Journal of Algebraic Systems

Vol. 3, No. 1, (2015), pp 49-64

H_{v} MV-ALGEBRAS II

M. BAKHSHI

Abstract

In this paper, we continue our study on HvMV-algebras. The quotient structure of an HvMV-algebra by a suitable type of congruence is studied, and some properties and related results are given. Some homomorphism theorems are given, as well. Also the fundamental HvMV-algebra, and the direct product of a family of HvMV-algebras are investigated, and some related results are obtained.

1. Introduction

In 1958, Chang [2] introduced the concept of an MV-algebra as an algebraic proof of completeness theorem for \aleph_{0}-valued Łukasiewicz propositional calculus; also see [3]. Many mathematicians have worked on MV-algebras, and obtained significant results. The hyperstructure theory (also called multialgebras) was introduced in 1934 by Marty [9]. Around the 40 's, several authors worked on the hypergroups, especially in France and in the United States, but also in Italy, Russia, and Japan.

Recently, Ghorbani et al. [7] have applied the hyperstructures to MV-algebras, introduced the concept of hyper MV-algebra and investigated some related results; also see [8, 10]. Hyperstructures have many applications to several sectors of both the pure and applied sciences. A short review of the theory of hyperstructures has appeared in [4]. In [5], a wealth of applications can also be found. There are applications

[^0]to the following subjects: geometry, hypergraphs, binary relations, lattices, fuzzy set and rough sets, automata, cryptography, combinatorics, codes, artificial intelligence, and probabilities.
H_{v}-structures were introduced by Vougiouklis in the 4th AHA congress [11]; also see [12] and [13]. The concept of H_{v}-structure constitute a generalization of the well-known algebraic hyperstructures (hypergroup, hyperring, hypermodule, and so on). Actually, some axioms concerning the above hyperstructures such as the associative law, and distributive law have been replaced by their corresponding weak axioms. The reader finds in [12] some basic definitions and theorems about H_{v}-structures. Since then, the study of the H_{v}-structure theory has been pursued in many directions by Vougiouklis, Davvaz, Spartalis and others. A survey of the most results and applications of $H_{v^{-}}$ structure theory is based up on many papers, some of which contain more detailed presentations (see [6]).

In this paper, the quotient structure of $\mathrm{H}_{v} \mathrm{MV}$-algebras, direct product of $\mathrm{H}_{v} \mathrm{MV}$-algebras, and their direct product are introduced, and their properties are investigated, as mentioned in the abstract.

2. Preliminaries

This section is devoted to give some preliminaries from the literature For more details, we refer to the references.

Definition 2.1. An MV-algebra is an algebra ($M ;+{ }^{*}, 0$) of type ($2,1,0$), satisfying the following properties:
(MV1) + is associative,
(MV2) + is commutative,
(MV3) $x+0=x$,
(MV4) $\left(x^{*}\right)^{*}=x$,
(MV5) $x+0^{*}=0^{*}$,
(MV6) $\left(x^{*}+y\right)^{*}+y=\left(y^{*}+x\right)^{*}+x$.
On any MV-algebra M, a binary relation ' \leq ' can be defined as $x \leq y$, if and only if $x^{*}+y=0^{*}$. Then \leq is a partial ordering in M.

In this section, the concept of an $\mathrm{H}_{v} \mathrm{MV}$-algebra is introduced, and some basic results are given.

Definition 2.2. An $\mathrm{H}_{v} \mathrm{MV}$-algebra is a non-empty set, H endowed with a binary hyperoperation ' \oplus^{\prime}, a unary operation ${ }^{(*)}$, and a constant, ' 0 ' satisfying the following conditions:

