Journal of Algebraic Systems Vol. 2, No. 2, (2014), pp 137-146

COGENERATOR AND SUBDIRECTLY IRREDUCIBLE IN THE CATEGORY OF S-POSETS

GH. MOGHADDASI

ABSTRACT. In this paper we study the notions of cogenerator and subdirectly irreducible in the category of S-posets. First we give some necessary and sufficient conditions for an S-poset to be a cogenerator. Then we see that under some conditions, regular injectivity implies generator and cogenerator. Recalling Birkhoff's Representation Theorem for algebras, we study subdirectly irreducible S-posets and prove this theorem for the category of ordered right acts over an ordered monoid. Among other things, we present the relationship between cogenerators and subdirectly irreducible S-posets.

1. INTRODUCTION AND PRELIMINARIES

Laan [8] studied the generators in the category of right S-posets, where S is a pomonoid. Also Knauer and Normak [7] gave a relation between cogenerators and subdirectly irreducibles in the category of right S-acts. The main objective of this paper is to study cogenerators and subdirectly irreducible S-posets. Some properties of the category of S-posets have been studied in many papers, and recently in [2, 3, 5]. Now we give some preliminaries about S-act and S-poset needed in the sequel. A *pomonoid* is a monoid S equipped with a partial order relation \leq which is compatible with the monoid operation, in the sense that, if $s \leq t$ then $su \leq tu$, $us \leq ut$, for all $s, t, u \in S$. Let

MSC(2010): 08A60, 08B30, 08C05, 20M30

Keywords: S-poset, Cogenerator, Regular injective, Subdirectly irreducible. Received: 20 February 2014, Revised: 14 January 2015.

GH. MOGHADDASI

Pos denote the category of all partially ordered sets with order preserving (monotone) maps. A poset is said to be *complete* if each of its subsets has an infimum and a supremum. Recall that each poset can be embedded into a complete poset, its Dedekind MacNeile completion (see[1]). For a pomonoid S, a right S-poset is a poset A with a function $\alpha: A \times S \to A$, called the action of S on A, such that for $a, b \in A, s, t \in S$ (denoting $\alpha(a, s)$ by as) (1) a(st) = (as)t, (2) a1 = a, $(3)a \leq b \Rightarrow as \leq bs, (4) \ s \leq t \Rightarrow as \leq at.$ If A satisfies conditions (1) and (2) only then it is called a *right S-act*. For two S-posets A and B, an S-poset morphism is a map $f: A \to B$ such that f(as) = f(a)s and $a \leq b$ implies $f(a) \leq f(b)$, for each $a, b \in A$, $s \in S$. We denote the category of all right S-poset, with S-poset morphisms between them by $\mathbf{Pos}_{\mathbf{S}}$. For a pomonoid T, left T-posets can be defined analogously. A left T-poset A which is also a right S-poset is called a (T, S)-biposet (and is denoted by $_{T}A_{S}$) if (ta)s = t(as) for all $a \in A, t \in T, s \in S$. By **_TPos** and **_TPos**, we mean the category of all left T-poset and the category of all (T, S)-biposets respectively. Recall from [3] that in the category **Poss** monomorphisms are exactly the one to one morphisms and also the epimorphisms and the onto morphisms coincide. A regular monomorphism or embedding is an S-poset morphism $f: A \to B$ such that $a \leq b$ if and only if $f(a) \leq f(b)$, for each $a, b \in A$. An S-poset morphism $f: A \to B$ is called a *retraction (coretraction)* provided that there exist some S-poset morphism $g: B \to A$ such that $fg = id_B$ ($gf = id_A$). If there exists such a retraction, then B (A) will be called a retract (coretract) of A(B). It is easy to see that every coretraction is regular monomorphism. An S-poset A is called *regular injective* if for each regular monomorphism $g: B \to C$ and each S-poset morphism $f: B \to A$ there exists an S-poset morphism $\overline{f}: C \to A$ such that fg = f. That is the following diagram is commutative.

Let A be a poset. Recall that [5], the right S-poset $A^{(S)} = Map(S, A)$ consisting of all monotone maps from S into A is a cofree S-poset on A.

Proposition 1.1. Let A be a complete S-poset. Then A is regular injective if and only if it is a retract of the cofree S-poset $A^{(S)}$.

Proof. It is easy to see that the S-poset map $\gamma_A : A \to A^{(S)}$ given by $a \mapsto \varphi_a$ with $\varphi_a : S \to A$ defined by $\varphi_a(s) = as$ is an order embedding.

