Journal of Algebraic Systems

Vol. 2, No. 1, (2014), pp 37-51

A CHARACTERIZATION OF BAER-IDEALS

A. TAHERIFAR

Abstract

An ideal I of a ring R is called a right Baer-ideal if there exists an idempotent $e \in R$ such that $r(I)=e R$. We know that R is quasi-Baer if every ideal of R is a right Baer-ideal, R is n-generalized right quasi-Baer if for each $I \unlhd R$ the ideal I^{n} is a right Baer-ideal, and R is right principaly quasi-Baer if every principal right ideal of R is a right Baer-ideal. Therefore the concept of Baer ideal is important. In this paper we investigate some properties of Baer-ideals and give a characterization of Baer-ideals in 2-by-2 generalized triangular matrix rings, full and upper triangular matrix rings, semiprime ring and ring of continuous functions. Finally, we find equivalent conditions for which the 2-by-2 generalized triangular matrix ring be right $S A$.

1. Introduction

Throughout this paper, R denotes an associative ring with identity. Let $\emptyset \neq X \subseteq R$. Then $X \unlhd R$ denotes that X is an ideal of R. For any subset S of $R, l(S)$ and $r(S)$ denote the left annihilator and the right annihilator of S in R. The ring of n-by- n (upper triangular) matrices over R is denoted by $\mathbf{M}_{\mathbf{n}}(\mathbf{R})\left(\mathbf{T}_{\mathbf{n}}(\mathbf{R})\right)$. An idempotent e of a ring R is called left (right) semicentral if $a e=e a e(e a=e a e)$ for all $a \in R$. It can be easily checked that an idempotent e of R is left (right) semicentral if and only if $e R(R e)$ is an ideal. Also note that an idempotent e is left semicentral if and only if $1-e$ is right semicentral. See [4] and [6], for a more detailed account of semicentral idempotents. Thus for a

[^0]left (right) ideal I of a ring R, if $l(I)=R e(r(I)=e R)$ with an idempotent e, then e is right (left) semicentral, since $R e(e R)$ is an ideal, and we use $S_{l}(R)\left(S_{r}(R)\right)$ to denote the set of left (right) semicentral idempotents of R.

In [11], Clark defines R to be a quasi-Baer ring if the left annihilator of every ideal of R is generated, as a left ideal, by an idempotent. He uses the quasi-Baer concept to characterize when a finite-dimensional algebra with identity over an algebraically closed field is isomorphic to a twisted matrix units semigroup algebra. The quasi-Baer condition are left-right symmetric. It is well known that R is a quasi-Baer if and only if $\mathbf{M}_{\mathbf{n}}(\mathbf{R})$ is quasi-Baer if and only if $\mathbf{T}_{\mathbf{n}}(\mathbf{R})$ is a quasi-Baer ring (see [3], [7], [8] and [18]).

In [17], Moussavi, Javadi and Hashemi define a ring R to be n generalized right quasi-Baer if for each $I \unlhd R$, the right annihilator of I^{n} is generated (as a right ideal) by an idempotent. They proved in [17, Theorem 4.7] that R is n-generalized quasi-Baer if and only if $\mathbf{M}_{\mathbf{n}}(\mathbf{R})$ is n-generalized. Moreover, they found equivalent conditions for which the 2 -by- 2 generalized triangular matrix ring be n-generalized quasiBaer, see [17, Theorem 4.3].

In [9], Birkenmeier, Kim and Park introduced a principally quasiBaer ring and used them to generalize many results on reduced (i.e., it has no nonzero nilpotent elements) p.p.-rings. A ring R is called right principally quasi-Baer (or simply right p.q.-Baer) if the right annihilator of a principal right ideal is generated by an idempotent.

The above results are motivation for us to introduce Baer-ideal. An ideal I of R is called right Baer-ideal if $r(I)=e R$ for some idempotent $e \in R$, and if $l(I)=R f$, for some idempotent $f \in R$, then we say I is a left Baer-ideal. In section 2, we see an example of right Baer-ideals which are not left Baer-ideal. We also see that the set of Baer-ideals are closed under sum and direct product.

In section 3, we characterize Baer-ideals in 2-by-2 generalized triangular matrix rings, full and upper triangular matrix rings. By these results we obtain new proofs for the well-known results about quasi-Baer and n-generalized quasi-Baer rings. Also, we find equivalent conditions for which the 2-by-2 generalized triangular matrix ring be right $S A$ (i.e., for any two $I, J \unlhd R$ there is a $K \unlhd R$ such that $r(I)+r(J)=r(K))$.

In section 4, we prove that the product of two Baer ideals in a semiprime ring R is a Baer-ideal. Also we show that an ideal I of a semiprime ring R is a Baer-ideal if and only if $\operatorname{int} V(I)$ is a clopen subset of $\operatorname{Spec}(R)$. Moreover, it is proved that an ideal I of $C(X)$ is a Baer-ideal if and only if $\operatorname{int} \bigcap_{f \in I} Z(f)$ is a clopen subset of space X.

2. Preliminary Results and examples

Definition 2.1. An ideal I of R is called right Baer-ideal if there exists an idempotent $e \in R$ such that $r(I)=e R$, similarly, we can define left Baer-ideal and we say I is a Baer-ideal if I is a right and left Baer-ideal.
Example 2.2. (i) The ideals 0 and R are Baer-ideals in any ring R.
(ii) For $e \in S_{r}(R)$ the ideal $R e R$ is a right Baer-ideal. Since, we have $r(R e R)=r(e R)=r(R e)=(1-e) R$.
(iii) For $f \in S_{l}(R)$, the ideal $R f R$ is a left Baer-ideal. Since, $l(R f R)=l(R f)=l(f R)=R(1-f)$.

