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QUOTIENT STRUCTURES IN EQUALITY ALGEBRAS

R. A. BORZOOEI*, M. MOHSENI TAKALLO, M. AALY KOLOGANI
AND Y. B. JUN

ABSTRACT. The notion of fuzzy ideal in bounded equality
algebras is defined, and several properties are studied. Fuzzy ideal
generated by a fuzzy set is established, and a fuzzy ideal is made
by using the collection of ideals. Characterizations of fuzzy ideal
are discussed. Conditions for a fuzzy ideal to attains its infimum
on all ideals are provided. Homomorphic image and preimage of
fuzzy ideal are considered. Finally, quotient structures of equality
algebra induced by (fuzzy) ideal are studied.

1. INTRODUCTION

EQ-algebras were introduced by Novdk et al [16].  Equality
algebras were introduced by Jenei [7, 8] by removing the multiplication
operation and as an extension of EQ-algebras. In [5, 9] the authors
investigate the relation between equality algebra and BCK-meet-
semilattice. ~ Dvurecenskij et al. in [0] defined pseudo-equality
algebra as an extension of equality algebra and study some proper-
ties of it. Borzooei et al. [1] introduced some types of filters of equality
algebras and study the relation between them and moreover, they
considered relations among equality algebras and some of the other
logical algebras such as residuated lattice, MTL-algebra, BL-algebra,
MV-algebra, and etc., in [22]. Since ideal theory is an important
notion in logical algebras, Paad [17] introduced the notion of the ideal
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in bounded equality algebras and showed that there is a reciprocal
correspondence between ideals and congruence relations.

Fuzzy sets were first introduced by Zadeh [21] and then studied by
many mathematicians. Some mathematicians tried to overcome its
shortcomings by presenting various extensions of fuzzy sets, and some
other mathematicians studied fuzzy sets on various algebraic structures
such as logical algebraic structures, groups, and loops. These results
can be seen in the articles [1, 3, 2, 11, 12, 13, 18, 19].

The aim of this paper is to introduce the concept of fuzzy ideal in
bounded equality algebras and study the fuzzy ideal generated by a
fuzzy set. Using the collection of ideals, we make a fuzzy ideal. We
discuss characterizations of fuzzy ideal and provide conditions for a
fuzzy ideal to attains its infimum on all ideals. We consider homomor-
phic image and preimage of fuzzy ideal and study quotient structures
of equality algebra induced by (fuzzy) ideal.

2. PRELIMINARIES

In this section, we will refer to some of the previous works that we
will use in this article.

Definition 2.1. [8] An algebraic structure (€, A, 1) is an equality
algebra, if for any m,t,i € £ we have:

(E1) (&, A, 1) is a commutative idempotent integral monoid,

(E2) the operation “-~” is commutative,

(E3) mwm=1,

(E4) m~1=m,

(E5) ifm St Zi,thenmewiZSriandmeiImer,

(E6) m ot 3 (m o) o (e 1)

(ET) moe 3 (mei)n (i),
wherem S viff m A v =m.

In an equality algebra (€, A,«, 1), we introduce an operation --»
(implication) on £ as follows:

m-->t:=mw (mArv).
Note. From now on, (£, A, 1) or &, for short, is an equality algebra.

Proposition 2.2. [8] For any m,t,i € £ we have:
()m-->v=14fmIr,

(i) m-=> (v --» i) =t --> (m - 1),

(ii) 1l -—>m=m,m-->1=1andm-->m=1,
(lv) m Zv--»1i zﬁtjm——el,

(v) m It --»m,
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(vi) W = (m - ¥) -,
(vif) > £ 3 (£ == 1) = (m > i),
(viii) zft<m thenm --» t =m ¢,
(iz) ifm Sv, thent--»iSm--s>iandi-->m Ii--»>rt.

& is bounded if € has a least element 0 € £ such that 0 X m, for any

m € £. Then we can introduce the negation “=” on £ as
-m=m--+>0=mw 0,
forallme &. If forall [ € &, ==l =1, then & is called involutive.

Let £ and M be sets and h : £ — M be a function. If w is a fuzzy
set in &, then the image of w under h is denoted by h(w) and is defined
as follows.

sup @(l) if h'(g) #0,
h(w): M —[0,1], g — { S
0 otherwise.

If 6 is a fuzzy set in h(E), then the preimage of § under h is denoted
by h71(0) and is defined by

RN 0) - & — [0,1], [ O(R(1)).