Then since A is regular injective, there exist a morphism $\pi_A : A^{(S)} \to A$ such that the following diagram is commutative

that is $\pi_A \circ \gamma_A = id_A$. Conversely since A is complete, $A^{(S)}$ is a regular injective (see Theorem 3.3. of [5]). Now A being a retract of a regular injective, is a regular injective.

2. Cogenerators

An object A in the category $\mathbf{Pos}_{\mathbf{S}}$ is called a cogenerator if the functor $Pos_{S}(-, A)$ is faithful, that is if for any $X, Y \in Pos_{S}$ and any $f, g \in Pos_{S}(X, Y)$ with $f \neq g$ there exists $\beta \in Pos_{S}(Y, A)$ such that

$$\beta f = Pos_S(f, A)(\beta) \neq Pos_S(g, A)(\beta) = \beta g.$$

That is, if $f \neq g$ then one has $X \xrightarrow{f} Y \xrightarrow{\beta} A$ with $\beta f \neq \beta g$.

The following results are true in each category (see Proposition I.7.32., II.4.13., and II.4.14. of [6]).

Proposition 2.1. Let A be a cogenerator in a category C. If $A \to A'$ is a monomorphism, then A' is also a cogenerator in C.

Proposition 2.2. Let C be a concrete category and $A \in C$ be |I|-cofree, for $|I| \ge 2$. Then A is a cogenerator in C.

Lemma 2.3. If $A \in Pos_S$ is a cogenerator then $Pos_S(X, A) \neq \emptyset$ for all $X \in Pos_S$.

Recall that an element a in an S-poset A is called a *zero element* if as = a for all $s \in S$. Also $\Theta = \{\theta\}$ with the action $\theta s = \theta$ for all $s \in S$ and order $\theta \leq \theta$ is called the *one element* S-poset. Recall from [3] that coproducts in Pos_S are disjoint unions.

The following result is an analogue of Proposition II.4.17. of [6] and the proof is the same as that.

Proposition 2.4. If an S-poset A is a cogenerator then A contains two different zero elements.

Proof. Consider $\Theta \xrightarrow{u_2} \Theta \bigsqcup \Theta$ in **Poss**, where u_1 , u_2 are the injections of the coproduct. Now, since $u_1 \neq u_2$ and A is cogenerator, there

exists $\Theta \bigsqcup \Theta \xrightarrow{\beta} A$ such that $\beta u_1 \neq \beta u_2$. Therefore $\beta u_1(\theta), \beta u_2(\theta)$ are two different zero elements in A.

In the two next theorems we characterize cogenerators.

Theorem 2.5. The following assertions are equivalent for a right Sposet A in the category of all S-posets with regular monomorphism between them:

- (1) for all $X, Y \in Pos_S$ and two morphisms $f, g : X \to Y, f \leq g$ whenever $\beta \circ f < \beta \circ q$ for all $\beta : Y \to A$;
- (2) A is a cogenerator;
- (3) for every $X \in Pos_S$ there exists a set I and a regular monomorphism $h: X \to \prod_{I} A$ in Pos_S ; (4) for every $X \in Pro_S$ there exists a set I and a regular monomor-
- phism $\pi: X^{(S)} \to \prod A;$
- (5) if X is a complete S-poset then the cofree object $X^{(S)}$ is a retract of $\prod_{I} A$ for some set I.

Proof.

- (1) \Rightarrow (2) Let for any morphisms $f, g: X \to Y$ and $\beta: Y \to A, \beta \circ f =$ $\beta \circ g$. Now $\beta \circ f \leq \beta \circ g$ implies $f \leq g$, and also $\beta \circ g \leq \beta \circ f$ implies $g \leq f$, thus f = g.
- $(2) \Rightarrow (3)$ Let A be a cogenerator. Then by Lemma 2.3, $\mathbf{Pos}_S(X, A) \neq (2)$ \emptyset , for every $X \in Pos_S$. By the universal property of products, there exists a unique regular monomorphism $h: X \to X$ Π A such that $p_k \circ h = k$ for every morphism $k : X \to A$ $k \in Pos_S(X, A)$ $\prod_{k \in Pos_S(X,A)} A \to A \text{ are the projections maps.}$ where p_k :

- $(3) \Rightarrow (4)$ It is obvious.
- $(4) \Rightarrow (5)$ Let X be a complete S-poset. Then $X^{(S)}$ is regular injective (see Theorem 3.3. of [5]). Since $\gamma : X^{(S)} \to \prod_{I} A$ is a regular

140

monomorphism, there exist an S-Poset morphism $\pi:\prod_I A\to X^{(S)}$ such that $\pi\circ\gamma=id_{X^{(S)}}$

that is $X^{(S)}$ is a retract of $\prod A$.