$$
\begin{array}{llr}
\left(\mathrm{H}_{v} \mathrm{MV} 1\right) & x \oplus(y \oplus z) \cap(x \oplus y) \oplus z \neq \emptyset, & \text { (weak associativity) } \\
\text { (H. MV2) } & x \oplus y \cap y \oplus x \neq \emptyset, & \text { (weak commutativity) } \\
\text { (H. } \left.\mathrm{H}_{v} \mathrm{MV} 3\right) & \left(x^{*}\right)^{*}=x, &
\end{array}
$$

```
\(\left(\mathrm{H}_{v} \mathrm{MV} 4\right) \quad\left(x^{*} \oplus y\right)^{*} \oplus y \cap\left(y^{*} \oplus x\right)^{*} \oplus x \neq \emptyset\),
\(\left(\mathrm{H}_{v} \mathrm{MV} 5\right) 0^{*} \in x \oplus 0^{*} \cap 0^{*} \oplus x\),
\(\left(\mathrm{H}_{v} \mathrm{MV} 6\right) \quad 0^{*} \in x \oplus x^{*} \cap x^{*} \oplus x\),
\(\left(\mathrm{H}_{v} \mathrm{MV} 7\right) \quad x \in x \oplus 0 \cap 0 \oplus x\),
\(\left(\mathrm{H}_{v}\right.\) MV8) \(0^{*} \in x^{*} \oplus y \cap y \oplus x^{*}\) and \(0^{*} \in y^{*} \oplus x \cap x \oplus y^{*}\) imply \(x=y\).
```

Remark 2.3. On any $\mathrm{H}_{v} \mathrm{MV}$-algebra H, we can define a binary relation ' \preceq^{\prime} by

$$
x \preceq y \Leftrightarrow 0^{*} \in x^{*} \oplus y \cap y \oplus x^{*}
$$

Hence, the condition ($\mathrm{H}_{v} \mathrm{MV} 8$) can be redefined as follows:

$$
x \preceq y \text { and } y \preceq x \text { imply } x=y .
$$

Let A and B be non-empty subsets of H. By $A \preceq B$, we mean that there exist $a \in A$, and $b \in B$, such that $a \preceq b$. For $A \subseteq H$, denote the set $\left\{a^{*}: a \in A\right\}$ by A^{*} and 0^{*} by 1 .

On H, we define a hyperoperation ' \odot ' as $x \odot y=\left(x^{*} \oplus y^{*}\right)^{*}$. The next theorem gives some properties.
Proposition 2.4. In any $\mathrm{H}_{v} \mathrm{MV}$-algebra H, the following hold: $\forall x, y \in$ H and $\forall A, B \subseteq H$,
(1) $x \odot(y \odot z) \cap(x \odot y) \odot z \neq \emptyset$,
(2) $x \odot y \cap y \odot x \neq \emptyset$,
(3) $0 \in x \odot 0 \cap 0 \odot x$,
(4) $0 \in x \odot x^{*} \cap x^{*} \odot x$,
(5) $x \in x \odot 1 \cap 1 \odot x$,

Definition 2.5. Let $\left(H ; \oplus,{ }^{*}, 0_{H}\right)$, and $\left(K ; \otimes,{ }^{*}, 0_{K}\right)$ be $\mathrm{H}_{v} \mathrm{MV}$-algebras, and let $f: H \longrightarrow K$ be a function satisfying the following conditions:
(1) $f\left(0_{H}\right)=0_{K}$,
(2) $f\left(x^{*}\right)=f(x)^{\star}$,
(3) $f\left(x^{*}\right) \preceq f(x)^{\star}$,
(4) $f(x \oplus y)=f(x) \otimes f(y)$,
(5) $f(x \oplus y) \subseteq f(x) \otimes f(y)$.
f is called a homomorphism, if it satisfies the conditions (1), (2), and (4); it is called a weak homomorphism if it satisfies the conditions (1), (3), and (5), Clearly, if f is a homomorphism, $f(1)=1$. For convenience, we use the same operations for H and K.

By $\operatorname{ker} f$, we mean the set $\{x \in H: f(x)=0\}$. As usual, a homomorphism that is one-to-one (resp. onto) is called a monomorphism (resp. epimorphism). A homomorphism which is both an epimorphism and a monomorphism is called an isomorphism. If $f: H \longrightarrow K$ is an isomorphism, we say that H and K are isomorphic, and we write $H \simeq K$.

Theorem 2.6. Let $f: H \longrightarrow K$ be a homomorphism.
(1) f is one-to-one, if and only if $\operatorname{ker} f=\{0\}$.
(2) f is an isomorphism, if and only if there exists a homomorphism $f^{-1}: K \longrightarrow H$, such that $f f^{-1}=1_{K}$ and $f^{-1} f=1_{H}$.

Definition 2.7. A non-empty subset S of H is called an $\mathrm{H}_{v} \mathrm{MV}$-subalgebra of H, if $\left(S ; \oplus,{ }^{*}, 0\right)$ is itself an $\mathrm{H}_{v} \mathrm{MV}$-algebra.

