Journal of Algebraic Systems

Vol. 2, No. 1, (2014), pp 21-35

DIFFERENTIAL MULTIPLICATIVE HYPERRINGS

L. KAMALI ARDEKANI AND B. DAVVAZ*

Abstract

In a multiplicative hyperring, the multiplication is a hyperoperation, while the addition is a binary operation. In this paper, the notion of derivation on multiplicative hyperrings is introduced and some related properties are investigated.

1. Introduction

2. Derivation on multiplicative hyperrings

Let H be a non-empty set, $\mathcal{P}^{*}(H)$ be the set of all non-empty subsets of H. A hyperoperation on H is a map $\star: H \times H \longrightarrow \mathcal{P}^{*}(H)$ and the couple (H, \star) is called a hypergrupoid (or hyperstructure). If A and B are non-empty subsets of H, then we denote $A \star B=\bigcup_{a \in A, b \in B} a \star b$, and if $x \in H$, then we denote $A \star x=A \star\{x\}$ and $x \star B=\{x\} \star B$. A hypergrupoid (H, \star) is called a semihypergroup if for all x, y, z of H we have $(x \star y) \star z=x \star(y \star z)$. That is, $\bigcup_{u \in x \star y} u \star z=\bigcup_{v \in y \star z} x \star v$. A hypergrupoid (H, \star) is called a quasihypergroup if for all $x \in H$, we have $x \star H=H \star x=H$. A hypergrupoid is called a hypergroup if it is both a semihypergroup and a quasihypergroup. A polygroup is a system $\left(P, \cdot, e,^{-1}\right)$, where $e \in P, "-1 "$ is a unitary operation on P, "." maps $P \times P$ in to the nonempty subsets of P, and the following axioms hold for all $x, y, z \in P$: (1) $(x \cdot y) \cdot z=x \cdot(y \cdot z) ;(2) e \cdot x=$ $x \cdot e=x$; (3) $x \in y \cdot z$ implies $y \in x \cdot z^{-1}$ and $z \in y^{-1} \cdot x$. In every polygroup, we have $e \in x \cdot x^{-1} \cap x^{-1} \cap x, e^{-1}=e,\left(x^{-1}\right)^{-1}=x$ and $(x \cdot y)^{-1}=y^{-1} \cdot x^{-1}$, where $A^{-1}=\left\{a^{-1} \mid a \in A\right\}$. We can consider

MSC(2010): Primary: 16Y99; Secondary: 20N20
Keywords: Multiplicative hyperring, Derivation, Differential hyperring. Received: 21 June 2013, Revised: 31 March 2014.
*Corresponding author .
several definitions for a hyperring, by replacing at least one of the two operations by hyperoperations, for example see $[2,6,8,9,12,13]$. The notion of multiplicative hyperring was introduced by R. Rota [19] in 1982. The multiplication is a hyperoperation, while the addition is a binary operation, that is why she called it a multiplicative hyperring. At the first, we recall the definition of a multiplicative hyperring. For more details and properties, we refer the readers to $[5,7,11,16,17,18]$. A triple $(R,+, \cdot)$ is called a multiplicative hyperring if $(1)(R,+)$ is an abelian group; (2) (R, \cdot) is a semihypergroup; (3) $x \cdot(y+z) \subseteq x \cdot y+x \cdot z$ and $(y+z) \cdot x \subseteq y \cdot x+z \cdot x$, for all $x, y, z \in R$; (4) $x \cdot(-y)=(-x) \cdot y=$ $-(x \cdot y)$, for all $x, y, z \in R$. If in (3) we have equalities instead of inclusions, then we say that the multiplicative hyperring is strongly distributive. An element $e \in R$ is called a weak identity (identity, respectively) if $x \in e \cdot x \cap x \cdot e(e \cdot x=x \cdot e=x$, respectively), for all $x \in R$. Throughout this paper, by a hyperring we mean a multiplicative hyperring. A nonempty subset H of a hyperring $(R,+, \cdot)$ is called subhyperring of R, if $(H,+, \cdot)$ is itself a hyperring. In other words, H is a subhyperring of $(R,+, \cdot)$ if $H-H \subseteq H$ and $x . y \subseteq H$, for all $x, y \in H$. A hyperring R is called an integral hyperdomain, if for all $x, y \in R$, $0 \in x \cdot y$ implies that $x=0$ or $y=0$. In this paper, the meaning of a hyperfield is a hyperring $(F,+, \cdot)$ such that $(F-\{0\}, \cdot)$ is a polygroup and "." is strongly distributive with respect to " + ". Hyperring $(R,+, \cdot)$ is called commutative (weak commutative, respectively), when $x \cdot y=y \cdot x(x \cdot y \cap y \cdot x \neq \emptyset$, respectively), for all $x, y \in R$. The meaning of center of R is $Z(R)=\{x \in R \mid x \cdot y=y \cdot x$, for all $y \in R\}$. A nonempty subset I of a hyperring R is a hyperideal if $I-I \subseteq I$ and $x \cdot r \cup r \cdot x \subseteq I$, for all $x \in I$ and $r \in R$.

Example 2.1. Let $(R,+, \cdot)$ be a ring, I be an ideal of R and \circ be the hyperoperation defined on R by $x \circ y=x \cdot y+I$, for all $x, y \in R$. Then, $(R,+, \circ)$ is a strongly distributive hyperring. For convenience, the multiplicative hyperring $(R,+, \circ)$ will be denoted by $(R,+, I)$. The ideal I is a hyperideal of hyperring $(R,+, I)$, since I is an additive subgroup of $(R,+)$ and for all $x \in I$ and $r \in R, x \circ r \cup r \circ x=$ $(x \cdot r+I) \cup(r \cdot x+I) \subseteq I$.

A homomorphism (good homomorphism, respectively) between two hyperrings
$\left(R_{1},+_{1}, \circ_{1}\right)$ and $\left(R_{2},{ }_{2}, \circ_{2}\right)$ is a map $f: R_{1} \longrightarrow R_{2}$ such that for all $x, y \in R_{1}$, we have $f\left(x+{ }_{1} y\right)=f(x)+_{2} f(y)$ and $f\left(x \circ_{1} y\right) \subseteq f(x) \circ_{2} f(y)$ $\left(f\left(x \circ_{1} y\right)=f(x) \circ_{2} f(y)\right.$, respectively). Let $f: R_{1} \longrightarrow R_{2}$ be a good homomorphism. The kernel of f is the inverse image of $<0>$ (the hyperideal generated by the zero in R_{2}). It is denoted by $\operatorname{ker} f$.

The concept of derivation on rings has been introduced by Posner [15], also see [3, 20]. In [1], Asokkumar introduced the notion of derivation on Krasner hyperrings. Now, we define the notion of derivation on multiplicative hyperrings.
Definition 2.2. Let $(R,+, \cdot)$ be a hyperring. The function $d: R \longrightarrow R$ is called derivation if for all $x, y \in R$,
(1) $d(x+y)=d(x)+d(y)$;
(2) $d(x \cdot y)=d(x) \cdot y+x \cdot d(y)$.

The function $d: R \longrightarrow R$ is called weak derivation if for all $x, y \in R$, it satisfies (1) and
(3) $d(x \cdot y) \subseteq d(x) \cdot y+x \cdot d(y)$.

It is clear that every derivation is a weak derivation. By the first condition of above definition for every (weak) derivation d of hyperring R, we have $d(0)=0$ and $d(-x)=-d(x)$, for all $x \in R$.

