Journal of Algebraic Systems

Vol. 3, No. 1, (2015), pp 11-22

AN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS

S. KARIMZADEH* AND R. NEKOOEI

Abstract

In this paper, a generalization of the integral dependence of rings on modules is given. The stability of the integral closure with respect to various module theoretic constructions is also studied. Moreover, the notion of integral extension of a module is introduced, and the Lying over, Going up and Going down theorems for modules are proved.

1. Introduction

Throughout this paper, all rings are commutative with identity, and all modules are unital. In the commutative ring theory, the integral element is defined, and its properties are discussed. Also the Lying over, Going up and Going down theorems are stated in many texts such as [3]. Let $R \subseteq R^{\prime}$ be the rings. $\alpha \in R^{\prime}$ is the integral over R, if there exists a monic polynomial $f(x) \in R[x]$, such that $f(\alpha)=0$ [3]. In this paper, we introduce the notion of integral elements in a module (Definition 2.1). If $R \subseteq R^{\prime} \subseteq K$ are the rings, and K is a quotient field of R, then $\alpha \in R^{\prime}$ is the integral over a ring R, if and only if $\alpha .1_{R}$ is the integral over R when R is regarded as an R-module. Let M^{\prime} be an R-module, and S be the set of regular elements of R. Then

$$
T_{M^{\prime}}=\left\{t \in S: t m^{\prime}=0, \text { for some } m^{\prime} \in M^{\prime} \text { implies that } m^{\prime}=0\right\}
$$

is a multiplicative closed subset of R. As Naoum and Al-Alwan have stated [5], we say that $y n \in M$, as long as there exists an element m

[^0]in M such that $t m=r n$, where $y=r / t \in T_{M}^{-1} R$, and $n \in M-\{0\}$. For any submodule N of an R-module M, we define $(N: M)=\{r \in$ $R \mid r M \subseteq N\}$. A submodule P of M is called prime, if $P \neq M$; and for $r \in R, m \in M$ and $r m \in P$, we have $m \in P$ or $r \in(P: M)$. It is easy to show that if P is a prime submodule of an R-module M, then $(P: M)$ is a prime ideal of R [4]. The set of all prime submodules is denoted by $\operatorname{Spec}(M)$.
This paper has been organized as follows: In section 2, we discuss the concept of an integral element over a module, a generalization of the concept of an integral element over a ring. In Theorem 2.3, we obtain the equivalent characterizations for the integral elements. We show, in Lemma 2.5 that if $M \subseteq M^{\prime}$ are R-modules, and $y \in T_{M^{\prime}}^{-1} R$, then $\bar{M}_{M^{\prime}}^{y}$ is an R-module. Section 3 is devoted to introducing the concept of integral extension and the integrally closed module. In [1], Alkan and Tiras have defined the integrally closed module. Here, we define the notion of integrally closed modules in connection with the integral elements. Then, in Lemma 3.6, we show that our definition and the one given in [1] are equivalent. We also prove that the notion of integrally closed is a local property (Theorem 3.7). We apply the notion of integral extension of a module, and prove the Lying over, Going up and Going down theorems for modules (Theorems 3.10, 3.11, 3.12).

2. Integral elements of a module

Let M^{\prime} be an R-module, and S be the set of regular elements of R. Then

$$
T_{M^{\prime}}=\left\{t \in S: t m^{\prime}=0, \text { for some } m^{\prime} \in M^{\prime} \text { implies that } m^{\prime}=0\right\}
$$

is a multiplicative closed subset of R.
Definition 2.1. Let $M \subseteq M^{\prime}$ be R-modules, $y \in T_{M^{\prime}}^{-1} R$, and $m^{\prime} \in M^{\prime}$. We say that an element $y m^{\prime}$, is integral over M, if there exist a monic polynomial $f(x) \in R[x]$, and a polynomial $g(x) \in M[x]$ such that $\operatorname{deg}(g(x))<\operatorname{deg}(f(x))$, and

$$
f(y) m^{\prime}+g(y)=0
$$

Example 2.2. Let $M=2 \mathbb{Z}$, and $M^{\prime}=\left\{a / 2^{n}: a \in \mathbb{Z}, n \in \mathbb{N} \cup\{0\}\right\}$ be \mathbb{Z}-modules. Clearly, $T_{M^{\prime}}=\mathbb{Z}-\{0\}$. Consider $m^{\prime}=1 / 2 \in M^{\prime}$ and $y=2 / 1 \in T_{M^{\prime}}^{-1} \mathbb{Z}$. Then $y m^{\prime}$ is the integral over M, but $y m^{\prime} \notin M$. If $m^{\prime}=1 \in M^{\prime}$, and $y=1 / 2 \in T_{M^{\prime}}^{-1} \mathbb{Z}$, then $y m^{\prime}$ is not the integral over M.

Theorem 2.3. Let $M \subseteq M^{\prime}$ be R-modules. If $y \in T_{M^{\prime}}^{-1} R$, and $m^{\prime} \in M^{\prime}$, then the following statements are equivalent:
i) $y m^{\prime}$ is the integral over M;
ii) There exist a finitely generated R-module $L_{1}=\sum_{i=1}^{n} R x_{i}$, and a submodule K of an R-module $L_{2}=\sum_{j=0}^{k} y^{j} M$, where $k<n$, such that $m^{\prime} \in L_{1}$ and $y x_{i} \in L_{1}+K$, for all $1 \leq i \leq n$;
iii) There exists an R-module L^{\prime}, such that $\left(L^{\prime} / L\right)=\sum_{i=1}^{n} R x_{i}^{\prime}$, where $L=\sum_{j=0}^{k} y^{j} M$, and $k<n$ such that $m^{\prime} \in L^{\prime}$, and $y x_{i}^{\prime} \in L^{\prime} / L$ for all $1 \leq i \leq n$.

