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COGENERATOR AND SUBDIRECTLY IRREDUCIBLE
IN THE CATEGORY OF S-POSETS

GH. MOGHADDASI

Abstract. In this paper we study the notions of cogenerator and
subdirectly irreducible in the category of S-posets. First we give
some necessary and sufficient conditions for an S-poset to be a
cogenerator. Then we see that under some conditions, regular in-
jectivity implies generator and cogenerator. Recalling Birkhoff’s
Representation Theorem for algebras, we study subdirectly
irreducible S-posets and prove this theorem for the category of ordered
right acts over an ordered monoid. Among other things, we present
the relationship between cogenerators and subdirectly irreducible
S-posets.

1. Introduction and Preliminaries

Laan [8] studied the generators in the category of right S-posets,
where S is a pomonoid. Also Knauer and Normak [7] gave a relation
between cogenerators and subdirectly irreducibles in the category of
right S-acts. The main objective of this paper is to study cogenerators
and subdirectly irreducible S-posets. Some properties of the category
of S-posets have been studied in many papers, and recently in [2, 3, 5].
Now we give some preliminaries about S-act and S-poset needed in
the sequel. A pomonoid is a monoid S equipped with a partial
order relation ≤ which is compatible with the monoid operation, in
the sense that, if s ≤ t then su ≤ tu, us ≤ ut, for all s, t, u ∈ S.
Let
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Pos denote the category of all partially ordered sets with order pre-
serving ( monotone ) maps. A poset is said to be complete if each of
its subsets has an infimum and a supremum. Recall that each poset
can be embedded into a complete poset, its Dedekind MacNeile com-
pletion (see[1]). For a pomonoid S, a right S-poset is a poset A with
a function α : A × S → A, called the action of S on A, such that for
a, b ∈ A, s, t ∈ S (denoting α(a, s) by as) (1) a(st) = (as)t, (2) a1 = a ,
(3)a ≤ b ⇒ as ≤ bs, (4) s ≤ t ⇒ as ≤ at. If A satisfies conditions (1)
and (2) only then it is called a right S-act. For two S-posets A and B,
an S-poset morphism is a map f : A→ B such that f(as) = f(a)s and
a ≤ b implies f(a) ⩽ f(b), for each a, b ∈ A, s ∈ S. We denote the
category of all right S-poset, with S-poset morphisms between them
by PosS. For a pomonoid T , left T -posets can be defined analogously.
A left T -poset A which is also a right S-poset is called a (T, S)-biposet
(and is denoted by TAS ) if (ta)s = t(as) for all a ∈ A, t ∈ T, s ∈ S.
By TPos and TPosS we mean the category of all left T -poset and the
category of all (T, S)-biposets respectively. Recall from [3] that in the
category PosS monomorphisms are exactly the one to one morphisms
and also the epimorphisms and the onto morphisms coincide. A regular
monomorphism or embedding is an S-poset morphism f : A→ B such
that a ≤ b if and only if f(a) ≤ f(b), for each a, b ∈ A. An S-poset
morphism f : A→ B is called a retraction (coretraction) provided that
there exist some S-poset morphism g : B → A such that fg = idB (
gf = idA). If there exists such a retraction, then B (A) will be called a
retract (coretract) of A (B). It is easy to see that every coretraction is
regular monomorphism. An S-poset A is called regular injective if for
each regular monomorphism g : B → C and each S-poset morphism
f : B → A there exists an S-poset morphism f̄ : C → A such that
f̄g = f . That is the following diagram is commutative.

B

f
��

g // C

¯
f��~~

~~
~~
~~

A

Let A be a poset. Recall that [5], the right S-poset A(S) =Map(S,A)
consisting of all monotone maps from S into A is a cofree S-poset on
A.

Proposition 1.1. Let A be a complete S-poset. Then A is regular
injective if and only if it is a retract of the cofree S-poset A(S).

Proof. It is easy to see that the S-poset map γA : A → A(S) given by
a 7→ φa with φa : S → A defined by φa(s) = as is an order embedding.
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Then since A is regular injective, there exist a morphism πA : A(S) → A
such that the following diagram is commutative

A

idA
��

γA // A(S)

πA}}{{
{{
{{
{{
{

A

that is πA ◦ γA = idA. Conversely since A is complete, A(S) is a regular
injective (see Theorem 3.3. of [5]). Now A being a retract of a regular
injective, is a regular injective. □

2. cogenerators

An object A in the category PosS is called a cogenerator if the
functor PosS(−, A) is faithful, that is if for any X, Y ∈ PosS and any
f, g ∈ PosS(X, Y ) with f ̸= g there exists β ∈ PosS(Y,A) such that

βf = PosS(f, A)(β) ̸= PosS(g, A)(β) = βg.

