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DIFFERENTIAL MULTIPLICATIVE HYPERRINGS

L. KAMALI ARDEKANI AND B. DAVVAZ∗

Abstract. In a multiplicative hyperring, the multiplication is a
hyperoperation, while the addition is a binary operation. In this
paper, the notion of derivation on multiplicative hyperrings is in-
troduced and some related properties are investigated.

1. Introduction

2. Derivation on multiplicative hyperrings

Let H be a non-empty set, P∗(H) be the set of all non-empty subsets
of H. A hyperoperation on H is a map ⋆ : H ×H −→ P∗(H) and the
couple (H, ⋆) is called a hypergrupoid (or hyperstructure). If A and B
are non-empty subsets of H, then we denote A ⋆ B =

∪
a∈A,b∈B a ⋆ b,

and if x ∈ H, then we denote A ⋆ x = A ⋆ {x} and x ⋆ B = {x} ⋆ B.
A hypergrupoid (H, ⋆) is called a semihypergroup if for all x, y, z of H
we have (x ⋆ y) ⋆ z = x ⋆ (y ⋆ z). That is,

∪
u∈x⋆y u ⋆ z =

∪
v∈y⋆z x ⋆ v.

A hypergrupoid (H, ⋆) is called a quasihypergroup if for all x ∈ H, we
have x ⋆ H = H ⋆ x = H. A hypergrupoid is called a hypergroup if
it is both a semihypergroup and a quasihypergroup. A polygroup is
a system (P, ·, e, −1), where e ∈ P , “−1” is a unitary operation on P ,
“ · ” maps P × P in to the nonempty subsets of P , and the following
axioms hold for all x, y, z ∈ P : (1) (x · y) · z = x · (y · z); (2) e · x =
x · e = x; (3) x ∈ y · z implies y ∈ x · z−1 and z ∈ y−1 · x. In every
polygroup, we have e ∈ x · x−1 ∩ x−1 ∩ x, e−1 = e, (x−1)−1 = x and
(x · y)−1 = y−1 · x−1, where A−1 = {a−1|a ∈ A}. We can consider
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several definitions for a hyperring, by replacing at least one of the two
operations by hyperoperations, for example see [2, 6, 8, 9, 12, 13]. The
notion of multiplicative hyperring was introduced by R. Rota [19] in
1982. The multiplication is a hyperoperation, while the addition is a
binary operation, that is why she called it a multiplicative hyperring.
At the first, we recall the definition of a multiplicative hyperring. For
more details and properties, we refer the readers to [5, 7, 11, 16, 17, 18].
A triple (R,+, ·) is called a multiplicative hyperring if (1) (R,+) is an
abelian group; (2) (R, ·) is a semihypergroup; (3) x ·(y+z) ⊆ x ·y+x ·z
and (y+ z) ·x ⊆ y ·x+ z ·x, for all x, y, z ∈ R; (4) x · (−y) = (−x) ·y =
−(x · y), for all x, y, z ∈ R. If in (3) we have equalities instead of
inclusions, then we say that the multiplicative hyperring is strongly
distributive. An element e ∈ R is called a weak identity (identity,
respectively) if x ∈ e · x ∩ x · e (e · x = x · e = x, respectively), for all
x ∈ R. Throughout this paper, by a hyperring we mean a multiplicative
hyperring. A nonempty subset H of a hyperring (R,+, ·) is called
subhyperring of R, if (H,+, ·) is itself a hyperring. In other words, H is
a subhyperring of (R,+, ·) if H−H ⊆ H and x.y ⊆ H, for all x, y ∈ H.
A hyperring R is called an integral hyperdomain, if for all x, y ∈ R,
0 ∈ x · y implies that x = 0 or y = 0. In this paper, the meaning of a
hyperfield is a hyperring (F,+, ·) such that (F − {0}, ·) is a polygroup
and “ · ” is strongly distributive with respect to “ + ”. Hyperring
(R,+, ·) is called commutative (weak commutative, respectively), when
x · y = y · x (x · y ∩ y · x ̸= ∅, respectively), for all x, y ∈ R. The
meaning of center of R is Z(R) = {x ∈ R|x · y = y · x, for all y ∈ R}.
A nonempty subset I of a hyperring R is a hyperideal if I − I ⊆ I and
x · r ∪ r · x ⊆ I, for all x ∈ I and r ∈ R.

Example 2.1. Let (R,+, ·) be a ring, I be an ideal of R and ◦ be
the hyperoperation defined on R by x ◦ y = x · y + I, for all x, y ∈ R.
Then, (R,+, ◦) is a strongly distributive hyperring. For convenience,
the multiplicative hyperring (R,+, ◦) will be denoted by (R,+, I). The
ideal I is a hyperideal of hyperring (R,+, I), since I is an additive
subgroup of (R,+) and for all x ∈ I and r ∈ R, x ◦ r ∪ r ◦ x =
(x · r + I) ∪ (r · x+ I) ⊆ I.

