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ON COMULTIPLICATION AND R-MULTIPLICATION
MODULES

A. NIKSERESHT∗ AND H. SHARIF

Abstract. We state several conditions under which comultiplica-
tion and weak comultiplication modules are cyclic and study strong
comultiplication modules and comultiplication rings. In particu-
lar, we will show that every faithful weak comultiplication module
having a maximal submodule over a reduced ring with a finite in-
decomposable decomposition is cyclic. Also we show that if M
is an strong comultiplication R-module, then R is semilocal and
M is finitely cogenerated. Furthermore, we define an R-module
M to be p-comultiplication, if every nontrivial submodule of M is
the annihilator of some prime ideal of R containing the annihila-
tor of M and give a characterization of all cyclic p-comultiplication
modules. Moreover, we prove that every p-comultiplication module
which is not cyclic, has no maximal submodule and its annihilator
is not prime. Also we give an example of a module over a Dedekind
domain which is not weak comultiplication, but all of whose local-
izations at prime ideals are comultiplication and hence serves as a
counterexample to [11, Proposition 2.3] and [12, Proposition 2.4].

1. Introduction

In this paper all rings are commutative with identity, all modules
are unitary, R denotes a ring and M denotes an R-module. Also by N
we mean the set of positive integers. Furthermore, Z(M), Ann(M) and
N(R) denote the set of zero divisors of M , the annihilator of M and
the nilradical of R, respectively.

MSC(2010): Primary: 13C99; Secondary: 13C05

Keywords: Comultiplication Module, r-Multiplication Module, p-Comultiplication Mod-

ule.

Received: 27 October 2013, Revised: 21 February 2014.

∗Corresponding author .
1



2 NIKSERESHT AND SHARIF

It is said that M is a multiplication module, if for each submodule
N of M , there is an ideal I of R, such that N = IM . It is easy to
see that, in this case N = (N : M)M , where (N : M) = Ann

(
M
N

)
(see

[13]).
In [6] the notion of a comultiplication module was introduced as a

dual of the concept of a multiplication module. An R-module M is
called comultiplication (co-m for short), if for every submodule N of
M , there exists an ideal I of R such that N = (0 :M I). For example,
the Z-module Z2∞ is a co-m module since all of its proper submodules
are of the form (0 :M 2kZ) for k = 0, 1, . . .. It is clear that M is co-m if
and only if for every submoduleN ofM , we have AnnM(AnnR(N)) = N.

In [12], a dual of the notion of weak multiplication modules (see [9])
is introduced and studied. A proper submodule N of M is said to be
prime if from rm ∈ N for r ∈ R and m ∈ M we can deduce that
r ∈ (N : M) or m ∈ N (see for example [10]). An R-module M is said
to be a weak comultiplication module, when for each prime submodule
N of M , there is an ideal I of R, such that N = (0 :M I).

It should be mentioned that another dual notion of weak multipli-
cation modules is defined in [4]. A submodule N of M is said to be a
second submodule if rN = N or rN = 0 for each r ∈ R. In [4], M is
called weak comultiplication when for each second submodule N of M ,
there is an ideal I of R, such that N = (0 :M I). Here we use the term
weak comultiplication module exclusively in the sense of [12].

In this paper, we find several conditions under which co-m modules
are cyclic and study rings which are co-m modules over themselves
(called comultiplication rings). In particular, we show that if M is a
faithful weak co-m R-module with a maximal submodule N and R is
a reduced ring (recall that a reduced ring is one with no nilpotents)
with a finite indecomposable decomposition, then M ∼= R and R is
semisimple.

Proposition 2.3 of [11] and Proposition 2.4 of [12] state that a module
over a Dedekind domain is [weak] comultiplication, if and only if all
of its localizations at prime ideals are [weak] comultiplication. Here in
(5.4), we give a counterexample to both of these statements and hence
show that they are inaccurate.

Moreover, we state some properties of co-m R-modules, for every
submodule N of which there is exactly one ideal I of R with (0 :M I) =
N . Such modules are called strong comultiplication modules (see [5]).
Particularly, we show that if there exists an strong comultiplication
module M over R, then R is semilocal (that is, it has finitely many
maximal ideals) and M is finitely cogenerated.
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Finally, we study modules such as M , such that for every nontrivial
submodule of them, say N , there can be found a prime ideal I of R
containing Ann(M) such that N = (0 :M I). We call such modules
p-comultiplication (p-co-m) modules. In fact, we conjecture that every
such module is cyclic and give several conditions under which, this
conjecture is true, for example if Ann(M) is not prime or if M has a
maximal submodule. Also we give a characterization of cyclic p-co-m
modules.

2. Comultiplication Modules

Multiplication modules have been studied by many mathematicians
from different points of view. A suitable reference is [13]. In recent
years, some authors have tried to find the dual of some of the inter-
esting results concerning multiplication modules. Particularly in [6],
comultiplication modules were introduced as a dual to multiplication
modules. An R-module M is a [weak] comultiplication module, abbre-
viated as [weak] co-m module, when for every [prime] submodule N
of M , there exists an ideal I of R such that N = (0 :M I). In this
section we show that under various (not much strong) conditions co-m
modules are cyclic. First we need a lemma.

Lemma 2.1. (i) If a submodule N of M equals (0 :M I) for some
ideal I of R, then (N : M) = (Ann(M) :R I).

(ii) M is a [weak] co-m R-module if and only if it is a [weak] co-m
R

Ann(M)
-module.