We consider some examples.
Example 2.3. Let $(R,+, \cdot)$ be a hyperring and $0 \in r .0 \cap 0 . r$, for all $r \in R$. Then, the function $d(x)=0$, for all $x \in R$, is a weak derivation. It is called trivial weak derivation.
Example 2.4. Consider the ring $\left(\mathbb{Z}_{m},+, \cdot\right)$. Let $p \in \mathbb{Z}_{m}$ and $p \neq 1$. We define hyperoperation \circ on R by $x \circ y=\{x \cdot y, p \cdot x \cdot y\}$, for all $x, y \in \mathbb{Z}_{m}$. Then, $\left(\mathbb{Z}_{m},+, \circ\right)$ is a hyperring. The function $d: \mathbb{Z}_{m} \longrightarrow Z_{m}$ defined by $d(x)=0$, for all $x \in \mathbb{Z}_{m}$ is derivation, since $d(x) \circ y+x \circ d(y)=$ $0 \circ y+x \circ 0=\{0\}=d(x \circ y)$, for all $x, y \in \mathbb{Z}_{m}$.
Example 2.5. Let $(R,+)$ be an abelian group and o be the hyperoperation on R defined by $x \circ y=\langle x, y\rangle=\mathbb{Z} x+\mathbb{Z} y$, (the subgroup of $(R,+)$ generated by x and $y)$, for all $x, y \in R$. Then, $(R,+, \circ)$ is a hyperring which is not generally strongly distributive. The functions $d_{1}, d_{2}: R \longrightarrow R$ defined by $d_{1}(x)=x$ and $d_{2}(x)=-x$, for all $x \in R$, are derivations.
Example 2.6. Let R be an abelian group and S be a subgroup of R. For all $x, y \in R$, we define $x \circ y=S$. Then, $(R,+, \circ)$ is a hyperring. The functions $d_{1}, d_{2}: R \longrightarrow R$ defined by $d_{1}(x)=x$ and $d_{2}(x)=-x$, for all $x \in R$, are derivations.
Example 2.7. Let $(R,+, \cdot)$ be a ring, P be a nonempty subset of R and ० be the hyperoperation defined on R by $x \circ y=x . P . y$, for all $x, y \in R$. Then, $(R,+, \circ)$ is a hyperring. For convenience, the hyperring $(R,+, \circ)$ will be denoted by $[R,+, P]$. Set $M=\left\{\left.\left(\begin{array}{cc}x & y \\ 0 & 0\end{array}\right) \right\rvert\, x, y \in[R,+, P]\right\}$ and define the hyperoperation $*$ on M as

$$
\left(\begin{array}{cc}
x_{1} & y_{1} \\
0 & 0
\end{array}\right) *\left(\begin{array}{cc}
x_{2} & y_{2} \\
0 & 0
\end{array}\right)=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & 0
\end{array}\right) \right\rvert\, a \in x_{1} \circ x_{2}, b \in x_{1} \circ y_{2}\right\}
$$

where $x_{1}, x_{2}, y_{1}, y_{2} \in[R,+, P]$. Then, M with the usual addition of matrices and the hyperoperation $*$ is a hyperring. M may not be strongly distributive because $[R,+, P]$ may not be strongly distributive. It is easily to check that the function $d: M \longrightarrow M$ defined by $d\left(\left(\begin{array}{ll}x & y \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{ll}0 & y \\ 0 & 0\end{array}\right)$ is a derivation.

A hyperring R is said to be of characteristic n, if n is the smallest positive integer such that $n x=0$, for all $x \in R$. If no such of n exists, R is said to be of characteristic 0 .

Lemma 2.8. Let $(R,+, \cdot)$ be a hyperring and d be a weak derivation. Then, for all $n \in \mathbb{N}$ and $x, y \in R$,
(1) If R is commutative, then $d\left(x^{n}\right) \subseteq n x^{n-1} . d(x)$. The equality holds when R is strongly distributive and d is a derivation.
(2) $d^{(n)}(x . y) \subseteq \sum_{i=0}^{n}\binom{n}{i} d^{(n-i)}(x) \cdot d^{(i)}(y)$, where $d^{(n)}$ shows derivation of order n. The equality holds when d is a derivation.

Proof. The proof follows easily by induction.
Let a commutative hyperring R be strongly distributive and d be a derivation of R. If R is of characteristic n, then by the above Lemma, $0 \in d\left(x^{n}\right)$, for all $x \in R$.

Theorem 2.9. Let $(R,+, \cdot)$ be a hyperring and the notation $[x, y]$ denotes the set $x \cdot y-y \cdot x$, for all $x, y \in R$. Then, for all $x, y, z \in R$,
(1) $[x+y, z] \subseteq[x, z]+[y, z]$, the equality holds when R is strongly distributive;
(2) If R is a strongly distributive, we have $[x \cdot y, z] \subseteq x \cdot[y, z]+$ $[x, z] \cdot y$
(3) If d is a weak derivation of R, then $d[x, y] \subseteq[d(x), y]+[x, d(y)]$; we have equality when d is a derivation.

Proof. The proof is obvious.
Definition 2.10. A hyperring R is called prime if $0 \in x \cdot r \cdot y$, for all $r \in R$, implies that either $x=0$ or $y=0 . R$ is called semiprime if $0 \in x \cdot r \cdot x$, for all $r \in R$, implies that $x=0$. Obviously, every prime hyperring is a semiprime hyperring but the converse is not always true.

Example 2.11. Let $R=\{e, a, b\}$. Consider the following tables:

$+$	e	a	b		.	e	a	b
e	e	a	b		e	e	e	e
a	a	b	e		a	e	$\{a, b\}$	$\{a, b\}$
b	b	e	a		b	e	$\{a, b\}$	$\{a, b\}$

It is easily to check $(R,+, \cdot)$ is prime.
Lemma 2.12. Let I be a nonzero hyperideal on a prime hyperring R and $x, y \in R$, then
(1) If $I \cdot x=0$ or $x . I=0$, then $x=0$;
(2) If $0=x \cdot I \cdot y$, then $x=0$ or $y=0$;
(3) If $0 \in r \cdot 0 \cap 0 \cdot r$, for all $r \in R, x \in Z$ and $0 \in x \cdot y$, then $x=0$ or $y=0$;
(4) If R is strongly distributive, $x \in Z(R)$ and $x \cdot y \subseteq Z$, for all $y \in Z$, then $x=0$ or R is weak commutative.
Proof. (1) Suppose that $I \cdot x=0$. Then, $u \cdot r \cdot x \subseteq I \cdot x=\{0\}$, for all $r \in R$ and $u \in I$. So, $x=0$, since R is prime and $I \neq 0$. In the case $x \cdot I=0$, the proof is similar.
(2) Suppose that $x \cdot I \cdot y=0$. Then, $x \cdot I \cdot r \cdot y \subseteq x \cdot I \cdot y=\{0\}$, for all $r \in R$. Therefore, $x \cdot I \cdot r \cdot y=0$, for all $r \in R$. Hence, $x \cdot I=0$ or $y=0$, since R is prime. So, by (1), $x=0$ or $y=0$.
(3) Suppose that $x \in Z$ and $0 \in x \cdot y$. Then, for all $r \in R, 0 \in r \cdot 0=$ $r \cdot x \cdot y=x \cdot r \cdot y$. Therefore, $x=0$ or $y=0$, since R is prime.
(4) Suppose that $x \cdot y \subseteq Z$, for all $y \in R$. Then, $0 \in x \cdot y \cdot r-x \cdot y \cdot r=$ $x \cdot y \cdot r-r \cdot x \cdot y=x \cdot y \cdot r-x \cdot r \cdot y=x \cdot(y \cdot r-r \cdot y)=x \cdot[y, r]$, for all $r \in R$. So, $0 \in t \cdot 0 \in t \cdot x \cdot[y, r]=x \cdot t \cdot[y, r]$, for all $t \in R$. Hence, $x=0$ or $0 \in[y, r]$, since R is prime. This means that $x=0$ or $y \cdot r \cap r \cdot y \neq \emptyset$, for all $r \in R$.
Lemma 2.13. Let d be a derivation on a prime hyperring $(R,+, \cdot)$ and I be a nonzero hyperideal of R. Also, let $0 \in 0 \cdot r \cap r \cdot 0$, for all $r \in R$, then for all $x \in R$,
(1) If $d(I)=0$, then $d=0$;
(2) If $d(I) \cdot x=0$ or $x \cdot d(I)=0$, then $x=0$ or $d=0$;
(3) If $d(R) \cdot x=0$ or $x \cdot d(R)=0$, then $x=0$ or $d=0$.