 $(5) \Rightarrow (1)$ Let $f, g: X \to Y$ and $f \notin g$. Then $f(x_0) \notin g(x_0)$ for some $x_0 \in X$. We have to show that there exists a morphism $k: Y \to A$ such that $k \circ f \notin k \circ g$. We know that each S-poset can be regularly embedded into a regular injective S-poset (see Theorem 2.11. of [5]) as follow:

where \overline{Y} is the MacNeile completion of Y (see[1]). Since $f(x_0) \not\leq g(x_0)$ and J is embedding we get $J(f(x_0)) \not\leq J(g(x_0))$. Hence $J \circ f \notin J \circ g$.

Now \overline{Y} is a complete S-poset and hence, by assumption $\overline{Y}^{(S)}$ is a retract of $\prod_{I} A$. Consequently there exist morphisms $\pi : \overline{Y}^{(S)} \to \prod_{I} A$ and $\gamma : \prod_{I} A \to \overline{Y}^{(S)}$ such that $\gamma \circ \pi = id_{\overline{Y}^{(S)}}$. Now we have the following diagram

$$X \xrightarrow[g]{f} Y \xrightarrow{J} \bar{Y}^{(S)} \xrightarrow[\gamma]{\pi} \prod_{I} A \ .$$

Hence $\pi \circ J \circ f \nleq \pi \circ J \circ g$. It is because if $\pi \circ J \circ f \le \pi \circ J \circ g$ then

$$\begin{array}{lll} J \circ f &=& id_{\overline{Y}^{(S)}} \circ (J \circ f) = \gamma \circ \pi \circ J \circ f \leq \gamma \circ \pi \circ J \circ g \\ &=& id_{\overline{Y}^{(S)}} \circ (J \circ g) = J \circ g \end{array}$$

which contradicts the fact $J \circ f \nleq J \circ g$. So there exists $j \in I$ such that

$$p_{j} \circ \pi \circ J \circ f \nleq p_{j} \circ \pi \circ J \circ g$$

$$X \xrightarrow{f} Y \xrightarrow{J} \bar{Y}^{(S)} \xrightarrow{\pi}_{\gamma} \prod_{I} A \xrightarrow{p_{j}} A.$$

GH. MOGHADDASI

This is because if for every $j \in I$, $\rho_j \circ \pi \circ J \circ f \leq \rho_j \circ \pi \circ J \circ g$ then

 $\forall j \in I \quad p_j(\pi(J(f(x_0))) \le p_j(\pi(J(g(x_0)))).$

Therefore $\pi(J(f(x_0)) \leq \pi(J(g(x_0))))$. Since π is a coretraction, it is a regular monomorphism. Now the mappings π , J are regular monomorphism, thus we have $f(x_0) \leq g(x_0)$ which contradict the fact $f(x_0) \not\leq g(x_0)$. Therefore there exists $j \in I$ such that $p_j \circ \pi \circ J \circ f \not\leq p_j \circ \pi \circ J \circ g$, that is, there exists aregular monomorphism $k = p_j \circ \pi \circ J : Y \to A$ such that $k \circ f \not\leq k \circ g$.

Corollary 2.6. If $A \in \mathbf{Pos}_{\mathbf{S}}$ is a cogenerator then each S-poset X can be regularly embedded into power of A.

Theorem 2.7. In the category Pos_s , a power of cogenerator is a cogenerator.

Proof. Let $A \in \mathbf{Pos}_{\mathbf{S}}$ be a cogenerator. By Proposition 2.2, $A^{(S)} \in \mathbf{Pos}_{\mathbf{S}}$ is cogenerator. Now by Theorem 2.5, there exists a regular monomorphism and hence a monomorphism, $\alpha : A^{(S)} \to \prod_{I} A$. Conse-

quently by Proposition 2.1, $\prod_{i} A$ is a cogenerator.

Definition 2.8. Let $X, Y \in \mathbf{Pos}_{\mathbf{S}}$. Define the cotrace of Y in X by

$$cotr_X(Y) = \bigcap_{\beta \in Pos_S(X,Y)} \ker \beta = \cap \{(x, x') \in X \prod X \mid \beta(x) = \beta(x')\}.$$

Theorem 2.9. A right S-poset A is a cogenerator if and only if $cotr_Y(A) = \Delta_Y$ for all $Y \in \mathbf{Poss}$.

