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ON THE DOMINATION NUMBER OF THE SUM
ANNIHILATING IDEAL GRAPH OF A

COMMUTATIVE RING AND ON THE DOMINATION
NUMBER OF ITS COMPLEMENT

S. VISWESWARAN∗ AND P. SARMAN

Abstract. The rings considered in this article are commutative
with identity which admit at least one non-zero annihilating ideal.
Let R be a ring. Let A(R) denote the set of all annihilating ideals
of R and let us denote A(R)\{(0)} by A(R)∗. Recall that the sum
annihilating ideal graph of R, denoted by Ω(R) is an undirected
graph whose vertex set is A(R)∗ and distinct vertices I and J
are adjacent in Ω(R) if and only if I + J ∈ A(R). The aim of
this article is to discuss some results on the domination number of
Ω(R) (respectively, (Ω(R))c), where (Ω(R))c is the complement of
Ω(R).

1. Introduction

The rings considered in this article are commutative with
identity and unless otherwise specified, they are not integral domains.
Beginning with the work of Beck on the coloring of a commutative
ring in [7], several algebraists have introduced graphs with algebraic
structures and investigated the interplay between the algebraic
properties of the algebraic structures and the graph-theoretic
properties of the graphs associated with them. The graphs considered
in this article are undirected and simple. For a graph G, we denote
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the vertex set of G by V (G) and the edge set of G by E(G). Let R
be a ring. Let Z(R) denote the set of all zero-divisors of R and let
us denote Z(R)\{0} by Z(R)∗. We recall that the zero-divisor graph
of R, denoted by Γ(R) is an undirected graph with V (Γ(R)) = Z(R)∗

and distinct vertices x and y are adjacent in this graph if and only if
xy = 0 [4]. For an excellent and inspiring survey on the zero-divisor
graphs of commutative rings, one can refer the survey article [2].

In [3], with any commutative ring R, Anderson and Badawi have
introduced and investigated an undirected graph called the total graph
of R, denoted by T (Γ(R)) with V (T (Γ(R))) = R and distinct vertices
x and y are adjacent in this graph if and only if x+ y ∈ Z(R). Several
interesting theorems illustrating the interplay between the ring-
theoretic properties of R and the graph-theoretic properties of T (Γ(R))
have been proved in [3].

We recall that an ideal I of a ring R is said to be an annihilating
ideal of R if there exists r ∈ R\{0} such that Ir = (0) [8]. As in [8], we
denote the set of all annihilating ideals of R by A(R) and A(R)\{(0)}
by A(R)∗. It is useful to recall that the annihilating-ideal graph of R
denoted by AG(R) is an undirected graph with V (AG(R)) = A(R)∗

and distinct vertices I and J are adjacent in this graph if and only if
IJ = (0) [8]. For several interesting and inspiring results on AG(R),
the reader is referred to [8, 9].

Motivated by the research work done by Anderson and Badawi on
the total graph of a commutative ring in [3] and the research work of
Behboodi and Rakeei on the annihilating-ideal graph of a commutative
ring in [8, 9], with any commutative ring R, in [19], we have
introduced and investigated an undirected graph, denoted by Ω(R)
such that V (Ω(R)) = A(R)∗ and distinct vertices I and J are adjacent
in this graph if and only if I + J ∈ A(R). The graph Ω(R) is called
as the sum annihilating ideal graph of R in [15]. Let G = (V,E) be a
simple graph. We recall that the complement of G, denoted by Gc is a
graph whose vertex set is V and distinct vertices u and v are adjacent
in Gc if and only if they are not adjacent in G [6, Definition 1.2.13].
We have studied some graph parameters of (Ω(R))c in [20].

Let G = (V,E) be a graph. We recall that a set S ⊆ V is a
dominating set of G if every vertex u ∈ V \S has a neighbor v ∈ S
[6, Definition 10.2.1]. We recall that a γ-set of G is a minimum
dominating set of G, that is, a dominating set whose cardinality is
minimum. A dominating set S of G is said to be minimal if S
properly contains no dominating set of G [6, Definition 10.2.2]. We
recall that the domination number of G is the cardinality of a minimum
dominating set of G; it is denoted by γ(G)[6, Definition 10.2.3].
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Let R be a ring. Several researchers have studied the dominating
sets and the domination number of graphs associated with commutative
rings (see, for example [1, 14, 17, 18]). Motivated by the above
mentioned research work on the domination number of some well known
graphs associated with commutative rings, in this article, we focus on
determining the domination number of Ω(R) (respectively, the
domination number of (Ω(R))c).

Before we give a brief account of results that are proved in this article,
we recall some definitions, notation, and results from commutative ring
theory that are often used in this article. Let R be a ring. We denote
the set of all prime ideals of R by Spec(R) and for an ideal I of R, we
denote the set

{p ∈ Spec(R) | p ⊇ I}
by V (I). We denote the set of all maximal ideals of R by Max(R).
We denote the nilradical of R by nil(R). We recall that R is said to
be reduced if nil(R) = (0). Let Min(R) denote the set of all minimal
prime ideals of R. If p ∈ Spec(R), then p ⊇ p′ for some p′ ∈ Min(R) by
[16, Theorem 10]. Thus if R is a reduced ring, then it follows from [5,
Proposition 1.8] that

∩
p∈Min(R) p = (0). We denote the set of all proper

ideals of R by I(R) and the set I(R)\{(0)} by I(R)∗. Let I ∈ I(R). We
recall that p ∈ Spec(R) is said to be a maximal N-prime of I if p is
maximal with respect to the property of being contained in

ZR(
R
I
) = {r ∈ R | rx ∈ I for some x ∈ R\I}

[13]. Thus p ∈ Spec(R) is a maximal N-prime of (0) if p is maximal with
respect to the property of being contained in Z(R). For convenience, let
us denote the set of all maximal N-primes of (0) in R by MNP (R). We
denote the cardinality of a set A by |A|. Let S = R\Z(R). Then S is
a multiplicatively closed subset of R. Let x ∈ Z(R). Then Rx∩S = ∅.
Hence, we obtain from Zorn’s lemma and [16, Theorem 1] that there
exists p ∈ MNP (R) such that x ∈ p. Thus if MNP (R) = {pα}α∈Λ,
then it follows from the above argument that Z(R) =

∪
α∈Λ pα. Hence,

Z(R) is an ideal of R if and only if |MNP (R)| = 1. Let I ∈ I(R). We
recall that p ∈ Spec(R) is said to be an associated prime of I in the
sense of Bourbaki if p = (I :R x) for some x ∈ R [12]. In such a case, we
say that p is a B-prime of I. Let p ∈ MNP (R). As ((0) :R x) ⊆ Z(R)
for any x ∈ R\{0}, it follows that p ∈ A(R) if and only if p is a
B-prime of (0) in R. For an ideal I of a ring R, the annihilator of I in
R, denoted by AnnR(I) is defined as AnnR(I) = {r ∈ R | Ir = (0)}.
Note that AnnR(I) = ((0) :R I).

A principal ideal ring R is said to be a special principal ideal ring
(SPIR) if R has a unique prime ideal. If m is the unique prime ideal
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of R, then it follows from [5, Proposition 1.8] that m = nil(R) and
as m is principal, we get that m is nilpotent. If R is an SPIR with
Spec(R) = {m}, then we denote it by mentioning that (R,m) is an
SPIR. Let R be a ring such that Max(R) = {m}. Suppose that
m = Rm is principal and nilpotent. Let n ≥ 2 be least with the
property that mn = (0). Then it follows from the proof of (iii) ⇒ (i)
of [5, Proposition 8.8] that

I(R)∗ = {mi = Rmi | i ∈ {1, . . . , n− 1}}

and hence, (R,m) is an SPIR.
This article consists of three sections including the introduction. Let

R be a ring. In Section 2 of this article, we discuss some results on the
domination number of Ω(R). For a connected graph G, we denote the
radius of G by r(G). If |A(R)∗| ≥ 2, then it is proved in Proposition
2.2 that the following statements are equivalent: (1) γ(Ω(R)) = 1; (2)
R is not reduced; and (3) Ω(R) is connected and r(Ω(R)) = 1. If R is
a reduced ring, then it is shown in Proposition 2.4 that γ(Ω(R)) = 2.
Let R be a reduced ring such that Ω(R) is connected. Then it is proved
in Proposition 2.6 that γ(Ω(R)) = diam(Ω(R)) = r(Ω(R)) = 2.