Definition 2.3. [17] Suppose & is bounded. Then () # @ C & is said
to be an ideal of £ if for any [, g € £,
([;) if T gand g € @, then [ € Q,
(ly) -l--»ge@, forall[[ge Q.
All ideals of £ is shown by Z(&).

Lemma 2.4. [17] Assume & is bounded and ) # Q C E. Then
Q €Z(E) iff for any I, g € € we have:
(I3) 0€Q,

(Iy) if 7(—g--» ) €Q and g € Q, then L € Q.

Note. Now, we suppose (€, A, »,0, 1) or £ is a bounded equality
algebra.

3. Fuzzy IDEALS IN BOUNDED EQUALITY ALGEBRAS

In this part, we define the concept of fuzzy ideal in bounded equality
algebras and study some attributes of it. We establish fuzzy ideal
generated by a fuzzy set and discuss characterizations of fuzzy ideal.
Conditions for a fuzzy ideal to attains its infimum on all ideals are
provided.

Definition 3.1. A fuzzy set w in & is said to be a fuzzy ideal of £ if
for any [, g € &:
(Fl) @w(0) 2 =(l),
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(Fly) w(l) 2 min{w(=(=g --» =), w(g)}.
All fuzzy ideals of € is denoted by FI(E).

Example 3.2. Consider £ = {0,m,t,1} is a set with the next Hasse
diagram.
1

0

Then (&, A, 1) is a commutative monoid. Define an operation «~ on £
by Table 1.

TABLE 1. Cayley table for the implication “~”

1

0 m

Hv-:gog

T
1 t m 0
t 1 0 m
m 0 1 t
0 m t 1

113 7

Then (£, A,«, 1) is an equality algebra, and the implication “--»
is certained by Table 2.

TABLE 2. Cayley table for the implication “--»"

--3 0 m T 1
0 1 1 1 1
m t 1 v 1
t m m 1 1
1 0 m T 1
Define a fuzzy set w in & by:
0.7 if [=0,

w:&—10,1], [—< 05 if [=m,
0.3 if L€ {t,1}.

Clearly, w € FI(£).
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Theorem 3.3. Assume S C £ and consider a fuzzy set wg in € as
follows:

s if [€85,

t otherwise, (3.1)

wg : € — [0,1], [H{
fors,t € [0,1] withs > t. Then wg € FI(E) iff S € Z(E). Moreover
S={l€ & |ws(l) = ws(0)}.

Proof. (=) Consider wg € FI(E). Clearly, by (FI,), ws(0) = s. Thus
0€S. Let [,g € £ such that =(—g --» —[) € S and g € S. Then
wg(—(—g --» —l)) =5 = wg(g). From (FI;) we obtain

ws(l) 2 min{ws(=(~g --» =), @ws(g)} =s.

Hence [ € S, and therefore S € Z(E).
(<) From S € Z(€), we get 0 € S, and so wg(0) =8 2 ws(l) for all

[ € &. Forevery g € &, if min{wg(—(—g --» ﬂ[)),wsf(\é)} = 5, then
it means that —=(—-g --» —l) € S and g € S. Since S € Z(€), we get
[€S. Hence

ws([) = s 2 min{wg(~(—g --» 1)), ws(9) }-

If min{wwg(—(—g --» —l)),ws(g)} = t, then it means that
(g )¢ Sorg ¢S,

and so

t =min{wg(~(~g --» ), ws(g)} T @s(D).
Hence, wg € FI(E). Therefore, S = {l € £ | ws(l) = ws(0)}. O
Lemma 3.4 ([17]). If F is a filter of £, then

N(F)={le&|-le F} €Z(&). (3.2)

Corollary 3.5. Consider S C £ and a fuzzy set w in £ such that:

s if le{le&|-leS},

t otherwise, (3.3)

w: € —1[0,1], [»—){

fors t€[0,1] withs > t. If S is a filter of €, then w € FI(E).
Proposition 3.6. Every fuzzy ideal of £ is order reversing.

Proof. Suppose w € FI(E) and I,g € &€ such that [ 3 g. Then by
Proposition 2.2(vii), 1 = --» g X =g --+ =, and so =g --» =l = 1.
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Hence
@(l) Z min{w@(~(-g --» ), =(g)}
= min{w(-1), w(g)}
= min{w(0), = (g)}
= w(g).
Hence, w is order reversing. 0]

Proposition 3.7. If £ is involutive, then for every [, g € £ and every
w e FI(E), the following statements hold:

(1) @w(=l--»g) 2 min{w(l),=(g)},

(i) w(l) 2 min{w(=([--» g)),@(g)}-

(i71) w(1l) S w(l).

