈ N
(otherwise, ab/ab = 1/1 ∈ N , which is a contradiction). Now we
have a2(1/ab) ∈ N , but 1/ab ̸∈ N and a2 ̸∈ (N :R Q(R)) = 0.
Thus abpSpec(Q(R)) = {0}, and hence Q(R) is an absorbing prime
multiplication module. □
Proposition 2.9. Let M be an absorbing prime multiplication module
over an integral domain R (which is not a field). Then M is either
torsion or torsion-free.
Proof. Assume that T (M) is the torsion submodule of M , and let
T (M) ̸= M . Then T (M) is a prime submodule (so a 1-absorbing
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prime submodule) of M with (T (M) : M) = 0 by [16, Lemma 3.8]. It
follows that T (M) = (T (M) : M)M = 0. Thus M is a torsion-free
module and this completes the proof. □

Example 2.10. Let R be a domain and let Q(R) be the field of
fractions of R. By Proposition 2.8, the only 1-absorbing prime sub-
module of Q(R) is 0, hence Q(R) is an absorbing prime multiplication
module which is not a multiplication module, but we have the following
result:

Theorem 2.11. Let R be a local Dedekind domain with a unique
maximal ideal P = ⟨p⟩. Then the following is a complete list, up
to isomorphism, of the indecomposable absorbing prime multiplication
modules:

(i) R;
(ii) R/P n (n ≥ 1) the indecomposable torsion modules;
(iii) E(R/P ), the injective hull of R/P ;
(iv) Q(R), the field of fractions of R.

Proof. First, we note that each of the preceding modules is
indecomposable (by [2, Proposition 1.3]) and absorbing prime
multiplication module. Clearly, R and R/P n (n ≥ 1) are multi-
plication modules, so they are absorbing prime multiplication mod-
ules. Moreover, Q(R) and E(R/P ) are absorbing prime multiplication
modules by Proposition 2.8. Now let M be an indecomposable
absorbing prime multiplication module, and choose any non-zero
element a ∈ M . Let h(a) = sup{n | a ∈ P nM} (so h(a) is a non-
negative integer or ∞). Also, (0 : a) = {r ∈ R | ra = 0}, thus (0 : a)
is an ideal of the form P n or 0. Because (0 : a) = Pm+1 implies that
Pma ̸= 0 and P (Pma) = 0, we can choose a such that (0 : a) = P or
0. Now we consider the various possibilities for h(a) and (0 : a).

Case 1. abpSpec(M) = ∅. Since Spec(M) ⊆ abpSpec(M), it
follows from [15, Lemma 1.3, Proposition 1.4] that M is a torsion
divisible R-module with PM = M and M is not finitely generated.
We may assume that (0 : a) = P . By an argument like that in [3,
Proposition 2.7, Case 2(a)], M ∼= E(R/P ). So we may assume that
abpSpac(M) ̸= ∅.

Case 2. h(a) = n, (0 : a) = 0. Say a = pnb. Then rb = 0
implies ra = 0 and so r = 0. Thus Rb ∼= R. We also have that Rb
is pure in M (see [1, Theorem 2.12, Case 1]). As M is a torsion-free
R-module by Proposition 2.9, we must have Rb is a prime submodule
of M (see Remark 1.2) (so 1-absorbing prime submodule), hence by
the hypothesis R ∼= Rb = P tM for some t. Then there is an element
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m ∈ M such that b = ptm, whence a = pn+tm. Therefore, t = 0, and
R ∼= Rb = P 0M = RM = M .

Case 3. h(a) = n, (0 : a) = P . Say a = pnb. Then we have
Rb ∼= R/P n+1. Furthermore, Rb is pure in M . Now since Rb is a pure
submodule of bounded order of M , we obtain Rb is a direct summand
of M by [11, Theorem 5], hence M = Rb ∼= R/P n+1.

Case 4. h(a) = ∞, (0 : a) = P . By an argument like that in [3,
Proposition 2.7, Case 2(a)], we get M ∼= E(R/P ), hence
abpSpac(M) = ∅ by Proposition 2.8, which is a contradiction.