(iii) Suppose that M is an R-module and R = R1 × R2, where R1

and R2 are nontrivial rings. Then M = M1 ⊕M2 where M1

is an R1-module and M2 is an R2-module. Also in this case,
M is [weak] co-m if and only if both M1 and M2 are so.

Proof. (i): Let J be an arbitrary ideal of R, then:

J ⊆ (N : M) ⇔ JM ⊆ N ⇔ JM ⊆ (0 :M I)

⇔ IJM = 0 ⇔ IJ ⊆ Ann(M) ⇔ J ⊆ (Ann(M) :R I),

and the result follows.
(ii): Easy.
(iii): Set M1 = (1, 0)M and M2 = (0, 1)M . Then M1 and M2 have

the required properties. Also clearly every submodule of M is of the
form N1 ⊕N2 where Ni is a submodule of Mi (i = 1, 2). Assume that
M1 and M2 are co-m, N1 = (0 :M1 I) and N2 = (0 :M2 J) where I and
J are ideals of R1 and R2, respectively. Now N1 ×N2 = (0 :M I × J),
that is, M is co-m. Conversely if M is co-m and N1 is a submodule
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of M1, then N1 × 0 = (0 :M I × J) for ideals I and J of R1 and R2,
respectively. Therefore, N1 = (0 :M1 I) as required.

Also note that prime submodules of M are exactly submodules of
the form N1⊕M2 or M1⊕N2, where N1 and N2 are prime submodules
of M1 and M2, respectively. Thus the result for weak co-m modules
follows similar to the proof for co-m modules. □

According to (2.1), when M is a co-m module, it may be reduced to
a faithful co-m module.

Theorem 2.2. If M is a faithful weak co-m R-module with a maxi-
mal submodule N and R is a reduced ring with a decomposition as a
finite direct product of indecomposable rings, then M ∼= R and R is
semisimple.

Proof. By (2.1), we can assume that R is indecomposable and show
that R is a field. Suppose that A = Ann(N). Then A ̸= 0 else N =
(0 :M A) = M a contradiction. Suppose that r ∈ A ∩ (N : M). Then
r2M ⊆ rN = 0. Therefore, r2 ∈ Ann(M) = 0 and since R is reduced,
r = 0. Consequently, A ∩ (N : M) = 0. On the other hand, since
A ̸= 0 and (N : M) is a maximal ideal of R, we get A+ (N : M) = R.
Thus R ∼= R

A
× R

(N :M)
and since A ̸= 0 and R is indecomposable, we

must have (N : M) = 0. This means that 0 is a maximal ideal of R,
whence R is a field. So the only submodules of M are M = (0 :M 0)
and 0 = (0 :M R), that is, M is a simple vector space over the field R,
as claimed. □

Immediate from (2.1)(ii) and (2.2) we have:

Corollary 2.3. Assume that M is a weak co-m module having a max-
imal submodule (for example, if M is finitely generated) and M =
Ann(M). Then M is a prime ideal if and only if M is a maximal ideal
and M ∼= R

M
is a simple module.

Corollary 2.4. If M is a finitely generated co-m module with Ann(M)
a radical ideal, then M is cyclic and R

Ann(M)
is a semisimple ring.

Proof. We can assume that M is faithful and hence R is reduced. In
[1], it is proved that if there exists a finitely generated faithful co-
m R-module, then R is semilocal. Clearly a semilocal ring has an
indecomposable decomposition as finite direct product of rings. Thus
the result follows by (2.2). □

A chained ring is a ring in which every two ideals are comparable.
For example, localization of Z at any prime ideal or more generally
every valuation domain is a chained ring.
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Lemma 2.5. If R is a chained ring and M is co-m having a maximal
submodule N , then M is cyclic.

Proof. Choose an m ∈ M \ N . Set A = Ann(Rm) and A′ = Ann(N).
Then either A ⊆ A′ or A′ ⊆ A. Therefore, either Rm = (0 :M A) ⊆
(0 :M A′) = N or N ⊆ Rm. Since the former is not possible, we deduce
that N ⊆ Rm. On the other hand, since N is maximal and m /∈ N ,
we have Rm = Rm+N = M . □

A ring, in which every nonzero proper ideal is a product of prime
ideals, is called a ZPI-ring. Theorem 9.10 of [16] states that a ZPI-ring
is a finite direct product of SPIRs (that is, principal ideal rings with
exactly one prime ideal) and Dedekind domains.

Corollary 2.6. Suppose that R is a ZPI-ring and M is a finitely gen-
erated R-module, then M is co-m if and only if M is cyclic and R

Ann(M)

is a finite direct product of SPIRs.

Proof. Since every quotient of a ZPI-ring is itself a ZPI-ring, using
(2.1)(ii) and (iii), we can assume that M is faithful.

(⇒): Suppose that M is co-m. According to [16, Theorem 9.10],
R ∼= R1 × · · · × Rn, where each Ri is either an SPIR or a Dedekind
domain. By (2.1)(iii), M ∼= M1 ⊕ · · · ⊕Mn where each Mi is a (clearly
faithful and finitely generated) co-m Ri-module. If Ri is an SPIR, then
by (2.5), Mi

∼= Ri (note that every SPIR is a chained ring). If Ri is a
Dedekind domain, then according to (2.3), Mi

∼= Ri and Ri is a field,
hence an SPIR. Consequently, each Ri is an SPIR and M ∼= R.