Proof. (1) Let g € £. Since & is involutive, by Proposition 2.2(vi),
(vii) and (ix), we have
—|(—|g -—> —|(—|[ -=—> g)) j —|((—|[ -—> g) = g) é —|—|[’
thus by Proposition 3.6, w(=(=g --» —(=l --» g))) 2 w(—-l).
Moreover, from £ is involutive, by (F'I) we obtain
w@(=l--» g) 2 min{w(—(=g --» ~(=l --» g))), w(g)}
< min{ew(-=l), w(g)}
< min{w(l), w(g)}-
(17) By Proposition 2.2(ix), =(=g --» —l) =3 —([ --» g), then by
Proposition 3.6 we have
@(=(—g - D) 2 w(=(l--» g)).
From (FI,) we get
w(l) 2 min{w(=(-g --» 1)), =(g)}
< min{w(=(l--» g)), @(g)}-

(43) If we put g = 1 in (ii), then by Proposition 2.2(iii) and (FI;), we
get

w(l) Z min{w(=(l--» 1), (1)}
= min{w(-1),w(1)}
= min{w(0),w(1)}
= w(1).

We make a fuzzy ideal using the family of ideals.
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Theorem 3.8. Assume {Q; | i€ A C[0,1]} is a family of ideals of £

such that € = |J Q; and for any i,j € A,
ieA

i 2 Jif Qi € Q.
A fuzzy set w on & defined by
w:&—=[0,1], l—=sup{ie A|le€Q;} € FIE). (3.4)
Proof. Obviously, @w(0) 2 w(l), for all [ € €. Let [, g € £ such that
w(—(—g--+» ) =sup{i € A | =(—g--» ) € Q;} =t
and w(g) = sup{t € A | g € Q;} = £ Suppose t 2 ¢ Then by
assumption Q¢ C Q. Since =(—g --» —l) € Q¢ C Q¢ and g € Q¢, we
get [ € Q. Hence
w(l) =sup{i e A| € Q;}
>t
= min{w(~(~g --» ), =w(g)}.
Thus w € FI(E). O

Theorem 3.9. Given a fuzzy set w in &£, the next conditions are
equivalent.

(i) w e FIE).
(ii) The nonempty set
Ulw, t) ={le&|w(l) 2t} € Z(E), te[0,1],

which is called a t-level ideal of w.

Proof. (=) Consider w € FI(£) and t € [0, 1] such that U(w,t) # 0.
Then there exists [ € U(w,t) and so w(l) 2 t. Since w € FI(E),
we get @w(0) 2 w(l) = t. Hence 0 € U(w,t). Let [,g € £ such that
—(—g --» 2l) € U(w,t) and g € U(w,t). Then w(—(—-g --» -l)) = ¢
and w(g) 2 t. From w € FI(£), we obtain
@(l) 2 min{w(=(-g --» 1)), @w(g)} 2 t

Hence [ € U(w, t). Therefore, U(w,t) € Z(E).

(<) Forle & let w(l) =t. Then | € U(w,t). Since U(w,t) € Z(E),
we get 0 € U(w,t), and so w(0) 2 t = w(l), for all [ € £. For any
Lgel, let

t:=min{w(=(-g --» 1)), w(g)}-
Then w(—(—g --» —l)) 2 t and w(g) = t, that is,

~(mg --» ) € U(w, t)
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and g € U(w,t). Since U(w,t) € Z(E), we have [ € U(w, t), and so
@(l) 2 min{w(=(-g --» ), w(g)} = t
Therefore, w € FI(E). O
Lemma 3.10. Suppose w € FI(E) and t,s € [0,1] with t > s. Then
(i) U(w,t) C U(w,s).

(ii) If t,s € Im(w), then U(w,t) is a proper subset of U(w,s).
(iii) U(w,t) = U(w,s) iff there isn’t L € € such that t X w(l) < s.
Theorem 3.11. Assume w € FI(E) in which Im(w) = {t; | 1 € A}

and L = {U(w, ;) | i € A} for any index set A. Then

(i) for any i € A, there exists j € A such that t; 2 t;.
(ﬁ> U(wa w(O)) = mieA U<w7ti) = U<w7tj)'
(i) £ = Uyer U, 4).

