BEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES

M. IRANMANESH* AND F. SOLIMANI

Abstract

We study the thoery of best approximation in tensor product space and the direct sum of some lattice normed spaces \mathbb{X}_{i}. We introduce quasi tensor product space and discuss about the relation between tensor product space and this new space which we denote it by $\mathbb{X} \boxtimes \mathbb{Y}$. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downward or upward and we call them I_{m}-quasi downward or I_{m}-quasi upward. We show that these sets can be interpreted as downward or upward sets. The relation of these sets with downward and upward subsets of the direct sum of lattice normed spaces \mathbb{X}_{i} is discussed. This will be done by homomorphism functions. Finally, we introduce the best approximation of these sets.

1. Introduction

The theory of best approximation by elements of convex sets in the normed linear spaces, which has many important applications in mathematics and some other sciences, is well developed. However, convexity is sometimes a very restrictive assumption, so there is a clear need to study the best approximation by not necessarily convex sets. In this direction, Rubinov and Singer [7, 8] developed a theory of best approximation by elements of so-called normal sets in the non-negative orient \mathbb{R}_{+}^{I}, of a finite-dimensional coordinate space \mathbb{R}^{I} endowed with the

[^0]max- norm. Martinez-Legaz, Rubinov and Singer in [3] have developed a theory of best approximation of downward subsets of the space \mathbb{R}^{I}. Downward sets play an important role in some parts of mathematical economics (see e.g., [2]) and game theory. Also Mohebi and Rubinov [5] generalized these concepts and developed the theory of best approximation by closed normal and downward subsets of a Banach lattice \mathbb{X} with a strong unit 1. Therefore study of these concepts in more detail and also examination of the effect of some special operators on normal and downward subsets of Banach lattice spaces, are useful for mathematicians. We use the concept of best approximation by downward subsets of Banach lattice \mathbb{X}, to introduce a theory of best approximation in two new spaces which we call them, quasi tensor product space and direct sum of lattice normed spaces. The structure of the paper is as follows: In Section 3 we present some preliminary results. In Section 2 we investigate best approximation in quasi tensor product of lattice normed spaces by elements of downward sets. In particular, we show that the least element of the set of best approximations exists. In Section 4 we investigate best approximation in direct sum of lattice normed spaces by elements which are called $" I_{m}$-quasi downward sets". Then we discuss about the relation of I_{m}-quasi downward sets, downward sets and upward sets. In Section 5 we define positive I_{m}-quasi downward sets and discuss about its relations to I_{m}-quasi downward sets.

2. Preliminaries

Let \mathbb{X} be a normed vector space. For a nonempty subset \mathbb{W} of \mathbb{X} and $x \in \mathbb{X}$, define

$$
\begin{equation*}
d(x, \mathbb{W})=i n f_{w \in \mathbb{W}}\|x-w\| \tag{1}
\end{equation*}
$$

Recall that a point $w_{0} \in \mathbb{W}$ is called a best approximation for $x \in \mathbb{X}$ if

$$
\begin{equation*}
\left\|x-w_{0}\right\|=d(x, \mathbb{W}) \tag{2}
\end{equation*}
$$

If each $x \in \mathbb{X}$ has at least one best approximation $w_{0} \in \mathbb{W}$, then \mathbb{W} is called a proximinal subset of \mathbb{X}. Let $\mathbb{W} \subseteq \mathbb{X}$ and $x \in \mathbb{X}$, we denote by $\mathbf{P}_{\mathbb{W}}(x)$, the set of all best approximations of x in \mathbb{W}. Therefore

$$
\begin{equation*}
\mathbf{P}_{\mathbb{W}}(x):=\{w \in \mathbb{W}:\|x-w\|=d(x, \mathbb{W})\} . \tag{3}
\end{equation*}
$$

It is well-known that if \mathbb{W} is closed then $\mathbf{P}_{\mathbf{W}}(x)$ is a closed and bounded subset of \mathbb{X}. If $x \in \mathbb{X}$ then $\mathbf{P}_{\mathbb{W}}(x)$ is located in the boundary of \mathbb{W}. Let \mathbb{X} be a lattice vector space with the strong unit $\mathbf{1}$. Using $\mathbf{1}$, we define a norm on \mathbb{X} by

$$
\begin{equation*}
\|x\|:=\inf \{\lambda \geq 0:|x| \leq \lambda \mathbf{1}\} \tag{4}
\end{equation*}
$$

and notice the ball

$$
\begin{equation*}
B(x, r)=\{y \in \mathbb{X}: x-r \mathbf{1} \leq y \leq x+r \mathbf{1}\} . \tag{5}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
|x| \leq\|x\| \mathbf{1} \quad \forall x \in \mathbb{X} \tag{6}
\end{equation*}
$$

Example 2.1. Let X be a vector lattice with a strong unit 1. The latter means that for each $x \in \mathbb{X}$ there exists $\lambda \in \mathbb{R}$ such that $|x| \leq \lambda \mathbf{1}$ and define

$$
\|x\|=\inf \{\lambda>0:|x| \leq \lambda \mathbf{1}\} .
$$

It is well known (see, for example, [10]) that each vector lattice X with a strong unit is isomorphic as a vector ordered space to the space $C(Q)$ of all continuous functions defined on a compact topological space Q. For a given strong unit $\mathbf{1}$ the corresponding isomorphism ψ can be chosen in such a way that $\psi(\mathbf{1})(q)=1$ for all $q \in Q$. The cone $\psi(K)$ coincides with the cone of all nonnegative functions defined on Q. If $X=C(Q)$ and $\mathbf{1}(q)=1$ for all q, then

$$
p(x)=\max _{q \in Q} x(q) \text { and }\|x\|=\max _{q \in Q}|x(q)| .
$$

A well-known example of a vector lattice with a strong unit is the space $L^{\infty}(S, \Sigma, \mu)$ of all essentially bounded functions defined on a measure space (S, Σ, μ). Assume that $\mathbf{1}(s)=1$ for all $s \in S$, then we have $p(x)=\operatorname{ess} \sup _{s \in S} x(s)$ and $\|x\|=$ ess $\sup _{s \in S}|x(s)|$.

Example 2.2. Let $\mathbb{X}=\mathbb{R} \times \mathbb{Y}$, where \mathbb{Y} is a Banach space with a norm $\|\cdot\|$, and let $\mathbb{K} \subset \mathbb{X}$ be the epigraph of the norm: $\mathbb{K}=\{(\lambda, x)$: $\lambda \geq\|x\|\}$. The cone \mathbb{K} is closed solid convex and pointed. It is easy to check and well known that $\mathbf{1}=(1,0)$ is an interior point of \mathbb{K}. For each $(c, y) \in \mathbb{X}$ we have

$$
\begin{aligned}
p(c, y) & =\inf \{\lambda \in \mathbb{R}:(c, y) \leq \lambda \mathbf{1}\} \\
& =\inf \{\lambda \in \mathbb{R}:(\lambda, 0)-(c, y) \in \mathbb{K}\} \\
& =\inf \{\lambda \in \mathbb{R}:(\lambda-c,-y) \in \mathbb{K}\} \\
& =\inf \{\lambda \in \mathbb{R}: \lambda-c \geq\|-y\|\}=c+\|y\| .
\end{aligned}
$$

Hence
$\|(y, c)\|=\max \{p(y, c), p(-(y, c))\}=\max \{c+\|y\|,-c+\|y\|\}=|c|+\|y\|$.
Moreover, we consider the set of all bounded linear functionals from \mathbb{X} to complex field \mathbb{C}, dual space of \mathbb{X}, which is denoted by \mathbb{X}^{*}.