In the following, we provide an example of right Baer-ideals which are not left Baer-ideal. Also we see a non-quasi-Baer ring which has a Baer-ideal.
Example 2.3. Let $R=\left(\begin{array}{ll}\mathbb{Z} & \mathbb{Z}_{2} \\ 0 & \mathbb{Z}_{2}\end{array}\right)=\left\{\left(\begin{array}{ll}n & a \\ 0 & b\end{array}\right): n \in \mathbb{Z}, a, b \in \mathbb{Z}_{2}\right\}$, where \mathbb{Z} and \mathbb{Z}_{n} are rings of integers and integers modulo n, respectively.
(i) For ideal $I=\left(\begin{array}{ll}0 & \mathbb{Z}_{2} \\ 0 & \mathbb{Z}_{2}\end{array}\right)$, we have $l(I)=\left(\begin{array}{cc}2 \mathbb{Z} & 0 \\ 0 & 0\end{array}\right)$, and is not containing any idempotent. Therefore I is not a left Baer-ideal. On the other hand $r(I)=\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z}_{2} \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right) R$. Thus I is a right Baer-ideal. (ii) For ideal $J=\left(\begin{array}{cc}2 \mathbb{Z} & 0 \\ 0 & 0\end{array}\right)$, we have $l(J)=\left(\begin{array}{ll}0 & \mathbb{Z}_{2} \\ 0 & \mathbb{Z}_{2}\end{array}\right)=R\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$, and $r(J)=\left(\begin{array}{ll}0 & \mathbb{Z}_{2} \\ 0 & \mathbb{Z}_{2}\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right) R$. Hence J is a Baer-ideal.
Lemma 2.4. [20, Lemma 2.3]. Let e_{1} and e_{2} be two right semicentral idempotents.
(1) $e_{1} e_{2}$ is a right semicentral idempotent.
(2) $\left(e_{1}+e_{2}-e_{1} e_{2}\right)$ is a right semicentral idempotent.
(3) If $S \subseteq S_{r}(R)$ is finite, then there is a right semicentral idempotent e such that $R S R=R e R=\langle e\rangle$.

Proposition 2.5. The sum of two Baer-ideals in any ring R is a Baerideal.

Proof. Let I and J be two Baer-ideals of R. Then there are idempotents $e, f \in S_{l}(R)$ such that $r(I)=e R=r(R(1-e))$ and $r(J)=f R=$ $r(R(1-f))$. Therefore $r(I+J)=r(I) \cap r(J)=r(R(1-e)) \cap r(R(1-$ $f))=r(R(1-e)+R(1-f))$. Since $1-e, 1-f \in S_{r}(R)$. By Lemma 2.4, we have

$$
h=((1-e)+(1-f)-(1-e)(1-f)) \in S_{r}(R) .
$$

On the other hand, we can see that

$$
r(I+J)=r(R(1-e)+R(1-f))=r(R h)=(1-h) R .
$$

Hence $I+J$ is a right Baer-ideal. Similarly, we can see that $I+J$ is a left Baer-ideal.

Proposition 2.6. An ideal J of $R=\prod_{x \in X} R_{x}$ a direct product of rings is a right Baer-ideal if and only if each $\pi_{x}(J)=J_{x}$ is a right Baer-ideal of R_{x}, where $\pi_{x}: R \mapsto R_{x}$ denote the canonical projection homomorphism.

Proof. If J is a right Baer-ideal of R, then there exists an idempotent $e \in R$ such that $r(J)=e R$. This implies that $r\left(J_{x}\right)=\pi_{x}(e) R_{x}=e_{x} R_{x}$. Therefore each J_{x} is a right Baer-ideal of R_{x}. Conversely, each J_{x} is a right Baer-ideal, hence for each $x \in X$ there exists an idempotent $e_{x} \in R_{x}$ such that $r\left(J_{x}\right)=e_{x} R_{x}$. Thus $r(J)=\left(e_{x}\right)_{x \in X} R$. Therefore J is a right Baer-ideal of R.
Corollary 2.7. Let $R=\prod_{x \in X} R_{x}$, a direct product of rings.
(1) R is quasi-Baer if and only if each R_{x} is quasi-Baer.
(2) R is n-generalized quasi-Baer if and only if each R_{x} is n generalized quasi-Baer.

Proof. This is a consequence of Proposition 2.6.

3. BaER-IDEALS IN EXtENSION RINGS

Throughout this section, T will denote a 2-by-2 generalized (or formal) triangular matrix ring $\left(\begin{array}{cc}S & M \\ 0 & R\end{array}\right)$, where R and S are rings and M is an (S, R)-bimodule. If N is an (S, R)-submodule of M (briefly, ${ }_{S} N_{R} \leq S_{S} M_{R}$, then $A n n_{R} N=\{r \in R: N r=0\}$ and $A n n_{S} N=$ $\{s: s N=0\}$, see [16]. In this section we use a similar method as in Birkenmeier, Kim and Park in [10] and characterize Bear-ideals of 2-by-2 generalized triangular matrix rings. Also we characterize Baerideals in full and upper triangular matrix rings. By using of these results, we can prove the well-known results about quasi-Baer rings and generalized right quasi-Baer rings.

Theorem 3.1. An ideal J of $\mathbf{M}_{\mathbf{n}}(\mathbf{R})$ is a right Baer-ideal if and only if $J=\mathbf{M}_{\mathbf{n}}(\mathbf{I})$, for some right Baer-ideal I of R.

Proof. Let J be a right Baer-ideal of $\mathbf{M}_{\mathbf{n}}(\mathbf{R})$. By [15, Theorem 3.1], $J=\mathbf{M}_{\mathbf{n}}(\mathbf{I})$, for some ideal I of R. We claim That I is a right Baerideal. By hypothesis, there exists $E \in S_{l}\left(\mathbf{M}_{\mathbf{n}}(\mathbf{R})\right)$ such that $r(J)=$ $E \mathbf{M}_{\mathbf{n}}(\mathbf{R})$. Hence $e_{11} R \subseteq r(I)$, where e_{11} is the $(1,1)$-th entries in E.