The next proposition gives an equivalent condition for an $\mathrm{H}_{v} \mathrm{MV}$ subalgebra.

Proposition 2.8. A nonempty subset S of H is an $\mathrm{H}_{v} \mathrm{MV}$-subalgebra of H if and only if
(1) $x \oplus y \subseteq S$, for all $x, y \in S$,
(2) $x^{*} \in S$, for all $x \in S$.

Corollary 2.9. A non-empty subset S of H is an $\mathrm{H}_{v} \mathrm{MV}$-subalgebra, if and only if
(1) $0 \in S$,
(2) $x^{*} \oplus y \subseteq S$, for all $x, y \in S$.

Definition 2.10. Let I be a non-empty subset of H, satisfying $\left(I_{0}\right) . \quad x \preceq y$, and $y \in I$ imply $x \in I$.

Then I is called
(1) an $\mathrm{H}_{v} \mathrm{MV}$-ideal, if $x \oplus y \subseteq I$, for all $x, y \in I$,
(2) a weak $\mathrm{H}_{v} \mathrm{MV}$-ideal, if $x \oplus y \preceq I$, for all $x, y \in I$.

It is easy to see that, in any $\mathrm{H}_{v} \mathrm{MV}$-algebra $H,\{0\}$ is a weak $\mathrm{H}_{v} \mathrm{MV}$ ideal, and obviously, H is an $\mathrm{H}_{v} \mathrm{MV}$-ideal of H. Also, every $\mathrm{H}_{v} \mathrm{MV}$-ideal is a weak $\mathrm{H}_{v} \mathrm{MV}$-ideal.

Theorem 2.11. Let $f: H \longrightarrow K$ be a homomorphism.
(1) kerf is a weak $\mathrm{H}_{v} \mathrm{MV}$-ideal of H.
(2) If I is an $\mathrm{H}_{v} \mathrm{MV}$-ideal of $K, f^{-1}(I)$ is an $\mathrm{H}_{v} \mathrm{MV}$-ideal of H.

From now on, in this paper, H is denoted by an $\mathrm{H}_{v} \mathrm{MV}$-algebra, unless otherwise stated.

3. Quotient structures

In this section, it is shown that how we can construct the quotient H_{v} MV-algebra from the old one, and some homomorphism theorems are stated and proved. We start with a definition.

Definition 3.1. Let θ be a binary relation in H, and $A, B \subseteq H$. We say that
(1) $A \theta_{s} B$, if for all $a \in A$, and for all $b \in B, a \theta b$,
(2) $A \theta B$, if for all $a \in A$, there exists $b \in B$, and for all $b \in B$, there exists $a \in A$, such that $a \theta b$,
(3) $A \theta_{s w} B$, if for all $a \in A$ there exists $b \in B$, such that $a \theta b$,
(4) $A \theta_{w} B$, if there exist $a \in A$, and $b \in B$, such that $a \theta b$.

Obviously, $\theta_{s} \subseteq \theta \subseteq \theta_{s w} \subseteq \theta_{w}$.
It must be noticed that when A and B are singleton, $\theta=\theta_{s}=\theta_{s w}=$ θ_{w}.

Proposition 3.2. Let θ be a transitive relation in H, and $A, B, C \subseteq H$.
(1) If $A \theta_{w} B$ and $B \theta_{s w} C$, then $A \theta_{w} C$.
(2) If $A \theta_{s w} B$ and $B \theta_{s w} C$, then $A \theta_{s w} C$.
(3) If $A \theta_{s} B$ and $B \theta_{s} C$, then $A \theta_{s} C$.
(4) If $A \theta_{s} B$ and $B \theta_{s w} C$, then $A \theta_{s w} C$.
(5) If $A \theta_{s} B$ and $B \theta_{w} C$, then $A \theta_{s w} C$.
(6) If $A \theta_{s} B$ and $B \theta C$, then $A \theta C$.
(7) If $A \theta B$ and $B \theta C$, then $A \theta C$.