Let R be a ring. In Section 3 of this article, we discuss some
results on the domination number of (Ω(R))c. If |A(R)∗| ≥ 2, then it is
proved in Theorem 3.1 that the following statements are
equivalent: (1) γ((Ω(R))c) = 1; (2) R ∼= R1 × R2 as rings, where
Ri is an integral domain for each i ∈ {1, 2} with Ri is a field for at
least one i ∈ {1, 2}; and (3) (Ω(R))c is a star graph. If R is not
reduced with |A(R)∗| ≥ 2 and Z(R) is an ideal of R, then it is shown
in Proposition 3.6 that the following statements are equivalent: (1)
(Ω(R))c admits a finite dominating set; and (2) Either (R,m) is an
SPIR with mn = (0) but mn−1 ̸= (0) for some n ≥ 3 or (R,m) is a
finite local ring such that m is not principal. Let R be a non-reduced
ring with |MNP (R)| ≥ 2. We are not able to characterize R such that
(Ω(R))c admits a finite dominating set. For a reduced ring R, it is
proved in Theorem 3.10 that the following statements are equivalent:
(1) γ((Ω(R))c) = 2; (2) R has exactly two minimal prime ideals p1, p2
such that pi is not a simple R-module for each i ∈ {1, 2}; and (3)
(Ω(R))c is a complete bipartite graph with vertex partition V1 and V2

such that |Vi| ≥ 2 for each i ∈ {1, 2}. Let R be a reduced ring such
that p ∈ A(R) for each p ∈ Min(R). If γ((Ω(R))c) ≥ 2, then it is
shown in Theorem 3.13 that γ((Ω(R))c) = |Min(R)|. It is remarked in
the paragraph which appears just preceding the statement of Lemma
3.15 that for a von Neumann regular ring R, γ((Ω(R))c) = 1 if and
only if R ∼= F1 × F2 as rings, where Fi is a field for each i ∈ {1, 2}.
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It is verified in Corollary 3.16 that for a von Neumann regular ring
R, γ((Ω(R))c) ̸= 2. Let n ∈ N be such that n ≥ 3. For a von
Neumann regular ring R, it is proved in Theorem 3.17 that
the following statements are equivalent: (1) γ((Ω(R))c) = n;
(2) |Min(R)| = n; and (3) R ∼= F1 × F2 × F3 × · · · × Fn as rings,
where Fi is a field for each i ∈ {1, 2, 3, . . . , n}.

Whenever A,B are sets with A is a subset of B and A ̸= B, we
denote it by either A ⊂ B or B ⊃ A. The Krull dimension of a ring
is referred to as the dimension of R and is denoted by dimR. A ring
R is said to be quasi-local if |Max(R)| = 1. A Noetherian quasi-local
ring is referred to as a local ring.

2. On the domination number of Ω(R)

As mentioned in the introduction, unless otherwise specified, the
rings considered in this article are commutative with identity which
are not integral domains. Let R be a ring. The aim of this section is
to discuss some results on the domination number of Ω(R).

Let G = (V,E) be a graph. Let a, b ∈ V with a ̸= b. Suppose that
there exists a path in G between a and b. We recall that the distance
between a and b denoted by d(a, b) is defined as the length of a shortest
path in G between a and b [6, Definition 1.5.5]. We define d(a, b) = ∞
if there exists no path in G between a and b. We define d(a, a) = 0. We
recall that G is said to be connected if for any distinct a, b ∈ V , there
exists at least one path in G between a and b [6, Definition 1.5.4]. A
simple graph G is said to be complete if every pair of distinct vertices
of G are adjacent in G [6, Definition 1.2.11]. Let G = (V,E) be a
connected graph. Then the diameter of G, denoted by diam(G) is
defined as diam(G) = max{d(a, b) | a, b ∈ V } [6, Definition 4.3.1(1)].
Let v ∈ V . We recall that the eccentricity of v, denoted by e(v) is
defined as e(v) = max{d(v, w) | w ∈ V } [6, Definition 4.3.1(2)] and the
radius of G, denoted by r(G) is defined as r(G) = min{e(v) | v ∈ V }
[6, Definition 4.3.1(3)].

Lemma 2.1. Let G = (V,E) be a graph with |V | ≥ 2. The following
statements are equivalent:

(1) γ(G) = 1.
(2) G is connected and r(G) = 1.

Proof. This proof of this lemma is quite easy and so, we omit its proof.
□

Proposition 2.2. Let R be a ring with |A(R)∗| ≥ 2. The following
statements are equivalent:
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(1) γ(Ω(R)) = 1.
(2) R is not reduced.
(3) Ω(R) is connected and r(Ω(R)) = 1.

Proof. (1) ⇒ (2) Assume that γ(Ω(R)) = 1. Let I ∈ A(R)∗ be such
that {I} is a dominating set of Ω(R). If I2 = (0), then it is clear
that R is not reduced. Suppose that I2 ̸= (0). Let J be given by
J = ((0) :R I). Note that J ∈ A(R)∗ and J ̸= I and so, J and I
are adjacent in Ω(R). Therefore, I + J ∈ A(R). Let r ∈ R\{0} be
such that (I + J)r = (0). This implies that r ∈ J = ((0) :R I) and
Jr = (0). Hence, r ∈ R\{0} is such that r2 = 0. This shows that R is
not reduced.

(2) ⇒ (1) Assume that R is not reduced. Let a ∈ R\{0} be such that
a2 = 0. Let us denote the ideal Ra by A. It is clear that A ∈ A(R)∗.
By hypothesis, |A(R)∗| ≥ 2. Let B ∈ A(R)∗ be such that B ̸= A. Since
A is a nilpotent ideal of R and B ∈ A(R)∗, we obtain from [9, Lemma
1.5] that A+B ∈ A(R) and so, A and B are adjacent in Ω(R). Hence,
{A} is a dominating set of Ω(R) and so, γ(Ω(R)) = 1.
(1) ⇔ (3) This follows from (1) ⇔ (2) of Lemma 2.1. □

Lemma 2.3. Let G1, . . . , Gk be the connected components of a graph
G. Then γ(G) =

∑k
i=1 γ(Gi).

Proof. This lemma is well known and hence, we omit its proof. □
Proposition 2.4. Let R be a reduced ring. Then γ(Ω(R)) = 2.

Proof. Since R is a reduced ring, it follows that
∩

p∈Min(R) p = (0). As
R is not an integral domain, we get that |Min(R)| ≥ 2. We consider
the following cases.

Case(1): |Min(R)| = 2.
Let Min(R) = {pi | i ∈ {1, 2}}. Observe that

∩2
i=1 pi = (0),

Z(R) =
∪2

i=1 pi, and MNP (R) = {pi | i ∈ {1, 2}}. Let i ∈ {1, 2} and
let Vi = {I ∈ A(R)∗ | I ⊆ pi}. It follows from the proof of [19, Lemma
3.1] that Ω(R) is not connected and it has exactly two components
G1, G2, where for each i ∈ {1, 2}, Gi is the subgraph of Ω(R) induced
by Vi and it is complete. Therefore, γ(Gi) = 1 for each i ∈ {1, 2} and
so, we obtain from Lemma 2.3 that γ(Ω(R)) =

∑2
i=1 γ(Gi) = 2.

Case(2): |Min(R)| ≥ 3.
In this case, we know from [20, Proposition 2.18] that

diam((Ω(R))c) = 3. Hence, there exists I, J ∈ A(R)∗ such that
d(I, J) = 3 in (Ω(R))c. Let A ∈ A(R)∗\{I, J}. It follows from
d(I, J) = 3 in (Ω(R))c that either I and A are not adjacent in (Ω(R))c

or J and A are not adjacent in (Ω(R))c. Hence, either A and I are



THE DOMINATION NUMBER OF Ω(R) AND (Ω(R))c 161

adjacent in Ω(R) or A and J are adjacent in Ω(R). This shows that
{I, J} is a dominating set of Ω(R). Therefore, γ(Ω(R)) ≤ 2. Since R is
reduced, it follows from (1) ⇒ (2) of Proposition 2.2 that γ(Ω(R)) ≥ 2.
Hence, γ(Ω(R)) = 2.