We show that $r(I) \subseteq e_{11} R$. Suppose that $x \in r(I)$. By [5, Lemma 3.1], $r(J)=\mathbf{M}_{\mathbf{n}}(\mathbf{r}(\mathbf{I}))$. Hence $A \in r(J)$, where $a_{11}=x$ and zero elsewhere. Therefore $A \in E \mathbf{M}_{\mathbf{n}}(\mathbf{R})$. By [20, Theorem 3.3], in matrix $E, e_{i j}=e_{11} e_{i j}$. This implies that $x \in e_{11} R$. Now let $J=\mathbf{M}_{\mathbf{n}}(\mathbf{I})$ and I be a right Baer-ideal in R. Then there exists an idempotent $e \in R$ such that $r(I)=e R$. By [5, Lemma 3.1], $r\left(\mathbf{M}_{\mathbf{n}}(\mathbf{I})\right)=\mathbf{M}_{\mathbf{n}}(\mathbf{r}(\mathbf{I}))=$ $\mathbf{M}_{\mathbf{n}}(\mathbf{e R})=\mathbf{E M}_{\mathbf{n}}(\mathbf{R})$, where in matrix E for each $1 \leq i \leq n, e_{i i}=e$ and $e_{i j}=0$ for all $i \neq j$. Thus J is a right Baer-ideal of $\mathbf{M}_{\mathbf{n}}(\mathbf{R})$.

Theorem 3.2. The following statements hold.
(1) For every $I \unlhd \mathbf{T}_{\mathbf{n}}(\mathbf{R})$, there are ideals $J_{i k}$ of $R, 1 \leq i, k \leq n$ such that

$$
I=\left(\begin{array}{ccccccc}
J_{11} & J_{12} & J_{13} & . & . & . & J_{1 n} \\
0 & J_{22} & J_{23} & . & . & . & J_{2 n} \\
\cdot & \cdot & \cdot & \cdot & . & . & \cdot \\
. & \cdot & \cdot & . & . & . & . \\
. & . & . & . & . & . & . \\
0 & 0 & . & . & . & 0 & J_{n n}
\end{array}\right), J_{i k} \subseteq J_{i k+1}
$$

and $J_{i+1 k} \subseteq J_{i k}$.
(2) I is a right Baer-ideal of $\mathbf{T}_{\mathbf{n}}(\mathbf{R})$ if and only if each $J_{1 k}$ is a right Baer-ideal of R.
(3) If K is a right Baer-ideal of R, then $\mathbf{T}_{\mathbf{n}}(\mathbf{K})$ is a right Baer-ideal of $\mathbf{T}_{\mathbf{n}}(\mathbf{R})$.

Proof. (1) Let $I \unlhd \mathbf{T}_{\mathbf{n}}(\mathbf{R})$ and for each $1 \leq i \leq n, K_{i}$ is the set consisting of all entries in the i th column of elements of I. Then for each $1 \leq i \leq$ $n, K_{i} \unlhd R$. Put $J_{i j}=K_{i}+\ldots+K_{j}$. Then $J_{i k} \subseteq J_{i k+1}$ and $J_{i+1 k} \subseteq J_{i k}$. Always we have

$$
I \subseteq\left(\begin{array}{ccccccc}
K_{1} & K_{1}+K_{2} & K_{1}+K_{2}+K_{3} & . & . & . & K_{1}+\ldots+K_{n} \\
0 & K_{2} & K_{2}+K_{3} & . & . & . & K_{2}+\ldots+K_{n} \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
0 & 0 & . & . & . & 0 & K_{n}
\end{array}\right)
$$

On the other hand

$$
\left(\begin{array}{ccccccc}
K_{1} & K_{2} & K_{3} & \cdot & \cdot & . & K_{n} \\
0 & K_{2} & K_{3} & \cdot & \cdot & . & K_{n} \\
\cdot & \cdot & \cdot & \cdot & \cdot & . & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
. & \cdot & \cdot & \cdot & \cdot & . & . \\
0 & 0 & \cdot & \cdot & . & 0 & K_{n}
\end{array}\right) \subseteq I,
$$

and $I \unlhd \mathbf{T}_{\mathbf{n}}(\mathbf{R})$, hence

$$
\begin{aligned}
& \left(\begin{array}{ccccccc}
K_{1} & K_{2} & K_{3} & . & . & . & K_{n} \\
0 & K_{2} & K_{3} & . & . & . & K_{n} \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
0 & 0 & . & . & . & 0 & K_{n}
\end{array}\right)\left(\begin{array}{ccccccc}
0 & 1 & 1 & . & . & . & 1 \\
0 & 0 & 1 & . & . & . & 1 \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & 1 \\
0 & 0 & . & . & . & 0 & 0
\end{array}\right) \subseteq I . \\
& \text { Therefore } I=\left(\begin{array}{ccccccc}
J_{11} & J_{12} & J_{13} & . & . & . & J_{1 n} \\
0 & J_{22} & J_{23} & . & . & . & J_{2 n} \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
0 & 0 & . & . & . & 0 & J_{n n}
\end{array}\right) \text {. }
\end{aligned}
$$

(2) Assume that I is a right Baer-ideal of $\mathbf{T}_{\mathbf{n}}(\mathbf{R})$. Then there exists an idempotent $E \in \mathbf{T}_{\mathbf{n}}(\mathbf{R})$ such that $r(I)=E \mathbf{T}_{\mathbf{n}}(\mathbf{R})$. On the other hand by (i), we can see that

$$
r_{T_{n}(R)}(I)=\left(\begin{array}{cccccc}
r_{R}\left(J_{11}\right) & r_{R}\left(J_{11}\right) & . & . & . & r_{R}\left(J_{11}\right) \\
0 & r_{R}\left(J_{12}\right) & . & . & . & r_{R}\left(J_{12}\right) \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
0 & 0 & . & . & . & r_{R}\left(J_{1 n}\right)
\end{array}\right)
$$

Thus for each $1 \leq k \leq n, r\left(J_{1 k}\right)=e_{k k} R$, where $e_{k k}$ is the (k, k)-th entries in E. Conversely, let for each $1 \leq k \leq n$, $J_{1 k}$ be a right Baerideal of R. Then there is an $e_{1 k} \in S_{l}(R)$ such that $r\left(J_{1 k}\right)=e_{1 k} R$. Consider matrix F, where for each $1 \leq k \leq n, f_{k k}=e_{1 k}$ and elsewhere is zero. Then we have $I F=0$. If $A \in r(I)$, then for each $1 \leq j \leq n$, $a_{k j} \in r\left(J_{1 k}\right)$. Hence there exists $c_{k j} \in R$ such that $a_{k j}=e_{1 k} c_{k j}=$
$f_{k k} c_{k j}$, for all $1 \leq j \leq n$. Thus $A=F C \in F \mathbf{T}_{\mathbf{n}}(\mathbf{R})$, where $C=\left[c_{k j}\right]$. Therefore $r(I)=F \mathbf{T}_{\mathbf{n}}(\mathbf{R})$. Hence I is a right Baer-ideal of $\mathbf{T}_{\mathbf{n}}(\mathbf{R})$.
(3) By (2), this is evident.