(⇐): Using (2.1)(iii), we assume that R is indecomposable and hence
an SPIR. If Rp is the unique prime ideal of R and k is the minimum
nonnegative integer with Rpk = 0, then Rpi = (0 : Rpk−i) for i =
0, 1, . . . , k and hence R is co-m. □

In what follows, by a semi-non-torsion R-module M , we mean a
module which is non-torsion over R

Ann(M)
. The following remark states

some other conditions under which a co-m module must be cyclic.

Remark 2.7. (i) If M is a semi-non-torsion co-m R-module, then
Ann(m) = Ann(M) for some m ∈ M and hence Rm = (0 :M
Ann(Rm)) = (0 :M Ann(M)) = M. That is, M is cyclic.

(ii) IfM is a finitely generated co-m R-module and Ann(M) is irre-
ducible, then Ann(M) =

∩n
i=1 Ann(mi), where {m1, . . . , mn}

is a generating set of M . Hence Ann(M) = Ann(mi) for some
i and M = Rmi is cyclic.

(iii) Suppose that R is a finitely cogenerated ring with irreducible
zero ideal and M is a faithful co-m R-module. Then 0 =
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m∈M Ann(m). Hence Ann(M) = 0 = Ann(m) for some m ∈

M and M = Rm is cyclic.

As we saw under various conditions, finitely generated co-m modules
are cyclic (although there are noncyclic finitely generated co-m mod-
ules, see for example (2.18)). Also in (5.5) we shall give some other
criteria under which a co-m module is cyclic. This proposes to consider
rings, which as modules over themselves are [weak] co-m. Such rings
are called [weak] co-m rings. As an example one can readily check
that every SPIR is a co-m ring. It is easy to see that a ring is co-
m if and only if it satisfies the double annihilator condition, that is,
Ann(Ann(I)) = I for every ideal I of R.

Remark 2.8. If R is a co-m ring, then for every r ∈ R \ Z(R) we have
rR = R by [6, Lemma 3.15]. Thus every co-m ring is a total quotient
ring. Also according to (2.2), a reduced indecomposable ring (such as
an integral domain) is a weak co-m ring if and only if it is a field.

Remark 2.9. Assume that M is a finitely generated weak co-m R-
module and let P be a prime ideal of R containing Ann(M). Then by
[10, Lemma 4], M has a prime submodule N with (N : M) = P. If
I = Ann(N), then since M is weak co-m and N is prime, by applying
(2.1), we get that (Ann(M) :R I) = P. Therefore, R

Ann(M)
is a weak

co-m ring.

Proposition 2.10. The following are equivalent for a ring R.

(i) R is a [weak] co-m ring.
(ii) Every faithful [weak] multiplication R-module is a [weak] co-m

R-module.
(iii) There exists a finitely generated faithful multiplication [weak]

co-m R-module.

Proof. (i)⇒ (ii): LetM be a faithful multiplication R-module. Assume
that N = IM is an arbitrary submodule of M where I is an ideal of
R (if N is prime, we can choose I = (N : M) which is a prime ideal
of R). By assumption there is an ideal J of R such that I = (0 :R J).
Set K = (0 :M J), then by (2.1)(i), (K : M) = (0 :R J) = I. Thus
(0 :M J) = K = (K : M)M = IM = N , as required.

(ii) ⇒ (iii): Trivial.
(iii) ⇒ (i): Let I be an ideal of R and set N = IM , where M is

a finitely generated faithful co-m multiplication module. Then by [13,
Theorem 3.1], I = (N : M) which, according to (2.1)(i), is equal to
(0 :R J), where J is the ideal of R such that N = (0 :M J). For the
weak version, just note that if I is a prime ideal, then N is a prime
submodule by [13, Corollary 2.11]. □
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We can apply (2.1)(iii) on [weak] co-m modules over R =
∏

a∈ARa

only when A is finite. But the following theorem shows that at least for
the faithful co-m modules we have a similar result even if A is infinite.

Theorem 2.11. Suppose that R =
∏

a∈A Ra, where Ra’s are nontrivial
rings. A faithful R-module M is co-m if and only if M =

⊕
a∈A Ma,

where each Ma is a co-m Ra-module and RbMa = 0 for a ̸= b ∈ A. In
particular, R is a co-m ring, if and only if |A| < ∞ and each Ra is a
co-m ring.

Proof. Let ea be the element of R with 1 in the a’th component and zero
at others. First assume that M is a co-m R-module. Set Ma = eaM .
Then Ann(Ma) = R′

a, where R′
a is the set of all elements of R with

zero a’th component and hence Ma is an Ra-module. Suppose that
m1 + m2 + · · · + mn = 0 where mi ∈ Mai for some ai’s in A. Then
by multiplying both sides by eai we see that each mi = 0. Therefore,
N =

⊕
a∈AMa is a submodule of M . But Ann(N) =

∩
a∈AAnn(Ma) =∩

a∈A R′
a = 0. Thus N = (0 :M Ann(N)) = (0 :M 0) = M.

If Ka is a submodule of Ma, then

AnnR(Ka) = AnnRa(Ka)×
∏

a ̸=b∈A

Rb.

Because M is co-m we get

Ka = (0 :M AnnR(Ka)) = (0 :Ma AnnRa(Ka))⊕

( ⊕
a ̸=b∈A

(0 :Mb
Rb)

)
=

(0 :Ma AnnRa(Ka)).

Consequently, Ma is a co-m Ra-module.
Conversely, suppose that M =

⊕
a∈A Ma for co-m Ra-modules Ma’s.