A homomorphism (good homomorphism, respectively) between two
hyperrings
(R1,+1, ◦1) and (R2,+2, ◦2) is a map f : R1 −→ R2 such that for all
x, y ∈ R1, we have f(x+1y) = f(x)+2f(y) and f(x◦1y) ⊆ f(x)◦2f(y)
(f(x ◦1 y) = f(x) ◦2 f(y), respectively). Let f : R1 −→ R2 be a good
homomorphism. The kernel of f is the inverse image of < 0 > (the
hyperideal generated by the zero in R2). It is denoted by kerf .
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The concept of derivation on rings has been introduced by Posner
[15], also see [3, 20]. In [1], Asokkumar introduced the notion of deriva-
tion on Krasner hyperrings. Now, we define the notion of derivation
on multiplicative hyperrings.

Definition 2.2. Let (R,+, ·) be a hyperring. The function d : R −→ R
is called derivation if for all x, y ∈ R,

(1) d(x+ y) = d(x) + d(y);
(2) d(x · y) = d(x) · y + x · d(y).

The function d : R −→ R is called weak derivation if for all x, y ∈ R,
it satisfies (1) and

(3) d(x · y) ⊆ d(x) · y + x · d(y).
It is clear that every derivation is a weak derivation. By the first

condition of above definition for every (weak) derivation d of hyperring
R, we have d(0) = 0 and d(−x) = −d(x), for all x ∈ R.

We consider some examples.

Example 2.3. Let (R,+, ·) be a hyperring and 0 ∈ r.0 ∩ 0.r, for all
r ∈ R. Then, the function d(x) = 0, for all x ∈ R, is a weak derivation.
It is called trivial weak derivation.

Example 2.4. Consider the ring (Zm,+, ·). Let p ∈ Zm and p ̸= 1. We
define hyperoperation ◦ on R by x◦y = {x·y, p·x·y}, for all x, y ∈ Zm.
Then, (Zm,+, ◦) is a hyperring. The function d : Zm −→ Zm defined
by d(x) = 0, for all x ∈ Zm is derivation, since d(x) ◦ y + x ◦ d(y) =
0 ◦ y + x ◦ 0 = {0} = d(x ◦ y), for all x, y ∈ Zm.

Example 2.5. Let (R,+) be an abelian group and ◦ be the hyperop-
eration on R defined by x ◦ y = ⟨x, y⟩ = Zx + Zy, (the subgroup of
(R,+) generated by x and y), for all x, y ∈ R. Then, (R,+, ◦) is a
hyperring which is not generally strongly distributive. The functions
d1, d2 : R −→ R defined by d1(x) = x and d2(x) = −x, for all x ∈ R,
are derivations.

Example 2.6. Let R be an abelian group and S be a subgroup of R.
For all x, y ∈ R, we define x ◦ y = S. Then, (R,+, ◦) is a hyperring.
The functions d1, d2 : R −→ R defined by d1(x) = x and d2(x) = −x,
for all x ∈ R, are derivations.

Example 2.7. Let (R,+, ·) be a ring, P be a nonempty subset of R and
◦ be the hyperoperation defined on R by x◦y = x.P.y, for all x, y ∈ R.
Then, (R,+, ◦) is a hyperring. For convenience, the hyperring (R,+, ◦)

will be denoted by [R,+, P ]. Set M =

{(
x y
0 0

)
|x, y ∈ [R,+, P ]

}
and define the hyperoperation ∗ on M as
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x1 y1
0 0

)
∗
(

x2 y2
0 0

)
=

{(
a b
0 0

)
|a ∈ x1 ◦ x2, b ∈ x1 ◦ y2

}
,

where x1, x2, y1, y2 ∈ [R,+, P ]. Then, M with the usual addition of
matrices and the hyperoperation ∗ is a hyperring. M may not be
strongly distributive because [R,+, P ] may not be strongly distribu-
tive. It is easily to check that the function d : M −→ M defined by

d

((
x y
0 0

))
=

(
0 y
0 0

)
is a derivation.

A hyperring R is said to be of characteristic n, if n is the smallest
positive integer such that nx = 0, for all x ∈ R. If no such of n exists,
R is said to be of characteristic 0.

Lemma 2.8. Let (R,+, ·) be a hyperring and d be a weak derivation.
Then, for all n ∈ N and x, y ∈ R,

(1) If R is commutative, then d(xn) ⊆ nxn−1.d(x). The equality
holds when R is strongly distributive and d is a derivation.

(2) d(n)(x.y) ⊆
n∑

i=0

(
n
i

)
d(n−i)(x).d(i)(y), where d(n) shows derivation

of order n. The equality holds when d is a derivation.

Proof. The proof follows easily by induction. □

Let a commutative hyperring R be strongly distributive and d be a
derivation of R. If R is of characteristic n, then by the above Lemma,
0 ∈ d(xn), for all x ∈ R.

Theorem 2.9. Let (R,+, ·) be a hyperring and the notation [x, y] de-
notes the set x · y − y · x, for all x, y ∈ R. Then, for all x, y, z ∈ R,

(1) [x + y, z] ⊆ [x, z] + [y, z], the equality holds when R is strongly
distributive;

(2) If R is a strongly distributive, we have [x · y, z] ⊆ x · [y, z] +
[x, z] · y;

(3) If d is a weak derivation of R, then d[x, y] ⊆ [d(x), y]+[x, d(y)];
we have equality when d is a derivation.

Proof. The proof is obvious. □

Definition 2.10. A hyperring R is called prime if 0 ∈ x · r · y, for all
r ∈ R, implies that either x = 0 or y = 0. R is called semiprime if
0 ∈ x · r · x, for all r ∈ R, implies that x = 0. Obviously, every prime
hyperring is a semiprime hyperring but the converse is not always true.