Let \mathbb{X}, \mathbb{Y} be two Lattice Banach algebras and denote their duals by \mathbb{X}^{*} and \mathbb{Y}^{*}, respectively. We recall (see [1]) that the uncompleted tensor product of \mathbb{X} and \mathbb{Y} is the set of all formal expressions $\sum_{i=1}^{n} x_{i} \otimes y_{i}$,
where $x_{i} \in \mathbb{X}$ and $y_{i} \in \mathbb{Y}$ and $n \in \mathbb{N}$. We regard such an expression as defining an operator $\mathbb{A}: \mathbb{X}^{*} \rightarrow \mathbb{Y}$, given by

$$
\begin{equation*}
\mathbb{A}(\phi)=\sum_{i=1}^{n} \phi\left(x_{i}\right) y_{i} \quad \phi \in \mathbb{X}^{*} . \tag{7}
\end{equation*}
$$

Amongst all these formal expressions, we introduce the relation

$$
\sum_{i=1}^{n} x_{i} \otimes y_{i} \sim \sum_{i=1}^{m} a_{i} \otimes b_{i}
$$

if both expressions define the same operator from \mathbb{X}^{*} to \mathbb{Y}. This relation is an equivalence relation on the set of all such formal expressions. We shall denote the set of all such equivalence classes by $\mathbb{X} \otimes \mathbb{Y}$. We shall abuse notation in the usual way by referring to the expression $\sum_{i=1}^{n} x_{i} \otimes y_{i}$ as a member of $\mathbb{X} \otimes \mathbb{Y}$ when we intend to refer to the equivalence classes of expression containing $\sum_{i=1}^{n} x_{i} \otimes y_{i}$. We define multiples of $\sum_{i=1}^{n} x_{i} \otimes y_{i}$ with any $\alpha \in \mathbb{R}$, by $\sum_{i=1}^{n} \alpha x_{i} \otimes y_{i}$. Similarly, we define addition by

$$
\sum_{i=1}^{n} x_{i} \otimes y_{i}+\sum_{i=n+1}^{m} x_{i} \otimes y_{i}=\sum_{i=1}^{m} x_{i} \otimes y_{i}
$$

We recall that a complex algebra is a vector space \mathbb{A} over the complex field \mathbb{C} in which a multiplication is defined by $\mathbb{A} \times \mathbb{A} \rightarrow \mathbb{A}$ which satisfies

$$
\begin{gather*}
x(y z)=(x y) z \tag{8}\\
(x+y) z=x z+y z, x(y+z)=x y+x z \tag{9}
\end{gather*}
$$

and

$$
\begin{equation*}
\alpha(x y)=(\alpha x) y=x(\alpha y), \tag{10}
\end{equation*}
$$

for all x, y and z in \mathbb{A} and all scalars α. If in addition, \mathbb{A} is a Banach space with respect to a norm which satisfies the multiplicative inequality

$$
\begin{equation*}
\|x y\| \leq\|x\|\|y\|(x, y \in \mathbb{A}) \tag{11}
\end{equation*}
$$

and if \mathbb{A} contains an element e such that $\|e\|=1$ and

$$
\begin{equation*}
x e=e x=x(x \in \mathbb{A}), \tag{12}
\end{equation*}
$$

then \mathbb{A} is called a unital Banach algebra. Let \mathbb{Y} be a lattice Banach algebra with the strong unit $\mathbf{1}_{\mathbb{Y}}$. We using the order relation on \mathbb{Y} to define a partially order relation on $\mathbb{X} \otimes \mathbb{Y}$ as follows:

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i} \otimes y_{i} \ll \sum_{i=1}^{m} a_{i} \otimes b_{i} \Leftrightarrow \sum_{i=1}^{n} \phi\left(x_{i}\right) y_{i} \leq \sum_{i=1}^{m} \phi\left(a_{i}\right) b_{i}\left(\forall \phi \in \mathbb{X}^{*}\right) \tag{13}
\end{equation*}
$$

We recall (see [1]) that it is possible to construct various norms on $\mathbb{X} \otimes \mathbb{Y}$ using the norms in \mathbb{X} and \mathbb{Y}. The most obvious way to introduce a norm which is independent to its representation, is to assign to $\sum_{i=1}^{n} x_{i} \otimes y_{i}$ its norm when regarded as an operator from \mathbb{X}^{*} to \mathbb{Y}. We define the norm $\|$.$\| by:$

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|=\sup \left\{\left\|\sum_{i=1}^{n} \phi\left(x_{i}\right) y_{i}\right\|,\|\phi\|=1, \phi \in \mathbb{X}^{*}\right\} \tag{14}
\end{equation*}
$$

3. Downward sets and their Best Approximations in
 Quasi Tensor Product spaces

Definition 3.1. Let \mathbb{X}, \mathbb{Y} be two Banach Algebras. A homomorphism from \mathbb{X} to \mathbb{Y} is a map $F: \mathbb{X} \rightarrow \mathbb{Y}$ which satisfies the following statements:

$$
\begin{gather*}
F(\alpha x+\beta y)=\alpha F(x)+\beta F(y) \quad(\forall \alpha, \beta \in \mathbb{R}) \tag{15}\\
F(x y)=F(x) F(y) \tag{16}
\end{gather*}
$$

We use the notion \mathbb{X}^{\times}to denote the set of all non- zero homomorphisms from the Banach algebra \mathbb{X} to the Banach algebra \mathbb{C}. By Theorem (1.3.3 [6]) if \mathbb{X} is a unital abelian Banach algebra then $\mathbb{X}^{\times} \neq \varnothing$ and for all $f \in \mathbb{X}^{\times}$, we have $\|f\|=1$. Therefor if \mathbb{X} is a unital abelian Banach algebra then $\mathbb{X}^{\times} \subseteq \mathbb{X}^{*}$ and in expression (7), we can replace \mathbb{X}^{*} with \mathbb{X}^{\times}. We denote the representation of each new equivalence class by the form $\sum_{i=1}^{n} x_{i} \boxtimes y_{i}$. Also we call the new space, quasi tensor product space and denote it by $\mathbb{X} \boxtimes \mathbb{Y}$. We define a norm $\|\cdot\|_{\boxtimes}$ on $\mathbb{X} \boxtimes \mathbb{Y}$ by

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} x_{i} \boxtimes y_{i}\right\|_{\boxtimes}=\sup _{\phi \in \mathbb{X}^{\times}}\left\|\sum_{i=1}^{n} \phi\left(x_{i}\right) y_{i}\right\| . \tag{17}
\end{equation*}
$$

Lemma 3.2. Consider that \mathbb{X} is a Banach algebra with unit element $e_{\mathbb{X}}$. Then $f\left(e_{\mathbb{X}}\right)=1$, for each $0 \neq f \in \mathbb{X}^{\times}$.

