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COGENERATOR AND SUBDIRECTLY IRREDUCIBLE
IN THE CATEGORY OF S-POSETS

GH. MOGHADDASI

ABSTRACT. In this paper we study the notions of cogenerator and
subdirectly irreducible in the category of S-posets. First we give
some necessary and sufficient conditions for an S-poset to be a
cogenerator. Then we see that under some conditions, regular in-
jectivity implies generator and cogenerator. Recalling Birkhoff’s
Representation Theorem for algebras, we study subdirectly
irreducible S-posets and prove this theorem for the category of ordered
right acts over an ordered monoid. Among other things, we present
the relationship between cogenerators and subdirectly irreducible
S-posets.

1. INTRODUCTION AND PRELIMINARIES

Laan [8] studied the generators in the category of right S-posets,
where S is a pomonoid. Also Knauer and Normak [7] gave a relation
between cogenerators and subdirectly irreducibles in the category of
right S-acts. The main objective of this paper is to study cogenerators
and subdirectly irreducible S-posets. Some properties of the category
of S-posets have been studied in many papers, and recently in [2, 3, 5].
Now we give some preliminaries about S-act and S-poset needed in
the sequel. A pomonoid is a monoid S equipped with a partial
order relation < which is compatible with the monoid operation, in
the sense that, if s < t then su < tu, us < ut, for all s,t,u € S.
Let
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Pos denote the category of all partially ordered sets with order pre-
serving ( monotone ) maps. A poset is said to be complete if each of
its subsets has an infimum and a supremum. Recall that each poset
can be embedded into a complete poset, its Dedekind MacNeile com-
pletion (see[l]). For a pomonoid S, a right S-poset is a poset A with
a function a : A x § — A, called the action of S on A, such that for
a,b€ A, s, t €S (denoting a(a, s) by as) (1) a(st) = (as)t, (2) al = a,
(3)a < b= as <bs, (4) s <t = as < at. If A satisfies conditions (1)
and (2) only then it is called a right S-act. For two S-posets A and B,
an S-poset morphism is a map f : A — B such that f(as) = f(a)s and
a < b implies f(a) < f(b), for each a,b € A, s € S. We denote the
category of all right S-poset, with S-poset morphisms between them
by Posg. For a pomonoid T, left T-posets can be defined analogously.
A left T-poset A which is also a right S-poset is called a (T, S)-biposet
(and is denoted by rAg ) if (ta)s = t(as) foralla € A, t €T, s € S.
By rPos and tPosg we mean the category of all left T-poset and the
category of all (7, S)-biposets respectively. Recall from [3] that in the
category Posg monomorphisms are exactly the one to one morphisms
and also the epimorphisms and the onto morphisms coincide. A regular
monomorphism or embedding is an S-poset morphism f : A — B such
that a < b if and only if f(a) < f(b), for each a,b € A. An S-poset
morphism f : A — B is called a retraction (coretraction) provided that
there exist some S-poset morphism ¢ : B — A such that fg = idp (
gf =1idy). If there exists such a retraction, then B (A) will be called a
retract (coretract) of A (B). It is easy to see that every coretraction is
regular monomorphism. An S-poset A is called regular injective if for
each regular monomorphism ¢ : B — C and each S-poset morphism
f : B — A there exists an S-poset morphism f : C' — A such that
fg = f. That is the following diagram is commutative.

B-'-C
fi/
f
A

Let A be a poset. Recall that [5], the right S-poset A®) = Map(S, A)
consisting of all monotone maps from S into A is a cofree S-poset on

A.

Proposition 1.1. Let A be a complete S-poset. Then A is reqular
injective if and only if it is a retract of the cofree S-poset AY).

Proof. It is easy to see that the S-poset map 74 : A — A®) given by
a — @, with ¢, : S — A defined by ¢,(s) = as is an order embedding.
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Then since A is regular injective, there exist a morphism 74 : A®) — A
such that the following diagram is commutative

AT AG)
idAi /
TA
A

that is m4 0 v4 = id4. Conversely since A is complete, A®) is a regular
injective (see Theorem 3.3. of [5]). Now A being a retract of a regular
injective, is a regular injective. O

2. COGENERATORS

An object A in the category Posg is called a cogenerator if the
functor Posg(—, A) is faithful, that is if for any X,Y € Posg and any
f,g € Posg(X,Y) with f # g there exists § € Posg(Y, A) such that

Bf = Poss(f, A)(B) # Poss(g, A)(B) = By.

f
That is, if f # g then one has X — =Y By A with Bf # Bg.
g
The following results are true in each category (see Proposition

1.7.32., 11.4.13., and 11.4.14. of [0]).