Proof. (1) For all $u \in I$ and $x \in R$, we have $0=d(u \cdot x)=d(u) \cdot x+$ $u \cdot d(x) \supseteq 0+u \cdot d(x)=u \cdot d(x)$. Therefore, $u \cdot d(x)=0$, for all $u \in I$. So, $I \cdot d(x)=0$, which implies that $d=0$, by Lemma 2.12 (1).
(2) Suppose that $d(I) \cdot x=0$. Then, $0=d(y \cdot u) \cdot x=d(y) \cdot u \cdot x+$ $y \cdot d(u) \cdot x \supseteq d(y) \cdot u \cdot x$, for all $u \in I$ and $y \in R$. So, $d(y) \cdot u \cdot x=0$, for all $u \in I$. Therefore, $d(y) \cdot I \cdot x=0$, which implies that $d=0$ or $x=0$, by Lemma $2.12(2)$. In the case $x \cdot d(I)=0$, the proof is similar.
(3) In (2), put R instead of I.

Definition 2.14. Let R be a hyperring and d be a derivation on R. Then, $x \in R$ is called a constant element if $d(x)=0$. We denote by $C_{d}(R)$, the set of all of constant elements of R associated to derivation d.

Theorem 2.15. Let d be a derivation on a prime strongly distributive hyperring R such that $d(R) \subseteq Z$. Also, let there is $c \in C_{d}(R)$ such that $0 \notin\left[c, x_{0}\right]$, for some $x_{0} \in R$. Then, $d=0$.

Proof. We have $d(x \cdot c)=d(x) \cdot c+x \cdot d(c) \supseteq d(x) \cdot c$, for all $x \in R$. So, $d(x) \cdot c \subseteq d(x \cdot c) \subseteq Z$. Therefore, $d(x) \cdot c \cdot x_{0}=x_{0} \cdot d(x) \cdot c=d(x) \cdot x_{0} \cdot c$. This means that $0 \in d(x) \cdot\left[c, x_{0}\right]$, since R is strongly distributive. Then, there is $t \in\left[c, x_{0}\right]$ such that $0 \in d(x) \cdot t$. So, $d(x)=0$ or $t=0$, by Lemma 2.12 (3). If $t=0$, then $0 \in\left[c, x_{0}\right]$, this is a contradiction. Therefore, $d(x)=0$, for all $x \in R$.
Definition 2.16. A hyperring R is called n-torsion free if $n x=0$, $x \in R$, implies that $x=0$, where n is an integer number.
Theorem 2.17. Let I be a nonzero hyperideal of a 2-torsion free prime hyperring $(R,+, \cdot)$ and $0 \in r \cdot 0 \cap 0 \cdot r$, for all $r \in R$.
(1) If d is a derivation of R such that $d^{(2)}(I)=0$, then $d=0$;
(2) If d_{1} and d_{2} are derivations of R such that $d_{1} d_{2}(I)=0$, then $d_{1}=0$ or $d_{2}=0$.
Proof. (1) By Lemma 2.8, we have for all $u, v \in I$,

$$
0=d^{(2)}(u \cdot v)=d^{(2)}(u) \cdot v+2 d(u) \cdot d(v)+u \cdot d^{(2)}(v) \supseteq 2 d(u) \cdot d(v)
$$

So, $d(u) \cdot d(v)=0$, since R is a $2-$ torsion free hyperring. Therefore, $d=0$, by Lemma 2.13 (1) and (2).
(2) We have for all $u, v \in I$,

$$
\begin{aligned}
0=d_{1} d_{2}(u \cdot v) & =d_{1}\left(d_{2}(u) \cdot v+u \cdot d_{2}(v)\right) \\
& =d_{1} d_{2}(u) \cdot v+d_{2}(u) \cdot d_{1}(v)+d_{1}(u) \cdot d_{2}(v)+u \cdot d_{1} d_{2}(v) \\
& \supseteq d_{2}(u) \cdot d_{1}(v)+d_{1}(u) \cdot d_{2}(v) .
\end{aligned}
$$

So, $d_{2}(u) \cdot d_{1}(v)+d_{1}(u) \cdot d_{2}(v)=0$. By replaceing u by $d_{2}(u)$ in the above equation, we get $d_{2}^{(2)}(u) \cdot d_{1}(v) \subseteq d_{2}^{(2)}(u) \cdot d_{1}(v)+d_{1} d_{2}(u) \cdot d_{2}(v)=0$, that is $d_{2}^{(2)}(u) \cdot d_{1}(v)=0$. Thus, $d_{1}=0$ or $d_{2}^{(2)}(I)=0$, by Lemma 2.13 (1) and (2). Therefore, $d_{1}=0$ or $d_{2}=0$, by (1).

3. Differential multiplicative hyperring

We denote by $\Delta(R,+, \cdot)(D(R,+, \cdot)$, respectively), the set of all derivations (weak derivations, respectively) of hyperring $(R,+, \cdot)$. Note that

$$
\Delta(R,+, \cdot) \subseteq D(R,+, \cdot) \subseteq \operatorname{Hom}(R,+)
$$

A hyperring with Δ (D, respectively) is called the differential hyperring (weak differential hyperring, respectively).

A hyperfield R is called (weak) differential hyperfield if R is (weak) differential hyperring. An integral hyperdomain R is called (weak) differential integral hyperdomain if R is (weak) differential hyperring. A subhyperring H of (weak) differential hyperring R is said (weak) differential subhyperring if for all (weak) derivation d of R, we have $d(h) \in H$, for all $h \in H$. A hyperideal I of (weak) differential hyperring R is called (weak) differential hyperideal if for all (weak) derivation d of R, we have $d(u) \in I$, for all $u \in I$.

Example 3.1. For every (weak) differential hyperring $R,\langle 0\rangle_{R}$ is a (weak) differential hyperideal.