That is, if f ̸= g then one has X
f

−−−−−−−−−−−−⇒
g

Y
β−→ A with βf ̸= βg.

The following results are true in each category (see Proposition
I.7.32., II.4.13., and II.4.14. of [6]).

Proposition 2.1. Let A be a cogenerator in a category C. If A → A
′

is a monomorphism, then A
′
is also a cogenerator in C.

Proposition 2.2. Let C be a concrete category and A ∈ C be |I|-cofree,
for |I| ≥ 2. Then A is a cogenerator in C.

Lemma 2.3. If A ∈ PosS is a cogenerator then PosS(X,A) ̸= ∅ for
all X ∈ PosS.

Recall that an element a in an S-poset A is called a zero element if
as = a for all s ∈ S. Also Θ = {θ} with the action θs = θ for all s ∈ S
and order θ ≤ θ is called the one element S-poset. Recall from [3] that
coproducts in PosS are disjoint unions.

The following result is an analogue of Proposition II.4.17. of [6] and
the proof is the same as that.

Proposition 2.4. If an S-poset A is a cogenerator then A contains
two different zero elements.

Proof. Consider Θ
u2−−−−−−−−−−−−−−−⇒
u1

Θ
⊔
Θ in PosS, where u1, u2 are the injec-

tions of the coproduct. Now, since u1 ̸= u2 and A is cogenerator, there
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exists Θ
⊔

Θ
β−→ A such that βu1 ̸= βu2. Therefore βu1(θ), βu2(θ) are

two different zero elements in A. □

In the two next theorems we characterize cogenerators.

Theorem 2.5. The following assertions are equivalent for a right S-
poset A in the category of all S-posets with regular monomorphism
between them:

(1) for all X,Y ∈ PosS and two morphisms f, g : X → Y, f ≤ g
whenever β ◦ f ≤ β ◦ g for all β : Y → A;

(2) A is a cogenerator;
(3) for every X ∈ PosS there exists a set I and a regular monomor-

phism h : X →
∏
I

A in PosS;

(4) for every X ∈ ProS there exists a set I and a regular monomor-

phism π : X(S) →
∏
I

A;

(5) if X is a complete S-poset then the cofree object X(S) is a retract

of
∏
I

A for some set I.

Proof.
(1)⇒ (2) Let for any morphisms f, g : X → Y and β : Y → A, β ◦ f =

β ◦ g. Now β ◦ f ≤ β ◦ g implies f ≤ g, and also β ◦ g ≤ β ◦ f
implies g ≤ f , thus f = g.

(2)⇒ (3) Let A be a cogenerator. Then by Lemma 2.3, PosS(X,A) ̸=
∅, for every X ∈ PosS. By the universal property of prod-
ucts, there exists a unique regular monomorphism h : X →∏
k∈PosS(X,A)

A such that pk◦h = k for every morphism k : X → A

where pk :
∏

k∈PosS(X,A)

A→ A are the projections maps.

X

h

���
�
�
�

k

##G
GG

GG
GG

GG
GG

G

∏
A

k∈PosS(X,A)
Pk

// A

(3)⇒ (4) It is obvious.
(4)⇒ (5) Let X be a complete S-poset. Then X(S) is regular injective

(see Theorem 3.3. of [5]). Since γ : X(S) →
∏
I

A is a regular



COGENERATOR AND SUBDIRECTLY IRREDUCIBLE                    141

monomorphism, there exist an S-Poset morphism π :
∏
I

A →

X(S) such that π ◦ γ = idX(S)

X(S) γ //

id
X(S)

��

∏
I

A

π
}}{{
{{
{{
{{

X(S)

that is X(S) is a retract of
∏
I

A.