Example 2.11. Let R = {e, a, b}. Consider the following tables:
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+ e a b
e e a b
a a b e
b b e a

and

. e a b
e e e e
a e {a, b} {a, b}
b e {a, b} {a, b}

It is easily to check (R,+, ·) is prime.

Lemma 2.12. Let I be a nonzero hyperideal on a prime hyperring R
and x, y ∈ R, then

(1) If I · x = 0 or x.I = 0, then x = 0;
(2) If 0 = x · I · y, then x = 0 or y = 0;
(3) If 0 ∈ r · 0∩ 0 · r, for all r ∈ R, x ∈ Z and 0 ∈ x · y, then x = 0

or y = 0;
(4) If R is strongly distributive, x ∈ Z(R) and x · y ⊆ Z, for all

y ∈ Z, then x = 0 or R is weak commutative.

Proof. (1) Suppose that I · x = 0. Then, u · r · x ⊆ I · x = {0}, for all
r ∈ R and u ∈ I. So, x = 0, since R is prime and I ̸= 0. In the case
x · I = 0, the proof is similar.

(2) Suppose that x · I · y = 0. Then, x · I · r · y ⊆ x · I · y = {0}, for
all r ∈ R. Therefore, x · I · r · y = 0, for all r ∈ R. Hence, x · I = 0 or
y = 0, since R is prime. So, by (1), x = 0 or y = 0.

(3) Suppose that x ∈ Z and 0 ∈ x · y. Then, for all r ∈ R, 0 ∈ r ·0 =
r · x · y = x · r · y. Therefore, x = 0 or y = 0, since R is prime.

(4) Suppose that x ·y ⊆ Z, for all y ∈ R. Then, 0 ∈ x ·y ·r−x ·y ·r =
x · y · r − r · x · y = x · y · r − x · r · y = x · (y · r − r · y) = x · [y, r],
for all r ∈ R. So, 0 ∈ t · 0 ∈ t · x · [y, r] = x · t · [y, r], for all t ∈ R.
Hence, x = 0 or 0 ∈ [y, r], since R is prime. This means that x = 0 or
y · r ∩ r · y ̸= ∅, for all r ∈ R. □
Lemma 2.13. Let d be a derivation on a prime hyperring (R,+, ·) and
I be a nonzero hyperideal of R. Also, let 0 ∈ 0 · r ∩ r · 0, for all r ∈ R,
then for all x ∈ R,

(1) If d(I) = 0, then d = 0;
(2) If d(I) · x = 0 or x · d(I) = 0, then x = 0 or d = 0;
(3) If d(R) · x = 0 or x · d(R) = 0, then x = 0 or d = 0.

Proof. (1) For all u ∈ I and x ∈ R, we have 0 = d(u · x) = d(u) · x +
u · d(x) ⊇ 0 + u · d(x) = u · d(x). Therefore, u · d(x) = 0, for all u ∈ I.
So, I · d(x) = 0, which implies that d = 0, by Lemma 2.12 (1).

(2) Suppose that d(I) · x = 0. Then, 0 = d(y · u) · x = d(y) · u · x +
y · d(u) · x ⊇ d(y) · u · x, for all u ∈ I and y ∈ R. So, d(y) · u · x = 0, for
all u ∈ I. Therefore, d(y) · I ·x = 0, which implies that d = 0 or x = 0,
by Lemma 2.12 (2). In the case x · d(I) = 0, the proof is similar.

(3) In (2), put R instead of I. □
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Definition 2.14. Let R be a hyperring and d be a derivation on R.
Then, x ∈ R is called a constant element if d(x) = 0. We denote by
Cd(R), the set of all of constant elements of R associated to derivation
d.

Theorem 2.15. Let d be a derivation on a prime strongly distributive
hyperring R such that d(R) ⊆ Z. Also, let there is c ∈ Cd(R) such that
0 ̸∈ [c, x0], for some x0 ∈ R. Then, d = 0.

Proof. We have d(x · c) = d(x) · c+ x · d(c) ⊇ d(x) · c, for all x ∈ R. So,
d(x) ·c ⊆ d(x ·c) ⊆ Z. Therefore, d(x) ·c ·x0 = x0 ·d(x) ·c = d(x) ·x0 ·c.
This means that 0 ∈ d(x)·[c, x0], since R is strongly distributive. Then,
there is t ∈ [c, x0] such that 0 ∈ d(x) · t. So, d(x) = 0 or t = 0, by
Lemma 2.12 (3). If t = 0, then 0 ∈ [c, x0], this is a contradiction.
Therefore, d(x) = 0, for all x ∈ R. □
Definition 2.16. A hyperring R is called n-torsion free if nx = 0,
x ∈ R, implies that x = 0, where n is an integer number.

Theorem 2.17. Let I be a nonzero hyperideal of a 2-torsion free prime
hyperring (R,+, ·) and 0 ∈ r · 0 ∩ 0 · r, for all r ∈ R.

(1) If d is a derivation of R such that d(2)(I) = 0, then d = 0;
(2) If d1 and d2 are derivations of R such that d1d2(I) = 0, then

d1 = 0 or d2 = 0.