Proof. $(i) \Longrightarrow(i i)$ Since $y m^{\prime}$ is the integral over M, there exist

$$
f(x)=x^{n}+\sum_{i=0}^{n-1} r_{i} x^{i} \in R[x]
$$

and

$$
g(x)=\sum_{i=0}^{k} m_{i} x^{i} \in M[x]
$$

such that, $k<n$, and

$$
f(y) m^{\prime}+g(y)=y^{n} m^{\prime}+\Sigma_{i=0}^{n-1} y^{i} r_{i} m^{\prime}+\Sigma_{j=0}^{k} y^{j} m_{j}=0 .
$$

Put

$$
L_{1}=R m^{\prime}+R y m^{\prime}+\cdots+R y^{n-1} m^{\prime}
$$

and

$$
K=R m_{0}+R y m_{1}+\cdots+R y^{k} m_{k} .
$$

Therefore, $y\left(y^{i-1} m^{\prime}\right) \in L_{1}$, for all $1 \leq i \leq n-1$. Since $f(y) m^{\prime}+g(y)=$ 0 ,

$$
y\left(y^{n-1} m^{\prime}\right)=y^{n} m^{\prime}=-\left(\sum_{i=0}^{n-1} r_{i} y^{i} m^{\prime}+\sum_{j=0}^{k} y^{j} m_{j}\right) \in L_{1}+K .
$$

Hence,

$$
y\left(y^{i-1} m^{\prime}\right) \in L_{1}+K, \text { for all } 1 \leq i \leq n
$$

(ii) $\Longrightarrow($ iii $)$ Put $L^{\prime}=L_{1}+L_{2}$. It is clear that L^{\prime} / L_{2} is generated by $x_{i}^{\prime}=x_{i}+L_{2}$, and $y x_{i}^{\prime} \in L^{\prime} / L_{2}$, for all $1 \leq i \leq n$.
$(i i i) \Longrightarrow(i)$ By assumption, there exist $r_{i j} \in R$, and $y x_{i}^{\prime}=\sum_{j=1}^{n} r_{i j} x_{j}^{\prime}$, for all $1 \leq i \leq n$. Hence,

$$
\Sigma_{j=1}^{n}\left(\delta_{i j} y-r_{i j}\right) x_{j}^{\prime}=0 .
$$

Put $A=\left[\delta_{i j} y-r_{i j}\right]$ as an $n \times n$ matrix. Now, since $A^{\text {adj }} A=(\operatorname{det} A) I$ where $A^{a d j}, A$, and I, are, respectively, the adjoint matrix of A, determinant of A, and identity matrix, We have

$$
y^{n} m^{\prime}+\cdots+r_{1} y m^{\prime}+r_{0} m^{\prime}+y^{k} m_{k}+\cdots+y m_{1}+m_{0}=0
$$

and so, $y m^{\prime}$ is the integral over M.

Definition 2.4. Let $M \subseteq M^{\prime}$ be R-modules, and $y \in T_{M^{\prime}}^{-1} R$. We can define

$$
\bar{M}_{M^{\prime}}^{y}=\left\{y m^{\prime}: m^{\prime} \in M^{\prime} \text { and } y m^{\prime} \text { is the integral over } M\right\} .
$$

Lemma 2.5. Let $M \subseteq M^{\prime}$ be R-modules, $y \in T_{M^{\prime}}^{-1} R$, and $m_{1}^{\prime}, m_{2}^{\prime} \in$ M^{\prime}. If $y m_{1}^{\prime}$ and $y m_{2}^{\prime}$ are the integrals over M, then $y\left(r m_{1}^{\prime}+s m_{2}^{\prime}\right)=$ $r y m_{1}^{\prime}+s y m_{2}^{\prime}$ for all $r, s \in R$ is integral over M. Therefore, $\bar{M}_{M^{\prime}}^{y}$ is an R-module.

Proof. By Theorem 2.3, there exist R-modules $L_{1}=\sum_{i=1}^{n_{1}} R x_{i}$ and $L_{2}=$ $\sum_{i=1}^{n_{2}} R z_{i}$, and submodules K_{1} of $\sum_{i=0}^{k_{1}} y^{i} M$ and K_{2} of $\sum_{i=0}^{k_{2}} y^{i} M$ such that $m_{1}^{\prime} \in L_{1}, m_{2}^{\prime} \in L_{2}, y x_{i} \in L_{1}+K_{1}, y z_{j} \in L_{2}+K_{2},\left(1 \leq i \leq n_{1}, 1 \leq j \leq\right.$ $\left.n_{2}\right), k_{1}<n_{1}$, and $k_{2}<n_{2}$.

Put $L^{\prime}=L_{1}+L_{2}+L$, where $L=\sum_{i=0}^{k} y^{i} M$ and $k=n_{1}+n_{2}-1$. Therefore, L^{\prime} / L is generated by the set

$$
\left\{x_{1}+L, \ldots, x_{n_{1}}+L, z_{1}+L, \ldots, z_{n_{2}}+L\right\}
$$

and $r m_{1}^{\prime}+s m_{2}^{\prime} \in L^{\prime}$. However,

$$
y\left(x_{i}+L\right) \in L^{\prime} / L, \text { and } y\left(z_{j}+L\right) \in L^{\prime} / L\left(1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}\right)
$$

Thus by Theorem 2.3, $y\left(r m_{1}^{\prime}+s m_{2}^{\prime}\right)$ is the integral over M.
Corollary 2.6. Let $N \subseteq M \subseteq M^{\prime}$ be R-modules, and $T=T_{M^{\prime}}$. If $y \in T^{-1} R$, then $\bar{N}_{M^{\prime}}^{y} \subseteq \bar{M}_{M^{\prime}}^{y}$ and $\bar{N}_{M}^{y} \subseteq \bar{N}_{M^{\prime}}^{y}$.
Corollary 2.7. Let $N \subseteq M$ be R-modules, and $T=T_{M}$. If $y \in T^{-1} R$, then $\bar{N}_{M}^{y^{2 k}} \subseteq \bar{N}_{M}^{y^{k}}$ for all $k \in \mathbb{N}$.

Corollary 2.8. Let $N \subseteq M$ be R-modules, and $T=T_{M}$. If $y \in T^{-1} R$, and $y^{\prime}=$ ay, for some $a \in R$, then $\bar{N}_{M}^{y} \subseteq \bar{N}_{M}^{y^{\prime}}$.

