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BEST APPROXIMATION IN QUASI TENSOR
PRODUCT SPACE AND DIRECT SUM OF LATTICE

NORMED SPACES

M. IRANMANESH∗ AND F. SOLIMANI

Abstract. We study the thoery of best approximation in tensor
product space and the direct sum of some lattice normed spaces
Xi. We introduce quasi tensor product space and discuss about the
relation between tensor product space and this new space which
we denote it by X⊠Y. We investigate best approximation in direct
sum of lattice normed spaces by elements which are not necessar-
ily downward or upward and we call them Im−quasi downward or
Im−quasi upward. We show that these sets can be interpreted as
downward or upward sets. The relation of these sets with down-
ward and upward subsets of the direct sum of lattice normed spaces
Xi is discussed. This will be done by homomorphism functions. Fi-
nally, we introduce the best approximation of these sets.

1. Introduction

The theory of best approximation by elements of convex sets in the
normed linear spaces, which has many important applications in math-
ematics and some other sciences, is well developed. However, convexity
is sometimes a very restrictive assumption, so there is a clear need to
study the best approximation by not necessarily convex sets. In this
direction, Rubinov and Singer [7, 8] developed a theory of best ap-
proximation by elements of so-called normal sets in the non-negative
orient RI

+, of a finite-dimensional coordinate space RI endowed with the
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max- norm. Martinez-Legaz, Rubinov and Singer in [3] have developed
a theory of best approximation of downward subsets of the space RI .
Downward sets play an important role in some parts of mathematical
economics (see e.g., [2]) and game theory. Also Mohebi and Rubinov
[5] generalized these concepts and developed the theory of best approx-
imation by closed normal and downward subsets of a Banach lattice X
with a strong unit 1. Therefore study of these concepts in more detail
and also examination of the effect of some special operators on normal
and downward subsets of Banach lattice spaces, are useful for math-
ematicians. We use the concept of best approximation by downward
subsets of Banach lattice X, to introduce a theory of best approxima-
tion in two new spaces which we call them, quasi tensor product space
and direct sum of lattice normed spaces. The structure of the paper
is as follows: In Section 3 we present some preliminary results. In
Section 2 we investigate best approximation in quasi tensor product
of lattice normed spaces by elements of downward sets. In particular,
we show that the least element of the set of best approximations ex-
ists. In Section 4 we investigate best approximation in direct sum of
lattice normed spaces by elements which are called ”Im−quasi down-
ward sets”. Then we discuss about the relation of Im−quasi downward
sets, downward sets and upward sets. In Section 5 we define positive
Im−quasi downward sets and discuss about its relations to Im−quasi
downward sets.

2. Preliminaries

Let X be a normed vector space. For a nonempty subset W of X
and x ∈ X, define

d(x,W) = infw∈W∥x− w∥. (1)

Recall that a point w0 ∈ W is called a best approximation for x ∈ X if

∥x− w0∥ = d(x,W). (2)

If each x ∈ X has at least one best approximation w0 ∈ W, then W
is called a proximinal subset of X. Let W ⊆ X and x ∈ X, we denote
by PW(x), the set of all best approximations of x in W . Therefore

PW(x) := {w ∈ W : ∥x− w∥ = d(x,W)}. (3)

It is well-known that if W is closed then PW(x) is a closed and
bounded subset of X. If x ∈ X then PW(x) is located in the boundary
of W. Let X be a lattice vector space with the strong unit 1. Using 1,
we define a norm on X by

∥x∥ := inf{λ ≥ 0 :| x |≤ λ1}, (4)



BEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE ... 69

and notice the ball

B(x, r) = {y ∈ X : x− r1 ≤ y ≤ x+ r1}. (5)

It is clear that
| x |≤ ∥x∥1 ∀x ∈ X. (6)

Example 2.1. Let X be a vector lattice with a strong unit 1. The
latter means that for each x ∈ X there exists λ ∈ R such that |x| ≤ λ1
and define

∥x∥ = inf{λ > 0 : |x| ≤ λ1}.
It is well known (see, for example, [10]) that each vector lattice X with
a strong unit is isomorphic as a vector ordered space to the space C(Q)
of all continuous functions defined on a compact topological space Q.
For a given strong unit 1 the corresponding isomorphism ψ can be
chosen in such a way that ψ(1)(q) = 1 for all q ∈ Q. The cone ψ(K)
coincides with the cone of all nonnegative functions defined on Q. If
X = C(Q) and 1(q) = 1 for all q, then

p(x) = max
q∈Q

x(q) and ∥x∥ = max
q∈Q

|x(q)|.