Proof. (1) By Lemma 2.8, we have for all u, v ∈ I,

0 = d(2)(u · v) = d(2)(u) · v + 2d(u) · d(v) + u · d(2)(v) ⊇ 2d(u) · d(v).
So, d(u) · d(v) = 0, since R is a 2−torsion free hyperring. Therefore,
d = 0, by Lemma 2.13 (1) and (2).

(2) We have for all u, v ∈ I,

0 = d1d2(u · v) = d1(d2(u) · v + u · d2(v))
= d1d2(u) · v + d2(u) · d1(v) + d1(u) · d2(v) + u · d1d2(v)
⊇ d2(u) · d1(v) + d1(u) · d2(v).

So, d2(u)·d1(v)+d1(u)·d2(v) = 0. By replaceing u by d2(u) in the above

equation, we get d
(2)
2 (u) · d1(v) ⊆ d

(2)
2 (u) · d1(v) + d1d2(u) · d2(v) = 0,

that is d
(2)
2 (u) · d1(v) = 0. Thus, d1 = 0 or d

(2)
2 (I) = 0, by Lemma 2.13

(1) and (2). Therefore, d1 = 0 or d2 = 0, by (1). □

3. Differential multiplicative hyperring

We denote by ∆(R,+, ·) (D(R,+, ·), respectively), the set of all
derivations (weak derivations, respectively) of hyperring (R,+, ·). Note
that

∆(R,+, ·) ⊆ D(R,+, ·) ⊆ Hom(R,+).
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A hyperring with ∆ (D, respectively) is called the differential hyperring
(weak differential hyperring, respectively).

A hyperfield R is called (weak) differential hyperfield if R is (weak)
differential hyperring. An integral hyperdomain R is called (weak)
differential integral hyperdomain if R is (weak) differential hyperring.
A subhyperring H of (weak) differential hyperring R is said (weak)
differential subhyperring if for all (weak) derivation d of R, we have
d(h) ∈ H, for all h ∈ H. A hyperideal I of (weak) differential hyperring
R is called (weak) differential hyperideal if for all (weak) derivation d
of R, we have d(u) ∈ I, for all u ∈ I.

Example 3.1. For every (weak) differential hyperring R, ⟨0⟩R is a
(weak) differential hyperideal.

We usually use the perfix ∆ (D, respectively) instead of we say thatR
is differential (weak differential, respectively) and ∆ (D, respectively) is
the set of all derivations (weak derivations, respectively) on R. Also, If
R is a differential hyperring (weak differential hyperring, respectively)
i.e. R is a ∆-hyperring (D-hyperring, respectively), then we usually
use the notion ∆-hyperideal (D-hyperideal, respectively) instead of we
say that I is a differential hyperideal (weak differential hyperideal,
respectively) of R.

Example 3.2. Let (R,+, ·) be a hyperring and 0 ∈ r.0 ∩ 0.r, for all
r ∈ R. Then, by Example 2.3, the function d : R −→ R defined as
d = 0 is a weak derivation. So, d ∈ D(R,+, ·) and this means that
D(R,+, ·) ̸= ∅.

Example 3.3. Let (R,+, ◦) be the hyperring defined in Example 2.5.
For all f ∈ Hom(R,+), we have f(x ◦ y) = Zf(x) + Zf(y) ⊆ Zf(x) +
Zy + Zx + Zf(y) = f(x) ◦ y + x ◦ f(y), for all x, y ∈ R. This implies
that f ∈ D(R,+, ◦) and so Hom(R,+) ⊆ D(R,+, ◦). Also, we know
that D(R,+, ◦) ⊆ Hom(R,+). Therefore, D(R,+, ◦) = Hom(R,+).

Example 3.4. In Example 2.1, if I = R, then every additive function
f : R −→ R is a weak derivation. For all x, y ∈ R, we have d(x ◦ y) =
d(x·y+R) = d(R) ⊆ R = d(x)·y+R+x·d(y)+R = d(x)◦y+x◦d(y). So,
D(R,+, R) = Hom(R,+). Also, in Example 2.1, if (R,+, ·) and I are
∆-hyperring and ∆-hyperideal, then we have ∆(R,+, ·) ⊆ D(R,+, I).
Because, for all d ∈ ∆(R,+, ·) and x, y ∈ R, we have d(x ◦ y) =
d(x · y + I) ⊆ d(x · y) + I = d(x) · y + x · d(y) + I = d(x) ◦ y + x ◦ d(y).

Now, we analyze hyperring (Z,+,mZ), where m is a positive integer.
We have D(Z,+,mZ) ⊆ Hom(Z,+) = {ga|a ∈ Z}, where ga(x) = ax,
for all x ∈ Z.
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Theorem 3.5. The following statements are valid:

(1) For all a ∈ Z, ga ∈ D(Z,+,mZ) if and only if m|a.
(2) {ga|a ∈ mZ} = D(Z,+,mZ), so D(Z,+,mZ) is infinite and

only in the case m = 1, we have
D(Z,+,mZ) = Hom(Z,+).

(3) If m > 1, then {ga|a ∈ mZ + 1} ⊆ Hom(Z,+) \ D(Z,+,mZ)
and so Hom(Z,+) \D(Z,+,mZ) is infinite.

(4) mZ is a D-hyperideal of (Z,+,mZ).
Proof. (1) Suppose that ga ∈ D(Z,+,mZ). Then, a+amZ = ga(1◦1) ⊆
ga(1) ◦ 1 + 1 ◦ ga(1) = a ◦ 1 + 1 ◦ a = 2a+mZ. So, a ∈ mZ.