Theorem 2.9. Let $M_{1} \subseteq M_{1}^{\prime}$ and $M_{2} \subseteq M_{2}^{\prime}$ be R-modules, and $T=$

Proof. Let $y m_{1}^{\prime} \in{\left.\overline{\left(M_{1}\right)}\right)_{M_{1}^{\prime}}^{y}}^{\text {and }} y m_{2}^{\prime} \in{\overline{\left(M_{2}\right)}}_{M_{2}^{\prime}}^{y}$. Since $y m_{1}^{\prime}$ is the integral over M_{1}, it follows, from Theorem 2.3, that there exists a finitely generated R-module,

$$
L_{1}=\sum_{i=1}^{n_{1}} R s_{i}
$$

such that, $m_{1}^{\prime} \in L_{1}$, and $y s_{j} \in L_{1}+\sum_{i=0}^{k_{1}} y^{i} M_{1}$ for all $1 \leq j \leq n_{1}$, where $k_{1}<n_{1}$. Similarly, since $y m_{2}^{\prime}$ is the integral over M_{2}, there exists a finitely generated R-module,

$$
L_{2}=\sum_{i=1}^{n_{2}} R t_{i}
$$

such that $m_{2}^{\prime} \in L_{2}$, and $y t_{j} \in L_{2}+\sum_{i=0}^{k_{2}} y^{i} M_{2}$, for all $1 \leq j \leq n_{2}$, where $k_{2}<n_{2}$. Put

$$
n=n_{1}+n_{2}, k=n-1, L_{1}^{\prime}=L_{1}+\sum_{i=0}^{k} y^{i} M_{1}, L_{2}^{\prime}=L_{2}+\sum_{i=0}^{k} y^{i} M_{2},
$$

and

$$
T=\sum_{i=0}^{k} y^{i}\left(M_{1} \oplus M_{2}\right) .
$$

Suppose that the R-module $\left(L_{1}^{\prime} \oplus L_{2}^{\prime}\right) / T$ is generated by the set $A_{1} \cup A_{2}$, where $A_{1}=\left\{x_{i}: x_{i}=\left(s_{i}, 0\right)+T, 1 \leq i \leq n_{1}\right\}$, and $A_{2}=\left\{x_{i}: x_{i}=\right.$ $\left.\left(0, t_{i-n_{1}}\right)+T, n_{1}+1 \leq i \leq n_{1}+n_{2}\right\}$. Clearly, $\left(m_{1}^{\prime}, m_{2}^{\prime}\right) \in L_{1}^{\prime} \oplus L_{2}^{\prime}$ and $y x_{i}=\left(y s_{i}, 0\right)+T \in\left(L_{1}^{\prime} \oplus L_{2}^{\prime}\right) / T$ and $y x_{j}=\left(0, y t_{j-n_{1}}\right)+T \in$ $\left(L_{1}^{\prime} \oplus L_{2}^{\prime}\right) / T$, for all $1 \leq i \leq n_{1}$, and all $n_{1}+1 \leq j \leq n_{1}+n_{2}$. Therefore, $y\left(m_{1}^{\prime}, m_{2}^{\prime}\right)$ is the integral over $M_{1} \oplus M_{2}$.

Now, assume that $y\left(m_{1}^{\prime}, m_{2}^{\prime}\right)$ is the integral over $M_{1} \oplus M_{2}$. We must show that $y m_{1}^{\prime}$ and $y m_{2}^{\prime}$ are the integrals over M_{1} and M_{2}, respectively. By definition, there exist a monic polynomial $f(x) \in R[x]$, and $g(x) \in$ $\left(M_{1} \oplus M_{2}\right)[x]$, such that $\operatorname{deg}(g(x))<\operatorname{deg}(f(x))$, and

$$
\begin{gathered}
f(y)\left(m_{1}^{\prime}, m_{2}^{\prime}\right)+g(y)=\left(y^{n}+r_{n-1} y^{n-1}+\cdots+r_{1} y+r_{0}\right)\left(m_{1}^{\prime}, m_{2}^{\prime}\right)+ \\
y^{k}\left(m_{1 k}, m_{2 k}\right)+\cdots+y\left(m_{11}, m_{21}\right)+\left(m_{10}, m_{20}\right)=0 .
\end{gathered}
$$

Hence,

$$
y^{n} m_{1}^{\prime}+r_{n-1} y^{n-1} m_{1}^{\prime}+\cdots+r_{0} m_{1}^{\prime}+y^{k} m_{1 k}+\cdots+y m_{11}+m_{10}=0
$$

and

$$
y^{n} m_{2}^{\prime}+r_{n-1} y^{n-1} m_{2}^{\prime}+\cdots+r_{0} m_{2}^{\prime}+y^{k} m_{2 k}+\cdots+y m_{21}+m_{20}=0 .
$$

We can conclude that $y m_{1}^{\prime}$ is the integral over M_{1}, and $y m_{2}^{\prime}$ is the integral over M_{2}.
Theorem 2.10. Let $M \subseteq M^{\prime}$ be R-modules, $y \in T_{M^{\prime}}^{-1} R$, and S_{1} be a multiplicative closed subset of R. Then $\overline{\left(S_{1}^{-1} M\right)}{ }_{S_{1}-1}^{y} M^{\prime}=S_{1}^{-1}\left(\bar{M}_{M^{\prime}}^{y}\right)$.