Now let K be a submodule of
⊕

Ma. If Ka = K ∩ Ma, then clearly⊕
Ka ≤ K. Also, since k = k1 + · · · + kn for some ki’s in Mai ’s and

eaik = eaiki = ki ∈ K∩Ma, so k ∈
⊕

Ka, that is,K =
⊕

Ka. Consider
the ideal I =

∏
Ann(Ka). Then (0 :M I) =

⊕
(0 :Ma Ann(Ka)) =⊕

Ka = K as required. For the last statement, just note that if R is a
direct sum of some rings, then only finitely many of these rings can be
nonzero. □
Corollary 2.12. Let R be a reduced Noetherian ring. Then R is co-m
if and only if it is a finite direct product of fields.

Proof. This follows from the fact that every reduced Noetherian ring
is a finite direct product of indecomposable reduced rings, (2.11) and
(2.2). □
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Thus we see that Z2 ⊕ Z2 is a co-m ring although it is not a co-m
Z-module or co-m Z2-module.

The proof of the following can be found in [1].

Proposition 2.13. Suppose that M is co-m. Then M is of finite length
if and only if it is Noetherian.

For weak co-m modules, the similar statement does not hold, as the
next example shows.

Example 2.14. Set R0 = K[X, Y ]M, where M =< X, Y >, K is a
field and let x, y denote the images of X, Y in R0, respectively. Suppose
that I =< x3, x2y > and R = R0

I
. Then R is a Noetherian weak co-

m R-module, which is not of finite length. Hence R is not a co-m
R-module.

Proof. Clearly dim R = 1 and the only prime ideals of R are Rx̄ and
Rx̄+Rȳ, where x̄, ȳ are the images of x, y in R. Thus R is Noetherian
but not of finite length. Now Rx̄ = (0 : x̄ȳ) (if f

1
xy ∈< x3, x2y >

for some f ∈ K[X, Y ], then for some t ∈ K[X, Y ] \ M, we get that
tfXY ∈< X3, X2Y >, which implies f ∈< X >). Also Rx̄ + Rȳ =
(0 : Rx̄2). So R is a weak co-m R-module, which according to (2.13),
is not a co-m R-module. □

Using (2.13) one can see that if a Noetherian ring is a co-m ring, then
it is Artinian. Since for a ring being co-m is equivalent to satisfying the
double annihilator condition, we see that Noetherian (or equivalently
Artinian) co-m rings are exactly quasi-Frobenius rings, which are well
studied (see, for example [2, §30]). Because an Artinian ring is a finite
direct product of some Artinian local rings, to know which Noetherian
rings are co-m, it suffices to consider Artinian local rings. Not all
Artinian local rings are co-m, as the following example shows.

Example 2.15. Set R0 = K[X,Y ], where K is a field and M =<
X, Y >. Let R = R0

M2 . Then clearly R is an Artinian local ring. But R

is not a co-m ring, else its submodule M
M2 also must be a co-m R-module

and by (2.1)(ii) a co-m R
M
-module. According to (2.2), this means that

M
M2 is cyclic, a contradiction.

In [9], it is proved that although not every weak multiplication mod-
ule is multiplication but at least for finitely generated modules being
weak multiplication and being multiplication are equivalent. It can
easily be checked that if R is an integral domain and Q ̸= R is its field
of fractions, then Q is not a co-m R-module but the only prime sub-
module of Q is 0 = (0 :M R), hence Q is weak co-m. But the following
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remark shows that even there are Artinian cyclic weak co-m modules,
which are not co-m.

Remark 2.16. If (R,M) is an Artinian local ring, thenMn = 0 for some
n ∈ N. If n is the least such number, then obviously M = (0 : Mn−1).
Therefore, every Artinian local ring (and by (2.1)(iii), every Artinian
ring) is a weak co-m ring. Hence (2.15) shows that, even under the
strong conditions of being cyclic and Artinian, a weak co-m module
need not be co-m.

The argument in (2.15) shows that if (R,M) is a quasi-local (that
is, M is the only maximal ideal of R) co-m ring with M2 = 0, then M
is cyclic and hence R is an SPIR by [18, Lemma 15.41]. This might
cause one to guess that every Artinian local co-m ring is an SPIR, but
the following example shows that this is not the case.

Example 2.17. Set R0 = Z3[X, Y ] and R = R0

I
, where I =< XY,X2−

Y 2 >. Then R is an Artinian local co-m ring, but not an SPIR.

Proof. Let x, y denote the images of X,Y in R, respectively and M =<
x, y >. First note that x3 = x(x2) = x(y2) = y(xy) = 0. Similarly
y3 = 0, that is, X3, Y 3 ∈ I and hence (R,M) is a zero dimensional local
ring, with M3 = 0. Also M2 =< x2, y2, xy >=< x2 > is principal.
Clearly every element of R can be written uniquely in the form of
f = ax2 + bx+ cy + d, where a, b, c, d ∈ Z3. Thus it is impossible that
x = fy = cx2 + dy, whence x /∈ Ry and similarly y /∈ Rx. So {x, y}
is a minimal generating set of M and M is not cyclic. Thus R is a
non-SPIR Artinian local ring.