Proof. Since $e_{\mathbb{X}}=e_{\mathbb{X}} e_{\mathbb{X}}$ and $f \in \mathbb{X}^{\times}$, we have

$$
\begin{equation*}
f\left(e_{\mathbb{X}}\right)=f\left(e_{\mathbb{X}} e_{\mathbb{X}}\right)=f\left(e_{\mathbb{X}}\right) f\left(e_{\mathbb{X}}\right) \tag{18}
\end{equation*}
$$

then $f\left(e_{\mathbb{X}}\right)=1$ since $f \neq 0$.
Corollary 3.3. Let \mathbb{X} be a unital abelian Banach algebra and \mathbb{Y} be a Banach space. Let $z=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ and $z_{o}=\sum_{i=1}^{n} x_{i} \boxtimes y_{i}$, then $\|z\| \geq\left\|z_{o}\right\|_{\boxtimes}$.

Proof. Since $\mathbb{X}^{\times} \subseteq \mathbb{X}^{*}$. We have

$$
\begin{aligned}
\left\|z_{o}\right\|_{\boxtimes} & =\sup _{\phi \in \mathbb{X}^{\times} \times}\left\|\sum_{i=1}^{n} \phi\left(x_{i}\right) y_{i}\right\| \\
& \leq \sup \left\{\left\|\sum_{i=1}^{n} \phi\left(x_{i}\right) y_{i}\right\|,\|\phi\|=1, \phi \in \mathbb{X}^{*}\right\}=\|z\| .
\end{aligned}
$$

Corollary 3.4. Let \mathbb{X} be a unital abelian Banach algebra with unit element $e_{\mathbb{X}}$ and \mathbb{Y} be a lattice Banach algebra with the strong unit $\mathbf{1}_{\mathbb{Y}}$, then $\left\|e_{\mathbb{X}} \otimes \mathbf{1}_{\mathbb{Y}}\right\|=\left\|e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}}\right\|_{\boxtimes}=1$.

Proof. Suppose $\phi \in \mathbb{X}^{\times}$. By Lemma 3.2, $\phi\left(e_{\mathbb{X}}\right)=1$. Thus we get

$$
\left\|e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}}\right\|_{\boxtimes}=\sup _{\phi \in \mathbb{X}^{\times}}\left\|\phi\left(e_{\mathbb{X}}\right) \mathbf{1}_{\mathbb{Y}}\right\|=\left\|\mathbf{1}_{\mathbb{Y}}\right\|=1
$$

and

$$
\begin{aligned}
\left\|e_{\mathbb{X}} \otimes \mathbf{1}_{\mathbb{Y}}\right\| & =\sup \left\{\left\|\phi\left(e_{\mathbb{X}}\right) \mathbf{1}_{\mathbb{Y}}\right\|,\|\phi\|=1, \phi \in \mathbb{X}^{*}\right\} \\
& =\left\|\mathbf{1}_{\mathbb{Y}}\right\| \sup \left\{\left\|\phi\left(e_{\mathbb{X}}\right)\right\|,\|\phi\|=1, \phi \in \mathbb{X}^{*}\right\} \\
& =\left\|\mathbf{1}_{\mathbb{Y}}\right\|\left\|e_{\mathbb{X}}\right\|=1
\end{aligned}
$$

This completes the proof.
We define an order relation \ll on $\mathbb{X} \mathbb{Y}$ as follows:

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i} \boxtimes y_{i} \ll \sum_{i=1}^{n} a_{i} \boxtimes b_{i} \Leftrightarrow \sum_{i=1}^{n} \phi\left(x_{i}\right) y_{i} \leq \phi\left(a_{i}\right) b_{i} \forall \phi \in \mathbb{X}^{\times} \tag{19}
\end{equation*}
$$

Definition 3.5. (see [7], [9]) A set $\mathbb{U} \subseteq \mathbb{X}$ is said to be downward if $u \in \mathbb{U}$ and $x \leq u$ implies $x \in \mathbb{U}$.

Definition 3.6. (see [7] ,[9]) A set $\mathbb{U} \subseteq \mathbb{X}$ is said to be upward if $u \in \mathbb{U}$ and $x \geq u$ implies that $x \in \mathbb{U}$.

By definition 3.5, we get the following results for $\mathbb{X} \mathbb{Y}$, where \mathbb{X} is a unital abelian Banach algebra and \mathbb{Y} is a lattice Banach algebra with the strong unit $\mathbf{1}_{\mathbb{Y}}$.

Proposition 3.7. For each downward subset \mathbb{U} of $\mathbb{Z}:=\mathbb{X} \boxtimes \mathbb{Y}$, the following assertions are true:
(1) If $\sum_{i=1}^{m} x_{i} \boxtimes y_{i} \in \mathbb{U}$ then $\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-\varepsilon e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}} \in \operatorname{int} \mathbb{U}$ for each $\varepsilon>0$.

$$
\text { (2)int } \mathbb{U}=\left\{\sum_{i=1}^{m} a_{i} \boxtimes b_{i} \in \mathbb{Z}: \sum_{i=1}^{m} a_{i} \boxtimes b_{i}+\varepsilon e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}} \in \mathbb{U} \text { for some } \varepsilon>0\right\} \text {. }
$$

Proof. (1). Let $\varepsilon>0$ be given and $\sum_{i=1}^{m} x_{i} \boxtimes y_{i} \in \mathbb{U}$. Then it is clear that $\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-\varepsilon e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}}$ is an element of $\mathbb{X} \boxtimes \mathbb{Y}$. Consider \mathcal{N} be an open neighborhood of $\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-\varepsilon e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}}$, thus :
$\mathcal{N}=\left\{\sum_{i=1}^{n} a_{i} \boxtimes b_{i} \in \mathbb{X} \boxtimes \mathbb{Y}:\left\|\sum_{i=1}^{n} a_{i} \boxtimes b_{i}-\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-\varepsilon e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}}\right)\right\|_{\boxtimes}<\varepsilon\right\}$.
Now by (6) and (17), we have

$$
\mid \sum_{i=1}^{n} \phi\left(a_{i}\right) b_{i}-\left(\sum_{i=1}^{m} \phi\left(x_{i}\right) y_{i}-\varepsilon \mathbf{1}_{\mathbb{Y}} \mid \leq \varepsilon \mathbf{1}_{\mathbb{Y}}\left(\forall \phi \in \mathbb{X}^{\times}\right)\right.
$$

and by (5), we get \mathcal{N} is the set of all $\sum_{i=1}^{n} a_{i} \boxtimes b_{i} \in \mathbb{X} \boxtimes \mathbb{Y}$ where

$$
\sum_{i=1}^{m} \phi\left(x_{i}\right) y_{i}-2 \varepsilon \mathbf{1}_{\mathbb{Y}} \ll \sum_{i=1}^{n} \phi\left(a_{i}\right) b_{i} \ll \sum_{i=1}^{m} \phi\left(x_{i}\right) y_{i}
$$

By (19) we have $\sum_{i=1}^{m} a_{i} \boxtimes b_{i} \ll \sum_{i=1}^{m} x_{i} \boxtimes y_{i}$. Since \mathbb{U} is a downward set and $\sum_{i=1}^{m} x_{i} \boxtimes y_{i} \in \mathbb{U}$, it follows that $\mathcal{N} \subseteq \mathbb{U}$. This shows that $\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-\varepsilon e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}} \in \operatorname{int} \mathbb{U}$.
(2). Let $\sum_{i=1}^{m} x_{i} \boxtimes y_{i} \in \operatorname{int} \mathbb{U}$. Then there exists $\varepsilon_{0}>0$ such that the closed ball $B\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i}, \varepsilon_{0}\right)$ is a subset of \mathbb{U}. In view of (17) and (5), we get $\sum_{i=1}^{m} x_{i} \boxtimes y_{i}+\varepsilon_{0} e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}} \in \mathbb{U}$.