Corollary 3.3. The following statements hold.
(1) [18, Proposition 2]. R is quasi-Baer if and only if $\mathbf{M}_{\mathbf{n}}(\mathbf{R})$ is quasi-Baer.
(2) [17, Theorem 4.7]. R is n-generalized right quasi-Baer if and only if $\mathbf{M}_{\mathbf{n}}(\mathbf{R})$ is n-generalized right quasi-Baer.

Proof. (1) Let R be quasi-Baer and $J \unlhd \mathbf{M}_{\mathbf{n}}(\mathbf{R})$. Then $J=\mathbf{M}_{\mathbf{n}}(\mathbf{I})$ for some $I \unlhd R$ and I is a Baer-ideal. By Theorem 3.1, J is a right Baerideal, hence $\mathbf{M}_{\mathbf{n}}(\mathbf{R})$ is a quasi-Baer ring. Now let $I \unlhd R$ and $\mathbf{M}_{\mathbf{n}}(\mathbf{R})$ be quasi-Baer. Then $\mathbf{M}_{\mathbf{n}}(\mathbf{I})$ is a right Baer-ideal of $\mathbf{M}_{\mathbf{n}}(\mathbf{R})$. Again by Theorem 3.1, I is a right Baer-ideal in R, thus R is a quasi-Baer-ring.
(2) Assume that $J \unlhd \mathbf{M}_{\mathbf{n}}(\mathbf{R})$ and R is n-generalized right quasiBaer. Then $J=\mathbf{M}_{\mathbf{n}}(\mathbf{I})$, where I^{n} is a right Baer-ideal. By Theorem $3.1, J^{n}=\mathbf{M}_{\mathbf{n}}\left(\mathbf{I}^{\mathbf{n}}\right)$ is a right Baer-ideal. This shows that $\mathbf{M}_{\mathbf{n}}(\mathbf{R})$ is n-generalized right quasi-Baer. The converse is evident.
Corollary 3.4. [18, Proposition 9]. R is quasi-Baer if and only if $\mathbf{T}_{\mathbf{n}}(\mathbf{R})$ is quasi-Baer.

Proof. Let $J \unlhd T_{n}(R)$. By Theorem 3.2,

$$
J=\left(\begin{array}{ccccccc}
J_{11} & J_{12} & J_{13} & . & . & . & J_{1 n} \\
0 & J_{22} & J_{23} & . & . & . & J_{2 n} \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
0 & 0 & . & . & . & 0 & J_{n n}
\end{array}\right) .
$$

By hypothesis, each $J_{i k}$ is a right Baer-ideal. Theorem 3.2, implies that J is a right Baer-ideal. Thus $T_{n}(R)$ is quasi-Baer. The converse is evident.
Lemma 3.5. [10, Lemma 2.3]. Let $e=\left(\begin{array}{cc}e_{1} & k \\ 0 & e_{2}\end{array}\right)$ be an idempotent element of $T=\left(\begin{array}{cc}S & M \\ 0 & R\end{array}\right)$.
(1) $e \in S_{l}(T)$ if and only if
(a) $e_{1} \in S_{l}(S)$;
(b) $e_{2} \in S_{l}(R)$;
(c) $e_{1} k=k$; and
(d) $e_{1} m e_{2}=m e_{2}$, for all $m \in M$.
(2) $e_{1} k=k$ if and only if $e T \subseteq\left(\begin{array}{cc}e_{1} & 0 \\ 0 & e_{2}\end{array}\right) T$.
(3) If $e_{1} m e_{2}=m e_{2}$, for all $m \in M$, then $\left(\begin{array}{cc}e_{1} & 0 \\ 0 & e_{2}\end{array}\right) T \subseteq e T$.
(4) If $e \in S_{l}(T)$, then $\left(\begin{array}{cc}e_{1} & 0 \\ 0 & e_{2}\end{array}\right) T=e T$.

Lemma 3.6. [10, Lemma 3.1]. Let $J=\left(\begin{array}{cc}I & N \\ 0 & L\end{array}\right)$ be an ideal of $T=\left(\begin{array}{cc}S & M \\ 0 & R\end{array}\right)$. Then $r(J)=\left(\begin{array}{cc}r_{S}(I) & r_{M}(I) \\ 0 & r_{R}(L) \cap A n n_{R}(N)\end{array}\right)$ and $l(J)=$ $\left(\begin{array}{cc}l_{S}(I) \cap A n n_{S}(N) & l_{M}(L) \\ 0 & l_{R}(L)\end{array}\right)$.

Theorem 3.7. Let $J=\left(\begin{array}{cc}I & N \\ 0 & L\end{array}\right)$ be an ideal of $T=\left(\begin{array}{cc}S & M \\ 0 & R\end{array}\right)$.
Then J is a right Baer-ideal of T if and only if
(1) I is a right Baer-ideal of S;
(2) $r_{M}(I)=\left(r_{S}(I)\right) M$; and
(3) $r_{R}(L) \cap A n n_{R}(N)=a R$, for some $a^{2}=a \in R$.

Proof. Let J be a right Baer-ideal of T. Then there exists $e \in S_{l}(T)$ such that $r(J)=e T$. By Lemma 3.5, $e=\left(\begin{array}{cc}e_{1} & k \\ 0 & e_{2}\end{array}\right)$, for some $e_{1} \in$ $S_{l}(S), e_{2} \in S_{l}(R), k \in M$ and $k R=e_{1} k R$. Thus $e_{1} M=e_{1} M+k R$. By Lemma 3.5, $e_{1} S=r_{S}(I), r_{M}(I)=e_{1} M=e_{1} S M=\left(r_{S}(I)\right) M$ and $r_{R}(L) \cap A n n_{R}(N)=e_{2} R$.