Proof. Let A be a cogenerator and $y \neq y', y, y' \in Y$. Now for projections p_1, p_2 from $Y \prod Y$ we have $p_1|_{\langle (y,y') \rangle}(y,y') = y \neq y' = p_2|_{\langle (y,y') \rangle}(y,y')$, where $\langle (y,y') \rangle = \{(ys,y's)|s \in S\}$ is a sub S-poset of $Y \prod Y$ generated by (y,y'), that is $p_1|_{\langle (y,y') \rangle} \neq p_2|_{\langle (y,y') \rangle}$. Since A is cogenerator, there exist $\beta \in Pos_S(Y,A)$ such that $\beta p_1|_{\langle (y,y') \rangle} \neq \beta p_2|_{\langle (y,y') \rangle}$ hence $\beta(y) \neq \beta(y')$, since otherwise if $\beta(y) = \beta(y')$ then $\beta(ys) = \beta(y's)$ for all $s \in S$, that is $\beta p_1|_{\langle (y,y') \rangle} = \beta p_2|_{\langle (y,y') \rangle}$ which is a contradiction. Conversely let $f, g: X \to Y$ and $f \neq g$. Then $f(x) \neq g(x)$ for some $x \in X$, by $\bigcap_{\beta \in Pos_S(Y,A)} ker\beta = \Delta$, there exists $\beta \in Pos_S(Y,A)$ such that $\beta(f(x)) \neq \beta(g(x))$ which implies $\beta f \neq \beta g$, that is, A is cogenerator. \Box

Recall from [8] that a biposet ${}_{T}A_{S}$ is called faithful (regularly faithful, faithfully balanced) if the pomonoid homomorphisms $\lambda : T \to End(A_{S})$

142

and $\rho: S \to End(_{T}A)$ are injective (order reflecting, isomorphisms) where $End(A_S) = Pos_S(A, A)$ is a pomonoid with respect to composition and pointwise order also $End(_{T}A) =_{T} Pos(A, A)$ is a pomonoid with multiplication $f.g = g \circ f$ for $f, g \in_{T} Pos(A, A)$. Also an S-poset A is called faithful (regularly faithful, faithfully balanced) if the biposet $End(A_S)A_S$ is faithful (regularly faithful, faithfully balanced).

Theorem 2.10. Let ${}_{T}A_{S} \in {}_{\mathbf{T}}\mathbf{Pos}_{\mathbf{S}}$ be a faithfully balanced biposet and $\varphi: S \to A^{(S)}, \ \psi: T \to A^{(T)}$ be isomorphisms. If A as a right S-poset is regular injective then ${}_{T}A \in {}_{\mathbf{T}}\mathbf{Pos}$, as a left T-poset, is a cogenerator and a generator.

Proof. By assumption, $T \cong Pos_S(A, A)$ and $T \cong A^{(T)}, S \cong A^{(S)}$. Since A is a regular injective there exists $A^{(S)} \xrightarrow{\pi}{\gamma} A$ such that $\pi \circ \gamma = id_A$. Applying the functor Pos(-, A) we get:

$$T \cong Pos_{S}(A, A) \xrightarrow{Pos_{S}(\pi, A) = \pi'}_{Pos_{S}(\gamma, A) = \gamma'} Pos(A^{(S)}, A) \cong Pos_{S}(S, A)$$

 $Pos_S(\gamma, A) \circ Pos_S(\pi, A) = Pos_S(\pi \circ \gamma, A) = Pos_S(id_A, A) = id_{Pos_S(A,A)} = id_T.$ But $Pos_S(S, A) \cong_T A$ (see Lemma 1.1. of [8]). Therefore we have

$${}_{T}T \xrightarrow{\pi'}_{\gamma'} Pos_{S}(S, A) \cong_{T} A \quad (*)$$

such that $\gamma' \circ \pi' = id_T$, hence A is a generator (see Theorem 2.1 in [8]). But by Proposition 2.2, $A^{(T)}$ is a cogenerator and consequently, by (*) we have:

$$A^{(T)} \cong_T T \xrightarrow{\pi'}_T A, \gamma' \circ \pi' = id_T$$

that is π' is a monomorphism. Therefore, by Proposition 2.1, A is a cogenerator.

In the following we grt the relation between cogenerator and regularly faithful.