Proof. Routine.
Definition 3.3. Let θ be a binary relation in H with the property

$$
\begin{equation*}
x \theta y \text { implies that } x^{*} \theta y^{*} . \tag{3.1}
\end{equation*}
$$

θ is said to be

- strongly compatible, if $x \theta y$ and $u \theta v$ imply that $x \oplus u \theta_{s} y \oplus v$.
- compatible, if $x \theta y$ and $u \theta v$ imply that $x \oplus u \theta y \oplus v$.
- s-weak compatible, if $x \theta y$ and $u \theta v$ imply that $x \oplus u \theta_{s w} y \oplus v$.
- weakly compatible, if $x \theta y$ and $u \theta v$ imply that $x \oplus u \theta_{w} y \oplus v$.

It is clear that every strongly compatible relation is compatible, every compatible relation is s-weak compatible, and every s-weak compatible relation is weakly compatible.

Theorem 3.4. Let θ be a reflexive and transitive binary relation in H. Then θ is compatible, if and only if (3.1) holds, and,

$$
\begin{equation*}
x \theta y \text { implies that } x \oplus a \theta y \oplus a \text { and } a \oplus x \theta a \oplus y \text {, } \tag{3.2}
\end{equation*}
$$

for all $x, y, a \in H$.
Proof. Assume that θ is compatible, $x \theta y$, and $a \in H$. Since θ is reflexive, so $a \theta a$, whence $x \oplus a \theta y \oplus a$ and $a \oplus x \theta a \oplus y$.

Conversely, assume that θ satisfies (3.2), $x \theta y$, and $u \theta v$. Hence, $x \oplus$ $u \theta y \oplus u$ and $y \oplus u \theta y \oplus v$, whence, by Proposition 3.2(7), $x \oplus u \theta y \oplus v$.

Remark 3.5. In virtue of Proposition 3.2, it is easy to see that an analogous result holds for strongly compatible relations, and s-weak compatible relations.

Proposition 3.6. Every reflexive weakly compatible relation θ in H satisfies:

$$
\begin{equation*}
x \theta y \text { implies that } x \oplus a \theta_{w} y \oplus a \text { and } a \oplus x \theta_{w} a \oplus x . \tag{3.3}
\end{equation*}
$$

Proof. The proof is similar to the proof of Theorem 3.4.
Proposition 3.7. Let θ be a symmetric binary relation in H. Then θ is compatible, if and only if it is s-weak compatible.
Proof. In virtue of the observation just after Definition 3.3, it is enough to prove that every symmetric s-weak compatible relation is compatible. Assume that θ is a symmetric s-weak compatible, and $x \theta y$ and $u \theta v$, for $x, y, u, v \in H$. Then $x \oplus u \theta_{s w} y \oplus v$, which means that for all $a \in x \oplus u$, there exists $b \in y \oplus v$, such that $a \theta b$. Since θ is symmetric, so $y \theta x$ and $v \theta u$, whence $y \oplus v \theta_{s w} x \oplus u$, i.e., for all $b \in y \oplus v$, there exists $a \in x \oplus u$, such that $a \theta b$. This implies that $x \oplus u \theta y \oplus v$, i.e., θ is compatible.

In virtue of Definition 3.3 and Proposition 3.7, we define three types of congruences in H.
Definition 3.8. Let θ be an equivalence relation in H that satisfies (3.1). θ is called a:

- strong congruence, if it is strongly compatible.
- congruence, if it is compatible.
- weak congruence, if it is weakly compatible.

Corollary 3.9. Let θ be an equivalence relation in $H . \theta$ is a congruence, if and only if it satisfies (3.1) and (3.2).
Example 3.10. (i) Obviously, in any $\mathrm{H}_{v} \mathrm{MV}$-algebra H, ∇_{H} is a strong congruence in H.
(ii) Let $H=\{0, a, b, 1\}$, and let the operations \oplus and ${ }^{*}$ be defined as shown in Table 1. Then $\left(H ; \oplus,{ }^{*}, 0\right)$ is a proper $\mathrm{H}_{v} \mathrm{MV}$-algebra (see [1]).