(5)⇒ (1) Let f, g : X → Y and f ⩽̸ g. Then f(x0) ⩽̸ g(x0) for some
x0 ∈ X. We have to show that there exists a morphism k :
Y → A such that k ◦ f ≰ k ◦ g. We know that each S-poset
can be regularly embedded into a regular injective S-poset (see
Theorem 2.11. of [5]) as follow:

J : Y −→ Y
(S)

y 7−→ Ly

,
Ly : S −→ Y

s 7−→ ↓ (y.s)

where Y is the MacNeile completion of Y (see[1]). Since f(x0) ⩽̸
g(x0) and J is embedding we get J(f(x0)) ⩽̸ J(g(x0)). Hence
J ◦ f ⩽̸ J ◦ g.

Now Y is a complete S-poset and hence, by assumption Y
(S)

is a

retract of
∏
I

A. Consequently there exist morphisms π : Y
(S) →

∏
I

A

and γ :
∏
I

A→ Y
(S)

such that γ◦π = id
Y

(S) . Now we have the following

diagram

X
f //
g

// Y
J // Ȳ (S)

π // ∏
I

A
γ

oo .

Hence π ◦ J ◦ f ≰ π ◦ J ◦ g. It is because if π ◦ J ◦ f ≤ π ◦ J ◦ g then

J ◦ f = id
Y

(S) ◦ (J ◦ f) = γ ◦ π ◦ J ◦ f ≤ γ ◦ π ◦ J ◦ g
= id

Y
(S) ◦ (J ◦ g) = J ◦ g

which contradicts the fact J ◦f ≰ J ◦g. So there exists j ∈ I such that

pj ◦ π ◦ J ◦ f ≰ pj ◦ π ◦ J ◦ g

X
f //
g

// Y
J // Ȳ (S)

π // ∏
I

A
γ

oo
pj // A.
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This is because if for every j ∈ I, ρj ◦ π ◦ J ◦ f ≤ ρj ◦ π ◦ J ◦ g then

∀j ∈ I pj(π(J(f(x0))) ≤ pj(π(J(g(x0))).

Therefore π(J(f(x0)) ≤ π(J(g(x0)). Since π is a coretraction, it is a
regular monomorphism. Now the mappings π, J are regular monomor-
phism, thus we have f(x0) ≤ g(x0) which contradict the fact f(x0) ≰
g(x0). Therefore there exists j ∈ I such that pj ◦π◦J ◦f ⩽̸ pj ◦π◦J ◦g,
that is, there exists aregular monomorphism k = pj ◦ π ◦ J : Y → A
such that k ◦ f ≰ k ◦ g. □
Corollary 2.6. If A ∈ PosS is a cogenerator then each S-poset X can
be regularly embedded into power of A.

Theorem 2.7. In the category PosS, a power of cogenerator is a co-
generator.

Proof. Let A ∈ PosS be a cogenerator. By Proposition 2.2, A(S) ∈
PosS is cogenerator. Now by Theorem 2.5, there exists a regular

monomorphism and hence a monomorphism, α : A(S) →
∏
I

A. Conse-

quently by Proposition 2.1,
∏
I

A is a cogenerator. □

Definition 2.8. Let X, Y ∈ PosS. Define the cotrace of Y in X by

cotrX(Y ) =
∩

β∈PosS(X,Y )

kerβ = ∩{(x, x′) ∈ X
∏

X | β(x) = β(x′)}.

Theorem 2.9. A right S-poset A is a cogenerator if and only if cotrY (A) =
∆Y for all Y ∈ PosS.

Proof. Let A be a cogenerator and y ̸= y′, y, y′ ∈ Y . Now for projec-
tions p1, p2 from Y

∏
Y we have p1|<(y,y′)>(y, y

′) = y ̸= y′ = p2|<(y,y′)>(y, y
′),

where < (y, y′) >= {(ys, y′s)|s ∈ S} is a sub S-poset of Y
∏
Y gener-

ated by (y, y′), that is p1|<(y,y′)> ̸= p2|<(y,y′>). Since A is cogenerator,
there exist β ∈ PosS(Y,A) such that βp1|<(y,y′)> ̸= βp2|<(y,y′)> hence
β(y) ̸= β(y′), since otherwise if β(y) = β(y′) then β(ys) = β(y′s) for
all s ∈ S, that is βp1|<(y,y′)> = βp2|<(y,y′)> which is a contradiction.
Conversely let f, g : X → Y and f ̸= g. Then f(x) ̸= g(x) for some

x ∈ X, by ∩
β∈PosS(Y,A)

kerβ = ∆, there exists β ∈ PosS(Y,A) such

that β(f(x)) ̸= β(g(x)) which implies βf ̸= βg, that is, A is cogenera-
tor. □

Recall from [8] that a biposet TAS is called faithful (regularly faithful,
faithfully balanced) if the pomonoid homomorphisms λ : T → End(AS)
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and ρ : S → End(TA) are injective (order reflecting, isomorphisms)
where End(AS) = PosS(A,A) is a pomonoid with respect to compo-
sition and pointwise order also End(TA) =T Pos(A,A) is a pomonoid
with multiplication f.g = g ◦ f for f, g ∈T Pos(A,A). Also an S-poset
A is called faithful (regularly faithful, faithfully balanced) if the biposet

