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DIFFERENTIAL MULTIPLICATIVE HYPERRINGS
L. KAMALI ARDEKANI AND B. DAVVAZ*

ABSTRACT. In a multiplicative hyperring, the multiplication is a
hyperoperation, while the addition is a binary operation. In this
paper, the notion of derivation on multiplicative hyperrings is in-
troduced and some related properties are investigated.

1. INTRODUCTION
2. DERIVATION ON MULTIPLICATIVE HYPERRINGS

Let H be a non-empty set, P*(H) be the set of all non-empty subsets
of H. A hyperoperation on H is a map x: H x H — P*(H) and the
couple (H,x) is called a hypergrupoid (or hyperstructure). If A and B
are non-empty subsets of H, then we denote Ax B = UaeA’beB ax*b,
and if € H, then we denote Axz = A% {z} and z x B = {x} * B.
A hypergrupoid (H, x) is called a semihypergroup if for all x,y, z of H
we have (2% y) «z =z % (y*2). That is, Uyepuy U *2 = U,y T * 0.
A hypergrupoid (H, x) is called a quasihypergroup if for all z € H, we
have x x H = H xx = H. A hypergrupoid is called a hypergroup if
it is both a semihypergroup and a quasihypergroup. A polygroup is
a system (P, - e, 1), where e € P, “7” is a unitary operation on P,
“.” maps P x P in to the nonempty subsets of P, and the following
axioms hold for all z,y,z € P: (1) (z-y)-z2=2-(y-2); (2) e-z =
r-e=x; (3)x €y-zimpliesy € x-2z'and z € y' - x. In every
polygroup, we have e € z -z ' Na Nz, et =e, (x71)7! = 2z and
(x-y)™t =yt -zl where A7! = {a7'la € A}. We can consider
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several definitions for a hyperring, by replacing at least one of the two
operations by hyperoperations, for example see [2, 6, 8, 9, 12, 13]. The
notion of multiplicative hyperring was introduced by R. Rota [19] in
1982. The multiplication is a hyperoperation, while the addition is a
binary operation, that is why she called it a multiplicative hyperring.
At the first, we recall the definition of a multiplicative hyperring. For
more details and properties, we refer the readers to [5, 7, 11, 16, 17, 18].
A triple (R, +,-) is called a multiplicative hyperring if (1) (R,+) is an
abelian group; (2) (R, -) is a semihypergroup; (3) z-(y+2) Cz-y+x-2
and (y+z2)- 2 Cy-o+z-x,forallz,y,z € R; (4) z-(—y) = (—2) -y =
—(z - y), for all z,y,z € R. If in (3) we have equalities instead of
inclusions, then we say that the multiplicative hyperring is strongly
distributive. An element e € R is called a weak identity (identity,
respectively) if z € e-x Nz -e (e-x = x-e =z, respectively), for all
x € R. Throughout this paper, by a hyperring we mean a multiplicative
hyperring. A nonempty subset H of a hyperring (R, +,-) is called
subhyperring of R, if (H,+,-) is itself a hyperring. In other words, H is
a subhyperring of (R, +,- )it H—H C Hand x.y C H, forall z,y € H.
A hyperring R is called an integral hyperdomain, if for all x,y € R,
0 € x -y implies that x = 0 or y = 0. In this paper, the meaning of a
hyperfield is a hyperring (F,+,-) such that (F' — {0}, ) is a polygroup
and “ -7 is strongly distributive with respect to “ + 7. Hyperring
(R,+, ) is called commutative (weak commutative, respectively), when
r-y=y-x (x-yNy-x # 0, respectively), for all z,y € R. The
meaning of center of Ris Z(R) ={x € Rlz-y =y -z, for all y € R}.
A nonempty subset I of a hyperring R is a hyperideal if I — I C I and
r-rUr-xCI forallx el and r € R.

Example 2.1. Let (R,+,-) be a ring, I be an ideal of R and o be
the hyperoperation defined on R by zoy =x -y + I, for all x,y € R.
Then, (R, +,0) is a strongly distributive hyperring. For convenience,
the multiplicative hyperring (R, +, o) will be denoted by (R, 4+, ). The
ideal I is a hyperideal of hyperring (R, +, ), since I is an additive
subgroup of (R,+) and for all z € T and r € R, zorUrox =
(x-r+DHU(r-z+1)C1I.