Let $\theta=\{(0,0),(a, a),(b, b),(1,1),(a, b),(b, a)\}$. Obviously, θ is an equivalence relation in H, which satisfies (3.1). Also it is easily verified that θ is weakly compatible. Hence, θ is a weak congruence in H.
(iii) Let $H=\{0, a, b, c, 1\}$, and consider Table 2. Then $\left(H ; \oplus,{ }^{*}, 0\right)$ is an $\mathrm{H}_{v} \mathrm{MV}$-algebra (see [1]). Let

$$
\begin{aligned}
\theta= & \{(0,0),(a, a),(b, b),(c, c),(1,1),(a, b),(b, a),(a, c),(c, a),(b, c), \\
& (c, b),(0,1),(1,0)\} .
\end{aligned}
$$

\oplus	0	a	b	1
0	$\{0, \mathrm{a}\}$	$\{0, \mathrm{a}, \mathrm{b}\}$	$\{0, \mathrm{a}, \mathrm{b}\}$	$\{0, \mathrm{a}, \mathrm{b}, 1\}$
a	$\{0, \mathrm{a}, \mathrm{b}, 1\}$	$\{0, \mathrm{~b}\}$	$\{0,1\}$	$\{\mathrm{a}, \mathrm{b}, 1\}$
b	$\{\mathrm{a}, \mathrm{b}\}$	$\{0, \mathrm{a}, \mathrm{b}, 1\}$	$\{0\}$	$\{0, \mathrm{a}, \mathrm{b}, 1\}$
1	$\{0, \mathrm{a}, 1\}$	$\{0, \mathrm{a}, \mathrm{b}, 1\}$	$\{1\}$	$\{0, \mathrm{a}, \mathrm{b}, 1\}$
$*$	1	b	a	0

Table 1. The Cayley table of \oplus and *

\oplus	0	a	b	c	1
0	$\{0\}$	$\{0, \mathrm{a}\}$	$\{0, \mathrm{~b}\}$	$\{0, \mathrm{c}\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$
a	$\{0, \mathrm{a}\}$	$\{0, \mathrm{a}\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$
b	$\{0, \mathrm{~b}\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$
c	$\{0, \mathrm{c}\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$
1	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$				
$*$	1	b	a	c	0

Table 2. The Cayley table of ' \oplus ' and ${ }^{\text {'* }}$,

It is not difficult to verify that θ is a congruence in H.
In virtue of Remark 3.5, we can check that an analogous result holds for strong congruences and weak congruences.

Definition 3.11. A binary relation θ in H is called regular, if $x^{*} \oplus$ $y \theta_{w}\left\{0^{*}\right\}$ and $y^{*} \oplus x \theta_{w}\left\{0^{*}\right\}$ imply $x \theta y$.

For a congruence θ in H, let x / θ be the congruence class of x, and $H / \theta=\{x / \theta: x \in H\}$. We define the operations ' \oplus^{\prime} and ${ }^{(*)}$ on H / θ by

$$
x / \theta \oplus y / \theta=\{a / \theta: a \in x \oplus y\} \text { and }(x / \theta)^{*}=x^{*} / \theta
$$

Then we have the following theorem:
Theorem 3.12. Let H be an $\mathrm{H}_{v} \mathrm{MV}$-algebra, and θ be a regular congruence in H. Then $\left(H / \theta, \oplus,{ }^{*}, 0 / \theta\right)$ forms an $\mathrm{H}_{v} \mathrm{MV}$-algebra.

Proof. We first prove that ' \oplus ' and ' $*$ ' are well-defined. Let $x, y \in H$ be such that $x / \theta=y / \theta$. This implies that $x \theta y$, and so $x^{*} \theta y^{*}$, whence $x^{*} / \theta=y^{*} / \theta$. This means that $(x / \theta)^{*}=(y / \theta)^{*}$. Let $x_{1}, x_{2}, y_{1}, y_{2} \in H$ be such that $x_{1} / \theta=y_{1} / \theta$, and $x_{2} / \theta=y_{2} / \theta$. Then $x_{1} \oplus x_{2} \theta y_{1} \oplus x_{2}$, and $y_{1} \oplus x_{2} \theta y_{1} \oplus y_{2}$ whence $x_{1} \oplus x_{2} \theta y_{1} \oplus y_{2}$, by Proposition 3.2(7). If $a / \theta \in x_{1} / \theta \oplus x_{2} / \theta$, then $a / \theta=b / \theta$, for some $b \in x_{1} \oplus x_{2}$ and so $a \theta b$ and $b \theta c$, where $c \in y_{1} \oplus y_{2}$. Thus $a / \theta=c / \theta \in y_{1} / \theta \oplus y_{2} / \theta$, proving
$x_{1} / \theta \oplus x_{2} / \theta \subseteq y_{1} / \theta \oplus y_{2} / \theta$. In a similar way, we can prove that the converse inclusion holds. Thus \oplus is well-defined.