Conversely, by hypothesis, there are $e_{1} \in S_{l}(S)$ and $a^{2}=a \in R$ such that $r_{S}(I)=e_{1} S$ and $r_{R}(L) \cap A n n_{R}(N)=a R$. Since $A n n_{R}(N) \unlhd R$, then $a \in S_{l}(R)$. By (ii), $r_{M}(I)=\left(r_{S}(I)\right) M=e_{1} M$. Now let $e=$ $\left(\begin{array}{cc}e_{1} & 0 \\ 0 & a\end{array}\right)$. Then $e T=\left(\begin{array}{cc}e_{1} S & e_{1} M \\ 0 & a R\end{array}\right)=\left(\begin{array}{cc}r_{S}(I) & r_{M}(I) \\ 0 & r_{R}(L) \cap A n n_{R}(N)\end{array}\right)$. From Lemma 3.6, eT $=r(J)$. Therefore J is a right Baer-ideal of T.
Corollary 3.8. [10, Theorem 3.2]. Let $T=\left(\begin{array}{cc}S & M \\ 0 & R\end{array}\right)$. Then the following are equivalent.
(1) T is quasi-Baer.
(2) (i) R and S are quasi-Baer;
(ii) $r_{M}(I)=\left(r_{S}(I)\right) M$ for all $I \unlhd S$; and
(iii) If ${ }_{S} N_{R} \leq{ }_{S} M_{R}$, then we have $A n n_{R}(N)=a R$ for some $a^{2}=a \in R$.

Proof. $1 \Rightarrow 2$. Let $I \unlhd S, N$ be a (S, R) submodule of M and $J \unlhd$ R. Then $\left(\begin{array}{cc}I & M \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}0 & N \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & J\end{array}\right)$ are Baer-ideals of T. By Theorem 3.7, I and J are Baer-ideals, hence R, S are quasi-Baer and $r_{R}(0) \cap A n n_{R}(N)=A n n_{R}(N)=a R$, for some $a^{2}=a \in R$.
$2 \Rightarrow 1$. let $J=\left(\begin{array}{cc}I & N \\ 0 & L\end{array}\right) \unlhd T$. By hypothesis, there are $a, e \in S_{l}(R)$ such that $A n n_{R}(N)=a R, r_{R}(L)=e R$ and I is a Baer-ideal. Hence $r_{R}(L) \cap A n n_{R}(N)=r(R(1-e)) \cap r(R(1-a))=e a R$. By Theorem 3.7, $J=\left(\begin{array}{cc}I & N \\ 0 & L\end{array}\right)$ is a Baer-ideal, thus T is a quasi-Baer ring.

Corollary 3.9. [17, Theorem 4.3]. Let $T=\left(\begin{array}{cc}S & M \\ 0 & R\end{array}\right)$. Then the following are equivalent.
(1) T is n-generalized right (principally) quasi-Baer.
(2) (i) S is n-generalized right quasi-Baer;
(ii) $r_{M}\left(I^{n}\right)=\left(r_{S}\left(I^{n}\right)\right) M$ for all $I \unlhd S$; and
(iii) If $\left(\begin{array}{cc}I & N \\ 0 & J\end{array}\right) \unlhd T$, then there is some $e^{2}=e \in R$ such that $r_{R}\left(J^{n}\right) \cap A n n_{R}\left(I^{n-1} N\right) \cap A n n_{R}\left(i^{n-2} N J\right) \cap \ldots \cap A n n_{R}\left(N J^{n-1}\right)=e R$.
Proof. $1 \Rightarrow$ 2. (i), (ii) Let $I \unlhd S$. Then $\left(\begin{array}{cc}I^{n} & I^{n-1} M \\ o & o\end{array}\right)$ is a Baer-ideal of T. By Theorem 3.7, I^{n} is a Baer-ideal in S, hence S is n-generalized right (principally) quasi-Baer and $r_{M}\left(I^{n}\right)=\left(r_{S}\left(I^{n}\right)\right) M$.
(iii) If $\left(\begin{array}{cc}I & N \\ 0 & J\end{array}\right) \unlhd T$. Then $\left(\begin{array}{cc}I^{n} & I^{n-1} N+I^{n-2} N J+\ldots+N J^{n-1} \\ 0 & J^{n}\end{array}\right)$
is a Baer-ideal in T. By Theorem 3.7, there is some $e^{2}=e \in R$ such that
$r_{R}\left(J^{n}\right) \cap A n n_{R}\left(I^{n-1} N\right) \cap A n n_{R}\left(I^{n-2} N J\right) \cap \ldots \cap A n n_{R}\left(N J^{n-1}\right)=e R$.
$2 \Rightarrow 1 . \quad$ Let $K=\left(\begin{array}{cc}I & N \\ 0 & J\end{array}\right) \unlhd T . \quad$ By hypothesis and Theorem
3.7, $K^{n}=\left(\begin{array}{cc}I^{n} & I^{n-1} N+I^{n-2} N J+\ldots+N J^{n-1} \\ 0 & J^{n}\end{array}\right)$ is a Baer-ideal in
T. Hence T is n-generalized right (principally) quasi-Baer.
Recall that a ring R is a right $S A$ if for each $I, J \unlhd R$ there exists $K \unlhd R$ such that $r(I)+r(J)=r(K)$ (see [5]).