Suppose that I is a proper ideal of R not contained in M2, say
z = ax + by + cx2 ∈ I with not both of a, b = 0. Therefore, either yz
or xz is a nonzero element in M2 and M2 ∩ I ̸= 0. But every element
of M2 is of the form ux2 where u ∈ Z3 is a unit. Therefore, M2 is
simple and hence M2 ⊆ I. Thus I

M2 is a nonzero subspace of the two

dimensional vector space M
M2 over R

M
. Consequently, either I = M or I

is generated by some element f ∈ M \M2. Using this one can check
that nontrivial ideals of R are: M, M2, < x >, < y >, < x+ y > and
< x − y >. Now M = (0 : M2), M2 = (0 : M), < y >= (0 : x), <
x >= (0 : y), < x + y >= (0 : x − y) and < x − y >= (0 : x + y), as
required. □

Example 2.18. The maximal ideal M of R in (2.17), being a submod-
ule of a co-m module, is itself a finitely generated co-m module which
is not cyclic.
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3. r-Multiplication Modules

Before continuing our investigation of co-m modules, we pay some at-
tentions to another concept which is related to multiplication modules
and will be used in the next section. An R-module M is multiplication,
when for every proper submodule N of M , there is a proper ideal I of
R with N = IM . Thus it is natural to consider R-modules such as M
with the “reverse” property: for every proper ideal I of R there exists
a proper submodule N of M with N = IM . Clearly this is equivalent
to the property that for every proper ideal I of R, IM ̸= M .

Definition 3.1. We say that an R-module M is an r-multiplication
(r-m, for short) module, when IM ̸= M for every proper ideal I of R.

For example by [15, Theorem 76], every finitely generated faithful
module is r-m. Also clearly Q as a Z-module or more generally every
divisible module over an integral domain which is not a field, is not
r-m.

Proposition 3.2. The following are equivalent.

(i) M is an r-m R-module.
(ii) MM is an r-m RM-module, for every maximal ideal M of R.
(iii) MM

MMMM
̸= 0, for every maximal ideal M of R.

Proof. (i) ⇒ (ii): Suppose that I is a proper ideal of RM. If MMMM is
not a proper submodule of MM, then (MM)P = MP for every maximal
ideal P of R (if P ̸= M then both sides equal MP, and the case P = M
is the assumption), whence MM = M . Thus M is not r-m against (i).
So IMM ⊆ MMMM < M , whence is proper.

(ii) ⇒ (iii): Since MM is a proper ideal of RM and MM is r-m, we
have MMMM ̸= MM whence the result.

(iii) ⇒ (i): For every maximal ideal M of R, we have MMMM ̸= MM

by (iii). Consequently, MM ̸= M . But every proper ideal I of R is
contained in a maximal ideal M of R and therefore, IM ⊆ MM is
proper. □

In the following J(M) means the Jacobson radical of M .

Proposition 3.3. Suppose that (R,M) is a quasi-local ring. Then M
is r-m if and only if it has a maximal submodule if and only if J(M) ̸= M
if and only if there is an m ∈ M such that Rm is not superfluous in
M .

Proof. If M is r-m, then by (3.2), M
MM

is a nonzero R
M

vector space and

hence has a maximal subspace N
MM

, where MM ⊆ N . Thus N is a
maximal submodule of M . Conversely, if N is a maximal submodule
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of M , then (N : M) = M and hence for every proper ideal I of R we
have IM ⊆ MM ⊆ N ̸= M .

Since by [2, Proposition 9.13],

J(M) =
∩

{N|N is a maximal submodule of M} =∑
{N |N is a superfluous submodule of M}

the other equivalencies follow. □
Recall that a ring is perfect if and only if it satisfies DCC on its

principal ideals.

Corollary 3.4. Every nonzero R-module is r-m, if and only if R is a
perfect quasi-local ring.

Proof. If R is a perfect quasi-local ring, then every nonzero R-module
has a maximal submodule by [2, Theorem 28.4] and hence by (3.3),
every nonzero module is r-m. Conversely, if every nonzero R-module
is r-m and M1 and M2 are maximal ideals of R and M = R

M2
, then

M1M ̸= M . From this we conclude that M1 = M2, that is, R is
quasi-local. Now the result follows by [2, Theorem 28.4] and (3.3). □
Example 3.5. Suppose that F is a field, R0 = F [{xa}a∈A], I =
⟨{x2

a|a ∈ A}⟩ and R = R0

I
. If |A| < ∞, then clearly R is an Ar-

tinian local ring and according to (3.4), every nonzero R-module is
r-m. But if A is infinite, say N ⊆ A, then there is no n ∈ N such that
x̄1x̄2 · · · x̄n = 0, therefore by [2, Theorem 28.4] and (3.4), there exists
a nonzero R-module which is not r-m, although R is zero dimensional
quasi-local.

In [17] a nonzero module was called weakly présimplifiable, when for
any r ∈ R if rm = m for all m ∈ M , then r is a unit. As an example,
it is not hard to see that for any ring R, R

J(R)
is a weakly présimplifiable

R-module.

Proposition 3.6. Suppose that M is a finitely generated R-module.
Then the following are equivalent.

(i) M is r-m.
(ii) M is weakly présimplifiable.
(iii) Ann(M) ⊆ J(R).
(iv) MM ̸= 0 for every maximal ideal M of R.

Proof. (i) ⇔ (ii): By [17, Proposition 2.12], since M is finitely gener-
ated, M is weakly présimplifiable if and only if for every ideal I of R,
IM = M implies I = R. But clearly this means that M is r-m.
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(ii) ⇔ (iii): This is [17, Proposition 2.8(1)].
(i) ⇔ (iv): Since MM is finitely generated, MMMM = MM if and

only if MM = 0. Therefore, the result follows by (3.2). □
Note that the Z-module Q shows that finitely generated condition

in (3.6) is necessary.

Corollary 3.7. A multiplication R-module M is r-m, if and only if it
is weakly présimplifiable and finitely generated.