The proof of the properties $\left(\mathrm{H}_{v} \mathrm{MV} 1\right)-\left(\mathrm{H}_{v} \mathrm{MV} 7\right)$ follows directly. The proof of ($\mathrm{H}_{v} \mathrm{MV} 8$) follows from the regularity.

Theorem 3.13. If θ is a regular congruence in $H, 0 / \theta$ is a weak $\mathrm{H}_{v} \mathrm{MV}$ ideal of H.

Proof. Let $x, y \in H$ be such that $x \preceq y$, and $y \in 0 / \theta$. Then $0^{*} \in$ $x^{*} \oplus y \cap y \oplus x^{*}$ and $y / \theta=0 / \theta$, whence:

$$
0^{*} / \theta \in x^{*} / \theta \oplus y / \theta \cap y / \theta \oplus x^{*} / \theta=x^{*} / \theta \oplus 0 / \theta \cap 0 / \theta \oplus x^{*} / \theta
$$

Hence, $x / \theta \preceq 0 / \theta$, and so $x / \theta=0 / \theta$ means that $x \in 0 / \theta$.
Now, let $x, y \in 0 / \theta$. Then $x \theta 0$ and $0 \theta y$, and so $x \oplus y \theta 0 \oplus y$, and $0 \oplus y \theta 0 \oplus 0$, whence $x \oplus y \theta 0 \oplus 0$. Since $0 \in 0 \oplus 0$, so there exists $a \in x \oplus y$, such that $a \theta 0$, i.e., $a \in 0 / \theta$, and so $x \oplus y \cap 0 / \theta \neq \emptyset$, whence $x \oplus y \preceq 0 / \theta$, proving that $0 / \theta$ is a weak $\mathrm{H}_{v} \mathrm{MV}$-ideal of H.

Open Problem 3.14. Let I be a (weak) $\mathrm{H}_{v} \mathrm{MV}$-ideal of H. Is there a congruence θ in H, such that $0 / \theta=I$?

The next theorem is easily proved, and so the proof is omitted.
Theorem 3.15. If θ is a regular congruence in H, the mapping \square : $H \longrightarrow H / \theta$ with $\bigsqcup(x)=x / \theta$ is an epimorphism with ker $\natural=0 / \theta$.

The mapping \bigsqcup is called the canonical epimorphism.
Theorem 3.16. If θ is a regular congruence in H, and $f: H \longrightarrow K$ is a homomorphism of $\mathrm{H}_{v} \mathrm{MV}$-algebras, such that $0 / \theta \subseteq$ kerf, there exists a unique homomorphism $\bar{f}: H / \theta \longrightarrow K$, such that $\bar{f}(a / \theta)=f(a)$, for all $a \in H, \operatorname{Im} \bar{f}=\operatorname{Imf}$, and $\operatorname{ker} \bar{f}=\operatorname{kerf} / \theta . \bar{f}$ is an isomorphism, if and only if f is onto and $\operatorname{ker} f=0 / \theta$.

Proof. We first prove that \bar{f} is well-defined. Let $a, b \in H$ be such that $a / \theta=b / \theta$. Then $0^{*} / \theta \in a^{*} / \theta \oplus b / \theta \cap b / \theta \oplus a^{*} / \theta$. This implies that $x / \theta=0^{*} / \theta=y / \theta$, for some $x \in a^{*} \oplus b$ and $y \in b \oplus a^{*}$ whence $x^{*}, y^{*} \in 0 / \theta \subseteq \operatorname{kerf}$, i.e., $f\left(x^{*}\right)=f(0)=f\left(y^{*}\right)$. Hence,

$$
0^{*}=f\left(0^{*}\right)=f(x) \in f(a)^{*} \oplus f(b)
$$

and similarly, $0^{*} \in f(b) \oplus f(a)^{*}$, and hence, $f(a) \preceq f(b)$. In a similar way, we can show that $f(b) \preceq f(a)$. Thus $\bar{f}(a / \theta)=f(a)=f(b)=$ $\bar{f}(b / \theta)$, i.e., \bar{f} is well-defined. Obviously, \bar{f} is a homomorphism, and $\operatorname{Im} \bar{f}=\operatorname{Imf}$. Now,

