Journal of Algebraic Systems Vol. 2, No. 1, (2014), pp 53-59

APPROXIMATE IDENTITY IN CLOSED CODIMENSION ONE IDEALS OF SEMIGROUP ALGEBRAS

B. MOHAMADZADEH

ABSTRACT. Let S be a foundation semigroup with identity and $M_a(S)$ be its semigroup algebra. In this paper, we give necessary and sufficient conditions for the existence of a bounded approximate identity in closed codimension one ideals of semigroup algebra $M_a(S)$ of a locally compact topological foundation semigroup with identity.

1. INTRODUCTION

Throughout this paper, S denotes a locally compact Hausdorff topological semigroup. The space of all bounded complex regular Borel measures on S is denoted by M(S). This space with the convolution multiplication * and the total variation norm defines a Banach algebra. The space of all measures $\mu \in M(S)$ for which the maps $x \mapsto \delta_x * |\mu|$ and $x \mapsto |\mu| * \delta_x$ from S into M(S) are weakly continuous is denoted by $M_a(S)$ (or $\widetilde{L}(S)$ as in [1]), where δ_x denotes the Dirac measure at x. It is well-known that $M_a(S)$ is a closed two-sided L-ideal of M(S)(see for example [1]). S is called *foundation semigroup* if S coincides with the closure of the set $\bigcup \{ \text{supp}(\mu) : \mu \in M_a(S) \}$. This family of semigroups is quite extensive and it contains topological groups and discrete semigroups as elementary examples.

MSC(2010): Primary: 43A60, 22A20

Keywords: Approximate identity, Codimension one ideal, Foundation semigroup, Semigroup algebras.

Received: 17 July 2013, Revised: 9 March 2014.

MOHAMADZADEH

Denote by $L^{\infty}(S, M_a(S))$ the set of all complex-valued bounded functions g on S that are μ -measurable for all $\mu \in M_a(S)$. We identify functions in $L^{\infty}(S, M_a(S))$ that agree μ -almost everywhere for all $\mu \in$ $M_a(S)$. For every $g \in L^{\infty}(S; M_a(S))$, define $||g||_{\infty} = \sup\{ ||g||_{\infty,|\mu|} :$ $\mu \in M_a(S) \}$, where $||.||_{\infty,|\mu|}$ denotes the essential supremum norm with respect to $|\mu|$. Observe that $L^{\infty}(S, M_a(S))$ with the complex conjugation as involution, the pointwise operations and the norm $||.||_{\infty}$ is a commutative C^* -algebra. The duality

$$\tau(g)(\mu) := \mu(g) = \int_S g \ d\mu$$

defines a linear mapping τ from $L^{\infty}(S, M_a(S))$ into $M_a(S)^*$. It is wellknown that if S is a foundation semigroup with identity, then τ is an isometric isomorphism of $L^{\infty}(S, M_a(S))$ onto $M_a(S)^*$; see Proposition 3.6 of Sleijpen [8].

Let S be a foundation semigroup with identity. A semicharacter ρ is a non-zero complex function on S satisfying $\rho(xy) = \rho(x)\rho(y)$ for all $x, y \in S$. We denote by \hat{S} the set of all bonded and continuous semicharacters on S. For each bounded and continuous semicharacters $\rho \in \hat{S}$, denote by $I_{0,\rho}(M(S))$ the closed codimension one ideal { $\mu \in$ $M(S) : \phi_{\rho}(\mu) := \int_{S} \rho(x) d\mu(x) = 0$ }, and write

$$I_{0,\rho}(M_a(S)) := M_a(S) \cap I_{0,\rho}(M(S)).$$

From Lemma 2.2 of [7], we have there exists a bijective between \hat{S} and the set of all closed codimension one ideal in semigroup algebras $M_a(S)$. Indeed; any closed codimension one ideal of $M_a(S)$ is the form $I_{0,\rho}(M_a(S))$ for some semicharacter $\rho \in \hat{S}$.

Remark 1.1. Note that Lemma 2.2 of [7] is not in general valid if the hypothesis that S is foundation is dropped. For example, the set S = [0, 1] with the operation $xy = min\{x, y\}$ and the usual topology of the real line is a non-foundation compact semigroup with identity such that $\hat{S} = \{\chi_S\}$, where $\chi_S(x) = 1$ for all $x \in S$, but $M_a(S)$ has not any codimension one ideal.