Proof. By [13, Theorem 3.1], for a multiplication module M , if IM ̸=
M for each ideal I of R containing Ann(M), then M is finitely gener-
ated. Therefore every r-m multiplication module is finitely generated.
Now the result follows by (3.6). □

At the end of this section, we give a comparison of the three proper-
ties of being an r-m, a co-m or a multiplication module. Clearly Q as a
Z-module has neither of these properties and as a Q-module has all of
them. Every vector space over a field with dim ≤ 2 is an r-m module
which is not co-m or multiplication. Also Z2∞ is a co-m Z-module but
not r-m or multiplication. If R is a two dimensional integral domain
with J(R) = 0 (say, R = Z[x]) and P & Q are nonzero prime ideals of
R, then R

P
is a multiplication R-module, but is neither r-m (by (3.7))

nor co-m (by (2.3)). The Z-module Z is not co-m but is r-m and mul-
tiplication. A simple module over a non-local ring is clearly co-m and
multiplication but not r-m by (3.7). Finally, in (2.18), we presented a
finitely generated noncyclic co-m module over a local ring which is r-m
by (3.6) but it is not multiplication (since every multiplication module
over a local ring is cyclic by [13, Theorem 1.2]).

4. Strong Comultiplication Modules

It is possible for a co-m R-module, say M , to have a submodule N
for which there exist two ideals I ̸= J with the property (0 :M I) =
N = (0 :M J). For example, if M = Z2∞ , then (0 :M 2Z) = (0 :M 6Z).
It is easy to see that for each submodule N of M there exists a unique
ideal of R such that N = (0 :M I) if and only if M is co-m and
satisfies the double annihilator condition (that is, AnnR(AnnM(I)) = I
for each ideal I of R). In [5] modules with this property are called
strong comultiplication (abbreviated as s-co-m). For example, if (R,M)
is a complete Noetherian local ring and M = E

(
R
M

)
is the injective

envelope of R
M
, then M is an s-co-m R-module (see[5, Example 2.2]).

Also every co-m ring is an s-co-m module over itself. In this section we
turn our attention to this uniqueness condition.
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Proposition 4.1. Assume that M is a co-m R-module. The following
are equivalent for any pair of ideals I and J of R.

(i) (0 :M I) = (0 :M J).
(ii) (0 :M I +K) = (0 :M J +K) for every ideal K of R.
(iii) (0 :M IK) = (0 :M JK) for every ideal K of R.
(iv) IN = JN for every submodule N of M .

Proof. (ii) and (iii) ⇒ (i): Set K = R or K = 0. (iv) ⇒ (i) and also (i)
⇒ (ii): Easy. (i) ⇒ (iii): Just note that (0 :M IK) = ((0 :M I) :M K).
(i) ⇒(iv):

Ann(IN) = ((0 :M I) :R N) = ((0 :M J) :R N) = Ann(JN).

Thus IN = JN , because M is co-m. □
Corollary 4.2. Assume that M is a finitely generated co-m mod-
ule. If (0 :M I) = (0 :M J) for some ideals I and J of R, then√

I +Ann(M) =
√
J +Ann(M). Hence if P is a prime ideal of R

containing Ann(M), then Ann(0 :M P) = P.

Proof. If (0 :M I) = (0 :M J), then according to (4.1), IM = JM and
the result follows by [8, Proposition 2.4]. Now the final assertion is
clear. □
Proposition 4.3. A nonzero multiplication R-module M is s-co-m if
and only if it is finitely generated faithful and R is a co-m ring.

Proof. If M is s-co-m, then Ann(M) = AnnR(AnnM(0)) = 0. Now if
IM = M for some ideal I of R, then (0 :R I)M = 0, whence (0 :R I) =
0. Now set N = (0 :M I). By (2.1) (N : M) = (0 :R I) = 0 and N =
(N : M)M = 0. Therefore, I = AnnR(AnnM(I)) = AnnR(0) = R. This
shows that M is r-m and by (3.7) is finitely generated. Consequently,
R is a co-m ring by (2.10). Using (2.10) and its proof the converse can
easily be established. □

Suppose that M is an s-co-m R-module. Consider the mapping ϕ :
l(R) → l(M), where l(N) denotes the lattice of submodules of N for
any R-module N , defined by ϕ(I) = AnnM(I). Clearly ϕ is one-to-one,
onto and order reversing with the order reversing inverse ϕ−1(N) =
Ann(N) for each submodule N of M . That is, ϕ is a lattice anti-
isomorphism . As the following result shows, using this mapping we
can easily establish some properties of s-co-m modules.

Recall that if A,A′ and B are submodules of M such that A′ ⊆ B,
M = A + A′ and A′ is minimal with respect to this property, then A′

is said to be a supplement of A in B (this is the dual notion of a com-
plement of a submodule). In [14] M is said to be amply supplemented
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when for each pair of submodules A,B of M with M = A+ B, A has
a supplement in B.

Theorem 4.4. Assume that M is an s-co-m R-module. Then:

(i) M is finitely cogenerated and both M and R are amply sup-
plemented R-modules.

(ii) R is semilocal.

Proof. (i): Note that being finitely generated and finitely cogenerated
are lattice properties which are mapped to each other under anti-
isomorphisms. Thus since R is finitely generated, M is finitely co-
generated. Now consider submodules A,B of M with M = A+B and
let ϕ be as above. Then ϕ−1(A)∩ϕ−1(B) = ϕ−1(M) = 0. Thus ϕ−1(A)
has a complement, say I, in R which contains ϕ−1(B) (see [2, p. 75]).
Now it is easy to see that ϕ(I) is a supplement in B of A. A similar
argument shows that R is amply supplemented.