$$
a / \theta \in \operatorname{ker} \bar{f} \Rightarrow f(a)=\bar{f}(a / \theta)=0 \Rightarrow a \in \operatorname{ker} f \Rightarrow a / \theta \in \operatorname{ker} f / \theta
$$

whence $\operatorname{ker} \bar{f} \subseteq \operatorname{kerf} / \theta$. Conversely, if $a / \theta \in \operatorname{ker} f / \theta$, so $a / \theta=b / \theta$, for some $b \in \operatorname{kerf}$, and hence, $f(a)=\bar{f}(a / \theta)=\bar{f}(b / \theta)=f(b)=0$, i.e., $a \in \operatorname{kerf}$. This implies that $\operatorname{kerf} / \theta \subseteq \operatorname{ker} \bar{f}$, proving $\operatorname{ker} \bar{f}=\operatorname{kerf} / \theta$. \bar{f} is unique, because it is determined completely by f.

Finally, \bar{f} is an isomorphism, if and only if it is an epimorphism and a monomorphism. Obviously, \bar{f} is an epimorphism, if and only if f is an epimorphism, and by Theorem 2.6, \bar{f} is a monomorphism, if and only if $\operatorname{kerf} / \theta=\operatorname{ker} \bar{f}=\{0 / \theta\}$, i.e., if and only if $\operatorname{ker} f=0 / \theta$.
Corollary 3.17. (Fundamental Homomorphism Theorem) Let θ be a regular congruence in H. Then every homomorphism $f: H \longrightarrow K$ of $\mathrm{H}_{v} \mathrm{MV}$-algebras induces an isomorphism $H / \theta \simeq \operatorname{Imf}$, where $0 / \theta=$ kerf.
Proof. Since $f: H \longrightarrow \operatorname{Imf}$ is an epimorphism, and $\operatorname{ker} f=0 / \theta$, so, by Theorem 3.16, the mapping $\bar{f}: H / \theta \longrightarrow \operatorname{Imf}$ with $a / \theta \mapsto f(a)$ is an isomorphism.

Corollary 3.18. Let θ and ϑ be the regular congruences in $\mathrm{H}_{v} \mathrm{MV}$ algebras H and K, respectively, and let $f: H \longrightarrow K$ be a homomorphism with $f(0 / \theta) \subseteq 0 / \vartheta$. Then f induces a homomorphism \bar{f} : $H / \theta \longrightarrow K / \vartheta$ with $\bar{f}(a / \theta)=f(a) / \vartheta . \bar{f}$ is an isomorphism, if and only if $\operatorname{Imf} / \vartheta=K$, and $f^{-1}(0 / \vartheta) \subseteq 0 / \theta$.

Proof. Obviously, the composition $H \xrightarrow{f} K \xrightarrow{\natural} K / \vartheta$ is a homomorphism, and $0 / \theta \subseteq f^{-1}(0 / \vartheta)=k e r \natural f$ because:

$$
\begin{aligned}
x \in \operatorname{ker} \natural f & \Leftrightarrow \square f(x)=0 / \vartheta \Leftrightarrow f(x) / \vartheta=0 / \vartheta \Leftrightarrow f(x) \in 0 / \vartheta \\
& \Leftrightarrow x \in f^{-1}(0 / \vartheta) .
\end{aligned}
$$

Now, by Theorem 3.16, for $\bigsqcup f$ instead of f, and K / ϑ instead of K, the mapping $H / \theta \longrightarrow K / \vartheta$ with $a / \theta \mapsto(\square f)(a)=f(a) / \vartheta$ is a homomorphism, which is an isomorphism, if and only if $\downarrow f$ is an epimorphism and $\operatorname{ker} \square f=0 / \theta$. But $\operatorname{ker} \natural f=0 / \theta$, if and only if $f^{-1}(0 / \vartheta) \subseteq 0 / \theta$. Now, assume that $\square f$ is an epimorphism, and $x \in K$. Then $x / \vartheta \in K / \vartheta$, and so $x / \vartheta=\llcorner f(h)=f(h) / \vartheta$, where $h \in H$. This implies that $x \in f(h) / \vartheta$, whence $K \subseteq \operatorname{Imf} / \vartheta$. Obviously, $\operatorname{Im} f / \vartheta \subseteq K$. Hence, $K=\operatorname{Imf} / \vartheta$. Conversely, assume that $K=\operatorname{Imf} / \vartheta$, and $x / \vartheta \in K / \vartheta$. Then $x \in K$, and so $x / \vartheta=f(a) / \vartheta=\natural f(a)$, for some $a \in H$, proving