A homomorphism (good homomorphism, respectively) between two
hyperrings
(R1,+1,01) and (Rg, +2,02) is a map f : Ry —> Ry such that for all
7.y € Ry, we have f(z-+1y) = f(r)+2 f(y) and f(zory) € f(x)o f(y)
(f(zoyy) = f(x) og f(y), respectively). Let f: Ry — Ry be a good
homomorphism. The kernel of f is the inverse image of < 0 > (the
hyperideal generated by the zero in Ry). It is denoted by ker f.
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The concept of derivation on rings has been introduced by Posner
[15], also see [3, 20]. In [1], Asokkumar introduced the notion of deriva-
tion on Krasner hyperrings. Now, we define the notion of derivation
on multiplicative hyperrings.

Definition 2.2. Let (R, +, ) be a hyperring. The functiond : R — R
is called derivation if for all z,y € R,

(1) d(z +y) = d(z) + d(y);

(2) d(z-y) = d(x) -y +z-dy).
The function d : R — R is called weak derivation if for all z,y € R,
it satisfies (1) and

3) d(z-y) S d(x) -y +z-dy).

It is clear that every derivation is a weak derivation. By the first
condition of above definition for every (weak) derivation d of hyperring
R, we have d(0) = 0 and d(—x) = —d(x), for all x € R.

We consider some examples.

Example 2.3. Let (R,+,-) be a hyperring and 0 € r.0 N 0.r, for all
r € R. Then, the function d(x) = 0, for all z € R, is a weak derivation.
It is called trivial weak derivation.

Example 2.4. Consider the ring (Z,,,+, ). Let p € Z,, and p # 1. We
define hyperoperation o on R by xoy = {z-y, p-z-y}, for all z,y € Z,,.
Then, (Z,,+,0) is a hyperring. The function d : Z,, — Z,, defined
by d(z) = 0, for all © € Z,, is derivation, since d(z) oy + x o d(y) =
Ooy+x00={0} =d(zoy), for all z,y € Z,,.

Example 2.5. Let (R,+) be an abelian group and o be the hyperop-
eration on R defined by =z oy = (z,y) = Zx + Zy, (the subgroup of
(R,+) generated by x and y), for all z,y € R. Then, (R,+,0) is a
hyperring which is not generally strongly distributive. The functions
dy,dy : R — R defined by di(x) = x and dy(x) = —x, for all x € R,

are derivations.

Example 2.6. Let R be an abelian group and S be a subgroup of R.
For all z,y € R, we define x oy = S. Then, (R, +,0) is a hyperring.
The functions dy,ds : R — R defined by d;(z) = x and dy(z) = —=z,
for all x € R, are derivations.

Example 2.7. Let (R, +, -) be aring, P be a nonempty subset of R and
o be the hyperoperation defined on R by zroy = z.P.y, for all z,y € R.
Then, (R, +,0) is a hyperring. For convenience, the hyperring (R, +, o)

will be denoted by [R,+, P]. Set M = {( 58 g ) 2,y € [R,+,P]}
and define the hyperoperation * on M as
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Tr Y1 T2 Y2 _ a b
(o 0 )*<0 0)_{(0 0>|a€x1°“’b€xloy2}’

where x1,29,y1,y2 € [R,+, P]. Then, M with the usual addition of
matrices and the hyperoperation * is a hyperring. M may not be
strongly distributive because [R,+, P] may not be strongly distribu-
tive. It is easily to check that the function d : M — M defined by

Ty (0 y . L
d((O 0))—<0 0>1saderlvatlon.

A hyperring R is said to be of characteristic n, if n is the smallest
positive integer such that nxz = 0, for all x € R. If no such of n exists,
R is said to be of characteristic 0.

Lemma 2.8. Let (R,+,-) be a hyperring and d be a weak derivation.
Then, for alln € N and x,y € R,
(1) If R is commutative, then d(z") C nz" '.d(x). The equality
holds when R is strongly distributive and d is a derivation.

(2) d"(z.y) € > (M) d" I (2).dD(y), where d™ shows derivation
i=0
of order n. The equality holds when d is a derivation.

Proof. The proof follows easily by induction. O

Let a commutative hyperring R be strongly distributive and d be a
derivation of R. If R is of characteristic n, then by the above Lemma,

0 € d(z"), for all z € R.

Theorem 2.9. Let (R, +,-) be a hyperring and the notation [z,y] de-
notes the set x -y —y - x, for all x,y € R. Then, for all z,y,z € R,

distributive;

(2) If R is a strongly distributive, we have [z -y,z] C x - [y,2] +
[.’L‘, Z] Y

(3) Ifd is a weak derivation of R, then dx,y] C [d(z),y]+ [z, d(y)];
we have equality when d is a derivation.