(ii): Suppose that N is the socle of M . Since by (i) M is finitely
cogenerated, N is also a finitely cogenerated and hence a finitely gener-
ated R-module. But ϕ−1 maps minimals to maximals and summations
to intersections. Thus ϕ−1(N) = J(R) and the image of l(N) under

ϕ−1 is the set of those ideals of R which contain J(R), that is, l
(

R
J(R)

)
.

Therefore, since N is finitely generated, R
J(R)

is finitely cogenerated. So

J(R) =
∩n

i=1Mi for a finite set of maximal ideals M1, . . . , Mn of R.
Hence R is semilocal. □
Corollary 4.5. If M is an s-co-m module having a maximal submodule
over a reduced ring R, then M ∼= R and R is semisimple.

Proof. Similar to the proof of (2.4) □

5. p-Comultiplication Modules

In this section we study co-m modules M , in which every nontrivial
submodule is the annihilator of a prime ideal containing Ann(M). (5.5)
shows that under various (weak) conditions, such modules are cyclic.
In fact, we conjecture that every such module is cyclic.

Definition 5.1. We call M a p-comultiplication R-module, if for each
nontrivial submodule N of M , there is a prime ideal P of R containing
Ann(M), such that N = (0 :M P).

For example, it is easy to see that Z4 and Z6 are p-co-m Z-modules.
It is obvious that M is a p-co-m R-module if and only if it is a p-co-m

R
Ann(M)

-module and that every p-co-m module is co-m. Note that the
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converse of the last statement is not correct as Zp∞ is easily seen to be
a co-m Z-module which is not p-co-m.

Lemma 5.2. Suppose that R = R0×R1 and M is an R-module. Then
M is p-co-m if and only if either (1) for some i = 0, 1, RiM = 0 and
M is a p-co-m R1−i-module or (2) M = M0⊕M1 where Mi is a simple
Ri-module such that R1−iMi = 0.

Proof. Noting that prime ideals of R are exactly those of the form
P0 × R1 or R0 × P1 where Pi is a prime ideal of Ri, one can easily
check that in both cases (1) and (2), M is p-co-m. Conversely, assume
that M is p-co-m. As in (2.1)(iii) M = M0 ⊕M1, where Mi is an Ri

module and R1−iMi = 0. If one of the Mi’s is zero, then clearly case
(1) happens.

Suppose that no Mi = 0 and A is a nontrivial submodule of M0.
Then N = A ⊕ 0 is a nontrivial submodule of M and hence for some
prime ideal P of R containing Ann(M), we have N = (0 :M P). But
since P is one of the two forms stated above, we conclude that either
N = N0 ⊕ M1 or N = M0 ⊕ N1, where Ni is a submodule of Mi.
Therefore, either M1 = 0 or A = M0, both of which are contradictions.
Thus M0 and similarly M1 have no nontrivial submodules and so are
simple, as asserted. □

In [1], it is proved that a Noetherian module is co-m if and only if all
of its localizations at prime ideals are co-m. Similarly one can easily
prove the following lemma. For case (iii) just note that when M is
Artinian, M

N
is finitely cogenerated for every submodule N of M and

hence by [7, Theorem 2.4(a)], N = (0 :M I) for some finitely generated
ideal I of R.

Lemma 5.3. (i) Assume that M is a co-m [resp. weak co-m,
p-co-m] module over a Noetherian ring R. Then S−1M is co-
m [resp. weak co-m, p-co-m] for every multiplicatively closed
subset S ⊆ R.

(ii) If M is Noetherian and MM is a weak co-m RM-module for
every maximal ideal M of R, then M is weak co-m.

(iii) If M is Artinian and co-m, then S−1M is co-m for every mul-
tiplicatively closed subset S ⊆ R.

The following example shows that it is possible that every localiza-
tion of M be co-m, without M being so. Also note that the following
serves as a counterexample to [11, Proposition 2.3] and [12, Proposition
2.4] which state that if R is a Dedekind domain, then M is [weak] co-m
R-module if and only if MP is a [weak] co-m RP-module, for all prime
ideals P of R.
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Example 5.4. Let R = Z and M =
⊕

p∈P Zp where P is the set of

positive prime integers. Clearly N =
⊕

2 ̸=p∈P Zp is a maximal (and

hence prime) submodule of M and N ̸= (0 :M Ann(N)). Therefore, M
is not a weak co-m R-module. But for each maximal ideal of R such
as M = Rp (p ∈ P), MM

∼= Zp as RM-module and hence is a simple
and p-co-m RM-module. Notice that M0 = 0 is trivially a p-co-m
Q-module.

Theorem 5.5. Assume that M is a p-co-m module. In either of the
following cases, M is cyclic.

(i) M has a maximal submodule.
(ii) Ann(M) is not a prime ideal of R.
(iii) R

Ann(M)
is an integral domain with finitely many primes of hight

one such that every nonzero prime ideal of R
Ann(M)

contains a

height one prime ideal; in particular if R
Ann(M)

is a valuation

domain.
(iv) R

Ann(M)
is a Noetherian domain with Krull dimension ≤ 1, for

example a Dedekind domain.