Proposition 2.1. Let A be a cogenerator in a category C. If A — A’
is @ monomorphism, then A’ is also a cogenerator in C.

Proposition 2.2. Let C be a concrete category and A € C be |I|-cofree,
for |I| > 2. Then A is a cogenerator in C.

Lemma 2.3. If A € Posg is a cogenerator then Posg(X, A) # 0 for
all X € Posg.

Recall that an element a in an S-poset A is called a zero element if
as = a for all s € S. Also © = {0} with the action s = 0 for all s € S
and order 6 < 6 is called the one element S-poset. Recall from [3] that
coproducts in Posg are disjoint unions.

The following result is an analogue of Proposition 11.4.17. of [6] and
the proof is the same as that.

Proposition 2.4. If an S-poset A is a cogenerator then A contains
two different zero elements.

Proof. Consider © —2—_; O] ]© in Posg, where uy, us are the injec-

u1

tions of the coproduct. Now, since u; # us and A is cogenerator, there
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exists © |© 2, A such that fuy # Puy. Therefore fuy (), Bus(f) are

two different zero elements in A. O

In the two next theorems we characterize cogenerators.

Theorem 2.5. The following assertions are equivalent for a right S-
poset A in the category of all S-posets with regular monomorphism
between them:

(1) for all XY € Poss and two morphisms f,g : X = Y, f <yg
whenever fo f < Bog forall B:Y — A;

(2) A is a cogenerator;

(3) for every X € Posg there ezists a set I and a reqular monomor-

phism h : X — [[ A in Posg;

(4) for every X € P;os there exists a set I and a reqular monomor-
phism 7 : X&) =[] A;

(5) if X is a complete é-poset then the cofree object X% is a retract
ofUA for some set I.

Proof.
(1) = (2) Let for any morphisms f,g: X - Y and f:Y — A, fo f =
Bog. Now fof < pogimplies f <g,and also fog < o f
implies g < f, thus f = g.
(2) = (3) Let A be a cogenerator. Then by Lemma 2.3, Posg(X, A) #
(), for every X € Posg. By the universal property of prod-
ucts, there exists a unique regular monomorphism h : X —

11 A such that poh = k for every morphism k£ : X — A
kePosgs(X,A)

where py, : I1 A — A are the projections maps.
k€Poss(X,A)

X

Nk

b
‘V\
A ——4

kePosg(X,A) Tk
(3) = (4) It is obvious.
(4) = (5) Let X be a complete S-poset. Then X ) is regular injective
(see Theorem 3.3. of [5]). Since v : X — J] A is a regular
T



COGENERATOR AND SUBDIRECTLY IRREDUCIBLE 141

monomorphism, there exist an S-Poset morphism 7 : [[A —
I

X such that 7oy = idys)

X L>HA

I
id
Ly (9) /

X
that is X is a retract of [] A.

T
(5) = (1) Let f,g: X = Y and f £ g. Then f(xo) £ g(zo) for some
ro € X. We have to show that there exists a morphism £ :
Y — A such that ko f £ kog. We know that each S-poset
can be regularly embedded into a regular injective S-poset (see
Theorem 2.11. of [5]) as follow:

JY — 7 L,:S — Y
y — L, s — 1 (y.9)

where Y is the MacNeile completion of Y (see[1]). Since f(xq) %
g(wo) and J is embedding we get J(f(xo)) £ J(g(z0)). Hence
Jof£ Jog.

Now Y is a complete S-poset and hence, by assumption 7(5) is a

retract of [[ A. Consequently there exist morphisms 7 : v 1A
T T

andvy:[[A— Y such that yom = idys). Now we have the following
T

diagram

! _ T
X—=2vy-—Ly® _——>T[A.
g v T

Hence mo Jo f £ mo.Jog. It is because if mo Jo f < moJog then
Jof = ddoso(Jof)=yomoJof<yomolJog
= ddss o(Jog)=Joyg
which contradicts the fact Jo f £ Jog. So there exists j € I such that

pjowojofﬁpjowojog

X Loy Jye Toqpa e
g v T
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This is because if for every j € I, pjomoJo f < pjomoJogthen

viel pi(r(J(f(x0))) < p;(m(J(g(x0)))-
Therefore 7(J(f(z0)) < 7(J(g(z0)). Since 7 is a coretraction, it is a
regular monomorphism. Now the mappings 7, J are regular monomor-
phism, thus we have f(xq) < g(xo) which contradict the fact f(zg) £
g(xo). Therefore there exists j € I such that pjomoJof &£ pjoroJog,

that is, there exists aregular monomorphism k = pjoroJ :Y — A
such that ko f £ kog. O

Corollary 2.6. If A € Posg is a cogenerator then each S-poset X can
be reqularly embedded into power of A.