(1) [z +wy,z2] Clx,z] + [y, 2], the equality holds when R is strongly

Proof. The proof is obvious. O

Definition 2.10. A hyperring R is called prime if 0 € x - r - y, for all
r € R, implies that either x = 0 or y = 0. R is called semiprime if
0€x-r- -z for all r € R, implies that x = 0. Obviously, every prime
hyperring is a semiprime hyperring but the converse is not always true.

Example 2.11. Let R = {e, a,b}. Consider the following tables:
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a b

{a,b} {a,b}
{a,b} {a,b}

and

QD
[S G I

It is easily to check (R, +, ) is prime.

Lemma 2.12. Let I be a nonzero hyperideal on a prime hyperring R
and x,y € R, then
(1) If I -2 =0 ora. =0, then x =0;
(2) If0=xz-1-y, thenx =0 ory=0;
(3) If0er-0N0-r, forallr e R, x € Z and0 € x -y, thenx =0
ory =0,
(4) If R is strongly distributive, x € Z(R) and x -y C Z, for all
y € Z, then x =0 or R is weak commutative.

Proof. (1) Suppose that [ -2z =0. Then, u-r-z C I -z = {0}, for all
r€ Rand u € I. So, x = 0, since R is prime and I # 0. In the case
x - I =0, the proof is similar.

(2) Suppose that x- I -y=0. Then, z-[-7-y Cx-1-y={0}, for
all r € R. Therefore, -1 -7r-y =0, for all » € R. Hence, x -1 =0 or
y = 0, since R is prime. So, by (1), x =0 or y = 0.

(3) Suppose that € Z and 0 € z-y. Then, forallr € R, 0 €r-0=
r-x-y=uwx-r-y. Therefore, z =0 or y = 0, since R is prime.

(4) Suppose that -y C Z, forally € R. Then, 0 € z-y-r—z-y-r =
ry-r—r-x-y=x-y-r—x-r-y=x-(y-r—r-y)=x-[yrl,
forallr € R. So,0e€t-0€t-az-[y,r]=x-t-[y,r], foralt e R.
Hence, z = 0 or 0 € [y, r], since R is prime. This means that x = 0 or
y-rNr-y#0, forall r € R. O

Lemma 2.13. Let d be a derivation on a prime hyperring (R, +,-) and
I be a nonzero hyperideal of R. Also, let0 € 0-rNr-0, for all r € R,
then for all x € R,

(1) If d(I) = 0, then d = 0;

(2) Ifd(I)-x=0o0rx-d(I)=0, thenx =0 ord=0;

(3) Ifd(R)-x=0o0rz-d(R)=0, thenx =0 ord=0.

Proof. (1) For all uw € I and z € R, we have 0 = d(u - x) = d(u) - = +
u-d(x) 20+ u-d(x) =u-d(x). Therefore, u-d(xz) =0, for all u € I.
So, I - d(z) = 0, which implies that d = 0, by Lemma 2.12 (1).

(2) Suppose that d(I)-x =0. Then, 0 =d(y-u) -z =d(y)-u-x+
y-d(u)-x Dd(y)-u-z, forallu e I and y € R. So, d(y)-u-x =0, for
all u € I. Therefore, d(y) - I -z = 0, which implies that d = 0 or z = 0,
by Lemma 2.12 (2). In the case x - d(I) = 0, the proof is similar.

(3) In (2), put R instead of I. O
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Definition 2.14. Let R be a hyperring and d be a derivation on R.
Then, = € R is called a constant element if d(x) = 0. We denote by
Ca(R), the set of all of constant elements of R associated to derivation
d.

Theorem 2.15. Let d be a derivation on a prime strongly distributive
hyperring R such that d(R) C Z. Also, let there is ¢ € Cyq(R) such that
0 & [c, zo], for some xy € R. Then, d = 0.

Proof. We have d(x-¢) =d(z)-c+z-d(c) 2 d(x)-c, forall z € R. So,
d(x)-c Cd(z-c) C Z. Therefore, d(z)-c-xo = x¢-d(z)-c = d(z) o - C.
This means that 0 € d(x)-[c, zo], since R is strongly distributive. Then,
there is ¢ € [, xp] such that 0 € d(z) -t. So, d(z) = 0 or t = 0, by
Lemma 2.12 (3). If ¢t = 0, then 0 € [c, x¢], this is a contradiction.
Therefore, d(z) = 0, for all x € R. O

Definition 2.16. A hyperring R is called n-torsion free if nx = 0,
x € R, implies that x = 0, where n is an integer number.