A well-known example of a vector lattice with a strong unit is the space
L∞(S,Σ, µ) of all essentially bounded functions defined on a measure
space (S,Σ, µ). Assume that 1(s) = 1 for all s ∈ S, then we have
p(x) = ess sups∈Sx(s) and ∥x∥ = ess sups∈S|x(s)|.

Example 2.2. Let X = R × Y, where Y is a Banach space with a
norm ∥ · ∥, and let K ⊂ X be the epigraph of the norm: K = {(λ, x) :
λ ≥ ∥x∥}. The cone K is closed solid convex and pointed. It is easy
to check and well known that 1 = (1, 0) is an interior point of K. For
each (c, y) ∈ X we have

p(c, y) = inf{λ ∈ R : (c, y) ≤ λ1}
= inf{λ ∈ R : (λ, 0)− (c, y) ∈ K}
= inf{λ ∈ R : (λ− c,−y) ∈ K}
= inf{λ ∈ R : λ− c ≥ ∥ − y∥} = c+ ∥y∥.

Hence

∥(y, c)∥ = max{p(y, c), p(−(y, c))} = max{c+∥y∥,−c+∥y∥} = |c|+∥y∥.

Moreover, we consider the set of all bounded linear functionals from
X to complex field C, dual space of X, which is denoted by X∗.
Let X,Y be two Lattice Banach algebras and denote their duals by

X∗ and Y∗, respectively. We recall (see [1]) that the uncompleted tensor
product of X and Y is the set of all formal expressions

∑n
i=1 xi ⊗ yi,
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where xi ∈ X and yi ∈ Y and n ∈ N. We regard such an expression as
defining an operator A : X∗ → Y, given by

A(ϕ) =
n∑

i=1

ϕ(xi)yi ϕ ∈ X∗. (7)

Amongst all these formal expressions, we introduce the relation
n∑

i=1

xi ⊗ yi ∼
m∑
i=1

ai ⊗ bi,

if both expressions define the same operator from X∗ to Y. This relation
is an equivalence relation on the set of all such formal expressions. We
shall denote the set of all such equivalence classes by X ⊗ Y. We
shall abuse notation in the usual way by referring to the expression∑n

i=1 xi ⊗ yi as a member of X ⊗ Y when we intend to refer to the
equivalence classes of expression containing

∑n
i=1 xi ⊗ yi . We define

multiples of
∑n

i=1 xi ⊗ yi with any α ∈ R, by
∑n

i=1 αxi ⊗ yi. Similarly,
we define addition by

n∑
i=1

xi ⊗ yi +
m∑

i=n+1

xi ⊗ yi =
m∑
i=1

xi ⊗ yi.

We recall that a complex algebra is a vector space A over the complex
field C in which a multiplication is defined by A×A → A which satisfies

x(yz) = (xy)z, (8)

(x+ y)z = xz + yz, x(y + z) = xy + xz, (9)

and

α(xy) = (αx)y = x(αy), (10)

for all x, y and z in A and all scalars α. If in addition, A is a Ba-
nach space with respect to a norm which satisfies the multiplicative
inequality

∥xy∥ ≤ ∥x∥∥y∥ (x, y ∈ A) (11)

and if A contains an element e such that ∥e∥ = 1 and

xe = ex = x (x ∈ A), (12)

then A is called a unital Banach algebra. Let Y be a lattice Banach
algebra with the strong unit 1Y. We using the order relation on Y to
define a partially order relation on X⊗ Y as follows:

n∑
i=1

xi ⊗ yi ≪
m∑
i=1

ai ⊗ bi ⇔
n∑

i=1

ϕ(xi)yi ≤
m∑
i=1

ϕ(ai)bi (∀ϕ ∈ X∗). (13)
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We recall (see [1]) that it is possible to construct various norms
on X ⊗ Y using the norms in X and Y. The most obvious way to
introduce a norm which is independent to its representation, is to assign
to

∑n
i=1 xi ⊗ yi its norm when regarded as an operator from X∗ to Y.