Theorem 2.7. In the category Poss, a power of cogenerator is a co-
generator.

Proof. Let A € Posg be a cogenerator. By Proposition 2.2, A®) ¢
Posg is cogenerator. Now by Theorem 2.5, there exists a regular

monomorphism and hence a monomorphism, « : A®) — [TA. Conse-
T

quently by Proposition 2.1, [] A is a cogenerator. O
Jj

Definition 2.8. Let X,Y € Posg. Define the cotrace of Y in X by

cotrx(Y) = m ker 8 = N{(z,2') € XHX | B(x) = B(2")}.

BEPosg(X,Y)

Theorem 2.9. A right S-poset A is a cogenerator if and only if cotry (A) =
Ay for all Y € Posg.

Proof. Let A be a cogenerator and y # v/, v,y € Y. Now for projec-
tions py, p from Y JTY we have p1| <> (4, ') = ¥ # ¥ = Dol <ty)> ¥, V),
where < (y,y') >= {(ys,y's)|s € S} is a sub S-poset of Y []Y gener-
ated by (y,y'), that is pi|<(yy)> 7 D2|<@yy>). Since A is cogenerator,
there exist § € Posg(Y, A) such that Spi|<y)> # BP2|<(yy)> hence
B(y) # B(y'), since otherwise if B(y) = S(y') then B(ys) = B(y's) for
all s € S, that is 8pi|<(y,y)> = BP2|<(yy)> Which is a contradiction.
Conversely let f,g : X — Y and f # g. Then f(x) # g(x) for some

r € X, by N kerp = A, there exists § € Posg(Y,A) such
BEPoss(Y,A)

that 5(f(z)) # S(g(z)) which implies Sf # By, that is, A is cogenera-
tor. U

Recall from [¢] that a biposet 1Ay is called faithful (regularly faithful,
faithfully balanced) if the pomonoid homomorphisms A : 7" — End(Ag)
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and p : S — End(rA) are injective (order reflecting, isomorphisms)
where End(Ag) = Posg(A, A) is a pomonoid with respect to compo-
sition and pointwise order also End(rA) =7 Pos(A, A) is a pomonoid
with multiplication f.g = go f for f,g €r Pos(A, A). Also an S-poset
A is called faithful (regularly faithful, faithfully balanced) if the biposet
End(Ag)As is faithful (regularly faithful, faithfully balanced).

Theorem 2.10. Let pAg € tPoss be a faithfully balanced biposet and
0: S = AW T — AT be isomorphisms. If A as a right S-poset
is reqular injective then tA € tPos, as a left T-poset, is a cogenerator
and a generator.

Proof. By assumption, T = Posg(A, A) and T = AT S = A Since

A is a regular injective there exists A®) " A such that 7 o v = 1ida.

v
Applying the functor Pos(—, A) we get:
Poss(7r_,A>):7r/
T = Posg(A,A)  «—  Pos(A®) A) = Posg(S, A)
Poss(v,A)="'

Posg(7,A) o Posg(m, A) = Posg(m oy, A) = Posg(ida, A) = idposg(a,a)
But Posg(S, A) =r A (see Lemma 1.1. of [3]). Therefore we have
TT1/>P085(S, A) %’T A (*)

Y

such that 4 o’ = idr, hence A is a generator (see Theorem 2.1 in [¢]).
But by Proposition 2.2, A is a cogenerator and consequently, by (x)
we have:

A(T) gTT l/>T A, ")// o 7T/ = ZdT
that is 7’ is a monomorphism. Therefore, by Proposition 2.1, A is a
cogenerator. 0]

In the following we grt the relation between cogenerator and regularly
faithful.

Proposition 2.11. If an S-poset A is a cogenerator then it is reqularly
faithful.

Proof. We have to show that p : S — End(gnqusA) is an order re-
flecting. Since A is a cogenerator, by Theorem 2.5, the morphism

g :Ss — [[A is a regular monomorphism. By Proposition /7.1.4 in
T

[6], for each i € I, p; : [] A — A are retractions and hence there exists
T

vdrp.
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S-poset morphism ¢; € Posg(A,  A) such that p;q; = ids. Therefore
I

we have: pH

SHIIA A pigi=ida

q;

Now let p, < py, where s, s’ € S hence we have:
Viel,ps(pi(9(1)) < po(pi(9(1))) = pi(g(s)) = pi(g(L.5)) = pi(g(1)).s