) (Z,CQ) is a chain.

)

infimum on all ideals of £.

Proof. (i) Since w(0) € Im(w), there exists a unique j € A such that
w(0) =t;. By (Fh), w(l) S w(0) =t;, forall [ € £. Hence t; 2 t;, for
all i € A.
(ii) By (i) and (F'I), we have
Ulw, t;) ={le & |=(l) 2 4}
“ e =) = b}
={leé|w()==(0)}
= U(w,w(0)).
Since t; 2 t; for all i € A, by using Lemma 3.10(i) we get
U<w7 tj) c U(LTJ, tl)
for all 7 € A. Hence U(w,@(0)) C (;cp U(w, t;), and so
U(w,w(0)) = Niea U@, ti).
(iii) Obviously (J,cp U(w, t;) € E. If [ € £, then w(l) € Im(w) and
so there exists iy € A such that w(l) = t;. This induces
e U(’{D, tl[) - UiEA U(wa tl)

(iv) Since either ¢ 2 j or i 3 j for all 4,5 € A, by Lemma 3.10(i),
the proof is clear.

(v) (=) Assume that every t-level ideal of w is contained in Z and
let S € Z(€). If w is constant on S, then nothing left to prove. Now,
suppose w is not constant. If S = &, then
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for all ¢ € A which implies that U(w,t;) C U(w,s) for all i € A.
Note that U(w,0) = £ € Z. Hence there exists i € A such that
t, € Im(w) and U(w,t;) = €. Thus € = U(w,t;) C U(w,s), and
so U(w,s) = U(w,t;)) = €. Now, we show s = t;. If s < t;, then
t; € Im(w) and s 3 t; < t; for some j € A. This induces

&= U(w>tz) g U<w7tj)7

which is a contradiction. So s = t;. Assume that S is a proper subset
of £. Then by Theorem 3.3, the restriction wg of @w to S € FI(E). Let

As:={ieA|w(g) =t for some g € £}
and Zg = {U(wg,t;) | i € Ag}. Then all t;-level ideals of wg are
contained in Zg. Hence wg(j) = inf{wg(l) | [ € S} for some j € S, and
so w(j) = inf{w(l) | [ € S}.

(<) By assumption, if t = t; for some ¢ € A, then U(w,t) € Z.
If t # ¢ for all i € A, then there is not [ € £ such that w(l) = t.
Let S={le & | w(l) > t}. Clearly 0 € S. Let I,g € &£ such that
—(—g --+» ) € Sand g € S. Then w(—~(—~g --» —l)) > tand w(g) > t.
Using (F'I,), we have

@(l) 2 min{w(=(-g --» ), w(g)} > t
and so [ € S. Therefore w € FI(€). The hypothesis induces
w(g) = inf{w(l) | € S}
for some g € S. Since w(g) € Im(w), we have
inf{w(l) |[le S} =w(g) =t

for some ¢ € A. Obviously t = t; and so t < t; by hypothesis. So there
is not any j € & such that t < w(j) < t;. Then by Lemma 3.10(iii),
U(w,t) =U(w,t;) € T. O

Lemma 3.12. Assume f : £ — M is an onto --+-homomorphism of
bounded equality algebras. If S € Z(E), then f(S) € Z(M).

Theorem 3.13. Suppose f : & — M is an onto --+-homomorphism
of bounded equality algebras. Then

(i) If w e FI(E), then f(w) of w € FI(M) under f.
(i) If 0 € FI(M), then f~1(0) of 0 € FI(E) under f.

Proof. (i) Let w € ]:I(E) We first show that for any t € (0, 1],
ﬂ f(U(w,t—s)). (3.5)

0<s<t
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Forg=f(I)e M,if g€ U(f(w),t), then
t3 f(@)(e) = f(@)(f()) = sup w()).
jef~1(f(0)
So, for every s € R with 0 < s < t, there exists [, € f~'(g) such
that @w(lp) > t —s. Hence g = f(lp) € f(U(w,t —s)). Hence g €
N f(U(w,t—s)), and so

U(f(w)’t> - ﬂ f(U<w7t_5))'

0<s<t
Conversely, if g€ () f(U(w,t—s)), then g € f(U(w, t—s)) for every

0<s<t
0 <s <t Henceg= f(ly) for some [y € U(w, t—s). Thus w(ly) = t—s

and [y € f~'(g). Hence

f(@)(g) = sup w(j) Zt—s.
jef~1(a)

Since s is arbitrary, g € U(f(w),t), and so (3.5) is proved. Note that
U(f(w),t) =M for t =0. If t € (0, 1], then

Uf(@),t) = N fU(w,t-s3))

O<s<t

by (3.5). Since U(w, t—s) € Z(£), we know that f(U(w,t—s)) € Z(M)
by Lemma 3.12. Therefore

U(f(w@),t) = N fU(w,t=s)) € L(M).