We define the norm ∥.∥ by:

∥
n∑

i=1

xi ⊗ yi∥ = sup{∥
n∑

i=1

ϕ(xi)yi∥, ∥ϕ∥ = 1, ϕ ∈ X∗} (14)

3. Downward sets and their Best Approximations in
Quasi Tensor Product spaces

Definition 3.1. Let X,Y be two Banach Algebras. A homomorphism
from X to Y is a map F : X → Y which satisfies the following state-
ments:

F (αx+ βy) = αF (x) + βF (y) (∀α, β ∈ R), (15)

F (xy) = F (x)F (y). (16)

We use the notion X× to denote the set of all non- zero homomor-
phisms from the Banach algebra X to the Banach algebra C. By The-
orem (1.3.3 [6]) if X is a unital abelian Banach algebra then X× ̸= ∅
and for all f ∈ X×, we have ∥f∥ = 1. Therefor if X is a unital abelian
Banach algebra then X× ⊆ X∗ and in expression (7), we can replace X∗

with X×.We denote the representation of each new equivalence class by
the form

∑n
i=1 xi⊠yi. Also we call the new space, quasi tensor product

space and denote it by X⊠ Y. We define a norm ∥.∥⊠ on X⊠ Y by

∥
n∑

i=1

xi ⊠ yi∥⊠ = sup
ϕ∈X×

∥
n∑

i=1

ϕ(xi)yi∥. (17)

Lemma 3.2. Consider that X is a Banach algebra with unit element
eX. Then f(eX) = 1, for each 0 ̸= f ∈ X×.

Proof. Since eX = eXeX and f ∈ X×, we have

f(eX) = f(eXeX) = f(eX)f(eX) (18)

then f(eX) = 1 since f ̸= 0. □

Corollary 3.3. Let X be a unital abelian Banach algebra and Y be
a Banach space. Let z =

∑n
i=1 xi ⊗ yi and zo =

∑n
i=1 xi ⊠ yi, then

∥z∥ ≥ ∥zo∥⊠.
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Proof. Since X× ⊆ X∗. We have

∥zo∥⊠ = sup
ϕ∈X×

∥
n∑

i=1

ϕ(xi)yi∥

≤ sup{∥
n∑

i=1

ϕ(xi)yi∥, ∥ϕ∥ = 1, ϕ ∈ X∗} = ∥z∥.

□

Corollary 3.4. Let X be a unital abelian Banach algebra with unit
element eX and Y be a lattice Banach algebra with the strong unit 1Y,
then ∥eX ⊗ 1Y∥ = ∥eX ⊠ 1Y∥⊠ = 1.

Proof. Suppose ϕ ∈ X×. By Lemma 3.2, ϕ(eX) = 1. Thus we get

∥eX ⊠ 1Y∥⊠ = sup
ϕ∈X×

∥ϕ(eX)1Y∥ = ∥1Y∥ = 1,

and

∥eX ⊗ 1Y∥ = sup{∥ϕ(eX)1Y∥, ∥ϕ∥ = 1, ϕ ∈ X∗}
= ∥1Y∥ sup{∥ϕ(eX)∥, ∥ϕ∥ = 1, ϕ ∈ X∗}
= ∥1Y∥∥eX∥ = 1.

This completes the proof. □

We define an order relation ≪ on X⊠ Y as follows:
n∑

i=1

xi ⊠ yi ≪
n∑

i=1

ai ⊠ bi ⇔
n∑

i=1

ϕ(xi)yi ≤ ϕ(ai)bi ∀ϕ ∈ X×. (19)

Definition 3.5. (see [7] ,[9]) A set U ⊆ X is said to be downward if
u ∈ U and x ≤ u implies x ∈ U.

Definition 3.6. (see [7] ,[9]) A set U ⊆ X is said to be upward if u ∈ U
and x ≥ u implies that x ∈ U.

By definition 3.5, we get the following results for X⊠ Y, where X is
a unital abelian Banach algebra and Y is a lattice Banach algebra with
the strong unit 1Y.

Proposition 3.7. For each downward subset U of Z := X ⊠ Y, the
following assertions are true:

(1) If
m∑
i=1

xi⊠yi ∈ U then
m∑
i=1

xi⊠yi−εeX⊠ 1Y ∈ intU for each ε > 0.
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(2)intU = {
m∑
i=1

ai⊠bi ∈ Z :
m∑
i=1

ai⊠bi+εeX⊠1Y ∈ U for some ε > 0}.