Recall that a net $(v_{\alpha}) \subseteq I_{0,\rho}(M_a(S))$ is a bounded approximate identity for $I_{0,\rho}(M_a(S))$ if there is a constant M > 0 such that $||v_{\alpha}|| \leq M$ for all α and $||v * v_{\alpha} - v|| \to 0$ for all $v \in I_{0,\rho}(M_a(S))$.

In this paper, we give necessary and sufficient condition for the existence of a bounded approximate identity in closed codimension one ideal $I_{0,\rho}(M_a(S))$ in semigroup algebras $M_a(S)$ of a foundation semigroup S with identity.

54

2. The results

In proving our result we will make use of a modification of the following condition, in the group case known as Reiter's condition P_1 . Recall that a locally compact semigroup S satisfy the condition P_1 , if for each $\varepsilon > 0$ and every compact subset $C \subseteq S$ there exists some positive measure $\mu \in M_a(S)$ with the properties $\|\mu\| \le 1$ and $\|\delta_x * \mu - \mu\| < \varepsilon$ for all $x \in C$.

Definition 2.1. We say that the P_1 -condition with bound M is satisfy in $\rho \in \hat{S}$ ($P_1(\alpha, M)$ -condition for short) if for each $\varepsilon > 0$ and every compact subset C of S there exists some $\mu \in M_a(S)$ such that $\phi_{\rho}(\mu) =$ 1, $||\mu|| \leq M$ and $||\delta_x * \mu - \rho(x)\mu|| < \varepsilon$ for all $x \in C$.

We also, say that the P_1^* -condition with bound M is satisfy $(P_1^*(\alpha, M)$ for short) if the above condition happens for a finite subset C of S.

Proposition 2.2. The condition $P_1(\rho, M')$ follows from the condition $P_1^*(\rho, M)$, where M' depends only on M and ρ .

Proof. Let $\mu \in M_a(S)$, $C \subseteq S$ be a compact subset and $\varepsilon > 0$. Since S is a foundation semigroup with identity, the map $x \mapsto \delta_x * |\mu|$ from S into $M_a(S)$ are norm continuous, and so we can choose finitely many open neighbourhoods $U_i = U(x_i)$, i = 1, 2, ..., n are such that $C \subseteq \bigcup U_i$ and

$$|\rho(x) - \rho(x')| < \frac{\varepsilon}{3M||\mu||} , \qquad ||\delta_x * \mu - \delta_{x'} * \mu|| < \frac{\varepsilon}{3M}$$

for $x, x' \in U_i$.

The condition condition $P_1^*(\rho, M')$ ensures the existence of then $\mu \in M_a(S)$ with $\phi_\rho(\mu) = 1$, $||\mu|| \leq M$ and $||\delta_{x_i} * \mu - \rho(x_i)\mu|| < \frac{\delta}{3}$ for i = 1, 2, ..., n. For $x \in C$ there is a set U_j with $x \in U_j$. We have

$$\begin{aligned} ||\delta_x * \mu - \rho(x)\mu|| &\leq ||\delta_x * \mu - \delta_{x_j} * \mu|| \\ &+ ||\delta_{x_j} * \mu - \rho(x_j)\mu|| \\ &+ |\rho(x) - \rho(x')| ||\mu|| < \varepsilon, \end{aligned}$$

as required.

Proposition 2.3. Let S be a foundation semigroup with identity, $\rho \in \hat{S}$ and let the condition $P_1(\rho, M)$ be satisfied. Let $\{\mu_1, \mu_2, ..., \mu_n\}$ be a finite subset of $I_{0,\rho}(M_a(S))$. Then for every ε there is $\nu \in M_a(S)$ with $\phi_{\rho}(\nu) = 1$, $||\nu|| \leq M$ and $||\mu_i * \nu|| < \varepsilon$, i = 1, ..., n.

Proof. Given $\varepsilon > 0$, there exists a compact subset K of S such that $|\mu_i|(K^c) < \varepsilon/4M$, i = 1, ..., n. Since the condition $P_1(\rho, M)$ satisfy,

there is some $\nu \in M_a(S)$ with $\phi_{\rho}(\nu) = 1$, $||\nu|| \leq M$ and

$$||\delta_x * \nu - \rho(x)\nu|| < \frac{\varepsilon}{2(1+N)}, \ (x \in K),$$

where $N = \max\{||\mu_1||, ..., ||\mu_n||\}.$

We note that $\mu_i \in I_{0,\rho}(M_a(S))$ and so $\phi_\rho(\mu_i) = \int_S \rho(x) \ d\mu_i(x) = 0$ for i = 1, ..., n. Now, let $f \in C_0(S)$ with $||f||_{\infty} = 1$, than we have

