
Journal of Algebraic Systems

Vol. 2, No. 1, (2014), pp 53-59

APPROXIMATE IDENTITY IN CLOSED
CODIMENSION ONE IDEALS OF SEMIGROUP

ALGEBRAS

B. MOHAMADZADEH

Abstract. Let S be a foundation semigroup with identity and
Ma(S) be its semigroup algebra. In this paper, we give necessary
and sufficient conditions for the existence of a bounded approxi-
mate identity in closed codimension one ideals of semigroup algebra
Ma(S) of a locally compact topological foundation semigroup with
identity.

1. Introduction

Throughout this paper, S denotes a locally compact Hausdorff topo-
logical semigroup. The space of all bounded complex regular Borel
measures on S is denoted by M(S). This space with the convolution
multiplication ∗ and the total variation norm defines a Banach algebra.
The space of all measures µ ∈ M(S) for which the maps x 7→ δx ∗ |µ|
and x 7→ |µ| ∗ δx from S into M(S) are weakly continuous is denoted

by Ma(S) (or L̃(S) as in [1]), where δx denotes the Dirac measure at
x. It is well-known that Ma(S) is a closed two-sided L-ideal of M(S)
( see for example [1]). S is called foundation semigroup if S coincides
with the closure of the set

∪
{supp(µ) : µ ∈ Ma(S)}. This family of

semigroups is quite extensive and it contains topological groups and
discrete semigroups as elementary examples.

MSC(2010): Primary: 43A60, 22A20

Keywords: Approximate identity, Codimension one ideal, Foundation semigroup, Semi-

group algebras.

Received: 17 July 2013, Revised: 9 March 2014.

53



54 MOHAMADZADEH

Denote by L∞(S,Ma(S)) the set of all complex-valued bounded func-
tions g on S that are µ-measurable for all µ ∈ Ma(S). We identify
functions in L∞(S,Ma(S)) that agree µ-almost everywhere for all µ ∈
Ma(S). For every g ∈ L∞(S;Ma(S)), define ∥g∥∞ = sup{ ∥g∥∞,|µ| :
µ ∈ Ma(S) }, where ∥.∥∞,|µ| denotes the essential supremum norm with
respect to |µ|. Observe that L∞(S,Ma(S)) with the complex conjuga-
tion as involution, the pointwise operations and the norm ∥.∥∞ is a
commutative C∗-algebra. The duality

τ(g)(µ) := µ(g) =

∫
S

g dµ

defines a linear mapping τ from L∞(S,Ma(S)) into Ma(S)
∗. It is well-

known that if S is a foundation semigroup with identity, then τ is an
isometric isomorphism of L∞(S,Ma(S)) onto Ma(S)

∗; see Proposition
3.6 of Sleijpen [8].

Let S be a foundation semigroup with identity. A semicharacter ρ
is a non-zero complex function on S satisfying ρ(xy) = ρ(x)ρ(y) for

all x, y ∈ S. We denote by Ŝ the set of all bonded and continuous
semicharacters on S. For each bounded and continuous semicharacters
ρ ∈ Ŝ, denote by I0,ρ(M(S)) the closed codimension one ideal {µ ∈
M(S) : ϕρ(µ) :=

∫
S
ρ(x) dµ(x) = 0}, and write

I0,ρ(Ma(S)) := Ma(S) ∩ I0,ρ(M(S)).

From Lemma 2.2 of [7], we have there exists a bijective between Ŝ
and the set of all closed codimension one ideal in semigroup algebras
Ma(S). Indeed; any closed codimension one ideal of Ma(S) is the form

I0,ρ(Ma(S)) for some semicharacter ρ ∈ Ŝ.

Remark 1.1. Note that Lemma 2.2 of [7] is not in general valid if
the hypothesis that S is foundation is dropped. For example, the set
S = [0, 1] with the operation xy = min{x, y} and the usual topology of
the real line is a non-foundation compact semigroup with identity such
that Ŝ = {χS}, where χS(x) = 1 for all x ∈ S, but Ma(S) has not any
codimension one ideal.

Recall that a net (υα) ⊆ I0,ρ(Ma(S)) is a bounded approximate iden-
tity for I0,ρ(Ma(S)) if there is a constant M > 0 such that ||υα|| ≤ M
for all α and ||ν ∗ υα − ν|| → 0 for all ν ∈ I0,ρ(Ma(S)).