Proof. (1). Let ε > 0 be given and
∑m

i=1 xi ⊠ yi ∈ U. Then it is clear
that

∑m
i=1 xi⊠ yi− εeX⊠1Y is an element of X⊠Y. Consider N be an

open neighborhood of
∑m

i=1 xi ⊠ yi − εeX ⊠ 1Y, thus :

N = {
n∑

i=1

ai⊠bi ∈ X⊠Y : ∥
n∑

i=1

ai⊠bi−(
m∑
i=1

xi⊠yi−εeX⊠1Y)∥⊠ < ε}.

Now by (6) and (17), we have

|
n∑

i=1

ϕ(ai)bi − (
m∑
i=1

ϕ(xi)yi − ε1Y| ≤ ε1Y (∀ϕϵX×),

and by (5), we get N is the set of all
∑n

i=1 ai ⊠ bi ∈ X⊠ Y where

m∑
i=1

ϕ(xi)yi − 2ε1Y ≪
n∑

i=1

ϕ(ai)bi ≪
m∑
i=1

ϕ(xi)yi.

By (19) we have
∑m

i=1 ai ⊠ bi ≪
∑m

i=1 xi ⊠ yi . Since U is a downward
set and

∑m
i=1 xi ⊠ yi ∈ U, it follows that N ⊆ U. This shows that∑m

i=1 xi ⊠ yi − εeX ⊠ 1Y ∈ intU.
(2). Let

∑m
i=1 xi ⊠ yi ∈ intU. Then there exists ε0 > 0 such that the

closed ball B(
∑m

i=1 xi⊠ yi, ε0) is a subset of U. In view of (17) and (5),
we get

∑m
i=1 xi ⊠ yi + ε0eX ⊠ 1Y ∈ U.

Conversely, if there exists ε > 0 such that
∑m

i=1 xi⊠yi+εeX⊠1Y ∈ U,
by part (1),

∑m
i=1 xi⊠yi = (

∑m
i=1 xi⊠yi+εeX⊠1Y−εeX⊠1Y) ∈ intU,

which completes the proof. □

Corollary 3.8. Let U be a downward subset of X ⊠ Y. Then U is
proximinal in X⊠ Y.

Proof. For an arbitrary element
∑m

i=1 xi ⊠ yi of X⊠ Y\U, we get:

r = d(
m∑
i=1

xi ⊠ yi,U) = inf∑n
i=1 ui⊠vi∈U

∥
m∑
i=1

xi ⊠ yi −
n∑

i=1

ui ⊠ vi∥⊠.

This implies for ε > 0, there exists an element
∑n

i=1 u
ε
i ⊠ vεi of U such

that ∥
∑m

i=1 xi ⊠ yi −
∑n

i=1 u
ε
i ⊠ vεi ∥⊠ < r + ε . Then by (17) we get

|
m∑
i=1

ϕ(xi)yi −
n∑

i=1

ϕ(uεi )v
ε
i | ≤ (ε+ r)1Y (∀ϕϵX×).
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Therefore by (5) we get

− (r + ε)1Y ≤
n∑

i=1

ϕ(uεi )v
ε
i −

m∑
i=1

ϕ(xi)yi ≤ (r + ε)1Y. (20)

Let
∑m+1

i=1 u0i ⊠ v0i =
∑m

i=1 xi ⊠ yi − reX ⊠ 1Y, then , we have

∥
m∑
i=1

xi ⊠ yi −
m+1∑
i=1

u0i ⊠ v0i ∥ = r = d(
m∑
i=1

xi ⊠ yi,U) (21)

and so by (19), and (20) we have

m+1∑
i=1

u0i ⊠v0i −εeX⊠1Y =
m∑
i=1

xi⊠yi−(r+ε)eX⊠1Y ≪
n∑

i=1

uεi ⊠vεi (22)

As U is a downward set and
∑n

i=1 u
ε
i ⊠ vεi ∈ U; for each ε > 0, we get

m+1∑
i=1

u0i ⊠ v0i − εeX ⊠ 1Y ∈ U.

Since U is closed, we have
∑m+1

i=1 u0i ⊠ v0i ∈ U, and so by (21) and (3)
we get

m+1∑
i=1

u0i ⊠ v0i ∈ PU(
m∑
i=1

xi ⊠ yi).

This shows that U is proximinal. □
Proposition 3.9. Let U ⊂ Z := X⊠Y be a closed downward set, then if∑m

i=1 xi⊠yi ∈ Z\U, there exists the least element z0 = minPU(
∑m

i=1 xi⊠
yi) of the set PU(

∑m
i=1 xi ⊠ yi) ; namely, z0 =

∑m
i=1 xi ⊠ yi − reX ⊠ 1Y;

where r := d(
∑m

i=1 xi ⊠ yi,U).