This proves that γ(Ω(R)) = 2. □
Let R be a reduced ring. If Ω(R) is connected, then we prove in

Proposition 2.6 that γ(Ω(R)) = diam(Ω(R)) = r(Ω(R)) = 2. We use
Lemma 2.5 in the proof of Proposition 2.6.

Lemma 2.5. Let R be a reduced ring such that Ω(R) is connected.
Then e(I) ≥ 2 in Ω(R) for each I ∈ A(R)∗.

Proof. Let I ∈ A(R)∗. Let J = ((0) :R I). It is clear that J ∈ A(R)∗.
Since R is reduced by hypothesis, I2 ̸= (0) and so, I ̸= J . Note that
I + J /∈ A(R) by [20, Lemma 2.3]. Therefore, d(I, J) ≥ 2 in Ω(R) and
so, e(I) ≥ 2 in Ω(R). □
Proposition 2.6. Let R be a reduced ring such that Ω(R) is connected.
Then γ(Ω(R)) = diam(Ω(R)) = r(Ω(R)) = 2.

Proof. Assume that R is reduced and Ω(R) is connected. Either
|MNP (R)| = 1 or |MNP (R)| ≥ 2. Suppose that MNP (R) = {p}.
Then Z(R) = p and as R is reduced, it follows that p is not a
B-prime of (0) in R. Hence, we obtain from [19, Lemma 2.2(ii)] that
diam(Ω(R)) ≤ 2. Suppose that MNP (R) = {pi | i ∈ {1, 2}}. Then
it follows from [19, Lemma 3.1] that

∩2
i=1 pi ̸= (0) and it follows from

[19, Lemmas 3.3 and 3.4] that diam(Ω(R)) = 2. If |MNP (R)| ≥ 3,
then diam(Ω(R)) = 2 by [19, Lemma 4.1]. Note that r(Ω(R)) ≥ 2 by
Lemma 2.5 and γ(Ω(R)) = 2 by Proposition 2.4. Therefore,

γ(Ω(R)) = diam(Ω(R)) = r(Ω(R)) = 2.
□

3. On the domination number of (Ω(R))c

Let R be a ring which is not an integral domain. The aim of this
section is to discuss some results on the domination number of (Ω(R))c.
In Theorem 3.1, we characterize rings R with |A(R)∗| ≥ 2 such that
γ((Ω(R))c) = 1.

We recall that a graph G = (V,E) is said to be bipartite if the vertex
set V can be partitioned into two non-empty subsets X and Y such
that each edge of G has one end in X and the other in Y . The pair
(X,Y ) is called the bipartition of the bipartite graph G. We denote
the bipartite graph G with bipartition (X,Y ) by G(X,Y ). A simple
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bipartite graph G(X,Y ) is said to be complete if each vertex of X is
adjacent to all the vertices of Y . A complete bipartite graph G(X,Y )
is said to be a star if either |X| = 1 or |Y | = 1 [6, Definition 1.2.12].
Let G(X,Y ) be a complete bipartite graph. If G(X,Y ) is a star, then
γ(G(X,Y )) = 1. If G(X,Y ) is not a star, then |X| ≥ 2 and |Y | ≥ 2
and in such a case, γ(G(X,Y )) = 2.
Theorem 3.1. Let R be a ring such that |A(R)∗| ≥ 2. The following
statements are equivalent:

(1) γ((Ω(R))c) = 1.
(2) R ∼= R1 ×R2 as rings, where Ri is an integral domain for each

i ∈ {1, 2} with Ri is a field for at least one i ∈ {1, 2}.
(3) (Ω(R))c is a star graph.

Proof. (1) ⇒ (2) Assume that γ((Ω(R))c) = 1. It follows from
(1) ⇒ (2) of Lemma 2.1 that (Ω(R))c is connected, r((Ω(R))c) = 1,
and so, diam((Ω(R))c) ≤ 2. As |A(R)∗| ≥ 2 by hypothesis and (Ω(R))c

is connected, it follows that R is reduced by [20, Lemma 2.1]. We
claim that |Min(R)| = 2. From diam((Ω(R))c) ≤ 2, it follows that
|Min(R)| ≤ 2 by [20, Proposition 2.18]. As R is not an integral
domain and

∩
p∈Min(R) p = (0), we obtain that |Min(R)| ≥ 2.

Therefore, |Min(R)| = 2. In such a case, we know from the proof
of (ii) ⇒ (i) of [20, Proposition 2.10] that (Ω(R))c is a complete
bipartite graph with vertex partition A(R)∗ = V1 ∪ V2, where

Vi = {A ∈ A(R)∗ | A ⊆ pi}
for each i ∈ {1, 2}. From the assumption γ((Ω(R))c) = 1, it follows
that (Ω(R))c is a star graph. If |A(R)∗| = 2, then we get that (Ω(R))c

is complete. Hence, by (i) ⇒ (ii) of [20, Proposition 2.11], we obtain
that R ∼= K1 ×K2 as rings, where Ki is a field for each i ∈ {1, 2}. If
|A(R)∗| ≥ 3, then we obtain from (i) ⇒ (ii) of [20, Proposition 2.12]
that R ∼= D×F as rings, where F is a field and D is an integral domain
which is not a field. Therefore, R ∼= R1 × R2 as rings, where Ri is an
integral domain for each i ∈ {1, 2} with Ri is a field for at least one
i ∈ {1, 2}.

(2) ⇒ (3) Assume that R ∼= R1×R2 as rings, where Ri is an integral
domain for each i ∈ {1, 2} with Ri is a field for at least one i ∈ {1, 2}.
If both R1 and R2 are fields, then by (ii) ⇒ (i) of [20, Proposition
2.11], we get that (Ω(R))c is a complete graph with two vertices and
hence, it is a star graph. Suppose that exactly one between R1 and
R2 is a field. Then it is clear that |A(R)∗| ≥ 3 and by (ii) ⇒ (i) of
[20, Proposition 2.12], we obtain that (Ω(R))c is a star graph.

(3) ⇒ (1) This is clear. □
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Let n ≥ 3. In Proposition 3.2, we verify that there are non-reduced
rings R such that γ((Ω(R))c) = n− 1.

Proposition 3.2. Let (R,m) be an SPIR and let n ≥ 3 be least with
the property that mn = (0). Then γ((Ω(R))c) = n− 1.

Proof. It is noted in Section 1 that

I(R)∗ = {mi | i ∈ {1, 2, . . . , n− 1}}.

It is clear that I(R)∗ = A(R)∗. Note that Ω(R) is complete by
[19, Example 2.4] and so, (Ω(R))c has no edges. Therefore, A(R)∗ is the
only dominating set of (Ω(R))c. Hence, γ((Ω(R))c) = |A(R)∗| = n− 1.
It is clear that R is not reduced. □

Let T = K[X] be the polynomial ring in one variable X over a field
K. Let n ≥ 3. Let I = TXn and let R = T

I
. Then (R,m = TX

I
) is

an SPIR and n is least with the property that mn = (0 + I). Hence, it
follows from Proposition 3.2 that γ((Ω(R))c) = n− 1.

Let M be an unitary module over a ring R. A submodule N of M
is said to be a simple R-module if N ̸= (0) and there is no non-zero
submodule W of M such that W ⊂ N . If N is simple, then it is clear
that ((0) :R N) ∈ Max(R).

Let R be a non-reduced ring with |A(R)∗| ≥ 2 and Z(R) is an ideal
of R. In Proposition 3.6, we characterize R such that (Ω(R))c admits a
finite dominating set. We use Corollary 3.4 in the proof of Proposition
3.6 and Lemma 3.3 is used in the proof of Corollary 3.4.

Lemma 3.3. Let R be a non-reduced ring with |A(R)∗| ≥ 2. If (Ω(R))c

admits a finite dominating set, then there exists a ∈ nil(R)\{0} such
that ((0) :R Ra) ∈ Max(R).