Theorem 3.10. Let $T=\left(\begin{array}{rr}S & M \\ 0 & R\end{array}\right)$. Then the following are equivalent.
(1) T is a right $S A$-ring.
(2) (i) For $I_{1}, I_{2} \unlhd S$, there exists $I_{3} \unlhd S$, such that $r_{M}\left(I_{1}\right)+r_{M}\left(I_{2}\right)=$ $r_{M}\left(I_{3}\right), r_{S}\left(I_{1}\right)+r_{S}\left(I_{2}\right)=r_{S}\left(I_{3}\right)$ (i.e., S is right $S A$); and
(ii) For each $I, J \unlhd R$ and (S, R) submodules N_{1}, N_{2}, of M, there are $K \unlhd R$ and ${ }_{S} N_{R} \leq_{S} M_{R}$, such that

$$
r_{R}(I) \cap A n n_{R}\left(N_{1}\right)+r_{R}(J) \cap A n n_{R}\left(N_{2}\right)=r_{R}(K) \cap A n n_{R}(N) .
$$

Proof. $1 \Rightarrow 2$. (i) Let $I_{1}, I_{2} \unlhd S$. Then $\left(\begin{array}{cc}I_{1} & M \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{cc}I_{2} & M \\ 0 & 0\end{array}\right)$ are ideals of T. By hypothesis, there is $\left(\begin{array}{cc}I & N \\ 0 & J\end{array}\right) \unlhd T$ such that

$$
r\left(\left(\begin{array}{cc}
I_{1} & M \\
0 & 0
\end{array}\right)\right)+r\left(\left(\begin{array}{cc}
I_{2} & M \\
0 & 0
\end{array}\right)\right)=r\left(\left(\begin{array}{cc}
I & N \\
0 & J
\end{array}\right)\right)
$$

By Lemma 3.6, we have $r_{S}\left(I_{1}\right)+r_{S}\left(I_{2}\right)=r_{S}(I)$ and $r_{M}\left(I_{1}\right)+r_{M}\left(I_{2}\right)=$ $r_{M}(I)$.
(ii) Let $I, J \unlhd R$ and N_{1}, N_{2} are (S, R) submodules of M. Then $\left(\begin{array}{cc}0 & N_{1} \\ 0 & I\end{array}\right)$ and $\left(\begin{array}{cc}0 & N_{2} \\ 0 & J\end{array}\right)$ are ideals of T. By hypothesis, there are $K \unlhd R$, $I \unlhd S$ and ${ }_{S} N_{R} \leq_{S} M_{R}$, such that

$$
r\left(\left(\begin{array}{cc}
0 & N_{1} \\
0 & I
\end{array}\right)\right)+r\left(\left(\begin{array}{cc}
0 & N_{2} \\
0 & J
\end{array}\right)\right)=r\left(\left(\begin{array}{ll}
I & N \\
0 & K
\end{array}\right)\right)
$$

Now, Lemma 3.6, implies that

$$
r_{R}(I) \cap A n n_{R}\left(N_{1}\right)+r_{R}(J) \cap A n n_{R}\left(N_{2}\right)=r_{R}(K) \cap A n n_{R}(N)
$$

$2 \Rightarrow 1$. Suppose that $K_{1}=\left(\begin{array}{cc}I_{1} & N_{1} \\ 0 & J_{1}\end{array}\right)$ and $K_{2}=\left(\begin{array}{cc}I_{2} & N_{2} \\ 0 & J_{2}\end{array}\right)$ are two ideals of T. By Lemma 3.6, we have $r\left(K_{1}\right)+r\left(K_{2}\right)=$

$$
\left(\begin{array}{cc}
r_{S}\left(I_{1}\right)+r_{S}\left(I_{2}\right) & r_{M}\left(I_{1}\right)+r_{M}\left(I_{2}\right) \\
0 & r_{R}\left(J_{1}\right) \cap \operatorname{Ann}_{R}\left(N_{1}\right)+r_{R}\left(J_{2}\right) \cap \operatorname{Ann}_{R}\left(N_{2}\right)
\end{array}\right) .
$$

By hypothesis, there are $I_{3} \unlhd S, K \unlhd R$ and ${ }_{S} N_{R} \leq_{S} M_{R}$, such that

$$
r_{S}\left(I_{1}\right)+r_{S}\left(I_{2}\right)=r_{S}\left(I_{3}\right), r_{M}\left(I_{1}\right)+r_{M}\left(I_{2}\right)=r_{M}\left(I_{3}\right),
$$

and

$$
r_{R}\left(J_{1}\right) \cap \operatorname{Ann}_{R}\left(N_{1}\right)+r_{R}\left(J_{2}\right) \cap \operatorname{Ann}_{R}\left(N_{2}\right)=r_{R}(K) \cap \operatorname{Ann}_{R}(N) .
$$

Therefore, by Lemma 3.6, $r\left(K_{1}\right)+r\left(K_{2}\right)=r\left(\begin{array}{cc}I_{3} & N \\ 0 & K\end{array}\right)$.

Corollary 3.11. The following statements hold.
(1) Let $R=S$ and for every $I \unlhd S, r_{M}(I)=\left(r_{S}(I)\right) M$. Then T is right $S A$ if and only if R is right $S A$.
(2) Let $R=S$ and $M \unlhd R$, then T is right $S A$ if and only if R is right $S A$.
(3) Let $S=M$. Then T is right $S A$ if and only if S is a right $S A$ and for each $I, J \unlhd R$ and $N_{1}, N_{2} \unlhd S$, there are $K \unlhd R$ and $N \unlhd S$, such that $r_{R}(I) \cap A n n_{R}\left(N_{1}\right)+r_{R}(J) \cap A n n_{R}\left(N_{2}\right)=$ $r_{R}(K) \cap A n n_{R}(N)$.

Proof. This is a consequence of Theorem 3.10.

4. BaER-IDEALS IN SEmiprime Ring and Ring of continuous

 FUNCTIONSIn this section, first, we show that an ideal I of $C(X)$ is a Baer-ideal if and only if int $\bigcap_{f \in I} Z(f)$ is a clopen subset of X. Then we show that an ideal I of semiprime ring R is a Baer-ideal if and only if $\operatorname{intV}(I)$ is a clopen subset of $\operatorname{Spec}(R)$. Also we prove that the product of two Baer-ideals in a semiprime ring R is a Baer-ideal.

A non-zero ideal I of R is an essential ideal if for any ideal J of R, $I \cap J=0$ implies that $J=0$. Also an ideal P of a commutative ring R is called pseuodoprime ideal if $a b=0$, implies that $a \in P$ or $b \in P$ (see [13]).