We usually use the perfix Δ (D, respectively) instead of we say that R is differential (weak differential, respectively) and Δ (D, respectively) is the set of all derivations (weak derivations, respectively) on R. Also, If R is a differential hyperring (weak differential hyperring, respectively) i.e. R is a Δ-hyperring (D-hyperring, respectively), then we usually use the notion Δ-hyperideal (D-hyperideal, respectively) instead of we say that I is a differential hyperideal (weak differential hyperideal, respectively) of R.
Example 3.2. Let $(R,+, \cdot)$ be a hyperring and $0 \in r .0 \cap 0 . r$, for all $r \in R$. Then, by Example 2.3, the function $d: R \longrightarrow R$ defined as $d=0$ is a weak derivation. So, $d \in D(R,+, \cdot)$ and this means that $D(R,+, \cdot) \neq \emptyset$.
Example 3.3. Let $(R,+, \circ)$ be the hyperring defined in Example 2.5. For all $f \in \operatorname{Hom}(R,+)$, we have $f(x \circ y)=\mathbb{Z} f(x)+\mathbb{Z} f(y) \subseteq \mathbb{Z} f(x)+$ $\mathbb{Z} y+\mathbb{Z} x+\mathbb{Z} f(y)=f(x) \circ y+x \circ f(y)$, for all $x, y \in R$. This implies that $f \in D(R,+, \circ)$ and so $\operatorname{Hom}(R,+) \subseteq D(R,+, \circ)$. Also, we know that $D(R,+, \circ) \subseteq \operatorname{Hom}(R,+)$. Therefore, $D(R,+, \circ)=\operatorname{Hom}(R,+)$.

Example 3.4. In Example 2.1, if $I=R$, then every additive function $f: R \longrightarrow R$ is a weak derivation. For all $x, y \in R$, we have $d(x \circ y)=$ $d(x \cdot y+R)=d(R) \subseteq R=d(x) \cdot y+R+x \cdot d(y)+R=d(x) \circ y+x \circ d(y)$. So, $D(R,+, R)=\operatorname{Hom}(R,+)$. Also, in Example 2.1, if $(R,+, \cdot)$ and I are Δ-hyperring and Δ-hyperideal, then we have $\Delta(R,+, \cdot) \subseteq D(R,+, I)$. Because, for all $d \in \Delta(R,+, \cdot)$ and $x, y \in R$, we have $d(x \circ y)=$ $d(x \cdot y+I) \subseteq d(x \cdot y)+I=d(x) \cdot y+x \cdot d(y)+I=d(x) \circ y+x \circ d(y)$.

Now, we analyze hyperring $(\mathbb{Z},+, m \mathbb{Z})$, where m is a positive integer. We have $D(\mathbb{Z},+, m \mathbb{Z}) \subseteq \operatorname{Hom}(\mathbb{Z},+)=\left\{g_{a} \mid a \in \mathbb{Z}\right\}$, where $g_{a}(x)=a x$, for all $x \in \mathbb{Z}$.

Theorem 3.5. The following statements are valid:
(1) For all $a \in \mathbb{Z}, g_{a} \in D(\mathbb{Z},+, m \mathbb{Z})$ if and only if $m \mid a$.
(2) $\left\{g_{a} \mid a \in m \mathbb{Z}\right\}=D(\mathbb{Z},+, m \mathbb{Z})$, so $D(\mathbb{Z},+, m \mathbb{Z})$ is infinite and only in the case $m=1$, we have
$D(\mathbb{Z},+, m \mathbb{Z})=\operatorname{Hom}(\mathbb{Z},+)$.
(3) If $m>1$, then $\left\{g_{a} \mid a \in m \mathbb{Z}+1\right\} \subseteq \operatorname{Hom}(\mathbb{Z},+) \backslash D(\mathbb{Z},+, m \mathbb{Z})$ and so $\operatorname{Hom}(\mathbb{Z},+) \backslash D(\mathbb{Z},+, m \mathbb{Z})$ is infinite.
(4) $m \mathbb{Z}$ is a D-hyperideal of $(\mathbb{Z},+, m \mathbb{Z})$.

Proof. (1) Suppose that $g_{a} \in D(\mathbb{Z},+, m \mathbb{Z})$. Then, $a+a m \mathbb{Z}=g_{a}(1 \circ 1) \subseteq$ $g_{a}(1) \circ 1+1 \circ g_{a}(1)=a \circ 1+1 \circ a=2 a+m \mathbb{Z}$. So, $a \in m \mathbb{Z}$.

Conversely, suppose that $m \mid a$. Then, for all $x, y \in \mathbb{Z}$, we have $-a x y \in m \mathbb{Z}$. Thus, $-a x y+a m \mathbb{Z} \subseteq a m \mathbb{Z}+m \mathbb{Z}=m \mathbb{Z}$. Therefore, $g_{a}(x \circ y)=a x y+a m \mathbb{Z} \subseteq 2 a x y+m \mathbb{Z}=g_{a}(x) \circ y+x \circ g_{a}(y)$. Hence, $g_{a} \in D(\mathbb{Z},+, m \mathbb{Z})$.

The rest parts follow by part (1).
Consider the hyperring $\left(\mathbb{Z}_{n},+, m \mathbb{Z}_{n}\right)$, where m and n are positive integers. We have $D\left(\mathbb{Z}_{n},+, m \mathbb{Z}_{n}\right) \subseteq \operatorname{Hom}\left(\mathbb{Z}_{n},+\right)=\left\{h_{\bar{a}} \mid a \in \mathbb{Z}\right\}$, where $h_{\bar{a}}(\bar{x})=\overline{a x}$, for all $\bar{x} \in \mathbb{Z}_{n}$.
Theorem 3.6. The following statements are valid:
(1) For all $a \in \mathbb{Z}, h_{\bar{a}} \in D\left(\mathbb{Z}_{n},+, m \mathbb{Z}_{n}\right)$ if and only if $(m, n) \mid a$.
(2) $\left\{h_{\bar{a}} \mid a \in(m, n) \mathbb{Z}\right\}=D\left(\mathbb{Z}_{n},+, m \mathbb{Z}_{n}\right)$ and thus $\left|D\left(\mathbb{Z}_{n},+, m \mathbb{Z}_{n}\right)\right|=$ $\frac{n}{(m, n)}$. Also, only for $m=1$, we have $D\left(\mathbb{Z}_{n},+, m \mathbb{Z}_{n}\right)=\operatorname{Hom}\left(\mathbb{Z}_{n},+\right)$.
(3) If $(m, n)>1$, then $\left\{h_{\bar{a}} \mid a \in(m, n) \mathbb{Z}+1\right\} \subseteq \operatorname{Hom}\left(\mathbb{Z}_{n},+\right) \backslash D\left(\mathbb{Z}_{n},+, m \mathbb{Z}_{n}\right)$ and so $\left|\operatorname{Hom}\left(\mathbb{Z}_{n},+\right) \backslash D\left(\mathbb{Z}_{n},+, m \mathbb{Z}_{n}\right)\right| \geq \frac{n}{(m, n)}$.
(4) $m \mathbb{Z}_{n}$ is a D-hyperideal of $\left(\mathbb{Z}_{n},+, m \mathbb{Z}_{n}\right)$.

Proof. (1) Suppose that $h_{\bar{a}} \in D\left(\mathbb{Z}_{n},+, m \mathbb{Z}_{n}\right)$, then $\bar{a}+\bar{a} m \mathbb{Z}_{n}=h_{\bar{a}}(\overline{1} \circ$ $\overline{1}) \subseteq h_{\bar{a}}(\overline{1}) \circ \overline{1}+\overline{1} \circ h_{\bar{a}}(\overline{1})=\bar{a} \circ \overline{1}+\overline{1} \circ \bar{a}=2 \bar{a}+m \mathbb{Z}_{n}$. Thus, $\bar{a} \in$ $m \mathbb{Z}_{n}=(m, n) \mathbb{Z}_{n}$. Thus, $a=(m, n) s+n t$, for some $s, t \in \mathbb{Z}$. Since $(m, n) \mid(m, n) s+n t$, then $(m, n) \mid a$.