Proof. Assume that R is not reduced, |A(R)∗| ≥ 2, and (Ω(R))c admits
a finite dominating set. Let γ((Ω(R))c) = m. Since R is not reduced,
we obtain from (1) ⇒ (2) of Theorem 3.1 that m ≥ 2. Let D ⊆ A(R)∗

be such that D is a dominating set of (Ω(R))c with |D| = m. Let I be
a non-zero nilpotent ideal of R. Then by [9, Lemma 1.5], I+J ∈ A(R)
for any J ∈ A(R)∗. If I /∈ D, then as D being a dominating set
of (Ω(R))c, we get that there exists A ∈ D such that I and A are
adjacent in (Ω(R))c. Hence, I + A /∈ A(R). This is impossible and so,
I ∈ D. This shows that I ∈ D for any non-zero nilpotent ideal I of
R. From |D| < ∞, it follows that R can admit only a finite number of
nilpotent ideals. Hence, nil(R) is necessarily finitely generated and so,

|{A | A is an ideal of R with A ⊆ nil(R)}| < ∞.
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Therefore, it is possible to find an ideal I of R such that I ⊆ nil(R)
and I is a simple R-module. Let a ∈ I\{0}. Then I = Ra. It is clear
that a ∈ nil(R)\{0} and since Ra is a simple R-module, it follows that
((0) :R Ra) ∈ Max(R). □
Corollary 3.4. Let R be a non-reduced ring with |A(R)∗| ≥ 2. Suppose
that Z(R) is an ideal of R. If (Ω(R))c admits a finite dominating set,
then (Ω(R))c has no edges.
Proof. By hypothesis, nil(R) ̸= (0), |A(R)∗| ≥ 2 and Z(R) is an ideal
of R. Assume that (Ω(R))c admits a finite dominating set. Then there
exists a ∈ nil(R)\{0} such that ((0) :R Ra) ∈ Max(R) by Lemma 3.3.
Let us denote ((0) :R Ra) by m. From ma = (0), we get that m ⊆ Z(R).
As Z(R) is an ideal of R, it follows that m = Z(R) = ((0) :R a).
Therefore, MNP (R) = {m} and m is a B-prime of (0) in R. In such a
case, we know from the proof of [19, Lemma 2.3, Case 1] that Ω(R) is
complete. Therefore, (Ω(R))c has no edges. □

We provide Example 3.5 to illustrate that the conclusion of Corollary
3.4 can fail to hold if the assumption Z(R) is an ideal of R is omitted
in the statement of Corollary 3.4.. For any n ∈ N\{1}, we denote the
ring of integers modulo n by Zn.
Example 3.5. Let R = Z4 × F , where F is a field. Then R is not
reduced, γ((Ω(R))c) = 2 but |E((Ω(R))c)| = 2.
Proof. Since (2, 0)2 = (0, 0), it follows that R is not reduced. Observe
that

I(R)∗ = A(R)∗ = {(0)× F, 2Z4 × (0), 2Z4 × F,Z4 × (0)}.
As R is not reduced, it follows from (1) ⇒ (2) of Theorem 3.1 that
γ((Ω(R))c) ≥ 2. (This can be verified directly in this example.) Let
D = {2Z4 × (0),Z4 × (0)}. Observe that

((0)× F ) + (Z4 × (0)) = Z4 × F /∈ A(R)

and so, (0)× F is adjacent to Z4 × (0) in (Ω(R))c. From
(2Z4 × F ) + (Z4 × (0)) = Z4 × F /∈ A(R),

it follows that 2Z4 × F and Z4 × (0) are adjacent in (Ω(R))c. This
shows that D is a dominating set of (Ω(R))c and as |D| = 2, we obtain
that γ((Ω(R))c) ≤ 2. Hence, γ((Ω(R))c) = 2. It is not hard to verify
that

E((Ω(R))c) = {Z4 × (0)− (0)× F,Z4 × (0)− 2Z4 × F}
and so, |E((Ω(R))c)| = 2. □
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Proposition 3.6. Let R be a non-reduced ring with |A(R)∗| ≥ 2 and
Z(R) is an ideal of R. The following statements are equivalent:

(1) (Ω(R))c admits a finite dominating set.
(2) Either (R,m) is an SPIR with mn = (0) but mn−1 ̸= (0) for

some n ≥ 3 or (R,m) is a finite local ring such that m is not
principal.

Proof. By hypothesis, the ring R is not reduced, |A(R)∗| ≥ 2, and Z(R)
is an ideal of R.

(1) ⇒ (2) Assume that (Ω(R))c admits a finite dominating set. It
follows from Corollary 3.4 that (Ω(R))c has no edges. Hence, A(R)∗ is
the only dominating set of (Ω(R))c and so, it follows that
|A(R)∗| < ∞. Therefore, we obtain from [8, Theorem 1.1] that R
is Artinian. Hence, R is Noetherian and dimR = 0 by [5, Theorem
8.5]. It is well known that in an Artinian ring T , I(T )∗ = A(T )∗.
We claim that R is local. Suppose that |Max(R)| ≥ 2. Let m1,m2 be
distinct members of Max(R). Then mi ∈ A(R)∗ for each i ∈ {1, 2} and
m1 +m2 = R /∈ A(R). This implies that m1 −m2 is an edge of (Ω(R))c

and this contradicts the fact that (Ω(R))c has no edges. Therefore, R
is local. Let m denote the unique maximal ideal of R. Note that m is
nilpotent by [5, Corollary 8.2 and Proposition 8.4]. Let n ≥ 2 be least
with the property that mn = (0). Either m is principal or m is not
principal. Suppose that m is principal. In such a case, it is already
noted in Section 1 that

I(R)∗ = {mi | i ∈ {1, . . . , n− 1}}

and (R,m) is an SPIR. As |A(R)∗| ≥ 2, it follows that n − 1 ≥ 2 and
so, n ≥ 3. Suppose that m is not principal. Hence, it follows from
[5, Proposition 2.8] that dimR

m
( m
m2 ) ≥ 2. Let m1,m2 ∈ m be such that

{mi + m2 | i ∈ {1, 2}} is linearly independent over R
m

. If r, s ∈ R\m
are such that r + m ̸= s + m, then R(m1 + rm2) ̸= R(m1 + sm2).
Since |A(R)∗| < ∞, we get that |R

m
| < ∞. Observe that for each

i ∈ {1, . . . , n − 1}, mi−1

mi (with m0 = R) is a finite-dimensional
vector space over the field R

m
and so, |mi−1

mi | < ∞. Hence, from
|R| =

∏n
i=1 |

mi−1

mi |, it follows that R is finite.
(2) ⇒ (1) Suppose that (R,m) is an SPIR such that mn = (0) but

mn−1 ̸= (0) for some n ≥ 3. Then γ((Ω(R))c) = n − 1 by Proposition
3.2. Suppose that (R,m) is a finite local ring with m is not principal.
Then it is clear that |A(R)∗| < ∞ and note that A(R)∗ is the only
dominating set of (Ω(R))c. □
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Let R be a non-reduced ring such that Z(R) is not an ideal of R.
We are not able to characterize R such that (Ω(R))c admits a finite
dominating set.

Let R be a reduced ring. In Theorem 3.10, we characterize R such
that γ((Ω(R))c) = 2. First, we state and prove some results which are
needed for the proof of Theorem 3.10.
Proposition 3.7. Let n ≥ 3 and let Ri be a reduced ring for each
i ∈ {1, 2, 3, . . . , n}. Let R = R1 ×R2 ×R3 × · · · ×Rn. Then

γ((Ω(R))c) ≥ n.
Proof. Let i ∈ {1, 2, 3, . . . , n}. Let us denote {1, 2, 3, . . . , n}\{i} by Wi.
Let the element of R whose i-th coordinate equals 1 and j-th coordinate
equals 0 for all j ∈ Wi by ei. Let us denote (1, 1, 1, . . . , 1) − ei by fi.
Let Ai = {Rei} and let
Bi = {I1 × I2 × I3 × · · · × In | Ii ∈ A(Ri), Ij /∈ A(Rj) for all j ∈ Wi}.
It is clear that Rfi ∈ Bi and so, Bi ̸= ∅. Let D be any dominating set
of (Ω(R))c. We claim that D∩(Ai∪Bi) ≠ ∅. If Rei ∈ D, then it is clear
that D∩(Ai∪Bi) ̸= ∅. Suppose that Rei /∈ D. Since D is a dominating
set of (Ω(R))c, there exists I ∈ D such that Rei and I are adjacent in
(Ω(R))c. Hence, Rei+ I /∈ A(R). Let I = I1× I2× I3× · · ·× In, where
Ik is an ideal of Rk for each k ∈ {1, 2, 3, . . . , n}. From Rei + I /∈ A(R),
we get that Ij /∈ A(Rj) for all j ∈ Wi. As I ∈ A(R), it follows that
Ii ∈ A(Ri). Thus I ∈ Bi and so, I ∈ D ∩ Bi. This proves that
D ∩ (Ai ∪Bi) ̸= ∅.