Conversely, if there exists $\varepsilon>0$ such that $\sum_{i=1}^{m} x_{i} \boxtimes y_{i}+\varepsilon e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}} \in \mathbb{U}$, by part (1), $\sum_{i=1}^{m} x_{i} \boxtimes y_{i}=\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i}+\varepsilon e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}}-\varepsilon e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}}\right) \in \operatorname{int} \mathbb{U}$, which completes the proof.

Corollary 3.8. Let \mathbb{U} be a downward subset of $\mathbb{X} \boxtimes \mathbb{Y}$. Then \mathbb{U} is proximinal in $\mathbb{X} \boxtimes \mathbb{Y}$.

Proof. For an arbitrary element $\sum_{i=1}^{m} x_{i} \boxtimes y_{i}$ of $\mathbb{X} \boxtimes \mathbb{Y} \backslash U$, we get:

$$
r=d\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i}, \mathbb{U}\right)=\inf _{\sum_{i=1}^{n} u_{i} \boxtimes v_{i} \in \mathbb{U}}\left\|\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-\sum_{i=1}^{n} u_{i} \boxtimes v_{i}\right\|_{\boxtimes} .
$$

This implies for $\varepsilon>0$, there exists an element $\sum_{i=1}^{n} u_{i}^{\varepsilon} \boxtimes v_{i}^{\varepsilon}$ of \mathbb{U} such that $\left\|\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-\sum_{i=1}^{n} u_{i}^{\varepsilon} \boxtimes v_{i}^{\varepsilon}\right\|_{\boxtimes}<r+\varepsilon$. Then by (17) we get

$$
\left|\sum_{i=1}^{m} \phi\left(x_{i}\right) y_{i}-\sum_{i=1}^{n} \phi\left(u_{i}^{\varepsilon}\right) v_{i}^{\varepsilon}\right| \leq(\varepsilon+r) \mathbf{1}_{\mathbb{Y}} \quad\left(\forall \phi \in \mathbb{X}^{\times}\right) .
$$

Therefore by (5) we get

$$
\begin{equation*}
-(r+\varepsilon) \mathbf{1}_{\mathbb{Y}} \leq \sum_{i=1}^{n} \phi\left(u_{i}^{\varepsilon}\right) v_{i}^{\varepsilon}-\sum_{i=1}^{m} \phi\left(x_{i}\right) y_{i} \leq(r+\varepsilon) \mathbf{1}_{\mathbb{Y}} . \tag{20}
\end{equation*}
$$

Let $\sum_{i=1}^{m+1} u_{i}^{0} \boxtimes v_{i}^{0}=\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-r e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}}$, then , we have

$$
\begin{equation*}
\left\|\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-\sum_{i=1}^{m+1} u_{i}^{0} \boxtimes v_{i}^{0}\right\|=r=d\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i}, \mathbb{U}\right) \tag{21}
\end{equation*}
$$

and so by (19), and (20) we have

$$
\begin{equation*}
\sum_{i=1}^{m+1} u_{i}^{0} \boxtimes v_{i}^{0}-\varepsilon e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}}=\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-(r+\varepsilon) e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}} \ll \sum_{i=1}^{n} u_{i}^{\varepsilon} \boxtimes v_{i}^{\varepsilon} \tag{22}
\end{equation*}
$$

As \mathbb{U} is a downward set and $\sum_{i=1}^{n} u_{i}^{\varepsilon} \boxtimes v_{i}^{\varepsilon} \in \mathbb{U}$; for each $\varepsilon>0$, we get

$$
\sum_{i=1}^{m+1} u_{i}^{0} \boxtimes v_{i}^{0}-\varepsilon e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}} \in \mathbb{U}
$$

Since \mathbb{U} is closed, we have $\sum_{i=1}^{m+1} u_{i}^{0} \boxtimes v_{i}^{0} \in \mathbb{U}$, and so by (21) and (3) we get

$$
\sum_{i=1}^{m+1} u_{i}^{0} \boxtimes v_{i}^{0} \in \mathbf{P}_{\mathbb{U}}\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i}\right)
$$

This shows that \mathbb{U} is proximinal.
Proposition 3.9. Let $\mathbb{U} \subset \mathbb{Z}:=\mathbb{X} \mathbb{Y}$ be a closed downward set, then if $\sum_{i=1}^{m} x_{i} \boxtimes y_{i} \in \mathbb{Z} \backslash \mathbb{U}$, there exists the least element $z_{0}=\min \mathbf{P}_{\mathbb{U}}\left(\sum_{i=1}^{m} x_{i} \boxtimes\right.$ $\left.y_{i}\right)$ of the set $\mathbf{P}_{\mathbb{U}}\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i}\right)$; namely, $z_{0}=\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-r e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}}$; where $r:=d\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i}, \mathbb{U}\right)$.

Proof. If $\sum_{i=1}^{m} x_{i} \boxtimes y_{i} \in \mathbb{U}$, the result holds. Let $\sum_{i=1}^{m} x_{i} \boxtimes y_{i} \in \mathbb{Z} \backslash \mathbb{U}$ and $z_{0}=\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-r e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}}$. Then by the proof of Corollary 3.8, we have $z_{0} \in \mathbf{P}_{\mathbb{U}}\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i}\right)$. Thus by equality $\left\|\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-z_{0}\right\|=r$ and applying (17), (5), we get $z \geq z_{0}$ for each $z \in B\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i}, r\right)$. Thus z_{0} is the least element of the closed ball $B\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i} ; r\right)$. Now Let $z^{\prime} \in \mathbf{P}_{\mathbb{U}}\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i}\right)$. Then we have $\left\|\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-z\right\|_{\boxtimes}=r$, and so $z^{\prime} \in B\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i}, r\right)$. Therefore $z^{\prime} \geq z_{0}$. Hence z_{0} is the least element of the set $\mathbf{P}_{\mathbb{U}}\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i}\right)$.
Corollary 3.10. Let \mathbb{U} be a closed downward subset of $\mathbb{X} \boxtimes \mathbb{Y}$ and $\sum_{i=1}^{m} x_{i} \boxtimes y_{i}$ be an element of $Z \backslash \mathbb{U}$. Then

$$
d\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i}, \mathbb{U}\right)=\min \left\{\lambda \geq 0 \mid \sum_{i=1}^{m} x_{i} \boxtimes y_{i}-\lambda e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}} \in \mathbb{U}\right\} .
$$

Proof. Assume that $A=\left\{\lambda \mid \lambda \geq 0, \sum_{i=1}^{m} x_{i} \boxtimes y_{i}-\lambda e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}} \in \mathbb{U}\right\}$. If $x:=\sum_{i=1}^{m} x_{i} \boxtimes y_{i} \in \mathbb{U}$ then we get $\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-0 e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}}\right) \in \mathbb{U}$ and so $\min A=0=d\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i}, \mathbb{U}\right)$.
Now let $x \notin \mathbb{U}$ then $r=d\left(\sum_{i=1}^{m} x_{i} \boxtimes y_{i} ; \mathbb{U}\right)>0$. Let $\lambda>0$ be such that $\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-\lambda e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}} \in \mathbb{U}$. Thus we have

$$
\lambda=\left\|x-\left(x-\lambda e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}}\right)\right\|_{\boxtimes} \geq d(x ; \mathbb{U})=r .
$$

By Proposition 3.9, we have $\sum_{i=1}^{m} x_{i} \boxtimes y_{i}-r e_{\mathbb{X}} \boxtimes \mathbf{1}_{\mathbb{Y}} \in \mathbb{U}$, and therefore $r \in A$. Hence $\min A=r$, which completes the proof.