$$\begin{split} |<\mu_{i}*\nu, f>| &= |\int_{S} <\delta_{y}*\nu, f> d\mu_{i}(y)| \\ &= |\int_{S} <\delta_{y}*\nu, f> d\mu_{i}(y) \\ &- \int_{S} <\rho(y)\nu, f> d\mu_{i}(y)| \\ &= |\int_{S} <\delta_{y}*\nu \\ &- \rho(y)\nu, f> d\mu_{i}(y)| \\ &\leq \int_{S} ||f||_{\infty} ||\delta_{y}*\nu - \rho(y)\nu|| d|\mu_{i}|(y) \\ &\leq \int_{K} ||\delta_{y}*\nu - \rho(y)\nu|| d|\mu_{i}|(y) \\ &+ \int_{K^{c}} ||\delta_{y}*\nu - \rho(y)\nu|| d|\mu_{i}|(y) \\ &\leq \frac{\varepsilon}{2(1+N)} \int_{K} d|\mu_{i}|(y) \\ &+ ||\delta_{y}*\nu - \rho(y)\nu|| \int_{K^{c}} d|\mu_{i}|(y) \\ &\leq \frac{\varepsilon}{2(1+N)} ||\mu_{i}|| + 2||\nu|| ||\mu_{i}|(K^{c}) < \varepsilon. \end{split}$$

This implies that $||\mu_i * \nu|| < \varepsilon, i = 1, ..., n.$

Theorem 2.4. Let S be a foundation semigroup with identity and $\rho \in \hat{S}$. Then $I_{0,\rho}(M_a(S))$ has a bounded approximate identity bound by M if and only if $P_1(\rho, M')$ is satisfied, where M' depends only on M and ρ .

Proof. In order to show that there is an approximate identity in the codimension one ideal $I_{0,\rho}(M_a(S))$, we have to prove that for every finite set $\{\mu_1, ..., \mu_n\} \subseteq I_{0,\rho}(M_a(S))$ and every $\varepsilon > 0$ there is a $\nu \in I_{0,\rho}(M_a(S))$ such that $||\mu_i * \nu - \mu_i|| < \varepsilon$ for i = 1, ..., n (see [5], P.

3). Let $\{\mu_1, ..., \mu_n\} \subseteq I_{0,\rho}(M_a(S))$ be a finite set and $\varepsilon > 0$. By Proposition 2.3, there exists $\nu \in M_a(S)$ with $\phi_{\rho}(\nu) = 1$, $||\nu|| \leq M'$ and $||\mu_i * \nu|| < \varepsilon/2$, i = 1, ..., n.

Let (μ_{α}) be a bounded approximate identity for $M_a(S)$ bounded by one (see [6]), then there is a α_0 such that for i = 1, ..., n

 $||\mu_i * \mu_\alpha - \mu_i|| < \varepsilon/2 \text{ for all } \alpha > \alpha_0.$

We set $\lambda := \mu_{\alpha_0} - \nu * \mu_{\alpha_0}$. Since

$$\phi_{\rho}(\lambda) = \phi_{\rho}(\mu_{\alpha_0}) - \phi_{\rho}(\nu)\phi_{\rho}(\mu_{\alpha_0}) = 0,$$

the element λ is in $I_{0,\rho}(M_a(S))$. Furthermore we have for all i = 1, ..., n $||\mu_i * \lambda - \mu_i|| = ||\mu_i * \mu_{\alpha_0} - \mu_i * \nu * \mu_{\alpha_0} - \mu_i|| \le ||\mu_i * \mu_{\alpha_0} - \mu_i|| + ||\mu_i * \nu|| < \varepsilon$ and $||\lambda|| = ||\mu_{\alpha_0} - \nu * \mu_{\alpha_0}|| \le 1 + M'$. This shows our assertion.

Conversely, Let (v_{α}) be a bounded approximate identity in the codimension one ideal $I_{0,\rho}(M_a(S))$ with bound $M \ge 0$ and let $\nu \in M_a(S)$ be a measure with $\phi_{\rho}(\nu) = 1$. we define a net by $\nu_{\alpha} := \nu - \nu * v_{\alpha}$, $\alpha \in \Lambda$. It is clear that $\phi_{\rho}(\nu_{\alpha}) = 1$ and $||\nu_{\alpha}|| \le ||\nu||(1+M) := M'$.