Let i, j ∈ {1, 2, 3, . . . , n} with i ̸= j. We next verify that
(Ai ∪Bi) ∩ (Aj ∪Bj) = ∅.

As Rei ̸= Rej, it follows that Ai ∩ Aj = ∅. Since n ≥ 3, it is possible
to find k ∈ {1, 2, 3, . . . , n}\{i, j}. If J = J1 × J2 × J3 × · · · × Jn ∈ Bj,
then Jk /∈ A(Rk). Hence, Rei /∈ Bj. Therefore, Ai ∩ Bj = ∅. If
I = I1 × I2 × I3 × · · · × In ∈ Bi, then Ik /∈ A(Rk) and so, Bi ∩Aj = ∅.
If I = I1 × I2 × I3 × · · · × In ∈ Bi, then Ij /∈ A(Rj), whereas if

J = J1 × J2 × J3 × · · · × Jn ∈ Bj,
then Jj ∈ A(Rj). Hence, Bi ∩Bj = ∅. This shows that

(Ai ∪Bi) ∩ (Aj ∪Bj) = ∅
and so, (D ∩ (Ai ∪ Bi)) ∩ (D ∩ (Aj ∪ Bj)) = ∅ for all distinct
i, j ∈ {1, 2, 3, . . . , n}. As |D∩(Ai∪Bi)| ≥ 1 for each i ∈ {1, 2, 3, . . . , n},
it follows that

|D| ≥ |
∪n

i=1(D ∩ (Ai ∪Bi))| =
∑n

i=1 |D ∩ (Ai ∪Bi)| ≥ n.
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Hence, γ((Ω(R))c) ≥ n. □
Lemma 3.8. Let I1, I2 ∈ A(R)∗ be such that I1 ̸= I2. If I1 and I2 are
comparable under inclusion, then I1 and I2 are not adjacent in (Ω(R))c.

Proof. Let I1, I2 ∈ A(R)∗ be distinct. Assume that I1 and I2 are
comparable under inclusion. As I1 + I2 is either I1 or I2, we get that
I1 + I2 ∈ A(R) and so, I1 and I2 are not adjacent in (Ω(R))c. □

An element e of a ring R is said to be idempotent if e = e2. An
idempotent element e of R is said to be non-trivial if e /∈ {0, 1}.

Proposition 3.9. Let R be a reduced ring. Suppose that γ((Ω(R))c) = 2.
Let D = {I1, I2} be a dominating set of (Ω(R))c. Then the following
statements hold:

(1) I1 and I2 are not comparable under inclusion.
(2) I1 + I2 /∈ A(R).
(3) I1 ∩ I2 = (0).

Proof. Let R be a reduced ring. Assume that γ((Ω(R))c) = 2 and
D = {I1, I2} is a dominating set of (Ω(R))c.
(1) Suppose that I1 and I2 are comparable under inclusion. Without

loss of generality, we can assume that I1 ⊂ I2.
Let x ∈ I1\{0}. It is clear that I2 ̸= Rx. We claim that I1 = Rx.

Suppose that I1 ̸= Rx. Note that Rx ∈ A(R)∗\D. As Rx ⊂ I1 ⊂ I2,
it follows from Lemma 3.8 that Rx is not adjacent to Ii in (Ω(R))c for
each i ∈ {1, 2}. This is impossible, since D = {I1, I2} is a dominating
set of (Ω(R))c. Thus I1 = Rx for any non-zero x ∈ I1 and hence, I1 is
a simple R-module. Since R is reduced, we obtain that x2 ̸= 0 and so,
I1 = Rx = Rx2. It follows from x = ax2 for some a ∈ R that e = ax is a
non-trivial idempotent element of R and I1 = Rx = Re. It is clear that
the mapping f : R → Re × R(1 − e) defined by f(r) = (re, r(1 − e))
is an isomorphism of rings. Since I1 = Re is a simple R-module, it
follows that the ring Re is a field. Let us denote the ring Re by F1.
Let us denote the ring R(1− e) by R2.

We next verify that I2
I1

is a simple R-module. Let y ∈ I2\I1. We
claim that I1 + Ry = I2. Suppose that I1 + Ry ̸= I2. Observe that
I1 ⊂ I1+Ry ⊂ I2. Hence, I1+Ry ∈ A(R)∗\D. It follows from Lemma
3.8 that I1 + Ry is not adjacent to Ii in (Ω(R))c for each i ∈ {1, 2}.
This contradicts the assumption {I1, I2} is a dominating set of (Ω(R))c.
Therefore, I1+Ry = I2 for any y ∈ I2\I1. This shows that I2

I1
is a simple

R-module.
Let us denote the ring F1×R2 by T . Observe that the isomorphism f

maps R onto T and under f , D is mapped onto {F1×(0), F1×J}, where
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J is a simple R2-module with J ̸= R2. Note that γ((Ω(T ))c) = 2 and
{F1 × (0), F1 × J} is a dominating set of (Ω(T ))c. Since R2 is reduced
and J is a proper ideal of R2 and it is a simple R2-module, it follows that
J = R2e

′ for some non-trivial idempotent element e′ of R2. It is clear
that R2

∼= R2e
′×R2(1−e−e′) as rings. From J = R2e

′ is a simple R2-
module, we obtain that the ring R2e

′ is a field. Let us denote the ring
R2e

′ by F2 and the ring R2(1−e−e′) by R3. It is now clear that there is a
ring isomorphism g from R onto F1×F2×R3 and under g, D is mapped
onto {F1×(0)×(0), F1×F2×(0)}. Let us denote the ring F1×F2×R3 by
T1. Observe that γ((Ω(T1))

c) = 2 and D1 = {F1×(0)×(0), F1×F2×(0)}
is a dominating set of (Ω(T1))

c. We claim that R3 is an integral domain.
Let a ∈ R3, a ̸= 0. Let W = (0)× (0)× R3a. As W ∈ A(T1)

∗\D1 and
D1 is a dominating set of (Ω(T1))

c, it follows that W must be adjacent
to F1 ×F2 × (0) in (Ω(T1))

c. This implies that F1 ×F2 ×R3a /∈ A(T1).
Hence, AnnR3(R3a) = (0). This proves that R3 is an integral domain.
Note that we obtain from Proposition 3.7 that γ((Ω(T1))

c) ≥ 3. This
is a contradiction. Therefore, I1 and I2 are not comparable under
inclusion.

(2) Suppose that I1 + I2 ∈ A(R). As I1 and I2 are not comparable
under inclusion by (1), we obtain that I1 + I2 /∈ D. Thus Ii ⊂ I1 + I2
for each i ∈ {1, 2}. Therefore, we obtain from Lemma 3.8 that I1 + I2
is not adjacent to Ii in (Ω(R))c for each i ∈ {1, 2}. This contradicts
the assumption {I1, I2} is a dominating set of (Ω(R))c. Therefore, we
get that I1 + I2 /∈ A(R).
(3) Note that I1 ∩ I2 ∈ A(R). Suppose that I1 ∩ I2 ̸= (0). As

I1 and I2 are not comparable under inclusion by (1), it follows that
I1 ∩ I2 /∈ D. Observe that I1 ∩ I2 ⊂ Ii for each i ∈ {1, 2}. Therefore,
I1 ∩ I2 is not adjacent to Ii in (Ω(R))c for each i ∈ {1, 2} by Lemma
3.8. This contradicts the assumption {I1, I2} is a dominating set of
(Ω(R))c. Therefore, I1 ∩ I2 = (0). □

Theorem 3.10. Let R be a reduced ring. The following statements
are equivalent:

(1) γ((Ω(R))c) = 2.
(2) R has exactly two minimal prime ideals p1 and p2 such that pi

is not a simple R-module for each i ∈ {1, 2}.
(3) (Ω(R))c is a complete bipartite graph with vertex partition V1

and V2 such that |Vi| ≥ 2 for each i ∈ {1, 2}.