4. IM-QUASI DOWNWARD SETS IN DIRECT SUM OF LATTICE
 NORMED SPACES WITH APPLICATIONS

Now let I be a finite set of indices, and $\left(\mathbb{X}_{i}\right)_{i \in I}$ be a collection of lattice normed spaces with the strong unit $\mathbf{1}_{i}$, we use the notation $\sum_{i \in I} \mathbb{X}_{i}$ for direct sum of lattice normed spaces \mathbb{X}. Also for each $x, y \in \sum_{i \in I} \mathbb{X}_{i}$, we define

$$
x+y:=\left(x_{i}+y_{i}\right)_{i \in I},
$$

where $x=\left(x_{i}\right)_{i \in I}, y=\left(y_{i}\right)_{i \in I}$. If $\left(\mathbb{X}_{i},\|.\|_{i}\right)_{i \in I}$ be a collection of lattice normed spaces, we define a norm $\|$.$\| , on the space \sum_{i \in I} \mathbb{X}_{i}$ as follows:

$$
\begin{equation*}
\|x\|:=\max _{i \in I}\left\|x_{i}\right\|_{i} \text { for each } x \in \sum_{i \in I} \mathbb{X}_{i} . \tag{23}
\end{equation*}
$$

We use the notation $\mathbf{1}_{\oplus}$ for vector $y=\left(\mathbf{1}_{i}\right)_{i \in I} \in \sum_{i \in I} \mathbb{X}_{i}$, and define a partial ordered relation on the direct sum of lattice normed spaces \mathbb{X}_{i}, as follows: For each x, y in $\sum_{i \in I} \mathbb{X}_{i}$,

$$
\begin{equation*}
x \leq y \Leftrightarrow x_{i} \leq y_{i}(\forall i \in I) \tag{24}
\end{equation*}
$$

Let $I_{m}=\left\{i_{1}, i_{2}, \ldots i_{m}\right\}$ be an arbitrarily subset of I and $x=\left(x_{i}\right)_{i \in I}$ be an arbitrary element of $\sum_{i \in I} \mathbb{X}_{i}$. We define the following useful sets:

$$
\left(\sum_{i \in I} \mathbb{X}_{i}\right)_{x}^{I_{m}}:=\left\{y=\left(y_{i}\right)_{i \in I} \in \sum_{i \in I} \mathbb{X}_{i}\right\}
$$

where

$$
\begin{cases}x_{i} \geq y_{i} & \text { if } \mathrm{i} \in \mathrm{I}_{\mathrm{m}} \\ x_{i} \leq y_{i} & \text { if } \mathrm{i} \notin \mathrm{I}_{\mathrm{m}}\end{cases}
$$

and

$$
\left(c o \sum_{i \in I} \mathbb{X}_{i}\right)_{x}^{I_{m}}:=\left\{y=\left(y_{i}\right)_{i \in I} \in \sum_{i \in I} \mathbb{X}_{i}\right\}
$$

where

$$
\left\{\begin{array}{ll}
x_{i} \leq y_{i} & \text { if } \mathrm{i} \in \mathrm{I}_{\mathrm{m}} \\
x_{i} \geq y_{i} & \text { if } \mathrm{i} \notin \mathrm{I}_{\mathrm{m}}
\end{array}\right\}
$$

and define

$$
\left(\left(\sum_{i \in I} \mathbb{X}_{i}\right)_{x}^{I_{m}}\right)_{+}:=\left(\sum_{i \in I} \mathbb{X}_{i}\right)_{+} \bigcap\left(\sum_{i \in I} \mathbb{X}_{i}\right)_{x}^{I_{m}},
$$

where $\left(\sum_{i \in I} \mathbb{X}_{i}\right)_{+}=\left\{y \mid y=\left(y_{i}\right)_{i \in I} \in \sum_{i \in I} \mathbb{X}_{i}: y_{i} \geq 0(\forall i \in I)\right\}$. We use the notation $\mathbf{1}_{\oplus}^{I_{m}}$ for the vector $y=\left(y_{i}\right)_{i \in I}$ where

$$
y_{i}=\left\{\begin{array}{cl}
1 & \text { if } i \in I_{m} \tag{25}\\
-1 & \text { if } i \in I \backslash I_{m} .
\end{array}\right.
$$

Also we define $\operatorname{coPr}^{I_{m}}(x)$ as follows:

$$
\left(\operatorname{coPr}^{I_{m}}(x)\right)_{i}=\left\{\begin{array}{cl}
x_{i} & \text { if } i \in I_{m} \tag{26}\\
0 & \text { if } i \in I \backslash I_{m}
\end{array}\right.
$$

Definition 4.1. A set $\mathbb{U} \subseteq \sum_{i \in I} \mathbb{X}_{i}$ is called I_{m}-quasi downward if $\left(\sum_{i \in I} \mathbb{X}_{i}\right)_{u}^{I_{m}} \subseteq \mathbb{U}$ for each $u \in \mathbb{U}$.

In particular, an I_{m}-quasi downward set \mathbb{U} is downward, if $I_{m}=I$ and is upward, if $I_{m}=\varnothing$.

Proposition 4.2. Consider \mathbb{U} as an I_{m}-quasi downward subset of $\sum_{i \in I} \mathbb{X}_{i}$, and let $x \in \sum_{i \in I} \mathbb{X}_{i}$. Then the following assertions are true:
(1) If $x \in \mathbb{U}$, then $x-\varepsilon \mathbf{1}_{\oplus}^{I_{m}} \in \operatorname{int} \mathbb{U}$ for all $\varepsilon>0$.
(2) $\operatorname{int} \mathbb{U}=\left\{\mathrm{x} \in \sum_{\mathrm{i} \in \mathrm{I}} \mathbb{X}_{\mathrm{i}}: \mathrm{x}+\varepsilon \mathbf{1}_{\oplus}^{\mathrm{I}_{\mathrm{m}}} \in \mathbb{U}\right.$ for some $\left.\varepsilon>0\right\}$.

Proof. (1). Let $\varepsilon>0$ and $x \in \mathbb{U}$ be given. Consider \mathcal{N} as an open neighborhood of $x-\varepsilon \mathbf{1}_{\oplus}^{I_{m}}$ i.e

$$
\mathcal{N}:=\left\{y \in \sum_{i \in I} \mathbb{X}_{i}:\left\|y-\left(x-\varepsilon \mathbf{1}_{\oplus}^{I_{m}}\right)\right\| \leq \varepsilon\right\}
$$

Let

$$
\mathcal{N}_{1}=\left\{y \in \sum_{i \in I} \mathbb{X}_{i}: x_{i}-2 \varepsilon \leq y_{i} \leq x_{i}\left(\forall i \in I_{m}\right)\right\}
$$

and

$$
\mathcal{N}_{2}=\left\{y \in \sum_{i \in I} \mathbb{X}_{i}: x_{i} \leq y_{i} \leq x_{i}+2 \varepsilon\left(\forall i \in I \backslash I_{m}\right)\right\}
$$

By (5) we have,

$$
\mathcal{N}=\mathcal{N}_{1} \cap \mathcal{N}_{2} .
$$

By definition of $\left(\sum_{i \in I} \mathbb{X}_{i}\right)_{u}^{I_{m}}$ and that \mathbb{U} is an I_{m}-quasi downward set, it follows that $\mathcal{N} \subset \mathbb{U}$, and so $x-\varepsilon \mathbf{1}_{\oplus}^{I_{m}} \in \operatorname{int} \mathbb{U}$.
(2). Let $x \in \operatorname{int} \mathbb{U}$. Then there exists $\varepsilon_{0}>0$ such that $B\left(x, \varepsilon_{0}\right) \subset \mathbb{U}$. In view of (5), we get $x+\varepsilon_{0} \mathbf{1}_{\oplus}^{I_{m}} \in \mathbb{U}$.

