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LIFTING MODULES WITH RESPECT TO A
PRERADICAL

T. AMOUZEGAR

Abstract. Let M be a right module over a ring R, τM a pre-
radical on σ[M ], and N ∈ σ[M ]. In this note we show that if
N1, N2 ∈ σ[M ] are two τM -lifting modules such that Ni is Nj-
projective (i, j = 1, 2), then N = N1 ⊕ N2 is τM -lifting. We
investigate when homomorphic image of a τM -lifting module is
τM -lifting.

1. Introduction

Throughout this paper R will denote an arbitrary associative ring
with identity and all modules will be unitary right R-modules. LetM ∈
Mod-R. By σ[M ] we mean the full subcategory of Mod-R whose objects
are submodules of M -generated modules. For any module M , τM will
denote a preradical in σ[M ]. Recall that A is a τM -cosmall submodule
of B in N if B/A ⊆ τM(N/A). According to [2], a module N is called
τM -lifting if for every submodule K of N , there is a decomposition
K = A⊕B such that A is a direct summand of N and B ⊆ τM(N). In
this note, we study some properties of τM -lifting modules, in particular,
we survey when direct sum of τM -lifting modules is τM -lifting.

2. Main results

A module N is called τM -lifting if for every submodule K of N , there
is a decomposition K = A⊕B such that A is a direct summand of N
and B ⊆ τM(N).
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Lemma 2.1. Let N ∈ σ[M ]. Then the following are equivalent:

(1) N is τM -lifting;

(2) For every submodule K of N , there is a direct summand A of
N such that A ⊆ K and K/A ⊆ τM(N/A);

(3) For every submodule K of N , there is a decomposition N =
A⊕B such that A ⊆ K and B ∩K ⊆ τM(N).

Proof. See [2, Prposition 2.8]. □
Theorem 2.2. Let N1, N2 ∈ σ[M ] be two τM -lifting modules such that
Ni is Nj-projective (i, j = 1, 2). Then N = N1 ⊕N2 is τM -lifting.

Proof. Let A be a submodule of N . Consider the submodule N1 ∩
(A + N2) of N1. Since N1 is τM -lifting, there exists a decomposition
N1 = A1⊕B1 such that A1 ≤ N1∩ (A+N2) and N1∩ (A+N2)∩B1 =
B1 ∩ (A + N2) ⊆ τM(N1). Then N = N1 ⊕ N2 = A1 ⊕ B1 ⊕ N2 =
A + (N2 ⊕ B1). As N2 ∩ (A + B1) ≤ N2 and N2 is τM -lifting, there
exists a decomposition N2 = A2 ⊕ B2 such that A2 ≤ N2 ∩ (A +
B1) and B2 ∩ (N2 ∩ (A + B1)) = B2 ∩ (A + B1) ⊆ τM(N2). Since
A2 ≤ A + B1, we have N = A + B1 ⊕ N2 = A + B1 ⊕ B2. But
N = (A1 ⊕A2)⊕ (B1 ⊕B2) and A1 ⊕A2 is (B1 ⊕B2)-projective, thus
there exists A′ ≤ A such that N = A′ ⊕ B1 ⊕ B2 by [3, 41.14]. Since
(B1 ∩ (A+B2))⊕ (B2 ∩ (A+B1)) ⊆ τM(N1)⊕ τM(N2) = τM(N) then
A ∩ (B1 ⊕ B2) ⊆ (B1 ∩ (A + B2))⊕ (B2 ∩ (A + B1)) ⊆ τM(N). Hence
N is τM -lifting. □
Corollary 2.3. Let N1, N2 ∈ σ[M ] be two projective τM -lifting mod-
ules. Then N = N1 ⊕N2 is τM -lifting.

Proof. By Theorem 2.2. □
Recall that a submodule K of M is called fully invariant (denoted

by K⊴M ) if λ(K) ⊆ K for all λ ∈ EndR(M). A module N ∈ σ[M ] is
called a duo module provided every submodule of N is fully invariant.