Let $C \subseteq S$ be a given compact set $\varepsilon > 0$. By the continuity of the map $x \mapsto \delta_x * |\nu|$ from S into $M_a(S)$ and the continuity of semicharacter $\rho \in \hat{S}$, there exists $y_1, y_2, ..., y_n \in C$ and open neighbourhoods $U_i := U(y_i)$ of $y_i, i = 1, ..., n$ with $C \subseteq \bigcup U_i$ such that

$$||\delta_y * \nu - \delta_{y_i} * \nu|| < \frac{\varepsilon}{3(1+M)}, \quad |\rho(y) - \rho(y_i)| < \frac{\varepsilon}{3M'}$$

for all $y \in U_i$, where $1 \leq i \leq n$. Set $\nu_y := \delta_y * \nu - \rho(y)\nu$ for all $y \in \{y_1, ..., y_n\}$. It is clear that $\nu_y \in I_{0,\rho}(M_a(S))$. Moreover, we have

$$\delta_y * \nu_\alpha - \rho(y)\nu_\alpha = \nu_y - \nu_y * \upsilon_\alpha.$$

Since (ν_{α}) is an approximate identity for $I_{0,\rho}(M_a(S))$ there is $\alpha_o \in \Lambda$ with $||\nu_{y_i} - \nu_{y_i} * \nu_{\alpha_0}|| < \varepsilon/3$ for all i = 1, ..., n, and so $||\delta_{y_i} * \nu_{\alpha_0} - \rho(y_i)\nu_{\alpha_0}|| < \varepsilon/3$ for all i = 1, ..., n. Applying the triangle inequality we end up with

$$||\delta_y * \nu_{\alpha_0} - \rho(y)\nu_{\alpha_0}|| < \varepsilon \qquad (y \in C).$$

This completes the proof.

Before the following theorem, recall that a locally compact foundation semigroup with identity S is left ρ -amenable if there exists a mean m on $L^{\infty}(S; M_a(S))$ such that $m(\rho) = 1$ and $m(_x f) = \rho(x)m(f)$ for all $x \in S$ and $f \in L^{\infty}(S; M_a(S))$.

Theorem 2.5. Let S be a foundation semigroup with identity and $\rho \in \hat{S}$. There is a bounded approximate identity with bound M > 0 in $I_{0,\rho}(M_a(S))$ if and only if S be left ρ -amenable.

Proof. Assume there is a bounded approximate identity with bound M in $I_{0,\rho}(M_a(S))$. Then by 2.4 the condition $P_1(\rho, M)$ is satisfied. For $\varepsilon > 0$ and a compact set $C \subseteq S$ let $\mu \in M_a(S)$ according to $P_1(\rho, M)$. We define the functional $m_{\varepsilon,C}$ on $L^{\infty}(S; M_a(S))$ by

$$m_{\varepsilon,C}(f) = \int_{S} f(x) \ d\mu(x)$$

We have $m_{\varepsilon,C}(\rho) = \phi_{\rho}(\mu) = 1$ and

$$||m_{\varepsilon,C}|| \le ||\mu|| \le M.$$

Hence the functionals $m_{\varepsilon,C}$ are uniformly bounded. Moreover, for $y \in S$ we have

$$m_{\varepsilon,C}(yf) = \int_{S} f(yx) \, d\mu(x) = < f, \delta_y * \mu > .$$

Thus

$$|m_{\varepsilon,C}(yf) - \rho(y)m_{\varepsilon,C}(f)| \leq |\int_{S} \langle f, \delta_{y} * \mu \rangle - \langle f, \rho(y)\mu \rangle \\ \leq ||f||_{\infty} ||\delta_{y} * \mu - \rho(y)\mu|| \leq \varepsilon ||f||_{\infty}.$$

The family of $m_{\varepsilon,C}$ form a net, where the indices (ε, C) are partially ordered by

$$(\varepsilon, C) \leq (\varepsilon', C')$$
 if $\varepsilon' \leq \varepsilon, C \subset C'$.

Let *m* be an accumulation point of this net. Clearly $||m|| \leq M$, $m(\rho) = 1$ and $m(xf) = \rho(x)m(f)$ for all $x \in S$ and $f \in L^{\infty}(S; M_a(S))$.