In this paper, we give necessary and sufficient condition for the ex-
istence of a bounded approximate identity in closed codimension one
ideal I0,ρ(Ma(S)) in semigroup algebras Ma(S) of a foundation semi-
group S with identity.
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2. The results

In proving our result we will make use of a modification of the follow-
ing condition, in the group case known as Reiter’s condition P1. Recall
that a locally compact semigroup S satisfy the condition P1, if for each
ε > 0 and every compact subset C ⊆ S there exists some positive mea-
sure µ ∈ Ma(S) with the properties ∥µ|| ≤ 1 and ||δx ∗ µ− µ|| < ε for
all x ∈ C.

Definition 2.1. We say that the P1-condition with bound M is satisfy
in ρ ∈ Ŝ (P1(α,M)-condition for short) if for each ε > 0 and every
compact subset C of S there exists some µ ∈ Ma(S) such that ϕρ(µ) =
1, ||µ|| ≤ M and ||δx ∗ µ− ρ(x)µ|| < ε for all x ∈ C.

We also, say that the P ∗
1 -condition with boundM is satisfy (P ∗

1 (α,M)
for short) if the above condition happens for a finite subset C of S.

Proposition 2.2. The condition P1(ρ,M
′) follows from the condition

P ∗
1 (ρ,M), where M ′ depends only on M and ρ.

Proof. Let µ ∈ Ma(S), C ⊆ S be a compact subset and ε > 0. Since S
is a foundation semigroup with identity, the map x 7→ δx ∗ |µ| from S
into Ma(S) are norm continuous, and so we can choose finitely many
open neighbourhoods Ui = U(xi), i = 1, 2, ..., n are such that C ⊆

∪
Ui

and

|ρ(x)− ρ(x′)| < ε

3M ||µ||
, ||δx ∗ µ− δx′ ∗ µ|| < ε

3M

for x, x′ ∈ Ui.
The condition condition P ∗

1 (ρ,M
′) ensures the existence of then µ ∈

Ma(S) with ϕρ(µ) = 1, ||µ|| ≤ M and ||δxi
∗ µ − ρ(xi)µ|| < δ

3
for

i = 1, 2, ..., n. For x ∈ C there is a set Uj with x ∈ Uj. We have

||δx ∗ µ− ρ(x)µ|| ≤ || δx ∗ µ− δxj
∗ µ||

+ || δxj
∗ µ− ρ(xj)µ||

+ |ρ(x)− ρ(x′)| ||µ|| < ε,

as required. □

Proposition 2.3. Let S be a foundation semigroup with identity, ρ ∈ Ŝ
and let the condition P1(ρ,M) be satisfied. Let {µ1, µ2, ..., µn} be a
finite subset of I0,ρ(Ma(S)). Then for every ε there is ν ∈ Ma(S) with
ϕρ(ν) = 1, ||ν|| ≤ M and ||µi ∗ ν|| < ε, i = 1, ..., n.

Proof. Given ε > 0, there exists a compact subset K of S such that
|µi|(Kc) < ε/4M , i = 1, ..., n. Since the condition P1(ρ,M) satisfy,
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there is some ν ∈ Ma(S) with ϕρ(ν) = 1, ||ν|| ≤ M and

||δx ∗ ν − ρ(x)ν|| < ε

2(1 +N)
, (x ∈ K),

where N = max{||µ1||, ..., ||µn||}.
We note that µi ∈ I0,ρ(Ma(S)) and so ϕρ(µi) =

∫
S
ρ(x) dµi(x) = 0

for i = 1, ..., n. Now, let f ∈ C0(S) with ||f ||∞ = 1, than we have

| < µi ∗ ν, f > | = |
∫
S

< δy ∗ ν, f > dµi(y)|

= |
∫
S

< δy ∗ ν, f > dµi(y)

−
∫
S

< ρ(y)ν, f > dµi(y)|

= |
∫
S

< δy ∗ ν

− ρ(y)ν, f > dµi(y)|

≤
∫
S

||f ||∞||δy ∗ ν − ρ(y)ν|| d|µi|(y)

≤
∫
K

||δy ∗ ν − ρ(y)ν|| d|µi|(y)

+

∫
Kc

||δy ∗ ν − ρ(y)ν|| d|µi|(y)

≤ ε

2(1 +N)

∫
K

d|µi|(y)

+ ||δy ∗ ν − ρ(y)ν||
∫
Kc

d|µi|(y)

≤ ε

2(1 +N)
||µi||+ 2||ν|| |µi|(Kc) < ε.