Proposition 2.4. Let N ∈ σ[M ] and N = N1 ⊕ N2 be a duo module
such that N1 and N2 are two τM -lifting modules. Then N is τM -lifting.

Proof. Let A be a submodule of N . As A is fully invariant, we have
A = (A ∩ N1) ⊕ (A ∩ N2). Since N1 and N2 are τM -lifting, there
exist decompositions A ∩ N1 = A11 ⊕ A12 and A ∩ N2 = A21 ⊕ A22,
where A11 is a direct summand of N1, A21 is a direct summand of N2,
A12 ⊆ τM(N1) and A22 ⊆ τM(N2). Then A11⊕A21 is a direct summand
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of N . Moreover, A12 ⊕ A22 ⊆ τM(N1) ⊕ τM(N2) = τM(N). Therefore
N is τM -lifting. □

A preradical τM is called a hereditary preradical if for any submodule
K of N ∈ σ[M ], τM(K) = τM(N) ∩K. But it is well known that if K
is a direct summand of N , then τM(K) = τM(N) ∩K.

Proposition 2.5. If τM is a hereditary preradical, then every submod-
ule of a τM -lifting module is τM -lifting.

Proof. Let N be τM -lifting and K ≤ N . If H ≤ K ≤ N , then there
exists a decomposition H = A ⊕ B such that A is a direct summand
of N and B ⊆ τM(N). Thus A is a direct summand of K and B ⊆
τM(N) ∩H = τM(H) ⊆ τM(K). Therefore K is τM -lifting. □
Corollary 2.6. If τM is hereditary, then every direct summand of a
τM -lifting module is τM -lifting.

Proof. By Proposition 2.5. □
Proposition 2.7. Let τM be a hereditary preradical. Then the follow-
ing conditions are equivalent:

(i) Every module is τM -lifting.
(ii) Every injective module is τM -lifting.

Proof. By Proposition 2.5 and that every module is contained in an
injective module. □
Proposition 2.8. Let N ∈ σ[M ] be a τM -lifting module. Then:

(i) If K is a fully invariant submodule of N , then N/K is τM -lifting.
(ii) If K is a submodule of N such that the sum of K with any

nonzero direct summand of N is a direct summand of N , then N/K is
τM -lifting.

Proof. (i) Let A/K be a submodule of N/K. Since N is τM -lifting,
there exists a decomposition N = H⊕H ′ such that A/H ⊆ τM(N/H).
As K is fully invariant, N/K = (H + K)/K ⊕ (H ′ + K)/K. But
[A/K]/[(K + H)/K] ≃ [A/H]/[(K + H)/H] ⊆ [τM(N/H)]/[(K +
H)/H] ⊆ τM([N/H]/[(K+H)/H]) ≃ τM([N/K]/[(K+H)/K]). There-
fore N/K is τM -lifting.

(ii) Let A be a submodule of N such that K ≤ A. If A ⊆ τM(N),
then A/K ⊆ τM(N/K). Suppose that A ̸⊆ τM(N). Since N is τM -
lifting, there exists a nonzero direct summandH ofN such that A/H ⊆
τM(N/H). By hypothesis, K+H is a direct summand of N since K ̸=
0. It is obvious that (K+H)/K is also a direct summand ofN/K. Since
[A/K]/[(K + H)/K] ≃ [A/H]/[(K + H)/H], [A/K]/[(K + H)/K] is
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isomorphism with a submodule of τM([N/K]/[(K+H)/K]). Therefore
N/K is τM -lifting. □
Theorem 2.9. Let N ∈ σ[M ] and N = N1 ⊕ N2. Assume that N1 is
τM -lifting and N2 is N1-projective. Then N is τM -lifting if and only
if for every submodule K of N such that K + N1 ̸= N , there exists a
direct summand H of N such that K/H ⊆ τM(N/H).