Theorem 2.17. Let I be a nonzero hyperideal of a 2-torsion free prime
hyperring (R, +,-) and 0 € r-0N0-r, for all r € R.
(1) If d is a derivation of R such that d®(I) =0, then d = 0;
(2) If dy and dy are derivations of R such that dids(I) = 0, then
d1 =0 or dg = 0.

Proof. (1) By Lemma 2.8, we have for all u,v € I,
0=dP(u-v)=d? ) v+2du)-dv) +u-d?w) D 2d(u) - d(v).
So, d(u) - d(v) = 0, since R is a 2—torsion free hyperring. Therefore,

d =0, by Lemma 2.13 (1) and (2).
(2) We have for all u,v € I,
0=didso(u-v) =di(da(u)-v+u-dy(v))
= dldQ(u) U+ dg(u) : dl(U) + dl(u) : dg(’U) +u- dldg(v)
D dy(u) - di(v) + dy(u) - da(v).
So, da(u)-dy(v)+d;(u)-da(v) = 0. By replaceing u by dy(u) in the above
equation, we get d5” (u) - di(v) € d5P(u) - di(v) + dyda(u) - da(v) = 0,
that is dg)(u) -di(v) = 0. Thus, d; =0 or dg)([) =0, by Lemma 2.13
(1) and (2). Therefore, d; =0 or dy = 0, by (1). O

3. DIFFERENTIAL MULTIPLICATIVE HYPERRING

We denote by A(R,+,-) (D(R,+,-), respectively), the set of all
derivations (weak derivations, respectively) of hyperring (R, +, ). Note
that

A(R, +, ) - D(Ra +, ) - Hom(R, +)
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A hyperring with A (D, respectively) is called the differential hyperring
(weak differential hyperring, respectively).

A hyperfield R is called (weak) differential hyperfield if R is (weak)
differential hyperring. An integral hyperdomain R is called (weak)
differential integral hyperdomain if R is (weak) differential hyperring.
A subhyperring H of (weak) differential hyperring R is said (weak)
differential subhyperring if for all (weak) derivation d of R, we have
d(h) € H, forall h € H. A hyperideal I of (weak) differential hyperring
R is called (weak) differential hyperideal if for all (weak) derivation d
of R, we have d(u) € I, for all u € I.

Example 3.1. For every (weak) differential hyperring R, (0), is a
(weak) differential hyperideal.

We usually use the perfix A (D, respectively) instead of we say that R
is differential (weak differential, respectively) and A (D, respectively) is
the set of all derivations (weak derivations, respectively) on R. Also, If
R is a differential hyperring (weak differential hyperring, respectively)
i.e. R is a A-hyperring (D-hyperring, respectively), then we usually
use the notion A-hyperideal (D-hyperideal, respectively) instead of we
say that I is a differential hyperideal (weak differential hyperideal,
respectively) of R.

Example 3.2. Let (R,+,-) be a hyperring and 0 € r.0 N 0.r, for all
r € R. Then, by Example 2.3, the function d : R — R defined as
d = 0 is a weak derivation. So, d € D(R,+,-) and this means that
D(R,+,-) #0.

Example 3.3. Let (R, +,0) be the hyperring defined in Example 2.5.
For all f € Hom(R,+), we have f(zoy) =Zf(z)+Zf(y) CZf(x) +
Zy+Zx +7Zf(y) = f(z)oy+ zo f(y), for all z,y € R. This implies
that f € D(R,+,0) and so Hom(R,+) C D(R,+,0). Also, we know
that D(R,+,0) C Hom(R, +). Therefore, D(R,+,0) = Hom(R, +).

Example 3.4. In Example 2.1, if I = R, then every additive function
f: R — R is a weak derivation. For all z,y € R, we have d(x oy) =
d(z-y+R) = d(R) C R = d(z)y+R+z-d(y)+R = d(x)oy+zod(y). So,
D(R,+,R) = Hom(R,+). Also, in Example 2.1, if (R, +,-) and I are
A-hyperring and A-hyperideal, then we have A(R,+,-) C D(R,+,1).
Because, for all d € A(R,+,:) and x,y € R, we have d(z oy) =
d@-y+1) Cdlx-y)+1=d@)-y+z-dy)+1=dx)oy+zod(y).

Now, we analyze hyperring (Z, +, mZ), where m is a positive integer.
We have D(Z,+,mZ) C Hom(Z,+) = {ga|la € Z}, where g,(z) = az,
for all x € Z.
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Theorem 3.5. The following statements are valid:

(1) For all a € Z, g4 € D(Z,+,mZ) if and only if m|a.