Conversely, suppose that there exists $\varepsilon>0$ such that $x+\varepsilon \mathbf{1}_{\oplus}^{I_{m}} \in \mathbb{U}$. By part (1) we have $x=\left(x+\varepsilon \mathbf{1}_{\oplus}^{I_{m}}\right)-\varepsilon \mathbf{1}_{\oplus}^{I_{m}} \in \operatorname{int} \mathbb{U}$, which completes the proof.

Proposition 4.3. Each downward subset \mathbb{U} of $\sum_{i \in I} \mathbb{X}_{i}$ is proximinal in $\sum_{i \in I} \mathbb{X}_{i}$.
Proof. Let $x_{0} \in \sum_{i \in I} \mathbb{X}_{i} \backslash \mathbb{U}$ and, $r=d\left(x_{0}, \mathbb{U}\right)=\inf f_{u \in \mathbb{U}}\left\|x_{0}-u\right\|$, this implies, for $\varepsilon>0$ there exists $u_{\varepsilon} \in \mathbb{U}$ such that $\left\|x_{0}-u_{\varepsilon}\right\|<r+\varepsilon$. Then by (23) we have

$$
\left\|\left(x_{0}\right)_{i}-\left(u_{\varepsilon}\right)_{i}\right\|_{i} \leq r+\varepsilon \quad(\forall i \in I)
$$

and by (5) we get

$$
\begin{equation*}
-(r+\varepsilon) \mathbf{1}_{i}<\left(u_{\varepsilon}\right)_{i}-\left(x_{0}\right)_{i}<(r+\varepsilon) \mathbf{1}_{i},(\forall i \in I) \tag{27}
\end{equation*}
$$

Clearly when $u_{0}:=x_{0}-r \mathbf{1}_{\oplus}$, we have $\left\|x_{0}-u_{0}\right\|=r=d\left(x_{0}, \mathbb{U}\right)$ and so by (27) and (24), $u_{0}=x_{0}-r \mathbf{1}_{\oplus}-\varepsilon \mathbf{1}_{\oplus} \leq u_{\varepsilon}$. As \mathbb{U} is downward and $u_{\varepsilon} \in \mathbb{U}$, it follows that $u_{0}=x_{0}-r \mathbf{1}_{\oplus}-\varepsilon \mathbf{1}_{\oplus} \in \mathbb{U}$ and thus $u_{0} \in \mathbf{P}_{\mathbb{U}}\left(x_{0}\right)$, i.e $\mathbf{P}_{\mathbb{U}}\left(x_{0}\right) \neq \emptyset$.

Corollary 4.4. Let \mathbb{U} be a closed downward subset of $\sum_{i \in I} \mathbb{X}_{i}$ and $x_{0} \in \sum_{i \in I} \mathbb{X}_{i} \backslash \mathbb{U}$. The least element $u_{0}=\min \mathbf{P}_{\mathbb{U}}\left(x_{0}\right)$ of the set $\mathbf{P}_{\mathbb{U}}\left(x_{0}\right)$ exists. Where $u_{0}=x_{0}-r \mathbf{1}_{\oplus}$ and $r:=d\left(x_{0}, \mathbb{U}\right)$.

Proof. If $x_{0} \in \mathbb{U}$, the result holds. Assume $x_{0} \in \sum_{i \in I} \mathbb{X}_{i} \backslash \mathbb{U}$ and $u_{0}=x_{0}-r \mathbf{1}_{\oplus}$. By proposition 4.3, we have $u_{0} \in \mathbf{P}_{\mathbb{U}}\left(x_{0}\right)$. By applying (23), (5) and the equality $\left\|x_{0}-u_{0}\right\|=r$, we get $y \geq x_{0}-r \mathbf{1}_{\oplus}$ for each $y \in B\left(x_{0}, r\right)$. This implies u_{0} is the least element of the closed ball $B\left(x_{0}, r\right)$. Now, $\left\|x_{0}-u\right\|=r$ for an arbitrary element $u \in \mathbf{P}_{\mathbb{U}}\left(x_{0}\right)$ and so $u \in B\left(x_{0}, r\right)$. This shows that $u \geq u_{0}$. Hence u_{0} is the least element of the set $\mathbf{P}_{U}\left(x_{0}\right)$.

In the following we define two useful maps:

$$
T_{m}: \sum_{i \in I} \mathbb{X}_{i} \rightarrow \sum_{i \in I} \mathbb{X}_{i}
$$

by

$$
T_{m}(x)=y=\left(y_{i}\right)_{i \in I}
$$

where:

$$
\begin{equation*}
y_{i}=\left(\mathbf{1}_{\oplus}^{I_{m}}\right)_{i} \cdot x_{i} \tag{28}
\end{equation*}
$$

and

$$
(c o T)_{m}:=\sum_{i \in I} \mathbb{X}_{i} \rightarrow \sum_{i \in I} \mathbb{X}_{i}
$$

by

$$
(c o T)_{m}(x)=z=\left(z_{i}\right)_{i \in I}
$$

where

$$
\begin{equation*}
z_{i}=-\left(\mathbf{1}_{\oplus}^{I_{m}}\right)_{i} \cdot x_{i} \tag{29}
\end{equation*}
$$

Lemma 4.5. The maps T_{m} and $(c o T)_{m}$ defined by (28) and (29) are diffeomorphism.
Proof. The proof is trivial.
Theorem 4.6. Let $\mathbb{U} \subset \sum_{i \in I} \mathbb{X}_{i}$ be an I_{m}-quasi downward set, then $T_{m}(\mathbb{U})$ is downward, and $(c o T)_{m}(\mathbb{U})$ is upward, where T_{m} and co T_{m} be the maps defined by (28) and (29).