Conversely, suppose that m|a. Then, for all x, y ∈ Z, we have
−axy ∈ mZ. Thus, −axy + amZ ⊆ amZ + mZ = mZ. Therefore,
ga(x ◦ y) = axy + amZ ⊆ 2axy +mZ = ga(x) ◦ y + x ◦ ga(y). Hence,
ga ∈ D(Z,+,mZ).

The rest parts follow by part (1). □
Consider the hyperring (Zn,+,mZn), where m and n are positive

integers. We have D(Zn,+,mZn) ⊆ Hom(Zn,+) = {hā|a ∈ Z}, where
hā(x̄) = ax, for all x̄ ∈ Zn.

Theorem 3.6. The following statements are valid:

(1) For all a ∈ Z, hā ∈ D(Zn,+,mZn) if and only if (m,n)|a.
(2) {hā|a ∈ (m,n)Z} = D(Zn,+,mZn) and thus |D(Zn,+,mZn)| =

n
(m,n)

. Also, only for m = 1, we have

D(Zn,+,mZn) = Hom(Zn,+).
(3) If (m,n) > 1, then

{hā|a ∈ (m,n)Z + 1} ⊆ Hom(Zn,+) \ D(Zn,+,mZn) and so
|Hom(Zn,+) \D(Zn,+,mZn)| ≥ n

(m,n)
.

(4) mZn is a D-hyperideal of (Zn,+,mZn).

Proof. (1) Suppose that hā ∈ D(Zn,+,mZn), then ā+ āmZn = hā(1̄ ◦
1̄) ⊆ hā(1̄) ◦ 1̄ + 1̄ ◦ hā(1̄) = ā ◦ 1̄ + 1̄ ◦ ā = 2ā + mZn. Thus, ā ∈
mZn = (m,n)Zn. Thus, a = (m,n)s + nt, for some s, t ∈ Z. Since
(m,n)|(m,n)s+ nt, then (m,n)|a.

Conversely, suppose that (m,n)|a. Then, a = (m,n)s, for some

s ∈ Z. So, for all x, y ∈ Z, we have −axy = −(m,n)sxy ⊆ (m,n)Zn =
mZn. Thus, −axy + amZn ⊆ amZn +mZn = mZn. Therefore, hā(x̄ ◦
ȳ) = āx̄ȳ + āmZn = axy + amZn ⊆ 2axy + mZn = 2āx̄ȳ + mZn =
hā(x̄) ◦ ȳ + x̄ ◦ hā(ȳ). Hence, hā ∈ D(Zn,+,mZn).

The rest parts follow by part (1). □
For example, by the above theorems, we have

D(Z,+, 4Z) = {ga | a ∈ 4Z} andD(Z20,+, 4Z20) = {h0̄, h4̄, h8̄, h1̄2, h1̄6}.
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Now, consider the hyperring [R,+, P ] defined in Example 2.7. If we set
P = R, then every additive function f : R −→ R is a weak derivation.
So, D[R,+, R] = Hom(R,+).

Theorem 3.7. (1) For all a ∈ Z and ∅ ̸= P ⊆ Z, we have ga ∈
D[Z,+, P ] if and only if a · P ⊆ 2a · P .

(2) For all a ∈ Z and ∅ ̸= P ⊆ Zn, we have hā ∈ D[Z,+, P ] if and
only if a · P ⊆ 2a · P .

Proof. (1) Suppose that ga ∈ D[Z,+, P ] ⊆ Hom(Z,+). Then, a · P =
ga(P ) = ga(1·P ·1) = ga(1◦1) ⊆ ga(1)◦1+1◦ga(1) = a◦1+1◦a = 2a·p.

Conversely, suppose that a · P ⊆ 2a · P . Then, for all x, y ∈ Z,
we have ga(x ◦ y) = ga(x · P · y) = a · x · P · y ⊆ 2a · x · P · y =
a · x · P · y+ x · P · a · y = (a · x) ◦ y+ x ◦ (a · y) = ga(x) ◦ y+ x ◦ ga(y).
Therefore, ga ∈ D[Z,+, P ].

(2) The proof is similar to (1). □
Corollary 3.8. If 0 ∈ P , then

D[Z,+, P ] = Hom(Z,+) and D[Zn,+, P ] = Hom(Zn,+).

Proof. By Theorem 3.7, the proof is obvious. □
Therefore, we have D[Z,+,mZ] = ∆[Z,+,mZ] = Hom(Z,+) and

D[Zn,+,mZn] = ∆[Zn,+,mZn] = Hom(Zn,+).
Consider the hyperring [Q,+,mZ]. Notice that d(x) = xd(1), for

all x ∈ Q and for all (weak) derivation d on [Q,+,mZ]. Similar to
Corollary 3.8, we have D[Q,+,mZ] = ∆[Q,+,mZ] = Hom(Q,+) =
{qa|a ∈ Q}, where qa(x) = ax, for all x ∈ Q.

Definition 3.9. Let R and S be ∆1 and ∆2-hyperrings, respectively.
By a differential (good) homomorphism of R into S, we mean a (good)
homomorphism φ such that d2φ(x) = φd1(x), for all x ∈ R, d1 ∈ ∆1

and d2 ∈ ∆2.