(2) {gala € mZ} = D(Z,+,mZ), so D(Z,+,mZ) is infinite and
only in the case m = 1, we have
D(Z,+,mZ) = Hom(Z,+).

(3) If m > 1, then {gs)a € mZ + 1} C Hom(Z,+) \ D(Z,+,mZ)
and so Hom(Z,+) \ D(Z, 4+, mZ) is infinite.

(4) mZ is a D-hyperideal of (Z,+, mZ).

Proof. (1) Suppose that g, € D(Z,+, mZ). Then, a+amZ = g,(1lol) C
ga(l)ol4+10g.(l)=aol+1oa=2a+mZ. So, a € mZ.
Conversely, suppose that m|a. Then, for all z,y € Z, we have
—axy € mZ. Thus, —axy + amZ C amZ + mZ = mZ. Therefore,
ga(x 0y) = axy + amZ C 2axy + mZ = g.(x) oy + z o g,(y). Hence,
9o € D(Z,+,mZ).
The rest parts follow by part (1). OJ

Consider the hyperring (Z,,,+, mZ,), where m and n are positive
integers. We have D(Z,,,+, mZ,) C Hom(Z,,+) = {hala € Z}, where
hs(z) = az, for all z € Z,.

Theorem 3.6. The following statements are valid:
(1) For alla € Z, hg € D(Zy,,+,mZy,) if and only if (m,n)|a.
(2) {hala € (m,n)Z} = D(Zyp,+,mZy,) and thus |D(Z,,,+, mZ,)| =
ﬁ. Also, only for m =1, we have
D(Zy,+,mZ,) = Hom(Zy,+).
(3) If (m,n) > 1, then
{hala € (m,n)Z + 1} € Hom(Zy,+) \ D(Z,,+,mZ,) and so
[Hom(Z, )\ D(Zo, +mZy)| > 2.

(4) mZ,, is a D-hyperideal of (Z,,~+, mZ,).
Proof. (1) Suppose that hg € D(Zy, +, mZ,), then a + amZ, = ha(1 o

1) C hg(I)ol+1o0hs(l) =aol+1oa = 2a+ mZ, Thus, a €
mZy, = (m,n)Z,. Thus, a = (m,n)s + nt, for some s,t € Z. Since
(m,n)|(m,n)s + nt, then (m,n)]a.

Conversely, suppose that (m,n)la. Then, a = (m,n)s, for some
s € Z. So, for all z,y € Z, we have —azy = —(m,n)szy C (m,n)Z, =
mZ,. Thus, —azy + amZ, C amZ, + mZ, = mZ,. Therefore, h;(T o
y) = axy + ami, = axy + am, < 2axy + mZ, = 2axy + mZ, =
ha(Z) o g+ T o ha(y). Hence, hy € D(Z,,, +, mZy,).

The rest parts follow by part (1).

O

For example, by the above theorems, we have
D(Z7 +7 4Z) = {ga | ac 4Z} and D(Z20; +7 4220) - {h67 hzl? hga h1727 h176}‘
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Now, consider the hyperring [R, +, P] defined in Example 2.7. If we set
P = R, then every additive function f : R — R is a weak derivation.
So, D[R, +, R] = Hom(R, +).

Theorem 3.7. (1) For alla € Z and ) # P C Z, we have g, €
D[Z,+, P] if and only if a - P C 2a - P.
(2) Foralla € Z and O # P C Z,,, we have hg € D|Z,+, P] if and
only ifa- P C 2a - P.

Proof. (1) Suppose that g, € D[Z,+, P] C Hom(Z,+). Then, a- P =
9a(P) = ga(1-P-1) = go(101) C ga(1)ol410g,(1) = acl+loa = 2a-p.
Conversely, suppose that a - P C 2a - P. Then, for all x,y € Z,
we have g,(xoy) = golx - P-y) =a-xz-P-y C2a-xz-P-y=
a-x-P-y+x-P-a-y=(a-z)oy+xzo(a-y)=gq(r)oy+zog.y).
Therefore, g, € D[Z,+, PJ.
(2) The proof is similar to (1). O

Corollary 3.8. If 0 € P, then
D|Z,+,P) = Hom(Z,+) and D[Z,,+, P] = Hom(Zn,+).
Proof. By Theorem 3.7, the proof is obvious. 0

Therefore, we have D[Z,+,mZ] = A|Z,+,mZ] = Hom(Z,+) and
D|Zy,+, mZ,) = AZy,+, mZ,| = Hom(Z,,, +).