Conversely, suppose that $(m, n) \mid a$. Then, $a=(m, n) s$, for some $s \in \mathbb{Z}$. So, for all $x, y \in \mathbb{Z}$, we have $-\overline{a x y}=-\overline{(m, n) s x y} \subseteq(m, n) \mathbb{Z}_{n}=$ $m \mathbb{Z}_{n}$. Thus, $-\overline{a x y}+a m \mathbb{Z}_{n} \subseteq a m \mathbb{Z}_{n}+m \mathbb{Z}_{n}=m \mathbb{Z}_{n}$. Therefore, $h_{\bar{a}}(\bar{x} \circ$ $\bar{y})=\bar{a} \bar{x} \bar{y}+\bar{a} m \mathbb{Z}_{n}=\overline{a x y}+a m \mathbb{Z}_{n} \subseteq 2 \overline{a x y}+m \mathbb{Z}_{n}=2 \bar{a} \bar{x} \bar{y}+m \mathbb{Z}_{n}=$ $h_{\bar{a}}(\bar{x}) \circ \bar{y}+\bar{x} \circ h_{\bar{a}}(\bar{y})$. Hence, $h_{\bar{a}} \in D\left(\mathbb{Z}_{n},+, m \mathbb{Z}_{n}\right)$.

The rest parts follow by part (1).
For example, by the above theorems, we have
$D(\mathbb{Z},+, 4 \mathbb{Z})=\left\{g_{a} \mid a \in 4 \mathbb{Z}\right\}$ and $D\left(\mathbb{Z}_{20},+, 4 \mathbb{Z}_{20}\right)=\left\{h_{\overline{0}}, h_{\overline{4}}, h_{\overline{8}}, h_{\overline{12}}, h_{1_{6}}\right\}$.

Now, consider the hyperring $[R,+, P]$ defined in Example 2.7. If we set $P=R$, then every additive function $f: R \longrightarrow R$ is a weak derivation. So, $D[R,+, R]=\operatorname{Hom}(R,+)$.
Theorem 3.7. (1) For all $a \in \mathbb{Z}$ and $\emptyset \neq P \subseteq \mathbb{Z}$, we have $g_{a} \in$ $D[\mathbb{Z},+, P]$ if and only if $a \cdot P \subseteq 2 a \cdot P$.
(2) For all $a \in \mathbb{Z}$ and $\emptyset \neq P \subseteq \mathbb{Z}_{n}$, we have $h_{\bar{a}} \in D[\mathbb{Z},+, P]$ if and only if $a \cdot P \subseteq 2 a \cdot P$.
Proof. (1) Suppose that $g_{a} \in D[\mathbb{Z},+, P] \subseteq \operatorname{Hom}(\mathbb{Z},+)$. Then, $a \cdot P=$ $g_{a}(P)=g_{a}(1 \cdot P \cdot 1)=g_{a}(1 \circ 1) \subseteq g_{a}(1) \circ 1+1 \circ g_{a}(1)=a \circ 1+1 \circ a=2 a \cdot p$.

Conversely, suppose that $a \cdot P \subseteq 2 a \cdot P$. Then, for all $x, y \in \mathbb{Z}$, we have $g_{a}(x \circ y)=g_{a}(x \cdot P \cdot y)=a \cdot x \cdot P \cdot y \subseteq 2 a \cdot x \cdot P \cdot y=$ $a \cdot x \cdot P \cdot y+x \cdot P \cdot a \cdot y=(a \cdot x) \circ y+x \circ(a \cdot y)=g_{a}(x) \circ y+x \circ g_{a}(y)$. Therefore, $g_{a} \in D[\mathbb{Z},+, P]$.
(2) The proof is similar to (1).

Corollary 3.8. If $0 \in P$, then

$$
D[\mathbb{Z},+, P]=\operatorname{Hom}(\mathbb{Z},+) \text { and } D\left[\mathbb{Z}_{n},+, P\right]=\operatorname{Hom}\left(\mathbb{Z}_{n},+\right) .
$$

Proof. By Theorem 3.7, the proof is obvious.
Therefore, we have $D[\mathbb{Z},+, m \mathbb{Z}]=\Delta[\mathbb{Z},+, m \mathbb{Z}]=\operatorname{Hom}(\mathbb{Z},+)$ and $D\left[\mathbb{Z}_{n},+, m \mathbb{Z}_{n}\right]=\Delta\left[\mathbb{Z}_{n},+, m \mathbb{Z}_{n}\right]=\operatorname{Hom}\left(\mathbb{Z}_{n},+\right)$.

Consider the hyperring $[\mathbb{Q},+, m \mathbb{Z}]$. Notice that $d(x)=x d(1)$, for all $x \in \mathbb{Q}$ and for all (weak) derivation d on $[\mathbb{Q},+, m \mathbb{Z}]$. Similar to Corollary 3.8, we have $D[\mathbb{Q},+, m \mathbb{Z}]=\Delta[\mathbb{Q},+, m \mathbb{Z}]=\operatorname{Hom}(\mathbb{Q},+)=$ $\left\{q_{a} \mid a \in \mathbb{Q}\right\}$, where $q_{a}(x)=a x$, for all $x \in \mathbb{Q}$.
Definition 3.9. Let R and S be Δ_{1} and Δ_{2}-hyperrings, respectively. By a differential (good) homomorphism of R into S, we mean a (good) homomorphism φ such that $d_{2} \varphi(x)=\varphi d_{1}(x)$, for all $x \in R, d_{1} \in \Delta_{1}$ and $d_{2} \in \Delta_{2}$.

In the hyperrings
$(\mathbb{Z},+, m \mathbb{Z})$ and $[\mathbb{Z},+, m \mathbb{Z}]\left(\left(\mathbb{Z}_{n},+, m \mathbb{Z}_{n}\right)\right.$ and $\left[\mathbb{Z}_{n},+, m \mathbb{Z}_{n}\right]$, respectively $)$
we have $g_{a} g_{b}=g_{b} g_{a}\left(h_{\bar{a}} h_{\bar{b}}=h_{\bar{b}} h_{\bar{a}}\right.$, respectively), for all $a, b \in Z$. So, every homomorphism on them is a differential homomorphism. Therefore, all the results about homomorphisms on these hyperrings are valid about differential homomorphisms on them. For more details, refer to [10] and [14].

Let $(R,+, \circ)$ be Δ-hyperring. A Δ-hyperideal $I(\neq R)$ of a Δ hyperring R is called prime of R, if for all $a, b \in R, a \circ b \subseteq I$ implies that $a \in I$ or $b \in I$. The intersection of all Δ-prime hyperideals of R
that contain Δ-hyperideal I is called radical I and denote by $\operatorname{Rad}(I)$ or $\sqrt{ } I$. If the Δ-hyperring R does not have any prime Δ-hyperideal containing I, we define $\sqrt{ } I=R$. Δ-hyperideal I is called differential radical hyperideal if $\sqrt{ } I=I$. Let \mathcal{C} be the class of all finite products of elements of R i.e. $\mathcal{C}=\left\{r_{1} \circ r_{2} \circ \cdots \circ r_{n} \mid r_{i} \in R, n \in \mathbb{N}\right\} \subseteq P^{*}(R)$. A Δ-hyperideal I of R is called Δ - \mathcal{C}-ideal of R, if for all $A \in \mathcal{C}, A \cap I \neq \emptyset$ implies that $A \subseteq I$. By a maximal Δ-hyperideal of R, we mean a Δ-hyperideal of R that is maximal among the proper Δ-hyperideals of R. Note that a maximal Δ-hyperideal need not to be a maximal hyperideal.