We denote by $C(X)$, the ring of all real-valued continuous functions on a completely regular Hausdorff space X. For any $f \in C(X), Z(f)=$ $\{x \in X: f(x)=0\}$ is called a zero-set. We can see that a subset A of X is clopen if and only if $A=Z(f)$ for some idempotent $f \in C(X)$. For any subset A of X we denote by $\operatorname{int} A$ the interior of A (i.e., the largest open subset of X contained in A). For terminology and notations, the reader is referred to [12] and [14].
Lemma 4.1. For $I, J \unlhd C(X), r(I)=r(J)$ if and only if $i n t \bigcap_{f \in I} Z(f)=$ int $\bigcap_{g \in J} Z(g)$.
Proof. (\Rightarrow) Let $x \in \operatorname{int} \bigcap_{f \in I} Z(f)$. Then $x \notin X \backslash i n t \bigcap_{f \in I} Z(f)$. By completely regularity of X, there exists $h \in C(X)$ such that $x \in X \backslash$ $Z(h) \subseteq \operatorname{int} \bigcap_{f \in I} Z(f)$. Therefore $f h=0$ for all $f \in I$. This implies that $h \in r(I)=r(J)$. Hence $g h=0$ for each $g \in J$. Thus $x \in X \backslash$ $\operatorname{int} Z(h) \subseteq$ int $\bigcap_{g \in J} Z(g)$. Similarly, we can prove that int $\bigcap_{g \in J} Z(g) \subseteq$ $i n t \bigcap_{f \in I} Z(f)$.
(\Leftarrow) Suppose that $h \in r(I)$. Then $X \backslash Z(h) \subseteq \operatorname{int} \bigcap_{f \in I} Z(f)$, so $X \backslash Z(h) \subseteq Z(f)$ for all $f \in I$. Hence for each $f \in I, f h=0$. This implies that $r(I) \subseteq r(J)$. Similarly, we can prove that $r(J) \subseteq r(I)$.

Proposition 4.2. The following statements hold.
(1) An ideal I of $C(X)$ is a Baer-ideal if and only if $\operatorname{int} \bigcap_{f \in I} Z(f)$ is a clopen subset of X.
(2) Every pseuodoprime ideal of $C(X)$ is a Baer-ideal.

Proof. (1) Let I be a Baer-ideal of $C(X)$. Then there exists an idempotent $e \in C(X)$ such that $r(I)=e C(X)=r(C(X)(1-e))$. By Lemma 4.1, $\operatorname{int} \bigcap_{f \in I} Z(f)=\operatorname{int} Z(1-e)=Z(1-e)$. This shows that $\operatorname{int} \bigcap_{f \in I} Z(f)$ is a clopen subset of X. Now let $i n t \bigcap_{f \in I} Z(f)$ is a clopen subset of X. Then there exists an idempotent $e \in C(X)$ such that $\operatorname{int} \bigcap_{f \in I} Z(f)=Z(e)=\operatorname{int} Z(e)$. By Lemma 4.1, $r(I)=r(e)=$ $(1-e) C(X)$. Hence I is a Baer-ideal.
(2) By [1, Corollary 3.3], every pseudoprime ideal in $C(X)$ is either an essential ideal or a maximal ideal which is at the same time a minimal prime ideal. Now let P be a pseuodoprime ideal in $C(X)$. If P is essential, then by [1, Theorem 3.1], int $\bigcap_{f \in P} Z(f)=\emptyset$, so (i), implies that P is a Baer-ideal. Otherwise P is a maximal ideal which is also a minimal prime ideal. Then there exists an isolated point $x \in X$ such that $P=M_{x}=\{f \in C(X): x \in Z(f)\}$. This shows that $\operatorname{int} \bigcap_{f \in P} Z(f)=\{x\}$ is a clopen subset of X, so P is a Baer-ideal.

Recall that a topological space X is extremally disconnected if the interior of any closed subset is closed, see [14, 1.H]. The next result is proved in [2, Theorem 3.5] and [21, Theorem 2.12]. Now we give a new proof.

Corollary 4.3. $C(X)$ is a Baer-ring if and only if X is an extremally disconnected space.

Proof. Let F be a closed subset of X and $C(X)$ is a Baer-ring. By completely regularity of X, there exists an ideal I of $C(X)$ such that $F=\bigcap_{f \in I} Z(f)$. By Proposition 4.2, int F is closed, hence X is extremally disconnected. Conversely, suppose that $I \unlhd C(X)$. Then int $\bigcap_{f \in I} Z(f)$ is closed. By Proposition 4.2,I is a Baer-ideal, thus $C(X)$ is a Baer-ring.

For any $a \in R$, let $\operatorname{supp}(a)=\{P \in \operatorname{Spec}(R): a \notin P\}$. Shin [19, Lemma 3.1] proved that for any $R,\{\operatorname{supp}(a): a \in R\}$ forms a basis of open sets on $\operatorname{Spec}(\mathrm{R})$. This topology is called hull-kernel topology. We mean of $V(I)$ is the set of $P \in \operatorname{Spec}(R)$, where $I \subseteq P$. Note that $V(I)=\bigcap_{a \in I} V(a)$.

Lemma 4.4. [5, Lemma 4.2]. The following statements hold.
(1) If I and J are two ideals of a semiprime ring R, then $r(I)=r(J)$ if and only if $\operatorname{int} V(I)=\operatorname{int} V(J)$.
(2) $A \subseteq \operatorname{Spec}(R)$ is a clopen subset if and only if there exists an idempotent $e \in R$ such that $A=V(e)$.

Proposition 4.5. Let R be a semiprime ring.
(1) An ideal I of R is a Baer-ideal if and only if $\operatorname{int} V(I)$ is a clopen subset of $\operatorname{Spec}(R)$.
(2) The product of two Baer-ideals is a Baer-ideal.
(3) If R is a commutative ring, then any essential ideal of R is a Baer-ideal.