Proof. If
∑m

i=1 xi ⊠ yi ∈ U, the result holds. Let
∑m

i=1 xi ⊠ yi ∈ Z\U
and z0 =

∑m
i=1 xi⊠yi−reX⊠1Y. Then by the proof of Corollary 3.8, we

have z0 ∈ PU(
∑m

i=1 xi ⊠ yi). Thus by equality ∥
∑m

i=1 xi ⊠ yi − z0∥ = r
and applying (17), (5), we get z ≥ z0 for each z ∈ B(

∑m
i=1 xi ⊠ yi, r).

Thus z0 is the least element of the closed ball B(
∑m

i=1 xi ⊠ yi; r). Now
Let ź ∈ PU(

∑m
i=1 xi ⊠ yi). Then we have ∥

∑m
i=1 xi ⊠ yi − ź∥⊠ = r,

and so ź ∈ B(
∑m

i=1 xi ⊠ yi, r). Therefore ź ≥ z0. Hence z0 is the least
element of the set PU(

∑m
i=1 xi ⊠ yi). □

Corollary 3.10. Let U be a closed downward subset of X ⊠ Y and∑m
i=1 xi ⊠ yi be an element of Z \ U. Then

d(
m∑
i=1

xi ⊠ yi,U) = min{λ ≥ 0|
m∑
i=1

xi ⊠ yi − λeX ⊠ 1Y ∈ U}.
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Proof. Assume that A = {λ|λ ≥ 0 ,
∑m

i=1 xi ⊠ yi − λeX ⊠ 1Y ∈ U}. If
x :=

∑m
i=1 xi ⊠ yi ∈ U then we get (

∑m
i=1 xi ⊠ yi − 0eX ⊠ 1Y) ∈ U and

so minA = 0 = d(
∑m

i=1 xi ⊠ yi,U).
Now let x /∈ U then r = d(

∑m
i=1 xi ⊠ yi;U) > 0. Let λ > 0 be such that∑m

i=1 xi ⊠ yi − λeX ⊠ 1Y ∈ U. Thus we have

λ = ∥x− (x− λeX ⊠ 1Y)∥⊠ ≥ d(x;U) = r.

By Proposition 3.9, we have
∑m

i=1 xi⊠yi− reX⊠1Y ∈ U, and therefore
r ∈ A. Hence minA = r, which completes the proof. □

4. Im-quasi downward sets in direct sum of lattice
normed spaces with applications

Now let I be a finite set of indices, and (Xi)i∈I be a collection of lattice
normed spaces with the strong unit 1i , we use the notation

∑
i∈I Xi for

direct sum of lattice normed spaces Xi. Also for each x, y ∈
∑

i∈I Xi,
we define

x+ y := (xi + yi)i∈I ,

where x = (xi)i∈I , y = (yi)i∈I . If (Xi, ∥.∥i)i∈I be a collection of lattice
normed spaces, we define a norm ∥.∥, on the space

∑
i∈I Xi as follows:

∥x∥ := max
i∈I

∥xi∥i for each x ∈
∑
i∈I

Xi. (23)

We use the notation 1⊕ for vector y = (1i)i∈I ∈
∑
i∈I

Xi, and define a

partial ordered relation on the direct sum of lattice normed spaces Xi,
as follows: For each x, y in

∑
i∈I

Xi,

x ≤ y ⇔ xi ≤ yi (∀i ∈ I). (24)

Let Im = {i1, i2, ...im} be an arbitrarily subset of I and x = (xi)i∈I
be an arbitrary element of

∑
i∈I Xi.We define the following useful sets:

(
∑
i∈I

Xi)
Im
x :=

{
y = (yi)i∈I ∈

∑
i∈I

Xi

}
where {

xi ≥ yi if i ∈ Im
xi ≤ yi if i /∈ Im

and

(co
∑
i∈I

Xi)
Im
x :=

{
y = (yi)i∈I ∈

∑
i∈I

Xi

}
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where {
xi ≤ yi if i ∈ Im
xi ≥ yi if i /∈ Im

}
,

and define
((
∑
i∈I

Xi)
Im
x )+ := (

∑
i∈I

Xi)+
∩

(
∑
i∈I

Xi)
Im
x ,

where (
∑

i∈I Xi)+ =
{
y|y = (yi)i∈I ∈

∑
i∈I Xi : yi ≥ 0 (∀i ∈ I)

}
. We

use the notation 1Im⊕ for the vector y = (yi)i∈I where

yi =

{
1 if i ∈ Im
−1 if i ∈ I \ Im.