Proof. Let $s \in S_{1}$, and $y m^{\prime} \in \bar{M}_{M^{\prime}}^{y}$. Since $y m^{\prime}$ is the integral over M, there exist the positive integers $k<n, r_{i} \in R$, and $m_{j} \in M$ ($0 \leq i \leq n-1,0 \leq j \leq k)$, such that

$$
y^{n} m^{\prime}+r_{n-1} y^{n-1} m^{\prime}+\cdots+r_{0} m^{\prime}+y^{k} m_{k}+\cdots+y m_{1}+m_{0}=0 .
$$

Hence, for $s \in S_{1}$, we have

$$
\begin{gathered}
y^{n}\left(m^{\prime} / s\right)+r_{n-1} y^{n-1}\left(m^{\prime} / s\right)+\cdots+r_{0}\left(m^{\prime} / s\right)+ \\
y^{k}\left(m_{k} / s\right)+\cdots+y\left(m_{1} / s\right)+\left(m_{0} / s\right)=0 .
\end{gathered}
$$

We may conclude that $y\left(m^{\prime} / s\right)$ is the integral over $S_{1}^{-1} M$, and, therefore,

$$
S_{1}^{-1}\left(\bar{M}_{M^{\prime}}^{y}\right) \subseteq{\overline{\left(S_{1}{ }^{-1} M\right)}}_{S_{1}-1}^{y} M^{\prime}
$$

Now, suppose that $m^{\prime} / s \in S_{1}^{-1} M^{\prime}$ and $y\left(m^{\prime} / s\right)$ is the integral over $S_{1}{ }^{-1} M$. Hence, there exist the positive integers $k<n, r_{i} \in R$, and $m_{j} / s_{j} \in S^{-1} M(0 \leq i \leq n-1,0 \leq j \leq k)$, such that

$$
\begin{gathered}
y^{n}\left(m^{\prime} / s\right)+r_{n-1} y^{n-1}\left(m^{\prime} / s\right)+\cdots+r_{0}\left(m^{\prime} / s\right)+ \\
y^{k}\left(m_{k} / s_{k}\right)+\cdots+y\left(m_{1} / s_{1}\right)+\left(m_{0} / s_{0}\right)=0 .
\end{gathered}
$$

We have

$$
\begin{gathered}
y^{n}\left(s_{0} s_{1} \ldots s_{k}\right) m^{\prime}+\cdots+y r_{1}\left(s_{0} s_{1} \ldots s_{k}\right) m^{\prime}+r_{0}\left(s_{0} s_{1} \ldots s_{k}\right) m^{\prime}+ \\
y^{k}\left(s s_{0} s_{1} \ldots s_{k-1}\right) m_{k-1}+\cdots+y\left(s s_{0} s_{2} \ldots s_{k}\right) m_{1}+\left(s s_{1} \ldots s_{k}\right) m_{0}=0 .
\end{gathered}
$$

It follows that $y\left(s_{0} s_{1} \ldots s_{k}\right) m^{\prime}$ is the integral over M and so, $y\left(m^{\prime} / s\right) \in$

Theorem 2.11. Let $M \subseteq M^{\prime}$ be R-modules, and $y \in T_{M^{\prime}}^{-1} R$. Then

$$
\overline{(M[x]})_{M^{\prime}[x]}^{y}=\left(\bar{M}_{M^{\prime}}^{y}\right)[x] .
$$

Proof. Let $f(x)=\sum_{i=0}^{n} m_{i}^{\prime} x^{i} \in M^{\prime}[x]$, and $y f(x)$ be the integral over $M[x]$. There exist $h(z) \in R[z]$, and $g(z) \in(M[x])[z]$, such that $h(z)$ is monic, $\operatorname{deg}(g(z))<\operatorname{deg}(h(z))$, and

$$
\begin{gathered}
h(y) f(x)+g(y)= \\
y^{k} f(x)+r_{k-1} y^{k-1} f(x)+\cdots+r_{0} f(x)+y^{\ell} f_{l}(x)+\cdots+f_{0}(x)=0 .
\end{gathered}
$$

We have

$$
\begin{gathered}
\left(y^{k} m_{n}^{\prime}+\cdots+r_{1} y m_{n}^{\prime}+r_{0} m_{n}^{\prime}+y^{\ell} m_{\ell n}+\cdots+y m_{1 n}+m_{0 n}\right) x^{n}+ \\
\cdots+\left(y^{k} m_{0}^{\prime}+\cdots+r_{0} m_{0}^{\prime}+y^{\ell} m_{\ell 0}+\cdots+m_{00}\right)=0
\end{gathered}
$$

and so,

$$
y^{k} m_{n}^{\prime}+\cdots+r_{0} m_{n}^{\prime}+y^{\ell} m_{\ell n}+\cdots+m_{0 n}=0
$$

Therefore, $y m_{n}^{\prime}$ is the integral over M. Similarly, $y m_{n-1}^{\prime}, \ldots, y m_{0}^{\prime}$ is the integral over M, and hence, $y f(x) \in\left(\bar{M}_{M^{\prime}}^{y}\right)[x]$.
Now, suppose that

$$
f(x)=y m_{n}^{\prime} x^{n}+\cdots+y m_{1}^{\prime} x+y m_{0}^{\prime} \in\left(\bar{M}_{M^{\prime}}^{y}\right)[x] .
$$

Thus $y m_{i}^{\prime}(0 \leq i \leq n)$ are the integrals over M, and, by Theorem 2.3, there exist R-modules $L_{i}(0 \leq i \leq n)$, and positive integers $k_{i}<t_{i}$, such that L_{i} is generated by $\left\{a_{1 i}, \ldots, a_{t_{i} i}\right\}$, and $y a_{j i} \in L_{i}+\sum_{t=0}^{k_{i}} y^{t} M$, $0 \leq i \leq n$, and $1 \leq j \leq t_{i}$. Put

$$
t=\Sigma_{i=0}^{n} t_{i}, k=t-1 \text { and } L=L_{0}+L_{1} x+\ldots L_{n} x^{n} .
$$

Then,

$$
\begin{gathered}
L=R a_{10}+\cdots+R a_{t_{0} 0}+ \\
R\left(a_{11} x\right)+\cdots+R\left(a_{t_{1} 1} x\right)+\cdots+R\left(a_{1 n} x^{n}\right)+\cdots+R\left(a_{t_{n} n} x^{n}\right),
\end{gathered}
$$

and $f(x) \in L$. Furthermore

$$
y a_{i j} x^{j} \in L+\Sigma_{t=0}^{k} y^{t} M[x], 1 \leq i \leq n, 1 \leq j \leq t_{i}
$$

and, hence, by Theorem 2.3, $y f(x)$ is the integral over $M[x]$.