End(AS)AS is faithful (regularly faithful, faithfully balanced).

Theorem 2.10. Let TAS ∈ TPosS be a faithfully balanced biposet and
φ : S → A(S), ψ : T → A(T ) be isomorphisms. If A as a right S-poset
is regular injective then TA ∈ TPos, as a left T -poset, is a cogenerator
and a generator.

Proof. By assumption, T ∼= PosS(A,A) and T ∼= A(T ), S ∼= A(S). Since

A is a regular injective there exists A(S)
π→
γ
A such that π ◦ γ = idA.

Applying the functor Pos(−, A) we get:

T ∼= PosS(A,A)
PosS(π,A)=π′

−→←−
PosS(γ,A)=γ′

Pos(A(S), A) ∼= PosS(S,A)

PosS(γ,A) ◦PosS(π,A) = PosS(π ◦ γ,A) = PosS(idA, A) = idPosS(A,A) = idT .

But PosS(S,A) ∼=T A (see Lemma 1.1. of [8]). Therefore we have

TT
π′
→
γ′

PosS(S,A) ∼=T A (∗)

such that γ′ ◦π′ = idT , hence A is a generator (see Theorem 2.1 in [8]).
But by Proposition 2.2, A(T ) is a cogenerator and consequently, by (∗)
we have:

A(T ) ∼=T T
π′
→T A, γ

′ ◦ π′ = idT
that is π′ is a monomorphism. Therefore, by Proposition 2.1, A is a
cogenerator. □

In the following we grt the relation between cogenerator and regularly
faithful.

Proposition 2.11. If an S-poset A is a cogenerator then it is regularly
faithful.

Proof. We have to show that ρ : S → End(End(AS)A) is an order re-
flecting. Since A is a cogenerator, by Theorem 2.5, the morphism

g : SS →
∏
I

A is a regular monomorphism. By Proposition II.1.4 in

[6], for each i ∈ I, pi :
∏
I

A→ A are retractions and hence there exists
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S-poset morphism qi ∈ PosS(A,∏I A) such that piqi = idA. Therefore

we have:
S

g→
∏
I

A
pi−→←−
qi

A; piqi = idA

Now let ρs ≤ ρs′ , where s, s
′ ∈ S hence we have:

∀i ∈ I, ρs(pi(g(1))) ≤ ρs′(pi(g(1)))⇒ pi(g(s)) = pi(g(1.s)) = pi(g(1)).s

= ρs(pi(g(1))) ≤ ρs′(pi(g(1))) = pi(g(1)).s
′ = pi(g(s

′)).

Consequently for all i ∈ I, pi(g(s)) ≤ pi(g(s
′)) thus g(s) ≤ g(s′).

Since g is an order embedding, hence s ≤ s′. Therefore we get that ρ
is order reflecting. □

3. Subdirectly irreducible

In this section we first characterize subdirectly irreducible S-posets,
then write the Birkhoff’s Representation Theorem for this category,
and finally we will give the relation between subdirectly irreducible
and cogenerator S-posets. Although the proof of these theorems are
the same as for S-acts (see [6]), we try to write a short proof for them.
Recall that an equivalence relation θ on an S-act A is called a congru-
ence on A, if aθa′ implies (as)θ(a′s) for a, a′ ∈ A, s ∈ S. A congruence
on an S-poset A is a congruence θ on the S-act A with the property
that the S-act A/θ can be made into an S-poset in such a way that
the natural map A→ A/θ is an S-poset morphism. We denote the set
of all congruences on A by ConA.

Definition 3.1. An S-poset A is a subdirect product of an indexed

family (Ai)i∈I of S-posets if A is a sub S-poset of
∏
i∈I
Ai and pi(A) = Ai

for each i ∈ I, where pi’s are the restrictions to A of projections from∏
i∈I
Ai.