In the hyperrings

(Z,+,mZ) and [Z,+,mZ] ((Zn,+,mZn) and [Zn,+,mZn], respectively)

we have gagb = gbga (hāhb̄ = hb̄hā, respectively), for all a, b ∈ Z. So,
every homomorphism on them is a differential homomorphism. There-
fore, all the results about homomorphisms on these hyperrings are valid
about differential homomorphisms on them. For more details, refer to
[10] and [14].

Let (R,+, ◦) be ∆-hyperring. A ∆-hyperideal I (̸= R) of a ∆-
hyperring R is called prime of R, if for all a, b ∈ R, a ◦ b ⊆ I implies
that a ∈ I or b ∈ I. The intersection of all ∆-prime hyperideals of R
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that contain ∆-hyperideal I is called radical I and denote by Rad(I)
or

√
I. If the ∆-hyperring R does not have any prime ∆-hyperideal

containing I, we define
√
I = R. ∆-hyperideal I is called differential

radical hyperideal if
√
I = I. Let C be the class of all finite products

of elements of R i.e. C = {r1 ◦ r2 ◦ · · · ◦ rn|ri ∈ R, n ∈ N} ⊆ P ∗(R). A
∆-hyperideal I of R is called ∆-C-ideal of R, if for all A ∈ C, A∩ I ̸= ∅
implies that A ⊆ I. By a maximal ∆-hyperideal of R, we mean a
∆-hyperideal of R that is maximal among the proper ∆-hyperideals
of R. Note that a maximal ∆-hyperideal need not to be a maximal
hyperideal.

Theorem 3.10. Let I be a ∆-hyperideal of a commutative ∆-hyperring
R. Then, N(I) ⊆

√
I, where N(I) = {r ∈ R|rn ⊆ I, n ∈ N}. The

equality holds when I is a ∆-C-ideal of R.

Proof. The proof is similar to the proof of Proposition 3.2 of [4]. □
Theorem 3.11. Let R and S be ∆1 and ∆2-hyperrings, respectively.
Also, let φ : R −→ S be a differential good homomorphism. Then,

(1) kerφ is a ∆1-hyperideal;
(2) If I is a ∆2-hyperideal of S, then φ−1(I) is a ∆1-hyperideal of

R.

Proof. According to [5] (p. 145), the inverse images of hyperideals are
hyperideals. So, kerφ is a hyperideal. For all d1 ∈ ∆1, d2 ∈ ∆2 and
x ∈ kerφ, we have φd1(x) = d2φ(x) = d2(0) = 0. So, d1(x) ∈ kerφ.

The proof of the part (2) is similar. □
Theorem 3.12. Let (R,+, ·) be a ∆-hyperring.

(1) If I and J are ∆-hyperideals of R, then I · J is also a ∆-
hyperideal of R;

(2) If R is a ∆-hyperfield and I is a ∆-C-hyperideal of R, then
√
I

is also a ∆-hyperideal;
(3) If R is a commutative strongly distributive ∆-hyperring and I

is a ∆-hyperideal such that for all ∅ ̸= A ⊆ R, nA ⊆ I implies
A ⊆ I, where n ∈ N , then

√
I is also a ∆-hyperideal;

(4) If R is commutative and I is a ∆-radical hyperideal, then (I :
r) = {x ∈ R|x · r ⊆ I}, for all r ∈ R, is also a ∆-radical
hyperideal.

Proof. (1) It is proved that I · J is a hyperideal [4]. If x ∈ I · J , then
x ∈

n∑
i=1

ai · bi, for some ai ∈ I, bi ∈ J and n ∈ N. So, for all d ∈ ∆, we

have d(x) ∈ d(
n∑

i=1

ai ·bi) =
n∑

i=1

d(ai · bi) =
n∑

i=1

d(ai) · bi + ai · d(bi) ⊆ I ·J .
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(2) It is clear that
√
I is a hyperideal. Suppose that x ∈

√
I, then

xn ⊆ I, for some n ∈ N. So, xn ·d(x) ⊆ I. Thus, d(x) ∈ x−n ·xn ·d(x) ⊆
x−n · I ⊆ I ⊆

√
I. Therefore,

√
I is a ∆-hyperideal.

(3) It is clear that
√
I is a hyperideal. Let x ∈

√
I, then xn ⊆ I,

for some n ∈ N. Now, by induction we prove that for all d ∈ ∆ and
k = 0, 1, · · · , n, xn−k · d(x)2k ⊆ I. Let the statement is valid for k, i.e.,
xn−k · d(x)2k ⊆ I. By Lemma 2.8, we get (n − k)xn−k−1 · d(x)2k+1 +
2kxn−k ·d(x)2k−1 ·d(2)(x) ⊆ I. Multiply by d(x) and use the hypothesis
of induction, we have (n− k)xn−k−1 · d(x)2k+2 ⊆ I. By hypothesis, we
get xn−(k+1) · d(x)2(k+1) ⊆ I. So, the statement is valid for k+1, which
completes the induction. Now, set k = n, we have d(x)2n ⊆ I. So,
d(x) ∈

√
I.