Case 5. h(a) = ∞, (0 : a) = 0. By an argument like that in [3,
Proposition 2.7, Case 2(b)], we obtain M ∼= Q(R). □
Corollary 2.12. Let R ̸= M be an absorbing prime multiplication
module over a local Dedekind domain with maximal ideal P . Then
M is of the form M = N ⊕ K, where N is a direct sum of copies
of R/P n (n ≥ 1) and K is a direct sum of copies of E(R/P ) and
Q(R). In particular, every absorbing prime multiplication R-module
not isomorphic with R is pure-injective.

Proof. Let Mi denote an indecomposable summand of M . Then by
Lemma 2.6(iii), Mi is an indecomposable absorbing prime
multiplication module. Now the assertion follows from Theorem 2.11
and [2, Proposition 1.3]. □

3. The separated absorbing prime multiplication modules

Throughout this section, we shall assume unless otherwise stated,
that

R = (R1
v1−→ R̄

v2←− R2) (1)
is the pullback of two local Dedekind domains R1, R2 with maximal
ideals P1, P2 generated, respectively, by p1, p2, P denotes P1 ⊕ P2 and

R1/P1
∼= R2/P2

∼= R/P ∼= R̄

is a field. In particular, R is a commutative Noetherian local ring with
unique maximal ideal P . The other prime ideals of R are easily seen
to be P1 (that is P1 ⊕ 0) and P2 (that is 0⊕ P2).

Remark 3.1. ([8, Remark 3.1]) Let R be the pullback ring as in (1) and
let T be an R-submodule of a separated module S = (S1

f1−→ S̄
f2←− S2),

with projection maps πi : S → Si, i = 1, 2. Set
T1 = {t1 ∈ S1 : (t1, t2) ∈ T for some t2 ∈ S2}

and
T2 = {t2 ∈ S2 : (t1, t2) ∈ T for some t1 ∈ S1}.
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Then for each i, i = 1, 2, Ti is an Ri-submodule of Si and T ≤ T1⊕T2.
Moreover, we can define a mapping π́1 = π1|T : T → T1 by sending
(t1, t2) to t1, hence

T1
∼= T/((0⊕Ker(f2)) ∩ T )
∼= T/(T ∩ P2S)
∼= (T + P2S)/P2S

⊆ S/P2S.

Thus we may assume that T1 is a submodule of S1. Similarly, we may
assume that T2 is a submodule of S2 (note that Ker(f1) = P1S1 and
Ker(f2) = P2S2).

We need the following proposition proved in [10, Proposition 3.2].

Proposition 3.2. Let T = (T1 −→ T̄ ←− T2) be a proper submodule
of a separated module S = (S1

f1−→ S̄
f2←− S2) over the pullback ring as

in (1). Then the following hold:
(i) Rad(T : S) = I ⊕ J if and only if Rad(T1 : S1) = I and

Rad(T2 : S2) = J , where I ̸= 0 and J ̸= 0.
(ii) Rad(T : S) = P1 ⊕ 0 if and only if Rad(T1 : S1) = P1 and

Rad(T2 : S2) = 0.
(iii) Rad(T : S) = 0 ⊕ P2 if and only if Rad(T1 : S1) = 0 and

Rad(T2 : S2) = P2.

Lemma 3.3. Let I be a 1-absorbing prime ideal of R. Then
Rad(I) = P is a prime ideal of R such that P 2 ⊆ I.

Proof. It follows from [21, Theorem 2.3 and Lemma 2.8]. □

Proposition 3.4. Let R be the pullback ring as in (1) and let

S = (S1
f1−→ S̄

f2←− S2)

be a separated R-module. Then the following hold:
(i) If S has a 1-absorbing prime submodule T = (T1 −→ T̄ ←− T2)

with Rad(T : S) = P = P1⊕P2 and P 2 ⊆ (T : S), then T1 is a 1-
absorbing prime submodule of S1 with Rad(T1 : S1) = P1 and T2

is a 1-absorbing prime submodule of S2 with Rad(T2 : S2) = P2.
(ii) If S has a 1-absorbing prime submodule T = (T1 −→ T̄ ←− T2)

with Rad(T : S) = P1⊕0 and (P1⊕0)2 ⊆ (T : S), then T1 is a 1-
absorbing prime submodule of S1 with Rad(T1 : S1) = P1 and T2

is a 1-absorbing prime submodule of S2 with Rad(T2 : S2) = 0.
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(iii) If S has a 1-absorbing prime submodule T = (T1 −→ T̄ ←− T2)
with Rad(T : S) = 0⊕P2 and (0⊕P2)

2 ⊆ (T : S), then T1 is a 1-
absorbing prime submodule of S1 with Rad(T1 : S1) = 0 and T2

is a 1-absorbing prime submodule of S2 with Rad(T2 : S2) = P2.