Proof. (1) Let I be a Baer ideal of R. Then there exists an idempotent $e \in R$ such that $r(I)=e R=r(R(1-e))$. By Lemma 4.4, int $V(I)=$ $\operatorname{int} V(1-e)=V(1-e)$. Thus $\operatorname{int} V(I)$ is closed. Conversely, let $I \unlhd R$. By hypothesis and Lemma 4.4, there exists an idempotent $e \in R$ such that $\operatorname{int} V(I)=V(e)$. So, Lemma 4.4, implies that $r(I)=r(R e)=$ $(1-e) R$. Therefore, I is a right Baer-ideal. By semiprime hypothesis, I is a left Baer-ideal.
(2) Let I, J be two Baer-ideals of R. Then there are idempotents $e, f \in R$ such that $r(I)=e R$ and $r(J)=f R$. We will prove $r(I J)=$ $f R+e R+f e R$. By Lemma 2.4, there exists $h \in S_{l}(R)$ such that $r(I J)=f R+e R+f e R=h R$. Therefore $I J$ is a right Baer-ideal. By semiprime hypothesis, $I J$ is a left Baer-ideal. Now let $x \in r(I J)$. Then $J x \subseteq r(I)=r(R(1-e))$. So $R(1-e) J x=0$. This implies that $(J x R(1-e))^{2}=0$. Since R is semiprime, we have $J x R(1-e)=0$. Thus $x(1-e) \in r(J)=r(R(1-f))$. Hence $(1-f) x(1-e)=0$. This shows that $x=-f x e+f x+x e=f e x e+e x e+f x \in f e R+e R+f R$. On the other hand we have $(I J)(f e R+e R+f R)=0$, so $f e R+e R+f R \subseteq$ $r(I J)$.
(3) It is easily seen that an ideal I of a commutative semiprime ring R is essential if and only if $r(I)=0=r(R)$. Now, Lemma 4.4, implies that I is a Baer-ideal.

Now we apply the theory of Baer ideals to give the following wellknown result.

Corollary 4.6. Let R be a semiprime ring. Then R is quasi-Baer if and only if $\operatorname{Spec}(R)$ is extremally disconnected.

Proof. Let A be a closed subset of $\operatorname{Spec}(R)$ and R is quasi-Baer. Since $\{V(a): a \in R\}$ is a base for closed subsets in $\operatorname{Spec}(\mathrm{R})$, there exists $S \subseteq R$ such that $A=\bigcap_{a \in S} V(a)$. Take $I=R S R$. Then $A=V(I)$. By Lemma 4.5, int A is closed. Thus $\operatorname{Spec}(R)$ is extremally disconnected.

Conversely, let $I \unlhd R$. We know that $V(I)$ is a closed subset of $\operatorname{Spec}(R)$. By hypothesis and Lemma 4.5, $\operatorname{int} V(I)$ is a clopen subset of $\operatorname{Spec}(R)$, and hence I is Baer-ideal. Thus R is a quasi Baer-ring.

Acknowledgments

The author would like to thank the referee for a careful reading of this article.

References

1. F. Azarpanah, Essential ideals in $C(X)$, Period. Math. Hungar. 31 (1995), 105-112.
2. F. Azarpanah and O. A. S. Karamzadeh, Algebraic characterization of some disconnected spaces, Italian. J. Pure Appl. Math. 12 (2002), 155-168.
3. S. K. Berberian, Baer*-rings, Springer, Berlin, 1972.
4. G. F. Birkenmeier, Idempotents and completely semiprime ideals, Commun. Algebra, 11 (1983), 567-580.
5. G. F. Birkenmeier, M. Ghirati and A. Taherifar, When is a sum of annihilator ideals an annihilator ideal? Commun. Algebra (2014), accepted.
6. G. F. Birkenmeier, H. E. Heatherly, J. Y. Kim and J. K. Park, Triangular matrix representations, Journal of Algebra 230 (2000), 558-595.
7. G. F. Birkenmeier, J. Y. Kim and J. K. Park, A sheaf representation of quasiBaer rings, Journal of Pure and Applied Algebra, 146 (2000), 209-223.
8. G. F. Birkenmeier, J. Y. Kim , and J. K. Park, Quasi-Baer ring extensions and biregular rings, Bull. AUSTRAL. Math. Soc. 16 (2000), 39-52.
9. G. F. Birkenmeier, J. Y. Kim and J. K. Park, Principally Quasi-Baer Rings, Commun. Algebra 29 (2001), 639-660.
10. G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Generalized triangular matrix rings and the fully invariant extending property, Rocky Mt. J. Math. 32 (4) (2002), 1299-1319.
11. V. Clark, Twisted matrix units semigroup algebra, Duke math. J. 34 (1967), 417-424.
12. R. Engelking, General Topology, PWN-Polish Sci. Publ, 1977.
13. L. Gillman and C. W. Khols, Convex and pseuodoprime ideals in rings of continuous functions, Math. Zeiteschr. 72 (1960), 399-409.
14. L. Gillman and M. Jerison, Rings of Continuous Functions, Springer, 1976.
15. T. Y. Lam, A First Course in Non-Commutative Rings, New York, Springer, 1991.
16. T. Y. Lam, Lecture on Modules and Rings, Springer, New York, 1999.
17. A. Moussavi, H. H. S. Javadi and E. Hashemi, Generalized quasi-Baer rings, Commun. Algebra 33 (2005), 2115-2129.
18. A. Pollinigher and A. Zaks, On Baer and quasi-Baer rings, Duke Math. J. $\mathbf{3 7}$ (1970), 127-138.
19. G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60.
20. A. Taherifar, Annihilator Conditions related to the quasi-Baer Condition, submitted.
21. A. Taherifar, Some new classes of topological spaces and annihilator ideals, Topol. Appl. 165 (2014), 84-97.

A. Taherifar

Department of Mathematics, Yasouj University, Yasouj, Iran.
Email: ataherifar@mail.yu.ac.ir, ataherifar54@mail.com

[^0]: MSC(2010): Primary: 16D25, Secondary: 54G05, 54C40
 Keywords: Quasi-Baer ring, Generalized right quasi-Baer, Semicentral idempotent, Spec(R), Extremally disconnected space.
 Received: 3 September 2013, Revised: 18 April 2014.