(4) Let x, y ∈ (I : r). Then, (x − y) · r ⊆ x · r − y · r ⊆ I. So,
x − y ∈ (I : r). Now, suppose that x ∈ (I : r) and t ∈ R. Then,
x · t · r = x · r · t ⊆ I · t ⊆ I and so x · t ⊆ (I : r). It shows
that (I : r) is a hyperideal. Let x ∈ (I : r) and d ∈ ∆. Then,
d(x) · r · d(x · r) = (d(x) · r)2+ d(x) · r ·x · d(r). So, for all t ∈ (d(x) · r)2
and s ∈ d(x) · r · d(x · r) ⊆ I, there is z ∈ d(x) · r · x · d(r) ⊆ I such
that s = t+ z. Thus, t = s− z ⊆ I. Then, (d(x) · r)2 ⊆ I. Therefore,
d(x) · r ⊆ Rad(I) = I, which means that d(x) ∈ (I : r). So, I is a
∆-hyperideal. Obviously, (I : r) ⊆ Rad((I : r)). Let x ∈ Rad((I : r)).
Then, there is n ∈ N such that xn ⊆ (I : r). Therefore, xn · r ⊆ I. So,
we have (x · r)n = xn · rn = rn−1 · (xn · r) ⊆ rn−1 · I ⊆ I, since R is
commutative. Hence, x ·r ⊆ Rad(I) = I, which means that x ∈ (I : r).
So, (I : r) is a ∆-radical hyperideal. □

Let (R1,+1, ◦1) and (R2,+2, ◦2) be ∆1 and ∆2- homomorphisms,
respectively. Then, (R1 × R2,+, ◦) is a hyperring, where for all (a, b),
(c, d) ∈ R1 × R2 operation + and hyperoperation ◦ are defined as
(a, b) + (c, d) = (a +1 c, b +2 d) and (a, b) ◦ (c, d) = {(x, y)|x ∈ a ◦1
c, y ∈ b ◦2 d}. For all d1 ∈ ∆1 and d2 ∈ ∆2, we define the function
d1 × d2 : R1 × R2 −→ R1 × R2 as (d1 × d2)(x, y) = (d1(x), d2(y)), for
all (x, y) ∈ R1 × R2. Then, d1 × d2 is a derivation on R1 × R2. If we
set ∆ = {d1 × d2 | d1 ∈ ∆1, d2 ∈ ∆2}, then R1 ×R2 is a ∆-hyperring.

Theorem 3.13. Let I be a ∆-hyperideal of ∆-hyperring R. Then, R/I
has a unique structure of differential hyperring so that the canonical
mapping φ : R −→ R/I is a differential homomorphism. So, there is
a one to one correspondence between the set of differential hyperideals
of R/I and the set of ∆-hyperideals of R which contain I.

Proof. Suppose that (R,+, ·) is a ∆-hyperring. It is proved in [5] that
(R/I,+, ∗) is a hyperring, where the hyperoperation ∗ is defined as
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(a+ I) ∗ (b+ I) = {c+ I | c ∈ a · b}, for all a, b ∈ R. We prove R/I is
a differential hyperring. For all d ∈ ∆, we define D : R/I −→ R/I as
D(x+ I) = d(x) + I, for all x ∈ R. Let x+ I = y + I, x, y ∈ R. Then,

x− y ∈ I ⇒ d(x)− d(y) ∈ d(I) ⊆ I ⇒ d(x) + I = d(y) + I
⇒ D(x+ I) = D(y + I).

So, D is well-defined.
Now, we show that D is a derivation of R/I. It is clear that D is an

additive function. Also, for all x, y ∈ R, we have

D((x+ I) ∗ (y + I))= D(x · y + I) = d(x · y) + I

= (d(x) · y + I) + (x · d(y) + I)

= (d(x) + I) ∗ (y + I) + (x+ I) ∗ (d(y) + I)

= D(x+ I) ∗ (y + I) + (x+ I) ∗D(y + I).

Therefore, D is a derivation and R/I is a differential hyperring. The
proof of the rest is easy. □

Corollary 3.14. Let P be a ∆-C-hyperideal of a commutative ∆-
hyperring R. Then, P is a prime ∆-C-hyperideal if and only if R/P is
a ∆- integral hyperdomain.

Proof. Suppose that P is a prime ∆-C-hyperideal and P ⊆ (a + P ) ∗
(b + P ) = a · b + P , where ∗ is defined in the proof of Theorem 3.13.
Then, for all x ∈ P there are z ∈ a · b and y ∈ P such that x = z + y.
Thus, z = x− y ∈ P . Since P is a prime C-hyperideal, then a ∈ P or
b ∈ P . Thus, a + P = P or b + P = P . Therefore, by Theorem 3.13
R/P is a ∆- integral hyperdomain.

The proof of the converse is clear. □

Theorem 3.15. (Fundamental differential isomorphism theorem) Let
R and S be ∆1 and ∆2-hyperring, respectively. If f : R −→ S is a
differential epimorphism, then there exists a differential isomorphism
such that R/kerf ∼= S/ ⟨0⟩.