Proof. (i) Take non-unit elements a1, b1 ∈ R1 and s1 ∈ S1 such that
a1b1s1 ∈ T1. Then v1(a1) = v2(a2), v1(b1) = v2(b2) and f1(s1) = f2(s2)
for some a2, b2 ∈ R2 and s2 ∈ S2. Hence (a1, a2), (b1, b2) ∈ R are non-
unit elements. We have (a1, a2)(b1, b2)(s1, s2) ∈ P 2S ⊆ T . Since T is a
1-absorbing prime submodule of S, so (s1, s2) ∈ T or

(a1, a2)(b1, b2) ∈ (T :R S).
Thus s1 ∈ T1 or a1b1 ∈ (T1 : S1). Similarly, T2 is a 1-absorbing prime
submodule of S2.

(ii) Take non-unit elements a1, b1 ∈ R1 and s1 ∈ S1 such that
a1b1s1 ∈ T1. Since a1, b1 ∈ P1, so we have v1(a1) = 0 = v2(0),
v1(b1) = 0 = v2(0). Then (a1, 0), (b1, 0) ∈ R and there exist s2 ∈ S2

such that f1(s1) = f2(s2). Therefore
(a1, 0)(b1, 0)(s1, s2) ∈ (P1 ⊕ 0)2S ⊆ T

by hypothesise. So (a1, 0)(b1, 0(s1, s2) ∈ T and thus (s1, s2) ∈ T or
(a1, 0)(b1, 0) ∈ (T :R S). Hence s1 ∈ T1 or a1b1 ∈ (T1 :R1 S1).
Therefore, T1 is a 1-absorbing prime submodule of S1. Now we show
that T2 is a 1-absorbing prime submodule of S2. Take non-unit elements
a2, b2 ∈ R2 and s2 ∈ S2 such that a2b2s2 ∈ T2 and a2b2 ̸∈ (T2 : S2) = 0.
Thus there exists s1 ∈ S1 such that (s1, s2) ∈ S. Since p21s1 ∈ T1∩P1S1

(p1 ∈ P1 = (T1 : S1)), a2b2s2 ∈ T2 ∩ P2S2 (a2b2 ∈ P2) and
f1(p

2
1s1) = 0 = f2(a2b2s2),

we give (p1, a2)(p1, b2)(s1, s2) ∈ T . Hence (s1, s2) ∈ T , because T is a 1-
absorbing prime submodule of S. Hence s2 ∈ T2, so T2 is a 1-absorbing
prime submodule of S2.
(iii) It is similar to that (ii). □

Proposition 3.5. Let
S = (S/P2S = S1

f1−→ S̄ = S/PS
f2←− S2 = S/P1S)

be a separated module over the pullback ring as (1). Then
abpSpec(S) = ∅ if and only if abpSpec(Si) = ∅ for i = 1, 2.

Proof. For the necessarily, assume that abpSpec(S) = ∅ and let π be
the projection map of R onto Ri. Suppose that abpSpec(S1) ̸= ∅ and
let T1 be a 1-absorbing prime submodule of S1, so T1 is a 1-absorbing
prime R-submodule of S/(0 ⊕ P2)S ∼= S1, hence abpSpec(S) ̸= ∅ by
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Proposition 2.3, which is a contradiction. Similarly, abpSpec(S2) = ∅.
The sufficiency by Proposition 3.4. □

Theorem 3.6. Let
S = (S/P2S = S1

f1−→ S̄ = S/PS
f2←− S2 = S/P1S)

be a separated module over the pullback ring as (1). Then S is an
absorbing prime multiplication R-module if and only if Si is an
absorbing prime multiplication Ri-module, i = 1, 2.