This implies that ||µi ∗ ν|| < ε, i = 1, ..., n.
□

Theorem 2.4. Let S be a foundation semigroup with identity and ρ ∈
Ŝ. Then I0,ρ(Ma(S)) has a bounded approximate identity bound by M
if and only if P1(ρ,M

′) is satisfied, where M ′ depends only on M and
ρ.

Proof. In order to show that there is an approximate identity in the
codimension one ideal I0,ρ(Ma(S)), we have to prove that for every
finite set {µ1, ..., µn} ⊆ I0,ρ(Ma(S)) and every ε > 0 there is a ν ∈
I0,ρ(Ma(S)) such that ||µi ∗ ν − µi|| < ε for i = 1, ..., n (see [5], P.
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3). Let {µ1, ..., µn} ⊆ I0,ρ(Ma(S)) be a finite set and ε > 0. By
Proposition 2.3, there exists ν ∈ Ma(S) with ϕρ(ν) = 1, ||ν|| ≤ M ′ and
||µi ∗ ν|| < ε/2, i = 1, ..., n.

Let (µα) be a bounded approximate identity for Ma(S) bounded by
one (see [6]), then there is a α0 such that for i = 1, ..., n

||µi ∗ µα − µi|| < ε/2 for all α > α0.

We set λ := µα0 − ν ∗ µα0 . Since

ϕρ(λ) = ϕρ(µα0)− ϕρ(ν)ϕρ(µα0) = 0,

the element λ is in I0,ρ(Ma(S)). Furthermore we have for all i = 1, ..., n

||µi∗λ−µi|| = ||µi∗µα0−µi∗ν∗µα0−µi|| ≤ ||µi∗µα0−µi||+||µi∗ν|| < ε

and ||λ|| = ||µα0 − ν ∗ µα0|| ≤ 1 +M ′. This shows our assertion.
Conversely, Let (υα) be a bounded approximate identity in the codi-

mension one ideal I0,ρ(Ma(S)) with bound M ≥ 0 and let ν ∈ Ma(S)
be a measure with ϕρ(ν) = 1. we define a net by να := ν − ν ∗ υα,
α ∈ Λ. It is clear that ϕρ(να) = 1 and ||να|| ≤ ||ν||(1 +M) := M ′.

Let C ⊆ S be a given compact set ε > 0. By the continuity of the
map x 7→ δx∗|ν| from S intoMa(S) and the continuity of semicharacter

ρ ∈ Ŝ, there exists y1, y2, ..., yn ∈ C and open neighbourhoods Ui :=
U(yi) of yi, i = 1, ..., n with C ⊆

∪
Ui such that

||δy ∗ ν − δyi ∗ ν|| <
ε

3(1 +M)
, |ρ(y)− ρ(yi)| <

ε

3M ′

for all y ∈ Ui, where 1 ≤ i ≤ n. Set νy := δy ∗ ν − ρ(y)ν for all
y ∈ {y1, ..., yn}. It is clear that νy ∈ I0,ρ(Ma(S)). Moreover, we have

δy ∗ να − ρ(y)να = νy − νy ∗ υα.
Since (υα) is an approximate identity for I0,ρ(Ma(S)) there is αo ∈ Λ

with ||νyi − νyi ∗ υα0 || < ε/3 for all i = 1, ..., n, and so ||δyi ∗ να0 −
ρ(yi)να0 || < ε/3 for all i = 1, ..., n. Applying the triangle inequality we
end up with

||δy ∗ να0 − ρ(y)να0 || < ε (y ∈ C).

This completes the proof. □
Before the following theorem, recall that a locally compact founda-

tion semigroup with identity S is left ρ-amenable if there exists a mean
m on L∞(S;Ma(S)) such that m(ρ) = 1 and m(xf) = ρ(x)m(f) for all
x ∈ S and f ∈ L∞(S;Ma(S)).