(25)

Also we define coPrIm(x) as follows:

(coPrIm(x))i =

{
xi if i ∈ Im
0 if i ∈ I \ Im

(26)

Definition 4.1. A set U ⊆
∑

i∈I Xi is called Im−quasi downward if
(
∑

i∈I Xi)
Im
u ⊆ U for each u ∈ U.

In particular, an Im−quasi downward set U is downward, if Im = I and
is upward, if Im = ∅.

Proposition 4.2. Consider U as an Im−quasi downward subset of∑
i∈I Xi, and let x ∈

∑
i∈I Xi. Then the following assertions are true:

(1) If x ∈ U, then x− ε1Im⊕ ∈ intU for all ε > 0.

(2) intU = {x ∈
∑

i∈I Xi : x + ε1Im⊕ ∈ U for some ε > 0}.

Proof. (1). Let ε > 0 and x ∈ U be given. Consider N as an open
neighborhood of x− ε1Im⊕ i.e

N := {y ∈
∑
i∈I

Xi : ∥y − (x− ε1Im⊕ )∥ ≤ ε}.

Let
N1 = {y ∈

∑
i∈I

Xi : xi − 2ε ≤ yi ≤ xi (∀i ∈ Im)}

and
N2 = {y ∈

∑
i∈I

Xi : xi ≤ yi ≤ xi + 2ε (∀i ∈ I \ Im)}.

By (5) we have,
N = N1 ∩N2.

By definition of (
∑

i∈I Xi)
Im
u and that U is an Im−quasi downward set,

it follows that N ⊂ U, and so x− ε1Im⊕ ∈ intU.
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(2). Let x ∈ intU. Then there exists ε0 > 0 such that B(x, ε0) ⊂ U. In
view of (5), we get x+ ε01

Im⊕ ∈ U.
Conversely, suppose that there exists ε > 0 such that x+ ε1Im⊕ ∈ U.

By part (1) we have x = (x + ε1Im⊕ ) − ε1Im⊕ ∈ intU, which completes

the proof. □

Proposition 4.3. Each downward subset U of
∑

i∈I Xi is proximinal
in

∑
i∈I Xi.

Proof. Let x0 ∈
∑

i∈I Xi \ U and, r = d(x0,U) = infu∈U∥x0 − u∥, this
implies, for ε > 0 there exists uε ∈ U such that ∥x0−uε∥ < r+ε. Then
by (23) we have

∥(x0)i − (uε)i∥i ≤ r + ε (∀i ∈ I),

and by (5) we get

− (r + ε)1i < (uε)i − (x0)i < (r + ε)1i, (∀i ∈ I). (27)

Clearly when u0 := x0− r1⊕, we have ∥x0−u0∥ = r = d(x0,U) and so
by (27) and (24), u0 = x0 − r1⊕ − ε1⊕ ≤ uε. As U is downward and
uε ∈ U, it follows that u0 = x0−r1⊕−ε1⊕ ∈ U and thus u0 ∈ PU(x0),
i.e PU(x0) ̸= ∅. □

Corollary 4.4. Let U be a closed downward subset of
∑

i∈I Xi and
x0 ∈

∑
i∈I Xi \U. The least element u0 = minPU(x0) of the set PU(x0)

exists. Where u0 = x0 − r1⊕ and r := d(x0,U).

Proof. If x0 ∈ U, the result holds. Assume x0 ∈
∑

i∈I Xi \ U and
u0 = x0−r1⊕ . By proposition 4.3, we have u0 ∈ PU(x0). By applying
(23), (5) and the equality ∥x0 − u0∥ = r, we get y ≥ x0 − r1⊕ for each
y ∈ B(x0, r). This implies u0 is the least element of the closed ball
B(x0, r). Now, ∥x0 − u∥ = r for an arbitrary element u ∈ PU(x0) and
so u ∈ B(x0, r). This shows that u ≥ u0. Hence u0 is the least element
of the set PU(x0). □

In the following we define two useful maps:

Tm :
∑
i∈I

Xi →
∑
i∈I

Xi

by

Tm(x) = y = (yi)i∈I

where:

yi = (1Im⊕ )i.xi (28)
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and
(coT )m :=

∑
i∈I

Xi →
∑
i∈I

Xi

by
(coT )m(x) = z = (zi)i∈I

where

zi = −(1Im⊕ )i.xi (29)

Lemma 4.5. The maps Tm and (coT )m defined by (28) and (29) are
diffeomorphism.