Remark 3.2. For a right S-poset A and each a, b ∈ A, a ̸= b we denote
the maximal congruence on A such that a and b are not related, by
ρ(a,b). This congruence exist by Zorn’s Lemma. Consider P = {θ ∈
ConAS : (a, b) /∈ θ}. Then (P,⊆) is a partially order set and ∆ ∈ P .
For any chain {θi}i∈I in P the join

∨
i∈I θi is an upper bound and hence,

by Zorn’s Lemma, there exists ρ(a,b).

A right S-poset A is called subdirectly irreducible if
∩

i∈I ρi ̸= ∆ for
all congruences ρi on A with ρi ̸= ∆. If A is not subdirectly irreducible
then it is called subdirectly reducible (see [4, 6]). Notice that for each
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S-poset A with |A| = 2 there exist only two congruences ∆ and ▽ on
A and so these S-posets are subdirectly irreducible.

Theorem 3.3. Let A be an S-poset and a, b ∈ A, a ̸= b. Then A/ρ(a,b)
is subdirectly irreducible.

Proof. Let A/ρ(a,b) be subdirectly reducible. Hence σ =
∩

i∈I ρi = ∆
where the elements of {ρi : i ∈ I} are all non diagonal congruences
on A/ρ(a,b). Therefore there exists i ∈ I such that ([a], [b]) /∈ ρi. But
we know ρi = ρ/ρ(a,b) where ρ ∈ ConA and ρ(a,b) ⊆ ρ that is we get a
congruence ρ on A such that (a, b) /∈ ρ and ρ(a,b) ⊆ ρ which contradicts
the maximality of ρ(a,b). Hence A/ρ(a,b) is subdirectly irreducible. □

Now, similar to Birkhoff’s Representation Theorem for algebra (see
[4, 6]), we have:

Theorem 3.4. (Birkhoff’s Theorem for S-posets) Any nontrivial S-
poset A is a subdirect product of subdirectly irreducible S-posets of the
form A/ρ(a,b) for a, b ∈ A, a ̸= b.

Corollary 3.5. A nontrivial S-poset A is subdirectly irreducible if and
only if A ≃ A/ρ(a, b) for some a, b ∈ A, a ̸= b.

Proof. LetA be a nontrivial subdirectly irreducible S-poset. By Birkhoff’s
Theorem it is subdirect product of subdirectly irreducibleS-posets of
the form A ≃ A/ρ(a,b) for a, b ∈ A, a ̸= b. Since the intersection of
the kernels of all restriction of the projections of the direct product is
diagonal, and A is subdirectly irreducible, therefore one of the kernel
must be diagonal. Thus A ≃ A/ρ(a, b) for some a, b ∈ A, a ̸= b. The
converse is Theorem 3.3. □

We close the paper by the following proposition which gives the re-
lation between cogenerators and subdirectly irreducible S-posets.

Proposition 3.6. An S-poset C is a cogenerator if and only if every
subdirectly irreducible S-poset can be embedded into C.

Proof. By Corollary 3.5 any nontrivial subdirectly irreducible S-poset
is of the form A/ρ(a,b) for some a, b ∈ A, a ̸= b. Consider the two
homomorphism f1, f2 : SS → A/ρ(a,b) with f1(1) = [a] ̸= [b] = f2(1).
As C is a cogenerator, there exists a homomorphism h : A/ρ(a,b) → C
such that h([a]) ̸= h([b]). To prove that h is a monomorphism, let
h([x]) = h([y]) for x, y ∈ A with [x] ̸= [y]. Let ρ be a relation on A
defined by

uρv ⇔ h([u]) = h([v]) for any u, v ∈ A
That is ρ is induced by the kernel congruence of h and is itself a con-
gruence on A. Since h([x]) = h([y]), xρy and therefore ρ(a, b) ⊊ ρ. But
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h([a]) ̸= h([b]) that is (a, b) /∈ ρ which contradicts the maximality of

ρ(a, b). Hence h is a monomorphism. Conversely let f, g : B → A be
two S-poset morphisms such that f(b) ̸= g(b) for some b ∈ B. Now

for π : A → A/ρ(f(b), g(b)) and the embedding h from subdirectly

irreducible A/ρ(f(b), g(b)) into C, we have hπf ̸= hπg. Hence C is a
cogenerator. □
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