Proof. (1) ⇒ (2) Assume that γ((Ω(R))c) = 2. Hence, it is possible to
find a subset D of A(R)∗ with |D| = 2 such that D is a dominating
set of (Ω(R))c. Let D = {I1, I2}. Let i ∈ {1, 2}. We claim that there
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exists pi ∈ Spec(R) ∩ A(R) such that Ii ⊆ pi. First, we prove that
there exists p1 ∈ Spec(R) ∩ A(R) such that I1 ⊆ p1. Let

C = {W | W ∈ A(R),W ⊇ I1}.

It is clear that I1 ∈ C and hence, C ̸= ∅. Let W ∈ C. Let b ∈ I2\{0}.
We assert that Wb = (0). Suppose that Wb ̸= (0). It is clear that
Wb ∈ A(R). As Wb ⊆ I2 and Wb ̸= (0) by assumption, it follows from
Proposition 3.9(3) that Wb ̸= I1. If Wb = I2, then as I1 ⊆ W , we get
that I1+I2 ⊆ W . Since W ∈ A(R), we obtain that I1+I2 ∈ A(R). This
contradicts Proposition 3.9(2). Hence, Wb ̸= I2. Thus Wb ∈ A(R)∗\D.
It is clear that Wb + I1 ⊆ W ∈ A(R) and Wb + I2 ⊆ I2 ∈ A(R).
Therefore, Wb is not adjacent to Ii in (Ω(R))c for each i ∈ {1, 2}. This
is a contradiction. Hence, Wb = (0).

It is clear that (C,⊆) is a partially ordered set. We claim that any
chain in (C,⊆) has an upper bound in (C,⊆). Let {Wα}α∈Λ be a chain
in (C,⊆). Let W =

∪
α∈ΛWα. Since {Wα}α∈Λ is a chain in (C,⊆), we

obtain that W is an ideal of R. Let b ∈ I2\{0}. As Wαb = (0) for
each α ∈ Λ, we get that Wb = (0). Hence, W ∈ A(R). As I1 ⊆ Wα

for each α ∈ Λ, it follows that I1 ⊆
∩

α∈ΛWα ⊆ W . This shows that
W =

∪
α∈ΛWα ∈ C. From Wα ⊆ W for each α ∈ Λ, we obtain that

W ∈ C is an upper bound of the chain {Wα}α∈Λ. This proves that
any chain in (C,⊆) has an upper bound in (C,⊆). Therefore, it follows
from Zorn’s lemma that (C,⊆) admits a maximal element. Let p be a
maximal element of (C,⊆). Observe that p ∈ A(R) and p ⊇ I1. We
verify that p ∈ Spec(R). Let x, y ∈ R be such that xy ∈ p. Suppose
that x /∈ p. Since p is a maximal element of (C,⊆) and p ⊂ p+Rx, we
obtain that p + Rx /∈ A(R). Let b ∈ I2\{0}. Note that pb = (0) and
so, xyb = 0. This implies that (p+Rx)yb = (0). As p+Rx /∈ A(R), it
follows that yb = 0. Observe that (p + Ry)b = (0). Now, p ⊆ p + Ry
and p+Ry ∈ A(R). Hence, p+Ry ∈ C. Since p is a maximal element
of (C,⊆), we obtain that p + Ry = p and hence, y ∈ p. This shows
that p ∈ Spec(R). It is convenient to denote p by p1. Thus there
exists p1 ∈ Spec(R) such that p1 ∈ A(R) and I1 ⊆ p1. It follows
using a similar argument that there exists p2 ∈ Spec(R) such that
p2 ∈ A(R) and I2 ⊆ p2. We next claim that

∩2
k=1 pk = (0). Suppose

that
∩2

k=1 pk ̸= (0). Then
∩2

k=1 pk ∈ A(R)∗. If
∩2

k=1 pk = I1, then
I1 + I2 ⊆ p2 ∈ A(R). This is impossible, since I1 + I2 /∈ A(R) by
Proposition 3.9(2). Therefore,

∩2
k=1 pk ̸= I1. Similarly, if

∩2
k=1 pk = I2,

then I1 + I2 ⊆ p1 ∈ A(R). This is impossible, since I1 + I2 /∈ A(R) by
Proposition 3.9(2). Therefore,

∩2
k=1 pk ̸= I2 and so,

∩2
k=1 pk /∈ D. Let

i ∈ {1, 2}. As (
∩2

k=1 pk) + Ii ⊆ pi ∈ A(R), it follows that
∩2

k=1 pk is
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not adjacent to Ii in (Ω(R))c. This contradicts the assumption D is a
dominating set of (Ω(R))c. Hence,

∩2
k=1 pk = (0).

From
∩2

k=1 pk = (0), we obtain that |Min(R)| = 2 and indeed,

Min(R) = {pi | i ∈ {1, 2}}.

We next verify that pi is not a simple R-module for each i ∈ {1, 2}.
Note that ((0) :R p1) = p2 and ((0) :R p2) = p1. Suppose that p1
is a simple R-module. Then ((0) :R p1) = p2 ∈ Max(R). In such a
case, we obtain that p1 + p2 = R. As p1 ∩ p2 = (0), it follows from
[5, Proposition 1.10(ii) and (iii)] that the mapping f : R → R

p1
× R

p2

defined by f(r) = (r + p1, r + p2) is an isomorphism of rings. Observe
that R

p1
is an integral domain and R

p2
is a field. Let us denote the ring

R
p1

× R
p2

by T . Note that R ∼= T and hence, we obtain from (2) ⇒ (1)

of Theorem 3.1 that γ((Ω(R))c) = 1. This contradicts the assumption
γ((Ω(R))c) = 2. Therefore„ p1 is not a simple R-module. Similarly, it
follows that p2 is not a simple R-module.

(2) ⇒ (3) Assume that R is a reduced ring with

Min(R) = {pi | i ∈ {1, 2}}

such that pi is not a simple R-module for each i ∈ {1, 2}. The proof of
(ii) ⇒ (i) of [20, Proposition 2.10] implies that (Ω(R))c is a complete
bipartite graph with vertex partition A(R)∗ = V1 ∪ V2, where

Vi = {I ∈ A(R)∗ | I ⊆ pi}

for each i ∈ {1, 2}. Let i ∈ {1, 2}. From
∩2

i=1 pi = (0), it follows that
pi ∈ A(R)∗. Since pi is not a simple R-module, there exists at least
one Ii ∈ I(R)∗ such that Ii ⊂ pi. Thus {pi, Ii} ⊆ Vi and so, |Vi| ≥ 2.
(3) ⇒ (1) Assume that (Ω(R))c is a complete bipartite graph with

vertex partition V1 and V2 such that |Vi| ≥ 2 for each i ∈ {1, 2}.
In such a case, it follows from the observation noted in the paragraph
which appears just preceding the statement of Theorem 3.1 that
γ((Ω(R))c) = 2. □

Let R be a reduced ring. Let n ∈ N be such that n ≥ 3. If
γ((Ω(R))c) = n, then we do not know whether |Min(R)| < ∞.
However, with the assumption that p ∈ A(R) for each p ∈ Min(R)
and γ((Ω(R))c) ≥ 2, we prove in Theorem 3.13 that

γ((Ω(R))c) = |Min(R)|.
We use Lemmas 3.11 and 3.12 in the proof of Theorem 3.13.
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Lemma 3.11. Let R be a reduced ring. Suppose that |Min(R)| ≥ 3
and p ∈ A(R) for each p ∈ Min(R). Then |D| ≥ |Min(R)| for each
dominating set D of (Ω(R))c.

Proof. By hypothesis, R is a reduced ring with |Min(R)| ≥ 3 and
p ∈ A(R) for each p ∈ Min(R). Let Min(R) = {pα}α∈Λ. Let α ∈ Λ.
As pα ∈ A(R), there exists rα ∈ R\{0} such that pαrα = (0). Hence,
pα ⊆ ((0) :R rα). Since R is reduced and rα ̸= 0, it follows that
r2α ̸= 0 and so, rα /∈ pα. From rα((0) :R rα) = (0) ⊂ pα, we get that
((0) :R rα) ⊆ pα and so, pα = ((0) :R rα) is a B-prime of (0) in R. Let
β ∈ Λ\{α}. Now, pα = ((0) :R rα), pβ = ((0) :R rβ), and pα ̸= pβ.
Hence, we obtain from [7, Lemma 3.6] that rαrβ = 0. Since pα ̸= pβ,
it follows that Rrα ̸= Rrβ and rαrβ = 0. It is clear that Rrα ∈ A(R)∗

for each α ∈ Λ.
Let D be any dominating set of (Ω(R))c. Let α ∈ Λ. Let Aα = {Rrα}

and let

Bα = {I ∈ A(R)∗ | V (I) ∩Min(R) = {pα}}.