3. Integral extension of a module

Definition 3.1. Let $M \subseteq M^{\prime}$ be torsion-free R-modules, and $T_{M^{\prime}}=$ $R-\{0\}$. We say that M^{\prime} is an integral extension of M, if $y m^{\prime}$ is the integral over M, for all $y \in T_{M^{\prime}}^{-1} R$, and $m^{\prime} \in M^{\prime}$.

Example 3.2. Let $V \subseteq V^{\prime}$ be the vector spaces over a field F. Thus $T_{V^{\prime}}=F-\{0\}$, and $T_{V^{\prime}}^{-1} F=F$. Suppose that $y \in T_{V^{\prime}}^{-1} F$, and $v^{\prime} \in$ V^{\prime}. We have $f(x)=x-y \in F[x]$, and $g(x)=0 \in V[x]$. Hence, $f(y) v^{\prime}+g(y)=0$. Therefore, V^{\prime} is an integral extension of V.

Proposition 3.3. Let $M \subseteq M^{\prime} \subseteq M^{\prime \prime}$ be the torsion-free R-modules, and $T=R-\{0\}$. If M^{\prime} is an integral extension of M, and $M^{\prime \prime}$ is an integral extension of M^{\prime},. then $M^{\prime \prime}$ is an integral extension of M.

Proof. Let $y \in T^{-1} R$, and $m^{\prime \prime} \in M^{\prime \prime}$. Since $y m^{\prime \prime}$ is the integral over M^{\prime}, there exist the positive integer $k<n, r_{i} \in R$, and $m_{j}^{\prime} \in M^{\prime}$, such that
$y^{n} m^{\prime \prime}+r_{n-1} y^{n-1} m^{\prime \prime}+\cdots+r_{1} y m^{\prime \prime}+r_{0} m^{\prime \prime}+y^{k} m_{k}^{\prime}+\cdots+y m_{1}^{\prime}+m_{0}^{\prime}=0$.
But $y m_{i}^{\prime}, 1 \leq i \leq k$, are the integrals over M, and hence, by Theorem 2.3, there exist the positive integers $k_{i}<n_{i}, m_{0 i}, \ldots, m_{k_{i} i} \in M$, and $s_{0 i}, s_{1 i}, \ldots, s_{n_{i-1} i} \in R$, such that
$y^{n_{i}} m_{i}^{\prime}+y^{n_{i}-1} s_{i n_{i}-1} m_{i}^{\prime}+\cdots+s_{i 0} m_{i}^{\prime}+y^{k_{i}} m_{i k_{i}}+\cdots+y m_{i 1}+m_{i 0}=0$.
Define

$$
n_{i}^{\prime}=\left\{\begin{array}{ccc}
n_{i} & \text { if } & n_{i} \geq i \\
i & \text { if } & n_{i}<i
\end{array}\right.
$$

Now, put

$$
\begin{gathered}
L=R m^{\prime \prime}+R\left(y m^{\prime \prime}\right)+\cdots+R\left(y^{n-1} m^{\prime \prime}\right)+L_{1}+\cdots+L_{k} ; \\
t=n+n_{1}^{\prime}+\cdots+n_{k}^{\prime}-1,
\end{gathered}
$$

where $L_{i}=R m_{i}^{\prime}+R\left(y m_{i}^{\prime}\right)+\cdots+R\left(y^{n_{i}^{\prime}-1} m_{i}^{\prime}\right), \quad 1 \leq i \leq k$,
$K=\sum_{i=0}^{t} y^{i} M$. Then, by Theorem 2.3, $y m^{\prime \prime}$ is the integral over M.
Note: Let $M \subseteq M^{\prime}$ be R-modules, and $y \in T_{M^{\prime}}^{-1} R, m^{\prime} \in M^{\prime}$. If $y m^{\prime}$ is integral over \bar{M}^{y}, then $y m^{\prime} \in \bar{M}^{y}$.
Let M be an R-module. In [1], Alkan and Tiras have defined the integrally closed for M, as follows: if for any $y \in T_{M}^{-1} R, m \in M$, such
that $y^{n} m+y^{n-1} m_{n-1}+\cdots+y m_{1}+m_{0}=0 ; m_{i} \in M(0 \leq i \leq n)$, then $y m \in M$. In what follows, we define the notion of integrally closed modules with the integral elements, and show that the two definitions are equivalent.
Definition 3.4. Let M be an R-module. We say that M is integrally closed, if $M=\Sigma_{y \in T_{M}^{-1} R} \bar{M}^{y}$, where

$$
\bar{M}^{y}=\{y m: m \in M \text { and } y m \text { is integral over } M\} .
$$

Example 3.5. Let $R=\mathbb{Z}, p$ be a prime integer, and $L=\{a / b: a, b \in$ $\mathbb{Z}, p \nmid b\}$. Consider $M=L / \mathbb{Z}$. Then $T=\left\{p^{n}: n \in \mathbb{N} \cup\{0\}\right\}$ and so, $T^{-1} R=\left\{z / p^{n}: z \in \mathbb{Z}, n \in \mathbb{N} \cup\{0\}\right\}$. Suppose that $z / p^{k} \in T^{-1} R$, $(z, p)=1$, and $a / b \in M$, such that $\left(z / p^{k}\right)(a / b)$ is the integral over M. Thus there exist a monic polynomial $f(x) \in R[x]$, and a polynomial $g(x) \in M[x]$, such that $l=\operatorname{deg}(g(x))<\operatorname{deg}(f(x))=n$, and

$$
0=f(y) m^{\prime}+g(y)=
$$

$\left(z / p^{k}\right)^{n} a / b+\left(z / p^{k}\right)^{n-1} r_{n-1}(a / b)+\ldots+r_{0}(a / b)+\left(z / p^{k}\right)^{l}\left(a_{l} / b_{l}\right)+\ldots+\left(a_{0} / b_{0}\right)$, where $r_{n-1}, \ldots, r_{0} \in R, a_{i} / b_{i} \in M$, for all $i, 0 \leq i \leq l$. We can conclude $z^{n} a\left(b_{l} \ldots b_{0}\right)=p^{k} c$ for some integer c. Since $(p, z)=1$, and $\left(p, b_{i}\right)=1$, for all $i, 1 \leq i \leq l, p^{k} \mid a$. Thus $\left(z / p^{k}\right)(a / b) \in M$. Therefore, M is an integrally closed module.