0<s<t

By Theorem 3.9, the image f(w) of w € FI(M) under f.
(ii) Let 8 € FI(E). Then
F7HO)(02) = 0(f(02)) = 0(0ar) 2 O(f(D) = f~H(O)(1),

for all [ € £ where 0¢ and 0, are units of £ and M, respectively. Since
0 € FI(M), by (FI3) we have

FHO)0) = 0(£(1) 2 min{f(=(=i --» = f (1)), 0()},
for all [ € £ and i € M. Since f is onto, there exists g € £ such that
f(g) = 1. Since f(0g) = 057, we get f(=l) = =f([) for all [ € €. Hence

F7HO)(D) Z min{f(=(=i --» = f(1))), 0(1)}

(—=(=f(g) --» =f(1))), 0
= min{0(=(f(—g) - f(=1))), 0
= min{0(=f(-g --» 1)), 0(f(g)
= min{0(f(—=(—-g --» 1)), 0(f(9))}
= min{f~(0)((=(—g --» ), f~(

(f(g)}
(f(a))}
)}

= min{#

0)(9)},
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and therefore the preimage f~1(0) of # € FI(E) under f. O

4. QUOTIENT EQUALITY ALGEBRAS VIA FUZZY IDEALS

In continuing, by using the concept of ideals we define a congruence
relation on bounded equality algebra. Then the quotient structures of
equality algebra induced by (fuzzy) ideal are studied.

Definition 4.1. Suppose Q € Z(€). For any [[g € &, define the

“— "

relation “=p” on £ as
[EQ g iff —|<[ -——> g) € Q and —|(g ——> [) I~ Q (41)

Lemma 4.2. The binary relation =¢ in (4.1) is a congruence relation
on &.

Proof. Obviously, =¢ is both reflexive and symmetric. Let [,g,j € £
such that [ =¢ g and g =¢ j. Then =([ --» g) € Q, =(g --» [) € Q,
—(g--+j) € Q and ~(j --» g) € Q. Since

(ol - ) >~ > 1)) S0 > ) = (g > )
~((g =) = (1> 1)
_'(J -2 g)v

from (/;), we have =(—=(—(g --» [)) --» =(=( --» [))) € Q. Hence
=(j --» [) € Q by (I;). The similar way induces —([ --»j) € @, and so
[ =g j. Therefore =, is an equivalence relation on &.

Now, let [,g,m,n € £ such that [ =g m and g =g n. Then

—([--»m) € Q,
—“(m--+1) €@, ~(g--»n) €@ and ~(n --+ g) € Q. Note that
~((n ) > (g > D) 2 ~(g > )

and =((g --» ) -==» (n --» [)) 3 =(n --» g). By ([;) we obtain

~((n > 1) -5 (g > ) € Q and ~((g > ) > (n > ) € Q
Hence (g --» [) =¢ (n --» [). Also, note that

(== m) == (== D) 3 ~(m --> 1)

N
N

and —((n --» ) -==» (n --» m)) 2 =(l --» m), which imply from (I;)
that —((n --»m) --» (n --» 1)) € Q and

~((n =2 1) == (0= m)) €Q.

Thus (n --» [) =¢ (n --» m). By the transitivity of =g, we conclude
that (g --» 1) =¢ (n --» m). O
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Denote by @ the set {g € £ | g =¢ [} and £/Q the set {Q(| [ € £}.
Define a binary operation — on £/@Q) as follows:

(VQu, Qg € £/Q)(Q1 — Qg = Qg-s1)- (4.2)

Theorem 4.3. If £ is involutive and ) € Z(E), then Qy € Z(E) and
Qo = Q.