Proof. By Proposition 3.5, abpSpec(S) = ∅ if and only if
abpSpec(Si) = ∅ for i = 1, 2. So we may assume that abpSpec(S) ̸= ∅.
Let S be a separated absorbing prime multiplication R-module. If
S̄ = 0, then by [2, Lemma 2.7], S = S1 ⊕ S2, hence for each i, Si is
an absorbing prime multiplication module by Lemma 2.6. So we may
assume that S̄ ̸= 0. Since (0⊕P2) ⊆ ((0⊕P2)S : S), Lemma 2.6, show

S1
∼= S/(0⊕ P2)S

is an absorbing prime multiplication R/(0 ⊕ P2) ∼= R1-module.
Similarly, S2 is an absorbing prime multiplication R2-module.
Conversely, assume that each Si is an absorbing prime multiplication
Ri-module and let T = (T1 → T̄ ← T2) be a 1-absorbing submodule
of S. We may assume that (T : S) ̸= 0. Now we split the proof into
two cases for Rad(T : S). Case 1. Rad(T : S) = P . Then Si ̸= 0
for i = 1, 2. By Proposition 3.4, we have T1 is a 1-absorbing prime
submodule of S1 and T2 is a 1-absorbing prime submodule of S2. Hence
T1 = Pm

1 S1 ⊆ P1S1 and T2 = P n
2 S2 ⊆ P1S1 since S1, S2 are absorbing

prime multiplication modules. Let k = min{m,n}. Therefore,

T ⊆ T1 ⊕ T2 ⊆ P k−1(P1S1 ⊕ P2S2) ⊆ P kS.

For the containment, assume that

s = (pk1, p
k
2)(s1, s2) = (pk1s1, p

k
2s2) ∈ P kS.

Then s ∈ T since pk1s1 ∈ T1, pk2s2 ∈ T2 and f1(p
k
1s1) = 0 = f2(p

k
2s2)

(note that Ker(f1) = P1S1 and Ker(f2) = P2S2).
Case 2. Rad(T : S) = P1 ⊕ 0. So by Proposition 3.4, T1 is a 1-

absorbing prime submodule of S1 with Rad(T1 : S1) = P1 and T2 is a 1-
absorbing prime submodule of S2 with (T2 : S2) = 0 (Rad(T2 : S2) = 0).
So T2 = 0 since S2 is an absorbing prime multiplication R2-module and
also, T1 = Pm

1 S1. Therefore,

T ⊆ T1 ⊕ T2 ⊆ (P1 ⊕ 0)m−1(P1S1 + P2S2) = (P1 ⊕ 0)mS.
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Now let s = (pm1 , 0)(s1, s2) ∈ (P1 ⊕ 0)mS, then s ∈ T since pm1 s1 ∈ T1

and f1(p
m
1 s1) = 0 = f2(0). Hence T = (P1⊕0)mS, so S is an absorbing

prime multiplication module. Similarly, if Rad(T : S) = 0 ⊕ P2, then
we get S is an absorbing prime multiplication module. □

We need the following lemma proved in [6, Lemma 4.3].

Lemma 3.7. Let R ̸= S = (S1
f1−→ S̄

f2←− S2) be a separated module
over the pullback ring as (1). If S1 or S2 is torsion-free, then S̄ = 0.

Lemma 3.8. Let R be the pullback ring as in (1). The following
separated R-modules are indecomposable and absorbing prime
multiplication modules:

(1) R = (R1 −→ R̄←− R2);
(2) S = (E(R1/P1) −→ 0 ←− 0), (0 −→ 0 ←− E(R2/P2)), where

E(Ri/Pi) is the Ri-injective hull of Ri/Pi for i = 1, 2;
(3) S = (Q(R1) −→ 0 ←− 0), (0 −→ 0 ←− Q(R2)), where Q(Ri)

is the field of fractions of Ri for i = 1, 2;
(4) R = (R1/P

n
1 −→ R̄←− R2/P

m
2 ) for all positive integers m,n.