Since pα ∈ Bα, it follows that Bα ̸= ∅. We claim that

|D ∩ (Aα ∪Bα)| ≥ 1.

If Rrα ∈ D, then it is clear that |D ∩ (Aα ∪ Bα)| ≥ 1. Suppose that
Rrα /∈ D. Since D is a dominating set of (Ω(R))c, there must be an
element I ∈ D such that Rrα and I are adjacent in (Ω(R))c. Hence,
I + Rrα /∈ A(R). We know from [20, Lemma 2.14] that I ⊆ pα′ for
some α′ ∈ Λ. We claim that pα = pα′ . Suppose that pα ̸= pα′ . From
pα = ((0) :R rα) and pα′ = ((0) :R rα′), we obtain from [7, Lemma
3.6] that rαrα′ = 0. As I ⊆ pα′ , it follows that Irα′ = (0) and so,
(I+Rrα)rα′ = (0). This is impossible, since I+Rrα /∈ A(R). Therefore,
pα′ = pα. Hence, V (I) ∩Min(R) = {pα} and so, I ∈ Bα. The above
arguments imply that |D ∩ (Aα ∪ Bα)| ≥ 1. Let α, β ∈ Λ with α ̸= β.
We verify that

(Aα ∪Bα) ∩ (Aβ ∪Bβ) = ∅.

Since Aα = {Rrα}, Aβ = {Rrβ}, and Rrα ̸= Rrβ, it follows that
Aα ∩ Aβ = ∅. Observe that rα ∈ pα′ for all α′ ∈ Λ\{α} and as
|Λ| ≥ 3, we get that |V (Rrα) ∩ Min(R)| ≥ 2. For any J ∈ Bβ,
|V (J) ∩Min(R)| = 1. Therefore, Rrα /∈ Bβ and so, Aα ∩ Bβ = ∅. Let
I ∈ Bα. From |V (I)∩Min(R)| = 1, |V (Rrβ)∩Min(R)| ≥ 2, it follows
that I /∈ Aβ = {Rrβ} and so, Bα∩Aβ = ∅. As V (I)∩Min(R) = {pα},
whereas V (J)∩Min(R) = {pβ} for any J ∈ Bβ, we obtain that I /∈ Bβ

and so, Bα ∩Bβ = ∅. The above arguments show that
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(Aα ∪Bα) ∩ (Aβ ∪Bβ) = ∅

and so, for all distinct α, β ∈ Λ,
(D ∩ (Aα ∪Bα)) ∩ (D ∩ (Aβ ∪Bβ)) = ∅.

For each α ∈ Λ, let Iα ∈ D ∩ (Aα ∪ Bα). Note that {Iα | α ∈ Λ} ⊆ D
and so,

|Min(R)| = |Λ| = |{Iα | α ∈ Λ}| ≤ |D|.
This proves that for any dominating set D of (Ω(R))c, |D| ≥ |Min(R)|.

□
Lemma 3.12. Let R be a reduced ring. Suppose that p ∈ A(R) for
each p ∈ Min(R). Then Min(R) is a dominating set of (Ω(R))c.

Proof. Assume that R is a reduced ring and p ∈ A(R) for each
p ∈ Min(R). Let

Min(R) = {pα | α ∈ Λ}.
Since R is not an integral domain, it follows that |Min(R)| ≥ 2. Note
that Min(R) ⊆ A(R)∗. We claim that Min(R) is a dominating set of
(Ω(R))c. Let I ∈ A(R)∗\Min(R). Since

∩
α∈Λ pα = (0) and I ̸= (0),

we obtain that there exists α ∈ Λ such that I ̸⊆ pα. We assert that
I + pα /∈ A(R). Suppose that I + pα ∈ A(R). Then by [20, Lemma
2.14], there exists β ∈ Λ such that I + pα ⊆ pβ.. As distinct minimal
prime ideals of a ring are not comparable under inclusion, it follows
that pα = pβ. This is impossible, since I ̸⊆ pα. Hence, I + pα /∈ A(R)
and so, I and pα are adjacent in (Ω(R))c. This shows that Min(R) is
a dominating set of (Ω(R))c. □
Theorem 3.13. Let R be a reduced ring. Suppose that p ∈ A(R) for
each p ∈ Min(R). If γ((Ω(R))c) ≥ 2, then γ((Ω(R))c) = |Min(R)|.

Proof. By hypothesis, R is a reduced ring such that p ∈ A(R) for each
p ∈ Min(R). Assume that γ((Ω(R))c) ≥ 2. If |Min(R)| = 2, then it
follows from Lemma 3.12 that γ((Ω(R))c) ≤ 2 and so,

γ((Ω(R))c) = |Min(R)|.
Suppose that |Min(R)| ≥ 3. Then it follows from Lemmas 3.11 and
3.12 that Min(R) is a dominating set of minimum cardinality.
Therefore, γ((Ω(R))c) = |Min(R)|. □

Let R be a reduced ring. Let |Min(R)| = n for some n ∈ N\{1}.
Let Min(R) = {pi | i ∈ {1, 2, . . . , n}}. Note that

∩n
i=1 pi = (0).

Let i ∈ {1, 2, . . . , n}. Let us denote the set {1, 2, . . . , n}\{i} by Ai.
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As distinct minimal prime ideals of a ring are not comparable under
inclusion, it follows from [5, Proposition 1.11(ii)] that pi ̸⊇

∩
j∈Ai

pj.
Let xi ∈ (

∩
j∈Ai

pj)\pi. Then xi ̸= 0 and pixi = (0). Hence, pi ∈ A(R).
In Example 3.14, we provide an example of a reduced ring R with
Min(R) is infinite and p ∈ A(R) for each p ∈ Min(R).

Let T = K[X1, X2, . . . , Xn] (n ≥ 2) be the polynomial ring in n
variables X1, X2, . . . , Xn over a field K. Let I = T (

∏n
i=1 Xi). Let

R = T
I
. Let i ∈ {1, 2, . . . , n}. It is convenient to denote Xi + I by xi.

Since TXi ∈ Spec(T ), it follows that pi = Rxi ∈ Spec(R). Observe
that (0 + I) =

∏n
i=1 pi =

∩n
i=1 pi. Hence, R is a reduced ring and

as TXi and TXj are not comparable under inclusion for all distinct
i, j ∈ {1, 2, . . . , n}, we get that pi and pj are not comparable
under inclusion. Hence,

Min(R) = {pi | i ∈ {1, 2, . . . , n}}.
Therefore, |Min(R)| = n. Hence, we obtain from Lemma 3.12 that
γ((Ω(R))c) ≤ n. Observe that for each i ∈ {1, 2, . . . , n}, x2

i ̸= 0 + I
and Rx2

i ⊂ pi and so, pi is not a simple R-module. Thus if n = 2, then it
follows from (2) ⇒ (1) of Theorem 3.10 that γ((Ω(R))c) = 2. If n ≥ 3,
then it follows from Lemma 3.11 that γ((Ω(R))c) ≥ n. Therefore, we
obtain that γ((Ω(R))c) = n.

In Example 3.14, we mention a reduced ring R due to Gilmer and
Heinzer [11, Example, page 16] such that (Ω(R))c does not admit any
finite dominating set.

Example 3.14. Let {Xi}∞i=1 be a set of indeterminates. Let
D =

∪∞
n=1K[[X1, . . . , Xn]],

where K[[X1, . . . , Xn]] is the power series ring in X1, . . . , Xn over a field
K. Let I be the ideal of D generated by {XiXj | i, j ∈ N, i ̸= j}. Let
R = D

I
. Then R is a reduced ring, Min(R) is infinite, p ∈ A(R) for

each p ∈ Min(R), and γ((Ω(R))c) = |Min(R)|.