Proof. The proof is trivial. □
Theorem 4.6. Let U ⊂

∑
i∈I Xi be an Im−quasi downward set, then

Tm(U) is downward, and (coT )m(U) is upward, where Tm and coTm be
the maps defined by (28) and (29).

Proof. By definition, Tm(U) is downward if and only if the hypothesis
h ∈ Tm(U), x ∈

∑
i∈I Xi and x ≤ h, implies that x ∈ Tm(U). Let

h ∈ Tm(U), By Lemma 4.5 there exists u ∈ U such that Tm(u) = h.
As x ≤ h then for each i ∈ I, xi ≤ hi. Then by (28) we have xi ≤ ui
if i ∈ Im and −xi ≥ ui if i ∈ I \ Im. As u ∈ U and U is Im−quasi
downward, we conclude w = (wi)i∈I ∈ U, where (wi)i∈I is defined by
wi = (1Im⊕ )i.xi. Then Tm(U) is downward since x = Tm(w) ∈ Tm(U).
Similarly (coT )m(U) is downward.This completes the proof. □
Definition 4.7. A set U ⊂

∑
i∈I Xi is called Im−quasi upward if its

compliment be an Im−quasi downward.(
i.e : (co

∑
i∈I Xi)

Im
u ⊆ U ; for allu ∈ U

)
Now by (28) and (29) we conclude the following proposition:

Proposition 4.8. Consider U as a subset of
∑

i∈I Xi which is closed
Im−quasi downward or Im−quasi upward set and x ∈

∑
i∈I Xi. Set

r := d(x,U), r′ := d(Tm(x), Tm(U)), r′′ := d((coT )m(x), (coT )m(U)),
then r = r′ = r′′.

Proof.

∥Tm(x)− Tm(U)∥ = max
i∈I

∥
(
Tm(x)

)
i
−
(
Tm(u)

)
i
∥i

= max{max
i∈Im

∥xi − ui∥i, max
i∈I\Im

∥ui − xi∥i}

= max
i∈I

∥xi − ui∥i = ∥x− u∥.

By taking infimum we get r = r′. Similarly r = r′′. This completes the
proof. □
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Proposition 4.9. Consider U ⊂
∑

i∈I Xi as a closed Im−quasi down-

ward set, x ∈
∑

i∈I Xi and r := d(x,U). Then um = x− r1Im⊕ ∈ PU(x).

Proof. Let x ∈
∑

i∈I Xi. By Theorem 4.6, Tm(U) is a downward set.

Hence by Corollary 4.4 w0 = minPTm(U)
(
Tm(x)

)
exists and thus we

get w0 = Tm(x)− r1⊕. Thus we get um = T−1
m (w0) ∈ PU(x). □

Proposition 4.10. Consider U as a closed Im−quasi downward subset
of

∑
i∈I Xi. Let x ∈

∑
i∈I Xi and Tm as in (28). Then the following

assertions are true:
i) PU(x) = {u ∈ U : Tm(u) ∈ PTm(U)

(
Tm(x)

)
}.

ii) d(x,U) = min{λ ≥ 0 : Tm(x)− λ1⊕ ∈ Tm(U)}.
Proof. (i) It follows from Lemma 4.5 and Proposition 4.8. (ii) It follows
from Propositions 4.8 and 4.9. □

5. The relation of Positive Im−quasi Downward sets and
Im−quasi Downward sets

Definition 5.1. A set V ⊆ (
∑

i∈I Xi)+ is called a positive Im−quasi
downward if (

∑
i∈I Xi)

Im
v )+ ⊆ V for each v ∈ V.

Downward hull of a positive Im−quasi downward set V ⊂ (
∑

i∈I Xi)+
is defined as follows:

Definition 5.2. Let V ⊂ (
∑

i∈I Xi)+ be a positive Im−quasi downward
set. The intersection of all Im−quasi downward sets which contains V
is an Im−quasi downward set, which is called Im−quasi downward hull
of V and denoted by V∗.