Consider the hyperring [Q, +,mZ]. Notice that d(z) = xd(1), for
all z € Q and for all (weak) derivation d on [Q,+,mZ]. Similar to
Corollary 3.8, we have D[Q,+,mZ] = A[Q,+,mZ] = Hom(Q,+) =
{¢a]a € Q}, where q,(z) = ax, for all x € Q.

Definition 3.9. Let R and S be A; and As-hyperrings, respectively.
By a differential (good) homomorphism of R into S, we mean a (good)
homomorphism ¢ such that dep(z) = pdi(x), for all x € R, dy € A4
and dy € As.

In the hyperrings
(Z,4,mZ) and [Z,+, mZ] ((Zy, +, mZ,) and [Zy,, +, mZ,), respectively)

we have g.9s = gvga (hahy = hzha, respectively), for all a,b € Z. So,
every homomorphism on them is a differential homomorphism. There-
fore, all the results about homomorphisms on these hyperrings are valid
about differential homomorphisms on them. For more details, refer to
[10] and [14].

Let (R,+,0) be A-hyperring. A A-hyperideal I(# R) of a A-
hyperring R is called prime of R, if for all a,b € R, aob C I implies
that @ € I or b € I. The intersection of all A-prime hyperideals of R
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that contain A-hyperideal I is called radical I and denote by Rad(I)
or v/I. If the A-hyperring R does not have any prime A-hyperideal
containing I, we define /I = R. A-hyperideal [ is called differential
radical hyperideal if /I = I. Let C be the class of all finite products
of elements of Rie. C={rjorgo---or,|r; € R,n € N} C P*(R). A
A-hyperideal I of R is called A-C-ideal of R, if for all A€ C, ANI #(
implies that A C I. By a maxzimal A-hyperideal of R, we mean a
A-hyperideal of R that is maximal among the proper A-hyperideals
of R. Note that a maximal A-hyperideal need not to be a maximal
hyperideal.

Theorem 3.10. Let I be a A-hyperideal of a commutative A-hyperring
R. Then, N(I) C /I, where N(I) = {r € R|r™ C I,n € N}. The
equality holds when I is a A-C-ideal of R.

Proof. The proof is similar to the proof of Proposition 3.2 of [1]. 0

Theorem 3.11. Let R and S be Ay and Ay-hyperrings, respectively.
Also, let ¢ : R — S be a differential good homomorphism. Then,
(1) kery is a Aj-hyperideal;
(2) If I is a Ag-hyperideal of S, then ¢ '(I) is a Ai-hyperideal of
R.

Proof. According to [5] (p. 145), the inverse images of hyperideals are

hyperideals. So, keryp is a hyperideal. For all d; € Ay, dy € Ay and

x € kerp, we have pdi(x) = dop(x) = do(0) = 0. So, di(z) € kerep.
The proof of the part (2) is similar. O

Theorem 3.12. Let (R,+,-) be a A-hyperring.

(1) If I and J are A-hyperideals of R, then I - J is also a A-
hyperideal of R;

(2) If R is a A-hyperfield and I is a A-C-hyperideal of R, then /I
is also a A-hyperideal;

(3) If R is a commutative strongly distributive A-hyperring and I
is a A-hyperideal such that for all ) # A C R, nA C I implies
A C I, where n € N, then /I is also a A-hyperideal;

(4) If R is commutative and I is a A-radical hyperideal, then (I :
r) ={x € Rlx-r C I}, for all v € R, is also a A-radical
hyperideal.

Proof. (1) It is proved that I - J is a hyperideal [1]. If z € I - J, then
r € > a;-b;, for some a; € I, b; € J and n € N. So, for all d € A, we

=1
n n

have d(z) € d(i a5-b) = S d(as-b) = 3 d(ar) - b+ az - d(b) C I-.

i=1 i=1
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(2) It is clear that /I is a hyperideal. Suppose that x € /I, then
™ C I, for some n € N. So, z™-d(x) C I. Thus, d(x) € ™™ 2" -d(z) C
x=" - I CIC./I. Therefore, /I is a A-hyperideal.

(3) It is clear that /I is a hyperideal. Let = € /I, then 2" C I,
for some n € N. Now, by induction we prove that for all d € A and
k=0,1,---,n, 2" %.d(z)?* C I. Let the statement is valid for k, i.e.,
"% . d(x)* C I. By Lemma 2.8, we get (n — k)z" %1 . d(x)**1 +
2ka" . d(x)%*~1.d?) (x) C I. Multiply by d(x) and use the hypothesis
of induction, we have (n — k)z" %=1 . d(x)**2 C I. By hypothesis, we
get x"~F+1) ()21 C [, So, the statement is valid for k + 1, which
completes the induction. Now, set k& = n, we have d(x)** C I. So,

d(z) € \/I.