Proof. Clearly we can assume that M is faithful. First we will show
that if M is not cyclic, then R is reduced and indecomposable. So
suppose that M is not cyclic. Then for each 0 ̸= m ∈ M , Rm is a
nontrivial submodule of M , whence Rm = (0 :M P) for some prime
ideal P of R. Therefore, N(R) ⊆ P ⊆ Ann(m). Hence N(R) ⊆∩

0 ̸=m∈MAnn(m) = Ann(M) = 0, that is, R is a reduced ring. Suppose
that R is decomposable, say R = R0 × R1 for nontrivial rings R1 and
R2, then according to (5.2), either RiM = 0 for some i = 0, 1, which is
impossible because M is faithful, or M ∼= R1

M1
⊕ R2

M2
∼= R

M1×M2
for some

maximal ideals Mi’s of Ri’s. But this implies that M is cyclic, against
our assumption and so R is indecomposable. Therefore, we assume
that M is a faithful and R is reduced and indecomposable.

(i) The result in this case follows by (2.2).
(ii) Assume that R is not a domain. We will show that M has

a maximal submodule, then the result follows by case (i). On the
contrary, suppose that M has no maximal submodule. Let P be a
minimal prime ideal of R and N = (0 :M P). Since M is faithful
and P ̸= 0, we have N ̸= M , therefore there is a proper submodule
N ′ = (0 :M P′) of M properly containing N .

Now according to (2.1)(i), (0 :R P) = (N : M) ⊆ (N ′ : M) =
(0 :R P′). Clearly P′ ̸= P, thus there is an x ∈ P′ \ P, for P is
minimal. Let r ∈ (0 :R P) ⊆ (0 :R P′), then rx = 0 ∈ P and since
x /∈ P, we see that r ∈ P. Consequently, (0 :R P) ⊆ P and hence,
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(0 :R P)2 ⊆ (0 :R P)P = 0. But R is reduced, whence (0 :R P) = 0,
for every minimal prime ideal P of R.

Let K = (0 :M P1) be an arbitrary nontrivial submodule of M .
There is a minimal prime ideal P of R, contained in P1, hence (K :
M) = (0 :R P1) ⊆ (0 :R P) = 0. So for each 0 ̸= r ∈ R, we have
rM = M (else 0 ̸= r ∈ (rM : M)). Now R is not an integral domain,
say r1r2 = 0 for some 0 ̸= r1, r2 ∈ R. Thus M = r1M = r1(r2M) = 0 is
cyclic, yielding a contradiction which completes the proof of case (ii).

(iii) Note that if P1 ⊆ P2 are prime ideals of R, then (0 :M P2) ⊆
(0 :M P1). Therefore, if P1, . . . ,Pn are the height one primes of R,
then by the assumption of this case, every submodule ofM is contained
in some Ni = (0 :M Pi). Consequently, at least one of the Ni’s is a
maximal submodule of M , hence the result follows by case (i).

(iv) Assume that R is a one dimensional Noetherian domain and
M is not cyclic. Then by (2.2), M has no maximal submodule (in
particular, R is not a field). Since R is Noetherian, (5.3) shows that
MM is a p-co-m RM-module, for every maximal ideal M of R. Also
MM has no maximal submodule (else one can readily show that its
contraction in M is a maximal submodule of M). But by case (iii) MM

is cyclic and hence has a maximal submodule, a contradiction. □
Every finitely generated nonzero module and every multiplication

module has a maximal submodule. Thus:

Corollary 5.6. A multiplication or finitely generated R-module M is
p-co-m if and only if it is cyclic and R

Ann(M)
is p-co-m.

Question 5.7. Is there any p-co-m module, which is not cyclic?

(5.5) shows that an important part of characterizing faithful p-co-
m modules, is to characterize rings which are p-co-m modules over
themselves. In what follows we make use of the well-known fact that
every proper ideal of a ring R is prime if and only if R is a field.

Theorem 5.8. A ring R is a p-co-m module over itself if and only if
either R is a field or R = F1 × F2, where Fi’s are fields or R is an
SPIR with a unique prime ideal Rp and p2 = 0.

Proof. (⇐): Easy.
(⇒): First note that since R is a co-m ring, it satisfies the double

annihilator condition. Noting that every nontrivial ideal is the annihi-
lator of a nontrivial prime ideal, it is easy to see that every nontrivial
ideal of R is prime. If R = R1 × R2, where Ri’s are nontrivial rings,
then by (5.2), each Ri is a simple Ri-module and hence is a field. Thus
assume that R is indecomposable. Let P be a minimal prime ideal of
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R. Then P is a simple R-module, because every nonzero ideal of R
contained in P is prime and equals P by minimality of P. If P = 0,
then every proper ideal of R is prime and hence R is a field.

SupposeP ̸= 0. Then every proper ideal of R
P
is prime and thus R

P
is a

field, that is, P is maximal. Suppose that R has another minimal prime
ideal Q ̸= P. On the same lines, it follows that Q is maximal and a
simple R-module. Then P∩Q = 0 (else, both being simple R-modules,
one must contain the other, which is against both being minimal). So
R ∼= R

P
× R

Q
is decomposable, a contradiction. Thus R has a unique

minimal prime ideal which is maximal and simple, whence principal,
which means that R is an SPIR. Let P = Rp, then its submodule Rp2

equals either zero or Rp. But by Nakayama’s lemma, since P ̸= 0,
Rp2 ̸= Rp, whence Rp2 = 0, as asserted. □

Two immediate corollaries to this theorem and its proof are:

Corollary 5.9. A ring R is a p-co-m module over itself if and only if
every nontrivial ideal of R is prime.

Corollary 5.10. A cyclic R-module M is p-co-m if and only if either
Ann(M) is a maximal ideal or an intersection of two maximal ideals or
Ann(M) = M2 for some maximal ideal M of R with dim R

M

M
M2 = 1.
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