In the following we see some properties of Im−quasi downward hull
of a positive Im−quasi downward set :

Proposition 5.3. Let V∗ be Im−quasi downward hull of V ⊂ (
∑

i∈I Xi)+,
then

(1) V∗ = {x ∈
∑

i∈I Xi : coP
Im(x) ∈ V and x+ ∈ V},

(2) V = V∗
∩
(
∑

i∈I Xi)+.

Proof. Let A = {x ∈
∑

i∈I Xi : coPrIm(x) ∈ V, and x+ ∈ V}. We
first prove that A is Im−quasi downward. Let a ∈ A, there exists
x ∈

∑
i∈I Xi such that xi ≤ ai, if i ∈ Im and xi ≥ ai, if i ∈ I \ Im.

We are going to show that x ∈ A. We have coPrIm(a) , a+ ∈ V since
a ∈ A. Thus Let y = coPrIm(x). By (26) we get

yi =

{
0 if i ∈ Im
xi if i ∈ I \ Im.

(30)
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On the other hand we have

yi =

{
x+i ≤ a+i if i ∈ Im
x+i ≥ a+i if i ∈ I \ Im.

Now we get x+, y ∈ V since V is positive Im−quasi downward. Thus
x ∈ A. This shows A is Im−quasi downward. As V ⊂ A, hence V∗ ⊂ A.
Let x ∈ A, thus x+ ∈ V and coPrIm(x) = coPrIm(x+) and x+i ≥ xi

for each i ∈ I, As V∗ is Im−quasi downward, we get x ∈ V∗. Thus
A ⊂ V∗, which completes the proof.
(2). It is immediately a consequence of the first part. □

Proposition 5.4. Let V∗ be the closed Im−quasi downward hull of
V ⊆ (

∑
i∈I Xi)+, and x ∈ (

∑
i∈I Xi)+, then d(x, V ) = d(x,V∗).

Proof. It is clear that V ⊂ V∗. For each v ∈ V∗, we have

∥x− v∥ = max
i∈I

∥xi − vi∥i = max{max
i∈Im

∥xi − vi∥i, max
i∈I\Im

∥xi − vi∥i}

≥ max{max
i∈Im

∥xi − v+i ∥i, max
i∈I\Im

∥xi − vi∥i} = ∥x− v+∥

≥ d(x, V ).

Therefore infv∈V∗ ∥x − v∥ = d(x,V∗) ≥ d(x, V ), which completes the
proof. □

Theorem 5.5. Let U be an Im−quasi upward subset of
∑

i∈I Xi , then
Tm(U) is upward and coTm(U) is downward .

Proof. By definition, Tm(U) is upward if and only if h ∈ Tm(U) and
x ∈

∑
i∈I Xi and x ≥ h implies that x ∈ Tm(U). Let h ∈ Tm(U), By

Lemma 4.5 there exists u ∈ U such that Tm(u) = h. As x ≥ h then for
each i ∈ I, xi ≥ hi. By (28) we have xi ≥ ui if i ∈ Im and −xi ≤ ui
if i ∈ I \ Im. As u ∈ U and U is Im−quasi upward, we conclude
w = (wi)i∈I ∈ U, where (wi)i∈I is defined by wi = (1Im⊕ )i.xi. Then

x = Tm(w) ∈ Tm(U) and hence Tm(U) is upward. Similarly it can be
shown that (coT )m(U) is also downward.This completes the proof. □

Corollary 5.6. Let U ⊂
∑

i∈I Xi be closed Im−quasi upward and
x ∈

∑
i∈I Xi, then

PU(x) = {u ∈ U : Tm(u) ∈ PTm(U)(Tm(x))}.

Proof. This follows by Lemma 4.5 and proposition 4.8. □

Proposition 5.7. Let U ⊂
∑

i∈I Xi be a closed Im−quasi upward set,

x ∈
∑

i∈I Xi and r := d(x,U) then um = x+ r1Im⊕ ∈ PU(x).
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Proof. Suppose U ⊂
∑

i∈I Xi be a closed Im−quasi upward set and
x ∈

∑
i∈I Xi. By Theorem 5.5, Tm(U) is an upward set. Since −Tm(U)

is downward, by Corollary 4.4, w0 = maxPTm(U)(Tm(x)) exists and
w0 = Tm(x)+r1⊕. Then by Corollary 5.6, um = T−1

m (w0) ∈ PU(x). □
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