Theorem 2.5. Let S be a foundation semigroup with identity and ρ ∈
Ŝ. There is a bounded approximate identity with bound M > 0 in
I0,ρ(Ma(S)) if and only if S be left ρ-amenable.
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Proof. Assume there is a bounded approximate identity with bound M
in I0,ρ(Ma(S)). Then by 2.4 the condition P1(ρ,M) is satisfied. For
ε > 0 and a compact set C ⊆ S let µ ∈ Ma(S) according to P1(ρ,M).
We define the functional mε,C on L∞(S;Ma(S)) by

mε,C(f) =

∫
S

f(x) dµ(x).

We have mε,C(ρ) = ϕρ(µ) = 1 and

||mε,C || ≤ ||µ|| ≤ M.

Hence the functionals mε,C are uniformly bounded. Moreover, for
y ∈ S we have

mε,C(yf) =

∫
S

f(yx) dµ(x) =< f, δy ∗ µ > .

Thus

|mε,C(yf)− ρ(y)mε,C(f)| ≤ |
∫
S

< f, δy ∗ µ > − < f, ρ(y)µ >

≤ ||f ||∞||δy ∗ µ− ρ(y)µ|| ≤ ε||f ||∞.

The family of mε,C form a net, where the indices (ε, C) are partially
ordered by

(ε, C) ≤ (ε′, C ′) if ε′ ≤ ε, C ⊂ C ′.

Letm be an accumulation point of this net. Clearly ||m|| ≤ M , m(ρ) =
1 and m(xf) = ρ(x)m(f) for all x ∈ S and f ∈ L∞(S;Ma(S)).

Conversely assume that there exists m ∈ L∞(S;Ma(S))
∗ such that

m(ρ) = 1, ||m|| ≤ M and m(xf) = ρ(x)m(f) for all x ∈ S and f ∈
L∞(S;Ma(S)). By the Goldstine theorem there is a net (µα) ⊆ Ma(S)
bounded byM , such that µα → m in the weak∗ topology. In particular,
we have < µα, ρ >→< m, ρ >. Since m(ρ) = 1 we can assume that
< µα, ρ >= 1 for all α. Let x ∈ S and f ∈ L∞(S;Ma(S)), then we
have

< f, δx ∗ µα >=<x f, µα >→ m(xf) = ρ(x)m(f).

Therefore

< f, δx ∗ µα − ρ(x)µα >→ 0.

Fix x1, ..., xn ∈ S and set Fk,α := δxk
∗ µα − ρ(xk)µα. The m-tuple

Fi = (F1,α, F2,α, ...Fn,α)

forms a net weakly convergent to 0 in the product space Ma(S) ×
Ma(S) × ... ×Ma(S). It follows from Corollary 14, P. 422 of [3], that
there is a sequence of convex combinations of Fi convergent to zero in
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norm. Hence for every ε > 0 there is a measure µ ∈ Ma(S), a convex
linear combination of µα, such that ϕρ(µ) = 1, ||µ|| ≤ M and

||δx ∗ µ− ρ(x)µ|| < ε (i = 1, ..., n).

The proof is complete be Proposition 2.2. □
The next theorem will give us a sufficient condition for the exis-

tence of an approximate identity in I0,ρ(Ma(S)) which is eventually
unbounded.

Theorem 2.6. Let S be a foundation semigroup with identity and ρ ∈
Ŝ. Then I0,ρ(Ma(S)) has an approximate identity if for any ε > 0 there
exists some µ ∈ Ma(S) such that ϕρ(µ) = 1 and ||δy ∗ µ − ρ(y)µ|| < ε
for all y ∈ S.

Proof. Let {µ1, ..., µn} ⊆ I0,ρ(Ma(S)) and every δ > 0. Set N :=
max{||µ1||, ..., ||µn||} and ε = δ

1+N
. Choose some µ ∈ Ma(S) such that

ϕρ(µ) = 1 and ||δy ∗ µ − ρ(y)µ|| < ε for all y ∈ S. Then an argument
similar to Proposition 2.3 implies that ||µi ∗ µ|| < δ for i = 1, ..., n.
Now we proceed with as in the proof of Theorem 2.4 Completes the
proof.

□
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