Proof. We have

Qo={le&|1=,0}
={le&|-(I--+0) e Q}

={lef|le@}
={lef|le@}
=Q.
0
Theorem 4.4. If Q € Z(E), then (£/Q, —o, Q1) is a BCK-algebra.
Proof. 1t is straightforward. 0

Example 4.5. Consider & = {0,m,n,p,q,1} with the next Hasse

diagram. )

0
Define an operation «~~ on £ by Table 3.

TABLE 3. Cayley table for the implication “”

Haﬁsgog
o3 3TV o
S 3 —3
S o 33
NI ,oe 3
QR 3IRT IR
Q3 3 3 ol

Then (€, A, , 1) is a bounded equality algebra, and the implication
“--"is given by Table 4.



QUOTIENT STRUCTURES IN EQUALITY ALGEBRAS T

TABLE 4. Cayley table for the implication “--»"

-+ 0 m =n p q 1
0 1 1 11 1 1
m q 1 m p p 1
n P 1 1 p p 1
P n m n 1 m 1
q m 1 m 1 1 1
1 0O m =n p q 1

Given an ideal Q = {0,n} of £, we have Q, = Q1 = {1,p},
Qm = Qq = {07 m, q} and QO = Qn = {Oan} Thus 8/Q = {QOa Qm> Ql}
which is a BCK-algebra.

Theorem 4.6. If Q € Z(E), then £/Q = {1} iff Q = €.

Proof. Obviously, if @ = &, then £/Q = {@Q:}. Assume that
E/Q = {Q:1}. 1 € & then @ € £/Q and so Q; = @;. Thus
[ =g 1, and s0o 0 € @ and [ € (. Since =l € Q C &, we have
Q- € £/Q = {Q1} and thus -y = Q1. Hence —[ =¢ 1, that is,
—(ml--»1) € Q and =(1 --» =l) € Q. Thus ==l € Q. Since Q € Z(€)
and [ < ==l we get [ € ). O

Let @ be an ideal of an involutive equality algebra £. Define the
operations “A” and “~” on £/Q by

Q[ A Qg = Q[)\g and Q[ ~ Qg = Q[Ng
for all Q, @, € £/Q.
Theorem 4.7. If £ is involutive and Q € Z(E), then (£/Q, A, =, Q1)
is an equality algebra.

Proof. The proof is routine, so we omit the proof. |

Now, we define a binary relation on a bounded equality algebra & by
using a fuzzy ideal. Let @ be a non-constant fuzzy ideal of a bounded
equality algebra €. For any [, g € £, define a binary relation “~,” on
& by

[~ giff w(=(--29)) # 07 =(~(g -+ 1)) (4.3)

Proposition 4.8. The binary relation ~, in (4.3) is a congruence
relation on &.

Proof. Since w is non-constant and w(0) 2 w(l) for all [ € £, we have
w(0) #0. Let [, g,j € £. Then
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@(=(l--+ 1)) = w(~1) = w(0) # 0,
and so [ =~ [. Obviously, if [ ~, g, then g ~, [. Suppose that
[ ~, g and g =, j. Then @w(—~(l --+ g)) # 0 # w(—~(g --+» [)) and
w(=(g -=)) #0# @(=( - 9)).
(2 -2 1) =2 2(=20 -2 1) T (G -2 ) -2 (g -2 D)
S (-1 - (---0)
<20 - 0),
from (F'I3) and Proposition 3.6 that
S((j - 1) 2 min{m(~(~(~(g —-> D) ~> ~(~(1 > 1)), =(~(g > D)}
< min{w(=(j --» 9)), w(=(g --» )} # 0.

Similarly, we have w(—(l --» j)) # 0. Hence [ = j, and therefore
[ ~, j is an equivalence relation on £. Assume that [ ~_ g for all
l[Lge & andlet je & Since

(=g - D) 2 ~(=(G --»9) - (i -—» D)),

we have
@(—((=(=(g - 1)) == (=(=((G -->9) -=-» (i --»1)))))) = w=(~1)
=w(0)
# 0.