Lemma 3.6. Let M be an R-module. Then M is integrally closed if and only if for any $y \in T^{-1} R$, and $m \in M$ such that $y^{n} m+y^{n-1} m_{n-1}+$ $\cdots+y m_{1}+m_{0}=0$, with $m_{i} \in M(0 \leq i \leq n-1)$, implies that ym $\in M$.
Proof. Let M be integrally closed, $y \in T^{-1} R$, and $m \in M$, such that,

$$
y^{n} m+y^{n-1} m_{n}+\cdots+y m_{1}+m_{0}=0, m_{i} \in M(0 \leq i \leq n)
$$

Since M is integrally closed, $\bar{M}^{y} \subseteq M$. But $y m \in \bar{M}^{y}$, and hence, $y m \in M$. Conversely, suppose that $y m \in \bar{M}^{y}$. Then there exist $f(x) \in$ $R[x]$, and $g(x) \in M[x]$, such that $f(x)$ is monic, $\operatorname{deg}(g(x))<\operatorname{deg}(f(x))$, and

$$
\begin{gathered}
f(y) m+g(y)= \\
y^{n} m+r_{n-1} y^{n-1} m+\cdots+r_{0} m+y^{k} m_{k}+\cdots+y m_{1}+m_{0}=0 .
\end{gathered}
$$

By assumption $y m \in M$, and so $\bar{M}^{y} \subseteq M$. Therefore, $\Sigma_{y \in T^{-1} R} \bar{M}^{y} \subseteq$ M. Since $\bar{M}^{1}=M$, it follows that $M=\Sigma_{y \in T^{-1} R} \bar{M}^{y}$. We can conclude that M is integrally closed.
Proposition 3.7. Let M be a torsion free R-module. Then the following statements are equivalent:
i) M is integrally closed;
ii) M_{P} is integrally closed, for each prime ideal P of R;
iii) M_{Q} is integrally closed, for each maximal ideal Q of R.

Proof. $(i) \Longrightarrow(i i)$ Let M be integrally closed and P be a prime ideal of R. Thus $T_{M_{P}}=R_{P}-\{0\}$. Suppose that $(a / t) /\left(b / t^{\prime}\right) \in T_{M_{P}}^{-1} R_{P}$, $m / s \in M_{P}$, and $\left((a / t) /\left(b / t^{\prime}\right)\right)(m / s)$ is the integral over M_{P}. There exists a monic polynomial $f(x) \in R_{P}[x]$, a polynomial $g(x) \in M_{P}[x]$, and $l=\operatorname{deg}(g(x))<\operatorname{deg}(f(x))=k$, such that

$$
\begin{gathered}
f\left((a / t) /\left(b / t^{\prime}\right)\right)(m / s)+g\left((a / t) /\left(b / t^{\prime}\right)\right)= \\
\left((a / t) /\left(b / t^{\prime}\right)\right)^{k}(m / s)+\ldots+\left((a / t) /\left(b / t^{\prime}\right)\right)\left(r_{1} / s_{1}\right)(m / s)+\left(r_{0} / s_{0}\right)(\mathrm{m} / \mathrm{s})+ \\
\left((a / t) /\left(b / t^{\prime}\right)\right)^{l}\left(m_{l} / s_{l}^{\prime}\right)+\ldots+\left(m_{0} / s_{0}^{\prime}\right)=0,
\end{gathered}
$$

where $m_{i} / s_{i}^{\prime} \in M_{P}$, for all $i, 0 \leq i \leq l$, and $r_{j} / s_{j} \in R_{P}$, for all j, $0 \leq j \leq k-1$. We can conclude

$$
\left(a t^{\prime} / b t\right)^{k}\left(s^{\prime \prime} m\right)+\left(a t^{\prime} / b t\right)^{k-1}\left(m_{k-1}^{\prime}\right)+\ldots+\left(a t^{\prime} / b t\right) m_{1}^{\prime}+m_{0}^{\prime}=0
$$

where $s^{\prime \prime}=s_{k-1} \ldots s_{1} s_{0} s_{l}^{\prime} \ldots s_{1}^{\prime} s_{0}^{\prime}$, and $m_{k-1}^{\prime}, \ldots, m_{0}^{\prime} \in M$.
Hence, $\left(a t^{\prime} / b t\right)\left(s^{\prime \prime} m\right) \in M$. Thus there exists $m^{\prime} \in M$, such that $(a / t)(m / s)=\left(b / t^{\prime}\right)\left(m^{\prime} / s s^{\prime \prime}\right)$. Therefore, $\left((a / t) /\left(b / t^{\prime}\right)\right)(m / s) \in M_{P}$. $(i i) \Longrightarrow(i i i)$ It is clear.
(iii) $\Longrightarrow(i)$ Since M is a torsion free R-module, $T=R-\{0\}$. Suppose that $a / b \in T^{-1} R, m \in M$, and $(a / b) m$ is the integral over M. Thus there exists a monic polynomial $f(x) \in R[x]$, a polynomial $g(x) \in$ $M[x]$, and $l=\operatorname{deg}(g(x))<\operatorname{deg}(f(x))=k$, such that

$$
\begin{gathered}
f(a / b) m+g(a / b)= \\
(a / b)^{k} m+\ldots+(a / b) r_{1} m+r_{0} m+(a / b)^{l} m_{l}+\ldots+(a / b) m_{1}+m_{0}=0
\end{gathered}
$$

where $r_{k-1}, \ldots, r_{1}, r_{0} \in R$, and $m_{l}, \ldots, m_{1}, m_{0} \in M$. Consider the subset $I=\left\{r \in R: r a m=b m^{\prime}\right.$, for some $\left.m^{\prime} \in M\right\}$. It is clear that I is an ideal of R. Assume that I is a proper ideal of R. There exists a maximal ideal Q for R such that, $I \subseteq Q$. We have

$$
\begin{gathered}
{[(a / 1) /(b / 1)]^{k}(m / 1)+\ldots+[(a / 1) /(b / 1)]\left(r_{1} / 1\right)(m / 1)+\left(r_{0} / 1\right)(m / 1)+} \\
{[(a / 1) /(b / 1)]^{l}\left(m_{l} / 1\right)+\ldots+[(a / 1) /(b / 1)]\left(m_{1} / 1\right)+\left(m_{0} / 1\right)=0 .}
\end{gathered}
$$