= ps(pil9(1))) < po(pi(9(1))) = pi(g(1)).s" = pi(g(s))-
Consequently for all ¢ € I, p;(g(s)) < pi(g(s')) thus g(s) < g(s').
Since g is an order embedding, hence s < s’. Therefore we get that

tp
is order reflecting. O

3. SUBDIRECTLY IRREDUCIBLE

In this section we first characterize subdirectly irreducible S-posets,
then write the Birkhoff’s Representation Theorem for this category,
and finally we will give the relation between subdirectly irreducible
and cogenerator S-posets. Although the proof of these theorems are
the same as for S-acts (see [(]), we try to write a short proof for them.
Recall that an equivalence relation 6 on an S-act A is called a congru-
ence on A, if afa’ implies (as)0(a’s) for a,a’ € A, s € S. A congruence
on an S-poset A is a congruence 6 on the S-act A with the property
that the S-act A/f can be made into an S-poset in such a way that
the natural map A — A/ is an S-poset morphism. We denote the set
of all congruences on A by ConA.

Definition 3.1. An S-poset A is a subdirect product of an indexed

family (A;);er of S-posets if A is a sub S-poset of [[ A; and p;(A) = A;
iel

for each ¢ € I, where p;’s are the restrictions to A of projections from

IT A

i€l

Remark 3.2. For a right S-poset A and each a,b € A, a # b we denote

the maximal congruence on A such that a and b are not related, by

Play)- This congruence exist by Zorn’s Lemma. Consider P = {f €

ConAg : (a,b) ¢ 0}. Then (P,C) is a partially order set and A € P.

For any chain {6;},c; in P the join \/,_, 0; is an upper bound and hence,

by Zorn’s Lemma, there exists p(q ).

A right S-poset A is called subdirectly irreducible if (,c; p; # A for
all congruences p; on A with p; # A. If A is not subdirectly irreducible
then it is called subdirectly reducible (see [1, (]). Notice that for each
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S-poset A with |A| = 2 there exist only two congruences A and 57 on
A and so these S-posets are subdirectly irreducible.

Theorem 3.3. Let A be an S-poset and a,b € A, a #b. Then A/py)
18 subdirectly irreducible.

Proof. Let A/pyp) be subdirectly reducible. Hence o = (., 0 = A
where the elements of {p; : i € I} are all non diagonal congruences
on A/pay- Therefore there exists ¢ € I such that ([al, [b]) ¢ p;. But
we know p; = p/pray) where p € ConA and pp) C p that is we get a
congruence p on A such that (a,b) ¢ p and pp) C p which contradicts
the maximality of pr, ;). Hence A/pry) is subdirectly irreducible. O

Now, similar to Birkhoff’s Representation Theorem for algebra (see
[4, 6]), we have:

Theorem 3.4. (Birkhoff’s Theorem for S-posets) Any nontrivial S-
poset A is a subdirect product of subdirectly irreducible S-posets of the
form A/pypy fora,be A, a#b.

Corollary 3.5. A nontrivial S-poset A is subdirectly irreducible if and
only if A~ A/p(a,b) for some a,b € A, a #b.

Proof. Let A be a nontrivial subdirectly irreducible S-poset. By Birkhoft’s
Theorem it is subdirect product of subdirectly irreducibleS-posets of
the form A ~ A/pgy) for a,b € A, a # b. Since the intersection of
the kernels of all restriction of the projections of the direct product is
diagonal, and A is subdirectly irreducible, therefore one of the kernel

must be diagonal. Thus A ~ A/p(a,b) for some a,b € A, a # b. The
converse is Theorem 3.3. O

We close the paper by the following proposition which gives the re-
lation between cogenerators and subdirectly irreducible S-posets.

Proposition 3.6. An S-poset C' is a cogenerator if and only if every
subdirectly wrreducible S-poset can be embedded into C'.

Proof. By Corollary 3.5 any nontrivial subdirectly irreducible S-poset
is of the form A/pgy for some a,b € A, a # b. Consider the two
homomorphism fi, fo : Sg — A/pp with fi(1) = [a] # [b] = fo(1).
As C'is a cogenerator, there exists a homomorphism h : A/pp — C
such that h([a]) # h([b]). To prove that h is a monomorphism, let
h([z]) = h([y]) for z,y € A with [z] # [y]. Let p be a relation on A
defined by
upv < h([u]) = h([v]) for any u,v € A

That is p is induced by the kernel congruence of h and is itself a con-
gruence on A. Since h([z]) = h([y]), xpy and therefore p(a,b) C p. But
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h(la]) # h([b]) that is (a,b) ¢ p which contradicts the maximality of
p(a,b). Hence h is a monomorphism. Conversely let f,g : B — A be
two S-poset morphisms such that f(b) # ¢g(b) for some b € B. Now
for m : A — A/p(f(b),g(b)) and the embedding h from subdirectly
irreducible A/p(f(b),g(b)) into C, we have hrf # hrg. Hence C is a

cogenerator. ]
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