Since w € FI(E), by (F1) we obtain
@(~((-->9) - (--1))
2 min{@(=((=(=(g - 1)) == (=(=(( - g) - ( - D)), @w(~(g --> 1))}
£0.
Similarly, we get w(—((j -=+ ) -=» (j --» g))) # 0. Hence
(-0 =z (i--»0)
Since =(=([ == g)) -=> =~(=((g -=»j) -—» (L--»j))) = 1, we have
@(=(=(=(l--> g)) - =(=((g - ) - ([--+))))) ==(-1)
= w(0)
# 0.
Hence
@(=((g -->j) - (1 --2j)))
2 min{w(=((=(=( --» g))) - (=(=((g --»j) --> ([--+1)))))),
@(~(t-->g))}
£0
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by (FI,). Similarly, we have w(—(([ --+j) --» (g --»j))) # 0. Thus
([ ==»j) =& (g --» j). Therefore, if [ =, m and g ~, n for all
[Lg,m,n €&, then (I --» g) = (m --» n). O

Denote by [[] theset {g € £ | [ =, g} and £/w theset {[l|, | [ € £}.

Theorem 4.9. Ifw € FI(E), then (E/w, --+w, [1]») is a BCK-algebra
where --, is a binary operation on E/w defined by

(V= [0l= € &/@) (e --*= [0le = [0 - [=)- (4.4)

Proof. We show --+,, on £/w is well-defined. Let [, g,m,n € £ such
that [ = [m]e and [g]ls = [n]w. Let w € [l| --+5 [g]w. Then
w --+5 (g --» [). Hence (g --» [) --», (n --» m) implies w --»
(n --»m), and so w € [M|y --+5 [n]w. Hence

Mo ~—*% [8lw C [M]e -5 [1]s.

Similarly, we have the reverse inclusion and hence

Therefore --», is well-defined. Let (|, [g]w, [i]= € £/w. Then

(Mo - [0]e) e (Mo o o) = ([lo = [0]z)
g —3) > (i1 = (g D)
= [l]u—n

0]z --2= ([gle ~= [[=) ~2x [[e) = [([--» (1-->g)) --» 9]
= (1],

[ -2 o =[[--» & = [

If (& --e [0)w = [1]w and [glw --2o [ = [1]s, then
[0->lo=[l]c=[--g
and so w(—(g --» ) = @w(=(1 -=> (g --» ))) # 0 and
@(=(l--> g)) = @w(=(1 --» ([--»> g))) #0.

Hence [ --», g, and so [[] = [g]-. Finally

e -z [[e=[1--> 1]z = [1].
Therefore (€ /@, --+w, [1]o) is a BCK-algebra. 0
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Theorem 4.10. If w € FI(E), then we have the following
epimorphism of BCI-algebras.

[:E)U(w,t) = EJw, U(w,t)i— [l|» (4.5)
where t € (0,1] with U(w, t) # 0.

Proof. Assume that U(w, t); = U(w,t)g for [,g € €. Then [ --sy(z ¢ 9
and so =([ --» g) € U(w,t) and =(g --» [) € U(w, t). It follows that
w(=(l--»g)) 2 t>0and w(—(g --» ) =t >0, that is, [ =, g.
Hence [l = [g]w, and therefore the mapping is well-defined. Clearly,
f is onto. For any U(w, t),U(w,t)y € £/U(w, t), we have

f(U(w, )i — U(w, t)g) = U(w@, t)g-»
=0 le =z -z g
= [ (U(@,t)) - [ (U(m, 1)),
which shows that f is a homomorphism. This completes the proof. [J

Theorem 4.11. For any w € FI(E) and t € (0,1], if w(j) = 0
whenever j € £\ U(w,t), then £/U(w,t) is isomorphic to £ /w.

Proof. By Theorem 4.10, the mapping
f:E)U(w,t) = E/w, U(w,t)— [l|»

is an epimorphism of BCK-algebras. It is sufficient to show that f is
one-one. Assume that U(w, t); = U(w, t), for [,g € £. Then [ --sy 5y
g, and so (I --» g) € U(w,t) and —(g --» [) € U(w,t). It follows
that w(—=(l--» g)) 2 t> 0 and w(—(g --» 1)) = t > 0. Hence [ =, g
which implies that

f(U(@, ) = [z = [g]e = [ (U(w@, t)y).

Thus f is injective, and therefore f is an isomorphism. 0

5. CONCLUSION

In this paper, the notion of fuzzy ideal on bounded equality algebras
is defined and conditions for a fuzzy ideal to attains its infimum on
all ideals are provided. Also, homomorphic image and preimage of
fuzzy ideal are investigated. Then by using the notion of fuzzy ideal,
a congruence relation on bounded equality algebra is introduced and
by introducing an operation on the set of all congruence classes of it,
showed that the quotient structure is made a BCK-algebra.
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