Hence $((a / 1) /(b / 1))(m / 1)$ is integral over M_{Q}. Since M_{Q} is integrally closed, there exists $m^{\prime} / s \in M_{Q}$ such that $((a / 1) /(b / 1))(m / 1)=m^{\prime} / s$. Then $s a m=b m^{\prime}$, and so, $s \in I \subseteq Q$, which is a contradiction. Hence, $I=R$ so $(a / b) m \in M$.

Now, we apply the notion of integral extension of a module, and prove the Lying over, Going up and Going down theorems for modules. We need the following two lemmas.

Lemma 3.8. Let $M \subseteq M^{\prime}$ be the torsion-free R-modules, and $P \in$ $\operatorname{Spec}(M)$. If M^{\prime} is the integral over M, then $(P: M)=0$.

Proof. Let $0 \neq r \in(P: M)$, and $m \in M \backslash P$. Since M^{\prime} is the integral over $M,(1 / r) m$ is the integral over M. Hence there exist $f(x) \in R[x]$, and $g(x) \in M[x]$, such that $f(x)$ is monic, $\operatorname{deg}(g(x))<\operatorname{deg}(f(x))$, and

$$
\begin{gathered}
f(1 / r) m+g(1 / r)= \\
(1 / r)^{n} m+(1 / r)^{n-1} r_{n-1} m+\cdots+r_{0} m+(1 / r)^{k} m_{k}+\cdots+(1 / r) m_{1}+m_{0}=0
\end{gathered}
$$

Therefore,
$m=-r\left(r_{n-1} m+\cdots+r_{1} r^{n-2} m+r_{0} r^{n-1} m+r^{n-1-k} m_{k}+\cdots+r^{n-1} m_{1}+r^{n} m_{0}\right)$,
and since $r \in(P: M)$, it follows that $m \in P$, which is a contradiction. Thus $(P: M)=0$.

Lemma 3.9. Let $M \subseteq M^{\prime}$ be the R-modules, and $Q \in \operatorname{Spec}\left(M^{\prime}\right)$. If $Q \cap M=P \neq M$, then $P \in \operatorname{Spec}(M)$ and $\left(Q: M^{\prime}\right)=(P: M)$.

Proof. Let $r \in(P: M)$, and $m \in M \backslash P$. Since $r m \in P \subseteq Q$ and $m \notin Q, r \in\left(Q: M^{\prime}\right)$, hence $(P: M) \subseteq\left(Q: M^{\prime}\right)$. Now, suppose that $r \in\left(Q: M^{\prime}\right)$ and $m \in M$. Then $r m \in Q \cap M=P$ and so $r \in(P: M)$. Hence $(P: M)=\left(Q: M^{\prime}\right)$. Now we show that $P \in \operatorname{Spec}(M)$. Let $m \in M, r \in R$, and $r m \in P$. Since $r m \in Q$, and $Q \in \operatorname{Spec}\left(M^{\prime}\right)$, it follows that $m \in Q$ or $r \in\left(Q: M^{\prime}\right)$. Therefore, $m \in P$ or $r \in(P: M)$ and so, $P \in \operatorname{Spec}(M)$.

Theorem 3.10. (Lying over). Let $M \subseteq M^{\prime}$ be the torsion-free R modules and M^{\prime} be integral over M. If $P \in \operatorname{Spec}(M)$, then there exists $Q \in \operatorname{Spec}\left(M^{\prime}\right)$, such that $Q \cap M=P$.

Proof. Let $P \in \operatorname{Spec}(M)$. Put $\mathfrak{A}=\left\{P^{\prime} \leq M \mid P^{\prime} \cap M=P\right\}$. Since $P \in \mathfrak{A}, \mathfrak{A} \neq \emptyset$, by Zorn's Lemma, \mathfrak{A} has a maximal element Q. Now, we show that $Q \in \operatorname{Spec}\left(M^{\prime}\right)$. Since $Q \cap M=P \neq M$, we have $Q \neq M^{\prime}$. Suppose that $r \in R, m^{\prime} \in M^{\prime}$, such that $r m^{\prime} \in Q$, and $m^{\prime} \notin Q$. Since $\left(Q+R m^{\prime}\right) \cap(M \backslash P) \neq \emptyset$, there exist $t \in R$, and $q \in Q$, such that $q+t m^{\prime}=m \notin P$. Hence, $r q+r t m^{\prime}=r m \in P$. But $P \in \operatorname{Spec}(M)$, and therefore, $r \in(P: M)$. By Lemma 3.8, $r=0 \in\left(Q: M^{\prime}\right)$, and we can conclude that $Q \in \operatorname{Spec}\left(M^{\prime}\right)$.

Theorem 3.11. (Going up). Let $M \subseteq M^{\prime}$ be the torsion-free R modules, and M^{\prime} be the integral over M. If $P_{0} \subseteq P_{1}$ are the prime submodules of M, and $Q_{0} \in \operatorname{Spec}\left(M^{\prime}\right)$, such that $Q_{0} \cap M=P_{0}$, then there exists $Q_{1} \in \operatorname{Spec}\left(M^{\prime}\right)$, such that $Q_{0} \subseteq Q_{1}$, and $Q_{1} \cap M=P_{1}$.