Proof. By [2, Lemma 2.8], these modules are indecomposable, absorb-
ing prime multiplicativity follows from Theorem 2.11 and Theorem
3.6. □

We refer to modules of type (2) in Lemma 3.8 as P1-Prüfer and
P2-Prüfer, respectively.

Theorem 3.9. Let S = (S1
f1−→ S̄

f2←− S2) be an indecomposable
separated absorbing prime multiplication module over the pullback ring
as (1). Then S is isomorphic to one of the modules listed in Lemma
3.8. In particular, every indecomposable separated absorbing prime
multiplication R-module which is not isomorphism with R is pure-
injective.

Proof. We may assume that S ̸= R. If abpSpec(S) = ∅, then by
Proposition 3.5 abpSpec(Si) = ∅ for each i = 1, 2 . So Si = PiSi for
each i = 1, 2 by Theorem 2.11, hence

S = PS = P1S1 ⊕ P2S2 = S1 ⊕ S2.
Therefore, S = S1 or S2 and so S is of type (2) in the list of Lemma
3.8 by Theorem 2.11. Now we may assume that abpSpec(S) ̸= ∅.
Suppose that PS = S. Then by [2, Lemma 2.7], S = S1 or S2 and
so S is an indecomposable absorbing prime multiplication Ri-modules
for some i and since PS = S, then S is of type (3) in the list of
Lemma 3.8, by Theorem 2.11. So we may assume that S/PS ̸= 0. By
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Theorem 3.6, Si is an absorbing prime multiplication Ri-module, for
each i = 1, 2 . Now by Theorem 2.11, for each i, Si is torsion and it
is not divisible Ri-module. Hence by the structure of absorbing prime
multiplication modules over a local Dedekind domain (see Corollary
2.12), Si = Mi ⊕ Ni where Ni is a direct sum of copies of Ri/P

n
i

(n ≥ 1) and Mi is a direct sum of copies E(Ri/Pi) and Q(Ri). Then
we have

S = (N1 −→ S̄ ←− N2)⊕ (M1 −→ 0←− 0)⊕ (0 −→ 0←−M2).

Since S is indecomposable and S/PS ̸= 0 it follows that

S = (N1 −→ S̄ ←− N2).

We will see that each Si(= Ni) is indecomposable. There exist positive
integers m,n and k such that Pm

1 S1 = 0, t = (t1, t2) such that o(t) = n,
o(t1) = m and o(t2) = k. Then Riti is pure in Si for i = 1, 2 (see [2,
Theorem 2.9]). Therefore, R1t1 ∼= R1/P

m
1 (resp. R2t2 ∼= R2/P

k
2 ) is a

direct summand of S1 (resp. S2) since for each i, Riti is pure-injective
[2, Lemma 2.8]. Let M̄ be the R̄-subspace of S̄ generated by t̄. Then
M̄ ∼= R̄. Let M = (R1t1 = M1 −→ M̄ ←− M2 = R2t2). Then M
is an R-submodule of S which is an absorbing prime multiplication
module by Lemma 3.8, and it is a direct summand of S, this implies
that S = M , and S is as in (4) (see [2, Lemma 2.8]). □
Corollary 3.10. Let R be the pullback ring as in (1), and let S ̸= R
be a separated absorbing prime multiplication R-module. Then S is
of the form S = M ⊕ N , where M is a direct sum of copies of the
modules as in (3), N is a direct sum of copies of the modules as in
(1) − (2) of the Lemma 3.8. In particular, every separated absorbing
prime multiplication R-module not isomorphic with R is pure-injective.

Proof. Apply Theorem 3.9 and [2, Lemma 2.8]. □

4. The non-separated absorbing prime multiplication
modules

We continue to use the notions already established, so R is the
pullback ring as in (1). In this section, we find the indecompos-
able non-separated absorbing prime multiplication modules with finite-
dimensional top. It turns out that each can be obtained by amalgamat-
ing finitely many separated indecomposable absorbing prime
multiplication modules.