Proposition 2.11. If an S-poset A is a cogenerator then it is regularly faithful.

Proof. We have to show that $\rho : S \to End(_{End(A_S)}A)$ is an order reflecting. Since A is a cogenerator, by Theorem 2.5, the morphism $g: S_S \to \prod_I A$ is a regular monomorphism. By Proposition II.1.4 in [6], for each $i \in I$, $p_i : \prod_I A \to A$ are retractions and hence there exists S-poset morphism $q_i \in Pos_S(A, A)$ such that $p_i q_i = id_A$. Therefore we have:

$$S \xrightarrow{g} \prod_{I} A \xrightarrow{p_i \atop q_i} A; \quad p_i q_i = i d_A$$

Now let $\rho_s \leq \rho_{s'}$, where $s, s' \in S$ hence we have:

$$\begin{aligned} \forall i \in I, \rho_s(p_i(g(1))) &\leq \rho_{s'}(p_i(g(1))) \Rightarrow p_i(g(s)) = p_i(g(1,s)) = p_i(g(1)).s \\ &= \rho_s(p_i(g(1))) \leq \rho_{s'}(p_i(g(1))) = p_i(g(1)).s' = p_i(g(s')). \end{aligned}$$

Consequently for all $i \in I$, $p_i(g(s)) \leq p_i(g(s'))$ thus $g(s) \leq g(s')$. Since g is an order embedding, hence $s \leq s'$. Therefore we get that ρ is order reflecting.

3. Subdirectly irreducible

In this section we first characterize subdirectly irreducible S-posets, then write the Birkhoff's Representation Theorem for this category, and finally we will give the relation between subdirectly irreducible and cogenerator S-posets. Although the proof of these theorems are the same as for S-acts (see [6]), we try to write a short proof for them. Recall that an equivalence relation θ on an S-act A is called a *congruence* on A, if $a\theta a'$ implies $(as)\theta(a's)$ for $a, a' \in A, s \in S$. A congruence on an S-poset A is a congruence θ on the S-act A with the property that the S-act A/θ can be made into an S-poset in such a way that the natural map $A \to A/\theta$ is an S-poset morphism. We denote the set of all congruences on A by ConA.

Definition 3.1. An S-poset A is a subdirect product of an indexed family $(A_i)_{i \in I}$ of S-posets if A is a sub S-poset of $\prod_{i \in I} A_i$ and $p_i(A) = A_i$ for each $i \in I$, where p_i 's are the restrictions to A of projections from $\prod_{i \in I} A_i$.

Remark 3.2. For a right S-poset A and each $a, b \in A, a \neq b$ we denote the maximal congruence on A such that a and b are not related, by $\overline{\rho_{(a,b)}}$. This congruence exist by Zorn's Lemma. Consider $P = \{\theta \in ConA_S : (a,b) \notin \theta\}$. Then (P, \subseteq) is a partially order set and $\Delta \in P$. For any chain $\{\theta_i\}_{i \in I}$ in P the join $\bigvee_{i \in I} \theta_i$ is an upper bound and hence, by Zorn's Lemma, there exists $\overline{\rho_{(a,b)}}$.

A right S-poset A is called subdirectly irreducible if $\bigcap_{i \in I} \rho_i \neq \Delta$ for all congruences ρ_i on A with $\rho_i \neq \Delta$. If A is not subdirectly irreducible then it is called subdirectly reducible (see [4, 6]). Notice that for each

144

S-poset A with |A| = 2 there exist only two congruences Δ and ∇ on A and so these S-posets are subdirectly irreducible.

Theorem 3.3. Let A be an S-poset and $a, b \in A$, $a \neq b$. Then $A/\overline{\rho_{(a,b)}}$ is subdirectly irreducible.

Proof. Let $A/\overline{\rho_{(a,b)}}$ be subdirectly reducible. Hence $\sigma = \bigcap_{i \in I} \rho_i = \Delta$ where the elements of $\{\rho_i : i \in I\}$ are all non diagonal congruences on $A/\overline{\rho_{(a,b)}}$. Therefore there exists $i \in I$ such that $([a], [b]) \notin \rho_i$. But we know $\rho_i = \rho/\overline{\rho_{(a,b)}}$ where $\rho \in ConA$ and $\overline{\rho_{(a,b)}} \subseteq \rho$ that is we get a congruence ρ on A such that $(a, b) \notin \rho$ and $\overline{\rho_{(a,b)}} \subseteq \rho$ which contradicts the maximality of $\overline{\rho_{(a,b)}}$. Hence $A/\overline{\rho_{(a,b)}}$ is subdirectly irreducible. \Box

Now, similar to Birkhoff's Representation Theorem for algebra (see [4, 6]), we have:

Theorem 3.4. (Birkhoff's Theorem for S-posets) Any nontrivial S-poset A is a subdirect product of subdirectly irreducible S-posets of the form $A/\overline{\rho_{(a,b)}}$ for $a, b \in A$, $a \neq b$.