Proof. ⇒ Clear.
⇐ Let K be a submodule of N such that K + N1 = N . Since

N2 is N1-projective, there exists a submodule K ′ ≤ K such that
N = K ′⊕N1. Since N/K ′ ≃ N1, N/K ′ is τM -lifting. Then there exists
a direct summand H/K ′ of N/K ′ such thatK/H ≃ (K/K ′)/(H/K ′) ⊆
τM([N/K ′]/[H/K ′]) ≃ τM(N/H). Obviously, H is also a direct sum-
mand of N . Thus N is τM -lifting. □
Proposition 2.10. An indecomposable module N in σ[M ] is τM -lifting
if and only if for every proper submodule K of N we have K ⊆ τM(N).

Proof. Clear. □
A preradical τM is called a cohereditary preradical if for any submod-

ule K of N ∈ σ[M ], τM(N/K) = (τM(N)+K)/K. We denote χτM (N)
to be the sum of all submodules Ki(i ∈ I) of N such that for every
i ∈ I, there exists a submodule Hi of τM(N) with Ki ≃ Hi.

Proposition 2.11. Let τM be a cohereditary preradical and N ∈ σ[M ]
be a τM -lifting module. Then the module N/χτM (N) is semisimple.

Proof. Let X = χτM (N). If K/X is a submodule of N/X, then there
exist submodules H,H ′ of N such that N = H ⊕ H ′, H ⊆ K and
K/H ⊆ τM(N/H). Hence K = H ⊕ (K ∩ H ′) and K ∩ H ′ ≃ [H ⊕
(K ∩ H ′)]/H = K/H ⊆ τM(N/H) = [τM(N) + H]/H = [τM(H ′) ⊕
H]/H ≃ τM(H ′). Thus K ∩H ′ ⊆ X, and so N/X = (K/X) ⊕ [(H ′ +
X)/X]. That is, K/X is a direct summand of N/X. Therefore N/X
is semisimple. □

Recall that K is an essential submodule of M if, for all 0 ̸= L ≤
M,L ∩N ̸= 0.

Corollary 2.12. Assume that τM is a cohereditary preradical. Let
N ∈ σ[M ] be a τM -lifting module and for every simple submodule K of
N we have K ⊆ τM(N). Then χτM (N) is an essential submodule of N .

Proof. Let K ∩ χτM (N) = 0. Then K embeds in N/χτM (N). By
Proposition 2.11, N is semisimple and so by assumption K ⊆ χτM (N).
Hence K = 0. Thus χτM (N) is an essential submodule of N . □
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Lemma 2.13. Let N ∈ σ[M ] be a τM -lifting module and K a submod-
ule of N . Then either K contains a nonzero submodule H such that
H ⊆ τM(N) or K is a semisimple direct summand of N .

Proof. Suppose that K does not contain a nonzero submodule H such
that H ⊆ τM(N). Let P be a submodule of K. Then P = A ⊕ B for
some direct summand A of N and B ⊆ τM(N). But B = 0, and so
P = A. Therefore K is a semisimple direct summand of N . □
Proposition 2.14. Let N ∈ σ[M ] be a τM -lifting module. Then there
exist a semisimple submodule N1 and a submodule N2 of N such that
N = N1 ⊕ N2 and every nonzero submodule of N2 contains a nonzero
submodule H such that H is isomorphism to a submodule of τM(N).

Proof. By Zorn,s Lemma, N contains a submodule N1 maximal with
respect to the property that it does not contain a nonzero submodule
A such that A ⊆ τM(N). By Lemma 2.13, N1 is a semisimple direct
summand of N . Thus there exists a submodule N2 such that N =
N1 ⊕N2. Let P be a nonzero submodule of N2. Then N1 ⊕P contains
a nonzero submodule K such that K ⊆ τM(N), by the choice of N1.
But K ∩ N1 ⊆ K ⊆ τM(N) and so K ∩ N1 = 0. Therefore K embeds
in P as that is required. □
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