Proposition 4.1. Let R be the pullback ring as in (1). Then E(R/P )
is a non-separated absorbing prime multiplication R-module.
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Proof. It suffices to show that abpSpac(E(R/P )) = ∅. Assume that L is
any submodule of E(R/P ) described in [9, Proposition 3.1]. However,
no L, say E1 +An is a 1-absorbing prime submodule of E(R/P ), for if
n is any positive integer, then P 2(E1 + An+2) = E1 + An, but

(E1 + An+2) ⊈ E1 + An,

and P 2 ⊈ (E1 + An : E(R/P )) = 0. Therefore, E(R/P ) is a non-
separated absorbing prime multiplication R-module (see [2, p. 4053]).

□

Proposition 4.2. Let R be the pullback ring as in (1), and let M be
an R-module. Let

0 −→ K −→ S −→M −→ 0

be a separated representation of M . Then abpSpec(S) = ∅ if and only
if abpSpec(M) = ∅.

Proof. First suppose that abpSpec(S) = ∅ and let abpSpec(M) ̸= ∅.
So M ∼= S/K has a 1-absorbing prime submodule, say T/K, where T
is a 1-absorbing prime submodule of S by Proposition 2.3, which is a
contradiction. Next suppose that abpSpec(M) = ∅ and let
abpSpec(S) ̸= ∅. Let T be a 1-absorbing prime submodule of S. Then
by [5, Proposition 4.3], K ⊆ T ; hence T/K is a 1-absorbing prime
submodule of M , which is a contradiction. □

Theorem 4.3. Let R be the pullback ring as in (1), and let M be a non-
separated R-module. Let 0 −→ K −→ S −→ M −→ 0 be a separated
representation of M . Then S is an absorbing prime multiplication
module if and only if M is an absorbing prime multiplication module.

Proof. By Proposition 4.2, we may assume that abpSpec(S) ̸= ∅.
Suppose that M is an absorbing prime multiplication R-module and
let T be a non-zero 1-absorbing prime submodule of S. Then by [5,
Proposition 4.3], K ⊆ T and so T/K is a 1-absorbing prime submodule
of S/K. Since M ∼= S/K is an absorbing prime multiplication module,
we must have

T/K = P n(S/K) = (P nS +K)/K = (P nS)/K

(note that K ⊆ P nS by [5, Proposition 4.3]), hence T = P nS. Thus
S is an absorbing prime multiplication module. Conversely, if S is an
absorbing prime multiplication module, then M ∼= S/K is an
absorbing prime multiplication module by Lemma 2.6, and this
completes the proof. □
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Proposition 4.4. Let R be the pullback ring as in (1), and let M be an
indecomposable absorbing prime multiplication non-separated R-module
with finite dimensional top over R̄. Let 0 −→ K −→ S −→ M −→ 0
be a separated representation of M . Then S is pure-injective.

Proof. By [2, Proposition 2.6 (i)], S/PS ∼= M/PM , so S has finite-
dimensional top. Now the assertion follows from Theorem 4.3 and
Corollary 3.10. □

Lemma 4.5. Let R be the pullback ring as in (1), and let M be an
indecomposable absorbing prime multiplication non-separated R-module
with finite dimensional top over R̄, and let 0 −→ K −→ S −→M −→ 0
be a separated representation of M . Then R does not occur among the
direct summand of S.

Proof. Let S = R ⊕ T for some submodule T of S. Then since
Soc(R) = 0, we must have K ⊆ T . Therefore, M ∼= T/K ⊕ R, a
contradiction since M is indecomposable and non-separated. □

Let R be the pullback ring as in (1), and let M be an
indecomposable absorbing prime multiplication non-separated
R-module with finite-dimensional top over R̄. Consider the separated
representation 0 −→ K −→ S −→M −→ 0. By Proposition 4.4, S is a
pure-injective module. So by the proofs of Lemma 3.1, Proposition 3.2
and proposition 3.4 of [2] (here the pure-injectivity of M implies the
pure-injectivity of S by [2, Proposition 2.6 (ii)]), we can replace the
statement “M is an indecomposable pure-injective non-separated R-
module” by “M is an indecomposable absorbing prime multiplication
non-separated R-module”, because the main key in those results are the
pure-injectivity of S, the indecomposability and the non-separability of
M . So we have the following result.