Proof. By definition, $T_{m}(\mathbb{U})$ is downward if and only if the hypothesis $h \in T_{m}(\mathbb{U}), x \in \sum_{i \in I} \mathbb{X}_{i}$ and $x \leq h$, implies that $x \in T_{m}(\mathbb{U})$. Let $h \in T_{m}(\mathbb{U})$, By Lemma 4.5 there exists $u \in \mathbb{U}$ such that $T_{m}(u)=h$. As $x \leq h$ then for each $i \in I, x_{i} \leq h_{i}$. Then by (28) we have $x_{i} \leq u_{i}$ if $i \in I_{m}$ and $-x_{i} \geq u_{i}$ if $i \in I \backslash I_{m}$. As $u \in \mathbb{U}$ and \mathbb{U} is I_{m}-quasi downward, we conclude $w=\left(w_{i}\right)_{i \in I} \in \mathbb{U}$, where $\left(w_{i}\right)_{i \in I}$ is defined by $w_{i}=\left(\mathbf{1}_{\oplus}^{I_{m}}\right)_{i} . x_{i}$. Then $T_{m}(\mathbb{U})$ is downward since $x=T_{m}(w) \in T_{m}(\mathbb{U})$. Similarly $(c o T)_{m}(\mathbb{U})$ is downward. This completes the proof.
Definition 4.7. A set $U \subset \sum_{i \in I} \mathbb{X}_{i}$ is called I_{m}-quasi upward if its compliment be an I_{m}-quasi downward.
(i.e $:\left(c o \sum_{i \in I} \mathbb{X}_{i}\right)_{u}^{I_{m}} \subseteq U ;$ for allu $\left.\in \mathbb{U}\right)$

Now by (28) and (29) we conclude the following proposition:
Proposition 4.8. Consider \mathbb{U} as a subset of $\sum_{i \in I} \mathbb{X}_{i}$ which is closed I_{m}-quasi downward or I_{m}-quasi upward set and $x \in \sum_{i \in I} \mathbb{X}_{i}$. Set $r:=d(x, \mathbb{U}), r^{\prime}:=d\left(T_{m}(x), T_{m}(\mathbb{U})\right), r^{\prime \prime}:=d\left((c o T)_{m}(x),(c o T)_{m}(\mathbb{U})\right)$, then $r=r^{\prime}=r^{\prime \prime}$.
Proof.

$$
\begin{aligned}
\left\|T_{m}(x)-T_{m}(\mathbb{U})\right\| & =\max _{i \in I}\left\|\left(T_{m}(x)\right)_{i}-\left(T_{m}(u)\right)_{i}\right\|_{i} \\
& =\max \left\{\max _{i \in I_{m}}\left\|x_{i}-u_{i}\right\|_{i}, \max _{i \in I \backslash I_{m}}\left\|u_{i}-x_{i}\right\|_{i}\right\} \\
& =\max _{i \in I}\left\|x_{i}-u_{i}\right\|_{i}=\|x-u\| .
\end{aligned}
$$

By taking infimum we get $r=r^{\prime}$. Similarly $r=r^{\prime \prime}$. This completes the proof.

Proposition 4.9. Consider $\mathbb{U} \subset \sum_{i \in I} \mathbb{X}_{i}$ as a closed I_{m}-quasi downward set, $x \in \sum_{i \in I} \mathbb{X}_{i}$ and $r:=d(x, \mathbb{U})$. Then $u_{m}=x-r \mathbf{1}_{\oplus}^{I_{m}} \in \mathbf{P}_{\mathbb{U}}(x)$.
Proof. Let $x \in \sum_{i \in I} \mathbb{X}_{i}$. By Theorem 4.6, $T_{m}(\mathbb{U})$ is a downward set. Hence by Corollary $4.4 w_{0}=\min \mathbf{P}_{T_{m}(\mathbb{U})}\left(T_{m}(x)\right)$ exists and thus we get $w_{0}=T_{m}(x)-r \mathbf{1}_{\oplus}$. Thus we get $u_{m}=T_{m}^{-1}\left(w_{0}\right) \in \mathbf{P}_{\mathbb{U}}(x)$.
Proposition 4.10. Consider \mathbb{U} as a closed I_{m}-quasi downward subset of $\sum_{i \in I} \mathbb{X}_{i}$. Let $x \in \sum_{i \in I} \mathbb{X}_{i}$ and T_{m} as in (28). Then the following assertions are true:
i) $\mathbf{P}_{\mathbb{U}}(x)=\left\{u \in \mathbb{U}: T_{m}(u) \in \mathbf{P}_{T_{m}(\mathbb{U})}\left(T_{m}(x)\right)\right\}$.
ii) $d(x, \mathbb{U})=\min \left\{\lambda \geq 0: T_{m}(x)-\lambda \mathbf{1}_{\oplus} \in T_{m}(\mathbb{U})\right\}$.

Proof. (i) It follows from Lemma 4.5 and Proposition 4.8. (ii) It follows from Propositions 4.8 and 4.9.

5. The relation of Positive I_{m}-Quasi Downward sets and I_{m}-QUASI Downward SETS

Definition 5.1. A set $\mathbb{V} \subseteq\left(\sum_{i \in I} \mathbb{X}_{i}\right)_{+}$is called a positive $I_{m}-$ quasi downward if $\left.\left(\sum_{i \in I} \mathbb{X}_{i}\right)_{v}^{I_{m}}\right)_{+} \subseteq \mathbb{V}$ for each $v \in \mathbb{V}$.

Downward hull of a positive I_{m}-quasi downward set $\mathbb{V} \subset\left(\sum_{i \in I} \mathbb{X}_{i}\right)_{+}$ is defined as follows:
Definition 5.2. Let $\mathbb{V} \subset\left(\sum_{i \in I} \mathbb{X}_{i}\right)_{+}$be a positive I_{m}-quasi downward set. The intersection of all $I_{m}-$ quasi downward sets which contains \mathbb{V} is an I_{m}-quasi downward set, which is called I_{m}-quasi downward hull of \mathbb{V} and denoted by \mathbb{V}_{*}.

In the following we see some properties of I_{m}-quasi downward hull of a positive I_{m}-quasi downward set :

Proposition 5.3. Let \mathbb{V}_{*} be I_{m} - quasi downward hull of $\mathbb{V} \subset\left(\sum_{i \in I} \mathbb{X}_{i}\right)_{+}$, then
(1) $\mathbb{V}_{*}=\left\{x \in \sum_{i \in I} \mathbb{X}_{i}: \operatorname{coP}^{I_{m}}(x) \in \mathbb{V}\right.$ and $\left.x^{+} \in \mathbb{V}\right\}$,
(2) $\mathbb{V}=\mathbb{V}_{*} \bigcap\left(\sum_{i \in I} \mathbb{X}_{i}\right)_{+}$.

Proof. Let $A=\left\{x \in \sum_{i \in I} \mathbb{X}_{i}: \operatorname{coPr}^{I_{m}}(x) \in \mathbb{V}\right.$, and $\left.x^{+} \in \mathbb{V}\right\}$. We first prove that A is I_{m}-quasi downward. Let $a \in A$, there exists $x \in \sum_{i \in I} \mathbb{X}_{i}$ such that $x_{i} \leq a_{i}$, if $i \in I_{m}$ and $x_{i} \geq a_{i}$, if $i \in I \backslash I_{m}$. We are going to show that $x \in A$. We have $\operatorname{coPr}^{I_{m}}(a), a^{+} \in \mathbb{V}$ since $a \in A$. Thus Let $y=\operatorname{coPr}^{I_{m}}(x)$. By (26) we get

$$
y_{i}=\left\{\begin{array}{cl}
0 & \text { if } i \in I_{m} \tag{30}\\
x_{i} & \text { if } i \in I \backslash I_{m} .
\end{array}\right.
$$

On the other hand we have

$$
y_{i}= \begin{cases}x_{i}^{+} \leq a_{i}^{+} & \text {if } i \in I_{m} \\ x_{i}^{+} \geq a_{i}^{+} & \text {if } i \in I \backslash I_{m}\end{cases}
$$

Now we get $x^{+}, y \in \mathbb{V}$ since \mathbb{V} is positive I_{m}-quasi downward. Thus $x \in A$. This shows A is I_{m}-quasi downward. As $\mathbb{V} \subset A$, hence $\mathbb{V}_{*} \subset A$.