(4) Let z,y € (I : r). Then, (zx —y)-r Cx-r—y-r C I. So,
x—y € (I :r). Now, suppose that © € (I : r) and t € R. Then
z-t-r=z-r-tCIT-tCTandsozx-tC (I:r). Itshows

that (I : r) is a hyperideal. Let z € (I : r) and d € A. Then,
d(z)-r-d(x-r)=(d(z)-r)*+d(x) -r-z-d(r). So, for all t € (d(x)-r)?
and s € d(x)-r-d(xz-r) C I, thereis z € d(x) - r -z - d(r) C I such
that s =t + 2. Thus, t = s — z C I. Then, (d(x) - r)*> C I. Therefore,
d(x) -r C Rad(I) = I, which means that d(z) € (I : r). So, I is a
A-hyperideal. Obviously, (I : ) C Rad(({ : r)). Let x € Rad((I : r)).
Then, there is n € N such that ™ C (I : r). Therefore, 2™ - r C I. So,
we have (z-r)" =a"-r" ="t (x"-r) C o™t T C I, since R is
commutative. Hence, z-r C Rad([) = I, which means that x € (I : r).
So, (I : r) is a A-radical hyperideal. O

Let (Ry,+1,01) and (Rg,42,02) be A; and Ay- homomorphisms,
respectively. Then, (R; X Rs,+,0) is a hyperring, where for all (a, b),
(¢,d) € Ry X Ry operation + and hyperoperation o are defined as
(a,b) + (¢,d) = (a +1 ¢,b+2 d) and (a,b) o (¢,d) = {(z,y)|r € a o
¢,y € bogd}. For all d € Ay and dy € Ay, we define the function
dy X dy i Ry X Ry — Ry X Ry as (dy X do)(z,y) = (di(x),d2(y)), for
all (z,y) € Ry X Ry. Then, d; X dy is a derivation on Ry X Ry. If we
set A ={d; xdy | di € Ay,dy € Ay}, then Ry X Ry is a A-hyperring.

Theorem 3.13. Let I be a A-hyperideal of A-hyperring R. Then, R/I
has a unique structure of differential hyperring so that the canonical
mapping ¢ : R — R/I is a differential homomorphism. So, there is
a one to one correspondence between the set of differential hyperideals
of R/I and the set of A-hyperideals of R which contain I.

Proof. Suppose that (R, +,-) is a A-hyperring. It is proved in [5] that
(R/I,+,%) is a hyperring, where the hyperoperation * is defined as
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(a+I)*x(b+1)={c+I|cea-b}, forall a,be R. We prove R/I is
a differential hyperring. For all d € A, we define D : R/I — R/I as
Dx+1)=d(z)+ I, forallz € R. Let x + [ =y + I, x,y € R. Then,

r—yel =dx)—dy) edl)CI=dxz)+1=dy)+1
= D(z+1)=D(y+ ).

So, D is well-defined.
Now, we show that D is a derivation of R/I. It is clear that D is an
additive function. Also, for all z,y € R, we have

D((x+1)x(y+1)=D(x-y+1)=dx-y)+1
= (d(@)-y+ 1)+ (z-dly) +1)
= (d(@) + 1) = (y+ 1)+ (x +I) = (d(y) + 1)
=D+ 1)« y+1)+@+1)*D(y+1).

Therefore, D is a derivation and R/I is a differential hyperring. The
proof of the rest is easy. OJ

Corollary 3.14. Let P be a A-C-hyperideal of a commutative A-
hyperring R. Then, P is a prime A-C-hyperideal if and only if R/ P is
a A- integral hyperdomain.

Proof. Suppose that P is a prime A-C-hyperideal and P C (a + P) x
(b4 P) =a-b+ P, where % is defined in the proof of Theorem 3.13.
Then, for all x € P there are z € a-b and y € P such that x = z + y.
Thus, z = x —y € P. Since P is a prime C-hyperideal, then a € P or
be P. Thus,a+ P = P or b+ P = P. Therefore, by Theorem 3.13
R/P is a A- integral hyperdomain.

The proof of the converse is clear. |

Theorem 3.15. (Fundamental differential isomorphism theorem) Let
R and S be Ay and As-hyperring, respectively. If f : R — S is a
differential epimorphism, then there exists a differential isomorphism
such that R/kerf = S/(0).