Proof. For each i ∈ N, it is convenient to denote Xi + I by xi. It
follows from the proof of [11, Example, page 16] that R is reduced,
|Max(R)| = 1, m =

∑∞
i=1Rxi is the unique maximal ideal of R, and

Min(R) is infinite with Min(R) = {pi | i ∈ N}, where for each i ∈ N,
pi is the ideal of R generated by {xj | j ∈ N, j ̸= i}. Observe that for
each i ∈ N, xi ̸= 0 + I and pixi = (0 + I). Hence, pi ∈ A(R) for each
i ∈ N. It is clear from Lemma 3.11 that γ((Ω(R))c) > n for each n ∈ N
and it follows from Theorem 3.13 that γ((Ω(R))c) = |Min(R)| and so,
(Ω(R))c does not admit any finite dominating set. □
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We recall that a ring R is said to be von Neumann regular if given
a ∈ R, there exists b ∈ R such that a = a2b [10, Exercise 16, page
111]. A ring R is von Neumann regular if and only if dimR = 0 and
R is reduced by (a) ⇔ (d) of [10, Exercise 16, page 111]. Thus if R
is von Neumann regular, then Spec(R) = Max(R) = Min(R). Let R
be a von Neumann regular ring which is not a field. Hence, R is not
an integral domain. Since R is reduced, we know from [20, Lemma
2.2] that |A(R)∗| ≥ 2. It is clear that a homomorphic image of a von
Neumann regular ring is von Neumann regular and an integral domain
is von Neumann regular if and only if it is a field. Hence, we obtain
from (1) ⇔ (2) of Theorem 3.1 that for a von Neumann regular ring R,
γ((Ω(R))c) = 1 if and only if R ∼= F1 × F2 as rings, where Fi is a field
for each i ∈ {1, 2}. We verify in Corollary 3.16 that there exists no von
Neumann regular ring R such that γ((Ω(R))c) = 2. Let n ∈ N be such
that n ≥ 3. In Theorem 3.17„ we determine necessary and sufficient
conditions in order that γ((Ω(R))c) to be equal to n. We use Lemma
3.15 in the verification of Corollary 3.16.
Lemma 3.15. Let R be a von Neumann regular ring with |Min(R)| = 2.
Let Min(R) = {pi | i ∈ {1, 2}}. Then pi is a simple R-module for each
i ∈ {1, 2}.
Proof. By hypothesis„ R is von Neumann regular, |Min(R)| = 2, and
Min(R) = {pi | i ∈ {1, 2}}. As Min(R) = Max(R), we get that R

pi

is a field for each i ∈ {1, 2} and so, R
pi

is a simple R-module for each
i ∈ {1, 2}. Since R is reduced, it follows that

∩2
i=1 pi = (0) and it

is clear that p1 + p2 = R. It is not hard to verify that the mapping
f1 : p1 → R

p2
defined by f1(x) = x + p2 and the mapping f2 : p2 → R

p1

given by f2(y) = y+ p1 are isomorphisms of R-modules. Hence, pi is a
simple R-module for each i ∈ {1, 2}. □
Corollary 3.16. Let R be a von Neumann regular ring. Then

γ((Ω(R))c) ̸= 2.
Proof. By hypothesis, R is a von Neumann regular ring. Since R is
reduced, it follows from (1) ⇒ (2) of Theorem 3.10 and Lemma 3.15
that γ((Ω(R))c) ̸= 2. □
Theorem 3.17. Let R be a von Neumann regular ring. Let n ∈ N be
such that n ≥ 3. The following statements are equivalent:

(1) γ((Ω(R))c) = n.
(2) |Min(R)| = n.
(3) R ∼= F1 × F2 × F3 × · · · × Fn as rings, where Fi is a field for

each i ∈ {1, 2, 3, . . . , n}.
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Proof. As R is von Neumann regular by hypothesis, we get that R is
reduced and Spec(R) = Max(R) = Min(R). By hypothesis, n ∈ N is
such that n ≥ 3.
(1) ⇒ (2) Assume that γ((Ω(R))c) = n . Suppose that

|Min(R)| ≥ n+ 1.

As dimR = 0, we obtain from [21, Lemma 2.2] that there exist zero-
dimensional rings R1, R2, R3, . . . , Rn, Rn+1 such that

R ∼= R1 ×R2 ×R3 × · · · ×Rn ×Rn+1

as rings. Since R is reduced, it follows that Ri is reduced for each
i ∈ {1, 2, 3, . . . , n, n+ 1}. Let us denote the ring

R1 ×R2 ×R3 × · · · ×Rn ×Rn+1

by T . Note that γ((Ω(T ))c) ≥ n + 1 by Proposition 3.7. Hence,
γ((Ω(R))c) ≥ n+ 1. This contradicts the assumption γ((Ω(R))c) = n.
Therefore, |Min(R)| ≤ n. Hence, p ∈ A(R) for each p ∈ Min(R). It
follows from Lemma 3.12 that

γ((Ω(R))c) ≤ |Min(R)|.

Thus |Min(R)| ≥ n and so, |Min(R)| = n.
(2) ⇒ (3) Let

Min(R) = {pi | i ∈ {1, 2, 3, . . . , n}}.

Since R is von Neumann regular, it follows that R is reduced and
Min(R) = Max(R). Therefore,

∩n
i=1 pi = (0) and pi + pj = R for all

distinct i, j ∈ {1, 2, 3, . . . , n}. Hence, we obtain from [5, Proposition
1.10(ii) and (iii)] that the mapping

f : R → R
p1

× R
p2

× R
p3

× · · · × R
pn

defined by f(r) = (r + p1, r + p2, r + p3, . . . , r + pn) is an isomorphism
of rings. Let i ∈ {1, 2, 3, . . . , n} and let us denote R

pi
by Fi. Then Fi is

a field and R ∼= F1 × F2 × F3 × · · · × Fn as rings.
(3) ⇒ (1) Let us denote the ring F1 × F2 × F3 × · · · × Fn by T ,

where Fi is a field for each i ∈ {1, 2, 3, . . . , n}. Since n ≥ 3, it follows
from Proposition 3.7 that γ((Ω(T ))c) ≥ n. Since R ∼= T as rings by
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assumption, it follows that γ((Ω(R))c) ≥ n. Observe that
Spec(T ) = Max(T ) = Min(T ) = {m1 = (0)× F2 × F3 × · · · × Fn,

m2 = F1 × (0)× F3 × · · · × Fn,

m3 = F1 × F2 × (0)× · · · × Fn,

. . . ,

mn = F1 × F2 × F3 × · · · × (0)}
Thus |Min(T )| = n and so, |Min(R)| = n. Hence, we obtain from
Theorem 3.13 that γ((Ω(R))c) = |Min(R)| = n. □
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ON THE DOMINATION NUMBER OF THE SUM
ANNIHILATING IDEAL GRAPH OF A COMMUTATIVE RING
AND ON THE DOMINATION NUMBER OF ITS COMPLEMENT

S. VISWESWARAN AND P. SARMAN

جابه جایی حلقه ی یک از جمعی پوچ ساز ایده آل گراف احاطه گری عدد بررسی
آن مکمل احاطه گری عدد بررسی و

سارمان٢ پتات و ویسوسواران١ سوبرامانی

هند راجکوت، ساوراشترا، دانشگاه ریاضی، ١گروه

هند جوناگاد، دولتی، تکنیک پلی ریاضی، ٢گروه

می باشند. ناصفر پوچ ساز ایده آل یک دارای حداقل و هستند یکدار و جابه جایی حلقه ها همه ی مقاله، این در
پوچ ساز ایده آل های همه ی نشان دهنده ی A(R) می کنیم فرض همچنین، باشد. حلقه یک R می کنیم فرض
با که جمعی پوچ ساز ایده آل گراف که می کنیم یادآوری باشد. A(R)\{(٠)} نمایانگر A(R)∗ و R

رأس دو و می باشد آن رئوس مجموعه ی A(R)∗ که است غیرجهتی گرافی می شود، داده نشان Ω(R)
نتایج برخی بررسی مقاله این هدف .I + J ∈ A(R) اگر تنها و اگر مجاورند Ω(R) در J و I متمایز

است. Ω(R) مکمل (Ω(R))c که می باشد ((Ω(R))c (به ترتیب، Ω(R) احاطه گری عدد روی

عدد ،(٠) B-اول ،(٠) ماکسیمال N-اول مینیمال، اول ایده آل کاهشی، حلقه ی کلیدی: کلمات
گراف. یک احاطه گری
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