Let $x \in A$, thus $x^{+} \in \mathbb{V}$ and $\operatorname{coPr}^{I_{m}}(x)=\operatorname{coPr}^{I_{m}}\left(x^{+}\right)$and $x_{i}^{+} \geq x_{i}$ for each $i \in I$, As \mathbb{V}_{*} is I_{m}-quasi downward, we get $x \in \mathbb{V}_{*}$. Thus $A \subset \mathbb{V}_{*}$, which completes the proof.
(2). It is immediately a consequence of the first part.

Proposition 5.4. Let \mathbb{V}_{*} be the closed I_{m}-quasi downward hull of $V \subseteq\left(\sum_{i \in I} \mathbb{X}_{i}\right)_{+}$, and $x \in\left(\sum_{i \in I} \mathbb{X}_{i}\right)_{+}$, then $d(x, V)=d\left(x, \mathbb{V}_{*}\right)$.
Proof. It is clear that $\mathbb{V} \subset \mathbb{V}_{*}$. For each $v \in \mathbb{V}_{*}$, we have

$$
\begin{aligned}
\|x-v\| & =\max _{i \in I}\left\|x_{i}-v_{i}\right\|_{i}=\max \left\{\max _{i \in I_{m}}\left\|x_{i}-v_{i}\right\|_{i}, \max _{i \in I \backslash I_{m}}\left\|x_{i}-v_{i}\right\|_{i}\right\} \\
& \geq \max \left\{\max _{i \in I_{m}}\left\|x_{i}-v_{i}^{+}\right\|_{i} \max _{i \in I \backslash I_{m}}\left\|x_{i}-v_{i}\right\|_{i}\right\}=\left\|x-v^{+}\right\| \\
& \geq d(x, V) .
\end{aligned}
$$

Therefore $\inf _{v \in \mathbb{V}_{*}}\|x-v\|=d\left(x, \mathbb{V}_{*}\right) \geq d(x, V)$, which completes the proof.

Theorem 5.5. Let \mathbb{U} be an I_{m}-quasi upward subset of $\sum_{i \in I} \mathbb{X}_{i}$, then $T_{m}(\mathbb{U})$ is upward and $\operatorname{co} T_{m}(\mathbb{U})$ is downward.

Proof. By definition, $T_{m}(\mathbb{U})$ is upward if and only if $h \in T_{m}(\mathbb{U})$ and $x \in \sum_{i \in I} \mathbb{X}_{i}$ and $x \geq h$ implies that $x \in T_{m}(\mathbb{U})$. Let $h \in T_{m}(\mathbb{U})$, By Lemma 4.5 there exists $u \in \mathbb{U}$ such that $T_{m}(u)=h$. As $x \geq h$ then for each $i \in I, x_{i} \geq h_{i}$. By (28) we have $x_{i} \geq u_{i}$ if $i \in I_{m}$ and $-x_{i} \leq u_{i}$ if $\quad i \in I \backslash I_{m}$. As $u \in \mathbb{U}$ and \mathbb{U} is I_{m}-quasi upward, we conclude $w=\left(w_{i}\right)_{i \in I} \in \mathbb{U}$, where $\left(w_{i}\right)_{i \in I}$ is defined by $w_{i}=\left(\mathbf{1}_{\oplus}^{I_{m}}\right)_{i} . x_{i}$. Then $x=T_{m}(w) \in T_{m}(\mathbb{U})$ and hence $T_{m}(\mathbb{U})$ is upward. Similarly it can be shown that $(c o T)_{m}(\mathbb{U})$ is also downward.This completes the proof.

Corollary 5.6. Let $U \subset \sum_{i \in I} \mathbb{X}_{i}$ be closed I_{m}-quasi upward and $x \in \sum_{i \in I} \mathbb{X}_{i}$, then

$$
\mathbf{P}_{\mathbb{U}}(x)=\left\{u \in \mathbb{U}: T_{m}(u) \in \mathbf{P}_{T_{m}(\mathbb{U})}\left(T_{m}(x)\right)\right\} .
$$

Proof. This follows by Lemma 4.5 and proposition 4.8.
Proposition 5.7. Let $\mathbb{U} \subset \sum_{i \in I} \mathbb{X}_{i}$ be a closed I_{m}-quasi upward set, $x \in \sum_{i \in I} \mathbb{X}_{i}$ and $r:=d(x, \mathbb{U})$ then $u_{m}=x+r \mathbf{1}_{\oplus}^{I_{m}} \in \mathbf{P}_{\mathbb{U}}(x)$.

Proof. Suppose $\mathbb{U} \subset \sum_{i \in I} \mathbb{X}_{i}$ be a closed I_{m}-quasi upward set and $x \in \sum_{i \in I} \mathbb{X}_{i}$. By Theorem 5.5, $T_{m}(\mathbb{U})$ is an upward set. Since $-T_{m}(\mathbb{U})$ is downward, by Corollary 4.4, $w_{0}=\max \mathbf{P}_{T_{m}(\mathbb{U})}\left(T_{m}(x)\right)$ exists and $w_{0}=T_{m}(x)+r \mathbf{1}_{\oplus}$. Then by Corollary 5.6, $u_{m}=T_{m}^{-1}\left(w_{0}\right) \in \mathbf{P}_{\mathbb{U}}(x)$.

Acknowledgments

The authors wish to thank the referees for reading the article so carefully and for the comments made on this article.

References

1. W. A. Light and E. W. Cheney, Approximation theory in tensor product spaces, Lecture Notes in Mathematics, Vol. 1169, 1985.
2. V. L. Makarov and A. M. Rubinov, Mathematical theory of economic dynamics and equilibria, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
3. J.-E. Martinez-Legaz, A. M. Rubinov and I. Singer, Downward sets and their separation and approximation properties. J. Global Optim.23(2) (2002), 111137.
4. S. M. S. Modarres and M. Dehghani, New results for best approximation on Banach lattices. Nonlinear Anal. 70(9) (2009), 3342-3347.
5. H. Mohebi and A. M. Rubinov, Best approximation by downward sets with applications, Anal. Theory Appl. 22(1) (2006), 20-40.
6. G. J. Murphy, C^{*}-Algebras and Operator Theory, New York: Academic Press, 1990.
7. A. M. Rubinov, Abstract convexity and global optimization. Nonconvex Optimization and its Applications, 44. Kluwer Academic Publishers, Dordrecht, 2000.
8. A. M. Rubinov and I. Singer, Best approximation by normal and conormal sets. J. Approx. Theory $107(2)$ (2000), 212-243.
9. I. Singer, Abstract convex analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley, Sons, Inc., New York, 1997.
10. B. Z. Vulikh, Introduction to the theory of partially ordered vector spaces, Wolters-Noordhoff, Groningen, 1967.

M. Iranmanesh

Department of mathematical sciences, Shahrood university of technology, P.O.Box 3619995161-316, Shahrood, Iran.
Email: m.iranmanesh2012@gmail.com

F. Soleimany(Phd student)

Department of mathematical sciences, Shahrood university of technology, P.O.Box 3619995161-316, Shahrood, Iran.
Email: enfazh.bmaam @gmail.com

[^0]: MSC(2010): Primary: 41A50; Secondary: 46B40, 26B25, 52A40
 Keywords: Best approximation, Proximinal set, Downward set, Tensor product, Quasi tensor product.
 Received: 18 May 2013, Revised: 20 May 2014.
 $*$ Corresponding author .