Proof. Suppose that f : R — S is a differential epimorphism. Denote
K = kerf and define ¢ : R/K — S/(0) by o(r + K) = f(r) + (0),
r € R. It is easy to see that ¢ is a homomorphism. We show that ¢ is
differential. For all Dy € Ag/x and Dy € Agy(py, we have D1p(r+K) =
Di(f(r) 4+ (0)) = di(f(r)) + (0) = f(da(r)) + (0) = @(do(r) + (0)) =
@Dy (r 4 (0)), where d; € Ay and dy € As. O

The second and third isomorphism theorems are valid for A-hyperrings
and A-hyperideals.
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Let (R,+,-) be a hyperring. Then, set 2 = (A). Every element
wof Qis as w = di*dy?---dm, ny,na, -+ -ny, € No The unit of Q is
1 =d%3---d°. We think of w as an operator. If a is an element of
a A-hyperring and w = dy*'dy? - - - d™, then w(a) = dy*dy? - - - dm(a).
In this case, 1 is the identity operator, i.e., 1(a) = a. For every w =
ditdy? - - d ) we define ordw = ny +ng + -+ - 4 Ny

Let S be a subset of R. Then, [S] denotes the smallest A-hyperideal
of R that contains S. Thus,

5] = (e(9) | i € Q)+ {E - wilo) + S os(t) -y

J
l
—i—Zak-wk(rk)-bk |
k=1
xivyjagkabk € Ra Siatjark € S;nam7l € N;wiawjawk € Q}?

where ({w;(9)|w; € Q}) is the subgroup of the group (R, +), generated
by the set {w;(9)|w; € Q}.

Theorem 3.16. Let (R, +,-) be a commutative strongly distributive A-
hyperring, a,b € R and w € Q = (A). If ordw = n, then a™*! - w(b) C
[a - b].

Proof. We prove the statement by induction on n. If n = 0, then
w = 1 and the result is obvious. Suppose that the statement is valid
for n = k (hypothesis of induction). Now, set n = k + 1. Then, there
is d € A such that w = dd, where § € Q2 and ordd = k. By hypothesis
of induction we have a*™ - §(b) C [a-b]. So, a-d(a*™-6(b)) C [a - b].
Thus, by Lemma 2.8, (k+1)a**t-d(a)-§(b) +a**2-w(b) C [a-b]. Then,
by the hypothesis of induction (k + 1)a*™!-d(a)-5(b) C [a - b]. Hence,
a**? . w(b) C [a - b], which completes the proof. O

Lemma 3.17. Let S and T be subsets of a A-hyperring (R, +,-). Then,
VIST-VITT € VISInY[T] = vI[S-T1.

Proof. 1t is clear that /[S] - /[T] € /[S],V/[T]. So, V/[S] - V[T] C
VIS] N /I[T]. Suppose that a € /[S] N +/[T]. Then, a®* C [S] and
at C [T, for some s,t € N. So, a*t* C [S]-[T] C /[S - T]. Therefore,

a € [S-T).
Now, suppose that a € \/[S-T]. Then, o™ C [S-T] C [S]N[T], for
some n € N. Hence, a € /[S] N /[T]. O

Definition 3.18. [!] A nonempty subset S of a hyoerring (R, +,-) is
said to be a multiplicative set if x,y € S implies that z -y NS # (.
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Theorem 3.19. Let (R,+,-) be a A-hyperring, Q0 be a multiplicative
set and M be a A-hyperideal that is maximal with respect to avoiding
Q. Then, M is prime.

Proof. At the first, we prove /M N Q = (. Suppose that there is
t e VyMNQ. So, t" C M and t" N Q) # (), for some n € N. Thus,
M N Q # 0, which is a contradiction. Then, /M NQ = 0. So, by
hypothesis /M = M.

Now, suppose that a -b € M and a,b € M. Then, M ; [a, M]
and [b, M]. So, M & \/[a, M] and +/[b, M]. Therefore, by hypothesis
Via, MINS # 0 and \/[b, M]NS # 0. Thus, there are k € \/[a, M]NS
and t € /[b, M]N'S. By Lemma 3.17, k-t C \/[a, M]\/[b, M] C
V]a-b,M] = /M = M. So, there is s € k-t such that s € M NS,
which is a contradiction. Therefore, M is a prime. O

Corollary 3.20. Every maximal A-hyperideal is prime.
Proof. In Theorem 3.19, set 2 = 1. U
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