Theorem 3.10. Let I be a Δ-hyperideal of a commutative Δ-hyperring R. Then, $N(I) \subseteq \sqrt{ } I$, where $N(I)=\left\{r \in R \mid r^{n} \subseteq I, n \in \mathbb{N}\right\}$. The equality holds when I is a Δ-C-ideal of R.
Proof. The proof is similar to the proof of Proposition 3.2 of [4].
Theorem 3.11. Let R and S be Δ_{1} and Δ_{2}-hyperrings, respectively. Also, let $\varphi: R \longrightarrow S$ be a differential good homomorphism. Then,
(1) $\operatorname{ker} \varphi$ is a Δ_{1}-hyperideal;
(2) If I is a Δ_{2}-hyperideal of S, then $\varphi^{-1}(I)$ is a Δ_{1}-hyperideal of R.

Proof. According to [5] (p. 145), the inverse images of hyperideals are hyperideals. So, $\operatorname{ker} \varphi$ is a hyperideal. For all $d_{1} \in \Delta_{1}, d_{2} \in \Delta_{2}$ and $x \in \operatorname{ker} \varphi$, we have $\varphi d_{1}(x)=d_{2} \varphi(x)=d_{2}(0)=0$. So, $d_{1}(x) \in \operatorname{ker} \varphi$.

The proof of the part (2) is similar.
Theorem 3.12. Let $(R,+, \cdot)$ be a Δ-hyperring.
(1) If I and J are Δ-hyperideals of R, then $I \cdot J$ is also $a \Delta$ hyperideal of R;
(2) If R is a Δ-hyperfield and I is a Δ-C-hyperideal of R, then $\sqrt{ } I$ is also a Δ-hyperideal;
(3) If R is a commutative strongly distributive Δ-hyperring and I is a Δ-hyperideal such that for all $\emptyset \neq A \subseteq R, n A \subseteq I$ implies $A \subseteq I$, where $n \in N$, then $\sqrt{ } I$ is also a Δ-hyperideal;
(4) If R is commutative and I is a Δ-radical hyperideal, then (I : $r)=\{x \in R \mid x \cdot r \subseteq I\}$, for all $r \in R$, is also a Δ-radical hyperideal.
Proof. (1) It is proved that $I \cdot J$ is a hyperideal [4]. If $x \in I \cdot J$, then $x \in \sum_{i=1}^{n} a_{i} \cdot b_{i}$, for some $a_{i} \in I, b_{i} \in J$ and $n \in \mathbb{N}$. So, for all $d \in \Delta$, we have $d(x) \in d\left(\sum_{i=1}^{n} a_{i} \cdot b_{i}\right)=\sum_{i=1}^{n} d\left(a_{i} \cdot b_{i}\right)=\sum_{i=1}^{n} d\left(a_{i}\right) \cdot b_{i}+a_{i} \cdot d\left(b_{i}\right) \subseteq I \cdot J$.
(2) It is clear that $\sqrt{ } I$ is a hyperideal. Suppose that $x \in \sqrt{ } I$, then $x^{n} \subseteq I$, for some $n \in \mathbb{N}$. So, $x^{n} \cdot d(x) \subseteq I$. Thus, $d(x) \in x^{-n} \cdot x^{n} \cdot d(x) \subseteq$ $x^{-n} \cdot I \subseteq I \subseteq \sqrt{ } I$. Therefore, $\sqrt{ } I$ is a Δ-hyperideal.
(3) It is clear that $\sqrt{ } I$ is a hyperideal. Let $x \in \sqrt{ } I$, then $x^{n} \subseteq I$, for some $n \in \mathbb{N}$. Now, by induction we prove that for all $d \in \Delta$ and $k=0,1, \cdots, n, x^{n-k} \cdot d(x)^{2 k} \subseteq I$. Let the statement is valid for k, i.e., $x^{n-k} \cdot d(x)^{2 k} \subseteq I$. By Lemma 2.8, we get $(n-k) x^{n-k-1} \cdot d(x)^{2 k+1}+$ $2 k x^{n-k} \cdot d(x)^{2 k-1} \cdot d^{(2)}(x) \subseteq I$. Multiply by $d(x)$ and use the hypothesis of induction, we have $(n-k) x^{n-k-1} \cdot d(x)^{2 k+2} \subseteq I$. By hypothesis, we get $x^{n-(k+1)} \cdot d(x)^{2(k+1)} \subseteq I$. So, the statement is valid for $k+1$, which completes the induction. Now, set $k=n$, we have $d(x)^{2 n} \subseteq I$. So, $d(x) \in \sqrt{ } I$.
(4) Let $x, y \in(I: r)$. Then, $(x-y) \cdot r \subseteq x \cdot r-y \cdot r \subseteq I$. So, $x-y \in(I: r)$. Now, suppose that $x \in(I: r)$ and $t \in R$. Then, $x \cdot t \cdot r=x \cdot r \cdot t \subseteq I \cdot t \subseteq I$ and so $x \cdot t \subseteq(I: r)$. It shows that $(I: r)$ is a hyperideal. Let $x \in(I: r)$ and $d \in \Delta$. Then, $d(x) \cdot r \cdot d(x \cdot r)=(d(x) \cdot r)^{2}+d(x) \cdot r \cdot x \cdot d(r)$. So, for all $t \in(d(x) \cdot r)^{2}$ and $s \in d(x) \cdot r \cdot d(x \cdot r) \subseteq I$, there is $z \in d(x) \cdot r \cdot x \cdot d(r) \subseteq I$ such that $s=t+z$. Thus, $t=s-z \subseteq I$. Then, $(d(x) \cdot r)^{2} \subseteq I$. Therefore, $d(x) \cdot r \subseteq \operatorname{Rad}(I)=I$, which means that $d(x) \in(I: r)$. So, I is a Δ-hyperideal. Obviously, $(I: r) \subseteq \operatorname{Rad}((I: r))$. Let $x \in \operatorname{Rad}((I: r))$. Then, there is $n \in \mathbb{N}$ such that $x^{n} \subseteq(I: r)$. Therefore, $x^{n} \cdot r \subseteq I$. So, we have $(x \cdot r)^{n}=x^{n} \cdot r^{n}=r^{n-1} \cdot\left(x^{n} \cdot r\right) \subseteq r^{n-1} \cdot I \subseteq I$, since R is commutative. Hence, $x \cdot r \subseteq \operatorname{Rad}(I)=I$, which means that $x \in(I: r)$. So, $(I: r)$ is a Δ-radical hyperideal.