Corollary 4.6. Let R be the pullback ring as in (1), and let M be an
indecomposable absorbing prime multiplication non-separated R-module
with M/PM finite-dimensional over R̄, and let

0 −→ K −→ S −→M −→ 0

be a separated representation of M . Then the following hold:
(i) The quotient fields Q(R1) and Q(R2) of R1 and R2 do not occur

among the direct summand of S;
(ii) S is a direct sum of finitely many indecomposable absorbing

prime multiplication modules;
(iii) At most two copies of modules of finite length can occur among

the indecomposable summands of S.
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Recall that every indecomposable R-module of finite length is an
absorbing prime multiplication module since it is a quotient of a
multiplication R-module. So by Corollary 4.6(iii), the infinite length
non-separated indecomposable absorbing prime multiplication modules
are obtained in just the same way as the deleted cycle type
indecomposable ones are, except that at least one of the two “end”
modules must be a separated indecomposable absorbing prime
multiplication of infinite length (that is, P1-Prüfer and P2-Prüfer).
Note that one can not have, for instance, a P1-Prüfer module at each
end (consider the alternation of primes P1, P2 along the amalgamation
chain). So, apart from any finite length modules: we have
amalgamations involving two Prüfer modules as well as modules of
finite length (the injective hull E(R/P ) is the simplest module of this
type), a P1-Prüfer module and a P2-Prüfer module. If the P1-Prüfer
module and the P2-Prüfer module are direct summands of S then we
will describe these modules as doubly infinite. Those where S has just
one infinite length summand we will call singly infinite (the reader is
referred to [2], [4] and [9] for more details). It remains to show that the
modules obtained by these amalgamations are, indeed, indecomposable
absorbing prime multiplication modules.
Theorem 4.7. Let R = (R1 −→ R̄ ←− R2) be the pullback ring
of two discrete valuation domains R1, R2 with common factor field R̄.
Then the class of indecomposable non-separated absorbing prime
multiplication modules with finite-dimensional top consists of the
following:

(i) The indecomposable modules of finite length (apart from R/P
which is separated);

(ii) The doubly infinite absorbing prime multiplication modules as
described above;

(iii) The singly infinite absorbing prime multiplication modules as
described above, except the two Prüfer modules (2) in Lemma
3.8.

Proof. Let M be an indecomposable non-separated absorbing prime
multiplication R-module with finite-dimensional top, and let

0 −→ K −→ S −→M −→ 0

be a separated representation of M .
(i) Clearly, M is an absorbing prime multiplication R-module. The

indecomposability follows from [14].
(ii) and (iii) (involving one or two Prüfer modules) M is an absorbing

prime multiplication module since they are a quotient of an absorbing
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prime multiplication R-module. Finally, the indecomposability follows
from [2, Theorem 3.5]. □

Corollary 4.8. Let R be the pullback ring as described in Theorem 4.7.
Then every indecomposable absorbing prime multiplication R-module
with finite-dimensional top is pure-injective.

Proof. Apply [2, Theorem 3.5] and Theorem 4.7. □
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A PULLBACK RING
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پولبک حلقه یک روی جاذب اول ضربی مدول های

غیاثوند٢ پیمان و فرضعلی١ فرخنده

ایران تهران، نور، پیام دانشگاه ریاضی، ١,٢گروه

تجزیه ناپذیر جاذب اول ضربی مدول های همه طبقه بندی به جدید رویکرد یک ارائه مقاله این اصلی هدف
مدول های از کاملی شرح ابتدا، می باشد. ددکیند دامنه ی دو از پولبک حلقه های روی متناهی البعد تاپ با
شده ارائه نتایج و تعریف حقیقیت، در می کنیم. بیان موضعی ددکیند دامنه یک روی را جاذب اول ضربی
اول مدول های بین ارتباط بعد، مرحله در می دهیم. تعمیم جاذب اول ضربی مدول یک به را ۵ مرجع در

می کنیم. برقرار را حلقه ها از نوع این روی محض انژکتیو مدول های و جاذب

انژکتیو مدول های جداپذیر، مدول های ددکیند، دامنه های جاذب، اول ضربی مدول های کلیدی: کلمات
پولبک. حلقه های محض،
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