Corollary 3.5. A nontrivial S-poset A is subdirectly irreducible if and only if $A \simeq A/\overline{\rho(a,b)}$ for some $a, b \in A, a \neq b$.

Proof. Let A be a nontrivial subdirectly irreducible S-poset. By Birkhoff's Theorem it is subdirect product of subdirectly irreducibleS-posets of the form $A \simeq A/\overline{\rho_{(a,b)}}$ for $a, b \in A, a \neq b$. Since the intersection of the kernels of all restriction of the projections of the direct product is diagonal, and A is subdirectly irreducible, therefore one of the kernel must be diagonal. Thus $A \simeq A/\overline{\rho(a,b)}$ for some $a, b \in A, a \neq b$. The converse is Theorem 3.3.

We close the paper by the following proposition which gives the relation between cogenerators and subdirectly irreducible S-posets.

Proposition 3.6. An S-poset C is a cogenerator if and only if every subdirectly irreducible S-poset can be embedded into C.

Proof. By Corollary 3.5 any nontrivial subdirectly irreducible S-poset is of the form $A/\overline{\rho_{(a,b)}}$ for some $a, b \in A, a \neq b$. Consider the two homomorphism $f_1, f_2 : S_S \to A/\overline{\rho_{(a,b)}}$ with $f_1(1) = [a] \neq [b] = f_2(1)$. As C is a cogenerator, there exists a homomorphism $h : A/\overline{\rho_{(a,b)}} \to C$ such that $h([a]) \neq h([b])$. To prove that h is a monomorphism, let h([x]) = h([y]) for $x, y \in A$ with $[x] \neq [y]$. Let ρ be a relation on A defined by

 $u\rho v \Leftrightarrow h([u]) = h([v]) \text{ for any } u, v \in A$

That is ρ is induced by the kernel congruence of h and is itself a congruence on A. Since h([x]) = h([y]), $x\rho y$ and therefore $\overline{\rho(a,b)} \subsetneq \rho$. But

GH. MOGHADDASI

 $\underline{h([a])} \neq h([b])$ that is $(a, b) \notin \rho$ which contradicts the maximality of $\overline{\rho(a, b)}$. Hence h is a monomorphism. Conversely let $f, g : B \to A$ be two S-poset morphisms such that $f(b) \neq g(b)$ for some $b \in B$. Now for $\pi : A \to \underline{A/\rho(f(b), g(b))}$ and the embedding h from subdirectly irreducible $A/\overline{\rho(f(b), g(b))}$ into C, we have $h\pi f \neq h\pi g$. Hence C is a cogenerator. \Box

Acknowledgments

The author thank the referee for his/her very careful reading and useful comments. We also would like to thank Professor M. Mehdi Ebrahimi for his very good comments and helpful conversations during this research.

References

- 1. G. Birkhoff, Lattice Theory American Mathematical Society, Providence, 1973.
- S. Bulman-Fleming and V. Laan, Lazard's theorem for S-posets, Math. Nathr. 278 (15) (2005), 1743-1755.
- S. Bulman-Fleming and M. Mahmoudi, The category of S-posets, Semigroup Forum, 71 (3) (2005), 443-461.
- S. Burris and H. P. Sankapanavar, A course in universal algebra Springer-verlage, New York 1981.
- M. M. Ebrahimi, M. Mahmoudi and H. Rasouli, Banaschewski's theorem for S-posets: regular injectivity and completeness, *Semigroup Forum*, 80 (2010), 313-324.
- M. Klip, U. Knauer and A. Mikhalev, *Monoids, Acts and Categories*, De Gruyter, Berlin, 2000.
- U. Knauer and P. Normak, Morita duality for monoids, Semigroup Forum, 40 (1973), 39-57.
- V. Laan, Generators in the category of S-posets, Cent. Eur. Math. 6 (3) (2008), 357-363.

Gholamreza Moghaddasi

Department of Mathematics, Hakikm Sabzevari University, P.O.Bo 397, Sabzevar, Iran

Email: r.moghadasi@hsu.ac.ir