Let $\left(R_{1},+_{1}, \circ_{1}\right)$ and $\left(R_{2},+_{2}, \circ_{2}\right)$ be Δ_{1} and $\Delta_{2^{-}}$homomorphisms, respectively. Then, $\left(R_{1} \times R_{2},+, \circ\right)$ is a hyperring, where for all (a, b), $(c, d) \in R_{1} \times R_{2}$ operation + and hyperoperation \circ are defined as $(a, b)+(c, d)=\left(a+{ }_{1} c, b+_{2} d\right)$ and $(a, b) \circ(c, d)=\left\{(x, y) \mid x \in a \circ_{1}\right.$ $\left.c, y \in b \circ_{2} d\right\}$. For all $d_{1} \in \Delta_{1}$ and $d_{2} \in \Delta_{2}$, we define the function $d_{1} \times d_{2}: R_{1} \times R_{2} \longrightarrow R_{1} \times R_{2}$ as $\left(d_{1} \times d_{2}\right)(x, y)=\left(d_{1}(x), d_{2}(y)\right)$, for all $(x, y) \in R_{1} \times R_{2}$. Then, $d_{1} \times d_{2}$ is a derivation on $R_{1} \times R_{2}$. If we set $\Delta=\left\{d_{1} \times d_{2} \mid d_{1} \in \Delta_{1}, d_{2} \in \Delta_{2}\right\}$, then $R_{1} \times R_{2}$ is a Δ-hyperring.

Theorem 3.13. Let I be a Δ-hyperideal of Δ-hyperring R. Then, R / I has a unique structure of differential hyperring so that the canonical mapping $\varphi: R \longrightarrow R / I$ is a differential homomorphism. So, there is a one to one correspondence between the set of differential hyperideals of R / I and the set of Δ-hyperideals of R which contain I.

Proof. Suppose that $(R,+, \cdot)$ is a Δ-hyperring. It is proved in [5] that $(R / I,+, *)$ is a hyperring, where the hyperoperation $*$ is defined as
$(a+I) *(b+I)=\{c+I \mid c \in a \cdot b\}$, for all $a, b \in R$. We prove R / I is a differential hyperring. For all $d \in \Delta$, we define $D: R / I \longrightarrow R / I$ as $D(x+I)=d(x)+I$, for all $x \in R$. Let $x+I=y+I, x, y \in R$. Then,

$$
\begin{aligned}
x-y \in I & \Rightarrow d(x)-d(y) \in d(I) \subseteq I \Rightarrow d(x)+I=d(y)+I \\
& \Rightarrow D(x+I)=D(y+\bar{I}) .
\end{aligned}
$$

So, D is well-defined.
Now, we show that D is a derivation of R / I. It is clear that D is an additive function. Also, for all $x, y \in R$, we have

$$
\begin{aligned}
D((x+I) *(y+I)) & =D(x \cdot y+I)=d(x \cdot y)+I \\
& =(d(x) \cdot y+I)+(x \cdot d(y)+I) \\
& =(d(x)+I) *(y+I)+(x+I) *(d(y)+I) \\
& =D(x+I) *(y+I)+(x+I) * D(y+I) .
\end{aligned}
$$

Therefore, D is a derivation and R / I is a differential hyperring. The proof of the rest is easy.

Corollary 3.14. Let P be a Δ-C-hyperideal of a commutative Δ hyperring R. Then, P is a prime Δ-C-hyperideal if and only if R / P is $a \Delta$ - integral hyperdomain.

Proof. Suppose that P is a prime Δ - \mathcal{C}-hyperideal and $P \subseteq(a+P) *$ $(b+P)=a \cdot b+P$, where $*$ is defined in the proof of Theorem 3.13. Then, for all $x \in P$ there are $z \in a \cdot b$ and $y \in P$ such that $x=z+y$. Thus, $z=x-y \in P$. Since P is a prime \mathcal{C}-hyperideal, then $a \in P$ or $b \in P$. Thus, $a+P=P$ or $b+P=P$. Therefore, by Theorem 3.13 R / P is a Δ - integral hyperdomain.

The proof of the converse is clear.
Theorem 3.15. (Fundamental differential isomorphism theorem) Let R and S be Δ_{1} and Δ_{2}-hyperring, respectively. If $f: R \longrightarrow S$ is a differential epimorphism, then there exists a differential isomorphism such that $R / \operatorname{ker} f \cong S /\langle 0\rangle$.

Proof. Suppose that $f: R \longrightarrow S$ is a differential epimorphism. Denote $K=\operatorname{kerf}$ and define $\varphi: R / K \longrightarrow S /\langle 0\rangle$ by $\varphi(r+K)=f(r)+\langle 0\rangle$, $r \in R$. It is easy to see that φ is a homomorphism. We show that φ is differential. For all $D_{1} \in \Delta_{R / K}$ and $D_{2} \in \Delta_{S /\langle 0\rangle}$, we have $D_{1} \varphi(r+K)=$ $D_{1}(f(r)+\langle 0\rangle)=d_{1}(f(r))+\langle 0\rangle=f\left(d_{2}(r)\right)+\langle 0\rangle=\varphi\left(d_{2}(r)+\langle 0\rangle\right)=$ $\varphi D_{2}(r+\langle 0\rangle)$, where $d_{1} \in \Delta_{1}$ and $d_{2} \in \Delta_{2}$.

The second and third isomorphism theorems are valid for Δ-hyperrings and Δ-hyperideals.

Let $(R,+, \cdot)$ be a hyperring. Then, set $\Omega=\langle\Delta\rangle$. Every element ω of Ω is as $\omega=d_{1}^{n_{1}} d_{2}^{n_{2}} \cdots d_{m}^{n_{m}}, n_{1}, n_{2}, \cdots n_{m} \in \mathbb{N}$. The unit of Ω is $1=d_{1}^{0} d_{2}^{0} \cdots d_{m}^{0}$. We think of ω as an operator. If a is an element of a Δ-hyperring and $\omega=d_{1}^{n_{1}} d_{2}^{n_{2}} \cdots d_{m}^{n_{m}}$, then $\omega(a)=d_{1}^{n_{1}} d_{2}^{n_{2}} \cdots d_{m}^{n_{m}}(a)$. In this case, 1 is the identity operator, i.e., $1(a)=a$. For every $\omega=$ $d_{1}^{n_{1}} d_{2}^{n_{2}} \cdots d_{m}^{n_{m}}$, we define ord $\omega=n_{1}+n_{2}+\cdots+n_{m}$.

Let S be a subset of R. Then, $[S]$ denotes the smallest Δ-hyperideal of R that contains S. Thus,

$$
\begin{aligned}
{[S] } & =\left(\left\{\omega_{i}(S) \mid \omega_{i} \in \Omega\right\}\right)+\left\{\sum_{i=1}^{n} x_{i} \cdot \omega_{i}\left(s_{i}\right)+\sum_{j=1}^{m} \omega_{j}\left(t_{j}\right) \cdot y_{j}\right. \\
& +\sum_{k=1}^{l} a_{k} \cdot \omega_{k}\left(r_{k}\right) \cdot b_{k} \mid \\
& \left.x_{i}, y_{j}, a_{k}, b_{k} \in R ; s_{i}, t_{j}, r_{k} \in S ; n, m, l \in \mathbb{N} ; \omega_{i}, \omega_{j}, \omega_{k} \in \Omega\right\},
\end{aligned}
$$

where $\left(\left\{\omega_{i}(S) \mid \omega_{i} \in \Omega\right\}\right)$ is the subgroup of the group $(R,+)$, generated by the set $\left\{\omega_{i}(S) \mid \omega_{i} \in \Omega\right\}$.
Theorem 3.16. Let $(R,+, \cdot)$ be a commutative strongly distributive Δ hyperring, $a, b \in R$ and $\omega \in \Omega=\langle\Delta\rangle$. If ord $\omega=n$, then $a^{n+1} \cdot \omega(b) \subseteq$ $[a \cdot b]$.