Conversely assume that there exists $m \in L^{\infty}(S; M_a(S))^*$ such that $m(\rho) = 1$, $||m|| \leq M$ and $m(xf) = \rho(x)m(f)$ for all $x \in S$ and $f \in L^{\infty}(S; M_a(S))$. By the Goldstine theorem there is a net $(\mu_{\alpha}) \subseteq M_a(S)$ bounded by M, such that $\mu_{\alpha} \to m$ in the weak* topology. In particular, we have $\langle \mu_{\alpha}, \rho \rangle \to \langle m, \rho \rangle$. Since $m(\rho) = 1$ we can assume that $\langle \mu_{\alpha}, \rho \rangle = 1$ for all α . Let $x \in S$ and $f \in L^{\infty}(S; M_a(S))$, then we have

$$\langle f, \delta_x * \mu_\alpha \rangle = \langle x f, \mu_\alpha \rangle \rightarrow m(xf) = \rho(x)m(f).$$

Therefore

 $< f, \, \delta_x * \mu_\alpha - \rho(x)\mu_\alpha > \rightarrow 0.$

Fix $x_1, ..., x_n \in S$ and set $F_{k,\alpha} := \delta_{x_k} * \mu_{\alpha} - \rho(x_k)\mu_{\alpha}$. The *m*-tuple

$$F_i = (F_{1,\alpha}, F_{2,\alpha}, \dots F_{n,\alpha})$$

forms a net weakly convergent to 0 in the product space $M_a(S) \times M_a(S) \times \ldots \times M_a(S)$. It follows from Corollary 14, P. 422 of [3], that there is a sequence of convex combinations of F_i convergent to zero in

norm. Hence for every $\varepsilon > 0$ there is a measure $\mu \in M_a(S)$, a convex linear combination of μ_{α} , such that $\phi_{\rho}(\mu) = 1$, $||\mu|| \leq M$ and

$$||\delta_x * \mu - \rho(x)\mu|| < \varepsilon \quad (i = 1, ..., n).$$

The proof is complete be Proposition 2.2.

The next theorem will give us a sufficient condition for the existence of an approximate identity in $I_{0,\rho}(M_a(S))$ which is eventually unbounded.

Theorem 2.6. Let S be a foundation semigroup with identity and $\rho \in \hat{S}$. Then $I_{0,\rho}(M_a(S))$ has an approximate identity if for any $\varepsilon > 0$ there exists some $\mu \in M_a(S)$ such that $\phi_{\rho}(\mu) = 1$ and $||\delta_y * \mu - \rho(y)\mu|| < \varepsilon$ for all $y \in S$.

Proof. Let $\{\mu_1, ..., \mu_n\} \subseteq I_{0,\rho}(M_a(S))$ and every $\delta > 0$. Set $N := \max\{||\mu_1||, ..., ||\mu_n||\}$ and $\varepsilon = \frac{\delta}{1+N}$. Choose some $\mu \in M_a(S)$ such that $\phi_{\rho}(\mu) = 1$ and $||\delta_y * \mu - \rho(y)\mu|| < \varepsilon$ for all $y \in S$. Then an argument similar to Proposition 2.3 implies that $||\mu_i * \mu|| < \delta$ for i = 1, ..., n. Now we proceed with as in the proof of Theorem 2.4 Completes the proof.

References

- A. C. Baker and J. W. Baker, Algebra of measures on a locally compact semigroup III, J. London Math. Soc. 4 (1972), 685-695.
- F. F. Bonsall and J. Duncan, *Complete normed algebras*, Springer-Verlag, New York, 1973.
- 3. D. Dunford and J. T. Schwartz, *Linear operators I*, Wiley, New York, 1988.
- 4. H. A. Dzinotyiweyi, *The analogue of the group algebra for toplogical semigroups*, Pitman Research Notes in Mathematics Series, London, 1984.
- R. S. Doran and J. Wichmann, Approximate identities and factorization in Banach modules, Lecture Notes in Mathematics, 768, Springer-Berlin, 1979.
- 6. M. Lashkarizadeh Bami, On the multipliers of $(M_a(S), L^{\infty}(S, M_a(S)))$ of a foundation semigroup S, Math. Nachr. 181 (1996), 73-80.
- R. Nasr-Isfahani, Factorization in some ideals of Lau algebras with applications to semigroup algebras, *Bull. Belg. Math. Soc.* 7 (2000), 429-433.
- G. L. Sleijpen, The dual of the space of measures with continuous translations, Semigroup Forum 22 (1981), 139-150.

B. Mohammadzadeh

Department of Mathematics, Babol University of Technology, Babol, Iran. Email: b.mohammadzadeh@nit.ac.ir