Proof. Put $\mathfrak{A}=\left\{L \leq M^{\prime} \mid Q_{0} \subseteq L, L \cap M=P_{1}\right\}$. Since $Q_{0} \cap M=P_{0}$, it follows that $\left(Q_{0}+P_{1}\right) \in \mathfrak{A}$. Hence $\mathfrak{A} \neq \emptyset$. By Zorn's Lemma, \mathfrak{A} has a maximal element Q_{1}. We show that $Q_{1} \in \operatorname{Spec}\left(M^{\prime}\right)$. Since $Q_{1} \cap M=P_{1} \neq M$, it follows that $Q_{1} \neq M^{\prime}$. Let $m^{\prime} \in M^{\prime}, r \in R$ such that $r m^{\prime} \in Q_{1}$. Suppose that $m^{\prime} \notin Q_{1}$. Since Q_{1} is a maximal element of $\mathfrak{A}, Q_{1}+\left\langle m^{\prime}\right\rangle \notin \mathfrak{A}$. Since $Q_{0} \subseteq Q_{1}+\left\langle m^{\prime}\right\rangle, P_{1} \subset Q_{1}+\left\langle m^{\prime}\right\rangle \cap M$. Hence, there exist $q \in Q_{1}$, and $t \in R$, such that $q+t m^{\prime} \in Q_{1} \cap M$, and $q+t m^{\prime} \notin P_{1}$. We have $r q_{1}+r t m^{\prime} \in Q_{1} \cap M=P_{1}$. Since $P_{1} \in \operatorname{Spec}(M)$, it follows that $r \in\left(P_{1}: M\right)$. By Lemma 3.8, $r=0 \in\left(Q_{1}: M^{\prime}\right)$, we can conclude that $Q_{1} \in \operatorname{Spec}\left(M^{\prime}\right)$.

Theorem 3.12. (Going down). Let $M \subseteq M^{\prime}$ be the torsion-free R modules, and M^{\prime} be the integral over M. If $P_{0} \subseteq P_{1}$ are prime submodules of M, and $Q_{1} \in \operatorname{Spec}\left(M^{\prime}\right)$, such that $P_{1}=Q_{1} \cap M$. Then there exists $Q_{0} \in \operatorname{Spec}\left(M^{\prime}\right)$, such that $Q_{0} \subseteq Q_{1}$, and $Q_{0} \cap M=P$.
Proof. Put $\mathfrak{A}=\left\{L \leq M^{\prime} \mid L \subseteq Q_{1}, L \cap M=P_{0}\right\}$. Since $P_{0} \in \mathfrak{A}$, $\mathfrak{A} \neq \emptyset$. By Zorn's Lemma, \mathfrak{A} has a maximal element Q_{0}. We show that $Q_{0} \in \operatorname{Spec}\left(M^{\prime}\right)$. Suppose that $r \in R, m^{\prime} \in M^{\prime}$, such that $r m^{\prime} \in Q_{0}$. If $Q_{0}+R m^{\prime} \subseteq Q_{1}$, then $\left(Q_{0}+R m^{\prime}\right) \cap\left(M \backslash P_{0}\right) \neq \emptyset$, and so, there exist $t \in R$, and $q \in Q_{0}$, such that $m=q+t m^{\prime} \notin P_{0}$. Since $r m=$ $r q+r t m^{\prime} \in P_{0} \in \operatorname{Spec}(M), r \in\left(P_{0}: M\right)=0$. Therefore, $r \in\left(Q_{0}: M^{\prime}\right)$. But, if $Q_{0}+R m^{\prime} \nsubseteq Q_{1}$, then there exist $t \in R$, and $q_{0} \in Q_{0}$, such that $q_{0}+t m^{\prime} \notin Q_{1}$. Since $r q_{0}+r t m^{\prime} \in Q_{1}$, and $Q_{1} \in \operatorname{Spec}\left(M^{\prime}\right)$, it follows that, $r \in\left(Q_{1}: M^{\prime}\right)$. Hence, by Lemmas 3.8, and 3.9, $\left(Q_{1}: M^{\prime}\right)=\left(P_{1}:\right.$ $M)=0$, and this implies that $r \in\left(Q_{0}: M^{\prime}\right)$.

Acknowledgment

The authors wish to express their deepest gratitude to the referees for their valuable comments.

References

1. M. Alkan, B. Sarac and Y. Tiras, Dedekind modules, Comm. Algebra 33(5) (2005), 1617-1626.
2. M. Alkan and Y. Tiras, On invertible and dense submodules. Comm. Algebra 32(10) (2004), 3911-3919.
3. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, London, 1969.
4. C. P. Lu, Prime submodules, Comment. Math. Univ. Sancti Pauli, 33(1) (1984), 61-69.
5. A. G. Naoum and F. H. Al-Alwan, Dedekind modules, Comm. Algebra, 24(2) (1996), 413-424.
6. B. Sarac, P. F. Smith and Y. Tiras, On Dedekind modules. Comm. Algebra, 35(5) (2007), 1533-1538.

Somayeh Karimzadeh

Department of Mathematics, Vali-e-Asr University of Rafsanjan , P.O.Box 7718897111, Rafsanjan, Iran.
Email: karimzadeh@vru.ac.ir

Reza Nekooei

Department of Mathematics, Shahid Bahonar University of Kerman, P.O.Box 76169133, Kerman, Iran.
Email: rnekooei@uk.ac.ir

Journal of Algebraic Systems

AN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS

S. KARIMZADEH, R. NEKOOEI

$$
\begin{aligned}
& \text { وابستگى صحيح در مدولهاى روى حلقههاى جابهجايى } \\
& \text { سميه كريزاده، رضا نكويى } \\
& \text { دانشگاه ولىعصر (عج) رفسنجان، دانشكاه شهيد باهن كرمان }
\end{aligned}
$$

در اين مقاله، مغهوم وابسته صحيح در حارهةها را به مدولها گسترش مىدهيم. پايايى بستار
 را معرفى كرده و قضاياى رو قرار داشتن، بالارفتن و وايين رفتن را براى مدولها ثاثبت مىنماييم.

كلمات كليدى: زيرمدول اول، عنصر صحيح، بططور صحيح وابسته.

[^0]: MSC(2010): Primary: 13C13; Secondary: 13C99, 11Y50
 Keywords: Prime submodule, Integral element, Integrally closed.
 Received: 27 July 2014, Revised: 17 June 2015.
 *Corresponding author.