Proof. We prove the statement by induction on n. If $n=0$, then $\omega=1$ and the result is obvious. Suppose that the statement is valid for $n=k$ (hypothesis of induction). Now, set $n=k+1$. Then, there is $d \in \Delta$ such that $\omega=d \delta$, where $\delta \in \Omega$ and $\operatorname{or} d \delta=k$. By hypothesis of induction we have $a^{k+1} \cdot \delta(b) \subseteq[a \cdot b]$. So, $a \cdot d\left(a^{k+1} \cdot \delta(b)\right) \subseteq[a \cdot b]$. Thus, by Lemma 2.8, $(k+1) a^{k+1} \cdot d(a) \cdot \delta(b)+a^{k+2} \cdot \omega(b) \subseteq[a \cdot b]$. Then, by the hypothesis of induction $(k+1) a^{k+1} \cdot d(a) \cdot \delta(b) \subseteq[a \cdot b]$. Hence, $a^{k+2} \cdot \omega(b) \subseteq[a \cdot b]$, which completes the proof.

Lemma 3.17. Let S and T be subsets of a Δ-hyperring $(R,+, \cdot)$. Then,

$$
\sqrt{ }[S] \cdot \sqrt{ }[T] \subseteq \sqrt{ }[S] \cap \sqrt{ }[T]=\sqrt{ }[S \cdot T]
$$

Proof. It is clear that $\sqrt{ }[S] \cdot \sqrt{ }[T] \subseteq \sqrt{ }[S], \sqrt{ }[T]$. So, $\sqrt{ }[S] \cdot \sqrt{ }[T] \subseteq$ $\sqrt{ }[S] \cap \sqrt{ }[T]$. Suppose that $a \in \sqrt{ }[S] \cap \sqrt{ }[T]$. Then, $a^{s} \subseteq[S]$ and $a^{t} \subseteq[T]$, for some $s, t \in \mathbb{N}$. So, $a^{s+t} \subseteq[S] \cdot[T] \subseteq \sqrt{ }[S \cdot T]$. Therefore, $a \in \sqrt{ }[S \cdot T]$.

Now, suppose that $a \in \sqrt{ }[S \cdot T]$. Then, $a^{n} \subseteq[S \cdot T] \subseteq[S] \cap[T]$, for some $n \in \mathbb{N}$. Hence, $a \in \sqrt{ }[S] \cap \sqrt{ }[T]$.

Definition 3.18. [4] A nonempty subset S of a hyoerring $(R,+, \cdot)$ is said to be a multiplicative set if $x, y \in S$ implies that $x \cdot y \cap S \neq \emptyset$.

Theorem 3.19. Let $(R,+, \cdot)$ be a Δ-hyperring, Ω be a multiplicative set and M be a Δ-hyperideal that is maximal with respect to avoiding Ω. Then, M is prime.

Proof. At the first, we prove $\sqrt{ } M \cap \Omega=\emptyset$. Suppose that there is $t \in \sqrt{ } M \cap \Omega$. So, $t^{n} \subseteq M$ and $t^{n} \cap \Omega \neq \emptyset$, for some $n \in \mathbb{N}$. Thus, $M \cap \Omega \neq \emptyset$, which is a contradiction. Then, $\sqrt{ } M \cap \Omega=\emptyset$. So, by hypothesis $\sqrt{ } M=M$.

Now, suppose that $a \cdot b \subseteq M$ and $a, b \notin M$. Then, $M \varsubsetneqq[a, M]$ and $[b, M]$. So, $M \varsubsetneqq \sqrt{ }[a, M]$ and $\sqrt{ }[b, M]$. Therefore, by hypothesis $\sqrt{ }[a, M] \cap S \neq \emptyset$ and $\sqrt{ }[b, M] \cap S \neq \emptyset$. Thus, there are $k \in \sqrt{ }[a, M] \cap S$ and $t \in \sqrt{ }[b, M] \cap S$. By Lemma 3.17, $k \cdot t \subseteq \sqrt{ }[a, M] \sqrt{ }[b, M] \subseteq$ $\sqrt{ }[a \cdot b, M]=\sqrt{ } M=M$. So, there is $s \in k \cdot t$ such that $s \in M \cap S$, which is a contradiction. Therefore, M is a prime.

Corollary 3.20. Every maximal Δ-hyperideal is prime.
Proof. In Theorem 3.19, set $\Omega=1$.

References

1. A. Asokkumar, Derivations in hyperrings and prime hyperrings, Iran. J. Math. Sci. Inform. 8 (2013), 1-13.
2. J. Chvalina and L. Chvalinova, Multistructures determined by differential rings, Archivum Mathematicum (Brno) 36 (2000), 429-434.
3. Y. U. Cho and Y. B. Jun, Gamma-derivations in prime and semiprime gamma-near-rings, Indian J. Pure E3 Appl. Math. 33 (2002), 1489-1494.
4. U. Dasgupta, On prime and primary hyperideals of a multiplicative hyperring, Annals of the Alexandru Ioan Cuza University - Mathematics LVIII (2012), 19-36.
5. B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, USA, 2007.
6. B. Davvaz and A. Salasi, A realization of hyperrings, Comm. Algebra 34 (2006), 4389-4400.
7. B. Davvaz, R. M. Santilli and T. Vougiouklis, Studies of Multi-valued hyperstructures for the characterization of matter-antimatter systems and their extension, Proc. Third ICLATIP, (2011) 45-57.
8. B. Davvaz and T. Vougiouklis, Commutative rings obtained from hyperrings (H_{v}-rings) with α^{*}-relations, Comm. Algebra 35 (2007), 3307-3320.
9. B. Davvaz, L. Zareyan and V. Leoreanu-Fotea, (3,3)-ary differential rings, Mediterranean Journal of Mathematics 9 (2012), 359-379.
10. M. Kaewneam and Y. Kemprasit, On homomorphisms of some multiplicative hyperrings, Italian J. Pure \& Appl. Math. 27 (2010), 313-320.
11. V. Leoreanu-Fotea and B. Davvaz, Fuzzy hyperrings, Fuzzy Sets and Systems 160 (2009), 2366-2378.
12. S. Mirvakili, S.M. Anvariyeh and B. Davvaz, On α-relation and transitivity conditions of α, Comm. Algebra 36 (2008), 1695-1703.
13. S. Mirvakili and B. Davvaz, Applications of the α^{*}-relation to Krasner hyperrings, J. Algebra 362 (2012), 145-156.
14. S. Pianskool, W. Hemakul and S. Chaopraknoi, On homomorphisms of some multiplicative hyperrings, South. Asi. Bull. Math. 32 (2008), 951-958.
15. E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1975), 10931100.
16. R. Procesi and R. Rota, Over the construction of an hyperstructure of quotients for a multiplicative hyperrings, Ratio Math. 12 (1997), 66-72.
17. R. Procesi and R. Rota, Complementary multiplicative hyperrings, Disc. Math. 308 (2008), 188-191.
18. R. Rota, Strongly distributive hyperrings, J. Geom. 39 (1990), 130-138.
19. R. Rota, Sugli iperanelli moltiplicativi, Rend. Di Mat., Series VII (4) 2 (1982), 711-724.
20. M. Soytürk, The commutativity in prime gamma rings with derivation, Tr. J. Math. 18 (1994), 149-155.

L. Kamali Ardekani

Department of Mathematics, Yazd University, Yazd, Iran.
Email: kamali_leili@yahoo.com

B. Davvaz

Department of Mathematics, Yazd University, Yazd, Iran.
Email: davvaz@yazd.ac.ir