Proof. Suppose that f : R −→ S is a differential epimorphism. Denote
K = kerf and define φ : R/K −→ S/⟨0⟩ by φ(r + K) = f(r) + ⟨0⟩,
r ∈ R. It is easy to see that φ is a homomorphism. We show that φ is
differential. For allD1 ∈ ∆R/K andD2 ∈ ∆S/⟨0⟩, we haveD1φ(r+K) =
D1(f(r) + ⟨0⟩) = d1(f(r)) + ⟨0⟩ = f(d2(r)) + ⟨0⟩ = φ(d2(r) + ⟨0⟩) =
φD2(r + ⟨0⟩), where d1 ∈ ∆1 and d2 ∈ ∆2. □

The second and third isomorphism theorems are valid for ∆-hyperrings
and ∆-hyperideals.
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Let (R,+, ·) be a hyperring. Then, set Ω = ⟨∆⟩. Every element
ω of Ω is as ω = dn1

1 dn2
2 · · · dnm

m , n1, n2, · · ·nm ∈ N. The unit of Ω is
1 = d01d

0
2 · · · d0m. We think of ω as an operator. If a is an element of

a ∆-hyperring and ω = dn1
1 dn2

2 · · · dnm
m , then ω(a) = dn1

1 dn2
2 · · · dnm

m (a).
In this case, 1 is the identity operator, i.e., 1(a) = a. For every ω =
dn1
1 dn2

2 · · · dnm
m , we define ordω = n1 + n2 + · · ·+ nm.

Let S be a subset of R. Then, [S] denotes the smallest ∆-hyperideal
of R that contains S. Thus,

[S] = ({ωi(S) | ωi ∈ Ω}) + {
n∑

i=1

xi · ωi(si) +
m∑
j=1

ωj(tj) · yj

+
l∑

k=1

ak · ωk(rk) · bk |

xi, yj, ak, bk ∈ R; si, tj, rk ∈ S;n,m, l ∈ N;ωi, ωj, ωk ∈ Ω} ,

where ({ωi(S)|ωi ∈ Ω}) is the subgroup of the group (R,+), generated
by the set {ωi(S)|ωi ∈ Ω}.

Theorem 3.16. Let (R,+, ·) be a commutative strongly distributive ∆-
hyperring, a, b ∈ R and ω ∈ Ω = ⟨∆⟩. If ordω = n, then an+1 · ω(b) ⊆
[a · b].

Proof. We prove the statement by induction on n. If n = 0, then
ω = 1 and the result is obvious. Suppose that the statement is valid
for n = k (hypothesis of induction). Now, set n = k + 1. Then, there
is d ∈ ∆ such that ω = dδ, where δ ∈ Ω and ordδ = k. By hypothesis
of induction we have ak+1 · δ(b) ⊆ [a · b]. So, a · d(ak+1 · δ(b)) ⊆ [a · b].
Thus, by Lemma 2.8, (k+1)ak+1 ·d(a) ·δ(b)+ak+2 ·ω(b) ⊆ [a ·b]. Then,
by the hypothesis of induction (k + 1)ak+1 · d(a) · δ(b) ⊆ [a · b]. Hence,
ak+2 · ω(b) ⊆ [a · b], which completes the proof. □

Lemma 3.17. Let S and T be subsets of a ∆-hyperring (R,+, ·). Then,
√
[S] ·

√
[T ] ⊆

√
[S] ∩

√
[T ] =

√
[S · T ].

Proof. It is clear that
√
[S] ·

√
[T ] ⊆

√
[S],

√
[T ]. So,

√
[S] ·

√
[T ] ⊆√

[S] ∩
√
[T ]. Suppose that a ∈

√
[S] ∩

√
[T ]. Then, as ⊆ [S] and

at ⊆ [T ], for some s, t ∈ N. So, as+t ⊆ [S] · [T ] ⊆
√
[S · T ]. Therefore,

a ∈
√
[S · T ].

Now, suppose that a ∈
√
[S · T ]. Then, an ⊆ [S · T ] ⊆ [S] ∩ [T ], for

some n ∈ N. Hence, a ∈
√
[S] ∩

√
[T ]. □

Definition 3.18. [4] A nonempty subset S of a hyoerring (R,+, ·) is
said to be a multiplicative set if x, y ∈ S implies that x · y ∩ S ̸= ∅.
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Theorem 3.19. Let (R,+, ·) be a ∆-hyperring, Ω be a multiplicative
set and M be a ∆-hyperideal that is maximal with respect to avoiding
Ω. Then, M is prime.

Proof. At the first, we prove
√
M ∩ Ω = ∅. Suppose that there is

t ∈
√
M ∩ Ω. So, tn ⊆ M and tn ∩ Ω ̸= ∅, for some n ∈ N. Thus,

M ∩ Ω ̸= ∅, which is a contradiction. Then,
√
M ∩ Ω = ∅. So, by

hypothesis
√
M = M .

Now, suppose that a · b ⊆ M and a, b ̸∈ M . Then, M ⫋ [a,M ]
and [b,M ]. So, M ⫋

√
[a,M ] and

√
[b,M ]. Therefore, by hypothesis√

[a,M ]∩S ̸= ∅ and
√
[b,M ]∩S ̸= ∅. Thus, there are k ∈

√
[a,M ]∩S

and t ∈
√
[b,M ] ∩ S. By Lemma 3.17, k · t ⊆

√
[a,M ]

√
[b,M ] ⊆√

[a · b,M ] =
√
M = M . So, there is s ∈ k · t such that s ∈ M ∩ S,

which is a contradiction. Therefore, M is a prime. □

Corollary 3.20. Every maximal ∆-hyperideal is prime.

Proof. In Theorem 3.19, set Ω = 1. □
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