Let θ and ϑ be regular congruences in H such that $\vartheta \subseteq \theta$. Define a binary relation θ / ϑ in H / ϑ by

$$
a / \vartheta(\theta / \vartheta) b / \vartheta \Leftrightarrow a \theta b
$$

It is obvious that θ / ϑ is a regular congruence in H / ϑ.
Corollary 3.19. Let θ and ϑ be regular congruences in H and $\vartheta \subseteq \theta$. Then $(H / \vartheta) /(\theta / \vartheta) \simeq H / \theta$.

Proof. Obviously, the mapping $f: H / \vartheta \longrightarrow H / \theta$ with $f(a / \vartheta)=a / \theta$ is an epimorphism, and

$$
\begin{aligned}
\operatorname{kerf} & =\{a / \vartheta: a / \theta=f(a / \vartheta)=0 / \theta\}=\{a / \vartheta: a \theta 0\} \\
& =\{a / \vartheta: a / \vartheta(\theta / \vartheta) 0 / \vartheta\} \\
& =0 /(\theta / \vartheta)
\end{aligned}
$$

whence, by Corollary $3.17,(H / \vartheta) /(\theta / \vartheta) \simeq \operatorname{Imf}=H / \theta$.

4. Fundamental MV-algebras

In this section, we introduce the concept of fundamental relation on $\mathrm{H}_{v} \mathrm{MV}$-algebras. We first give an application of strong congruences.

Theorem 4.1. If θ is a regular strong congruence in $H,\left(H / \theta, \oplus,{ }^{*}, 0 / \theta\right)$ is an MV-algebra.
Proof. In virtue of Theorem 3.12, it is enough to prove that, for all $x, y \in H$, the set $x / \theta \oplus y / \theta$ is singleton. Let $a / \theta, b / \theta \in x / \theta \oplus y / \theta$. Then there exist $c, d \in x \oplus y$, such that $a / \theta=c / \theta$ and $b / \theta=d / \theta$. Since θ is reflexive, so $x \theta x$ and $y \theta y$, whence $x \oplus y \theta_{s} x \oplus y$. This implies that $c \theta d$, i.e., $a / \theta=c / \theta=d / \theta=b / \theta$, proving $|x / \theta \oplus y / \theta|=1$.

Let $\mathcal{U}_{p s}$ and $\mathcal{U}_{s p}$ be the set of all finite sums of finite products and the set of all finite products of finite sums of the elements of H, respectively, and let $\mathcal{U}=\mathcal{U}_{p s} \cup \mathcal{U}_{s p}$. Define a binary relation γ in H by
$a \gamma b$, if and only if $\{a, b\} \subseteq u$, for some $u \in \mathcal{U}$.
It is obvious that γ is reflexive and symmetric.
Define a binary relation γ^{*} in H by $a \gamma^{*} b$, if and only if there exist $n \in \mathbb{N}$, and $z_{1}, z_{2}, \ldots, z_{n+1} \in H$, such that $a=z_{1}, b=z_{n+1}$, and for all $i \in\{1,2, \ldots, n\},\left\{z_{i}, z_{i+1}\right\} \subseteq u_{i}$, for some $u_{i} \in \mathcal{U}$.

Theorem 4.2. The relation γ^{*} is an equivalence relation in H.
Proof. Let $a \in H$. From $a \in a \odot 1$, for $n=2, z_{1}=z_{2}=a$, and $u=(0 \odot 1) \oplus(a \odot 1)$, we get

$$
\{a\} \subseteq a \odot 1 \subseteq 0 \oplus(a \odot 1) \subseteq(0 \odot 1) \oplus(a \odot 1)=u
$$

whence $a \gamma^{*} a$, i.e., γ^{*} is reflexive. Now, let $a, b \in H$ be such that $a \gamma^{*} b$. Then there exist $n \in \mathbb{N}, z_{1}, z_{2}, \ldots, z_{n+1} \in H$, such that $a=z_{1}$, $b=z_{n+1}$, and for all $i \in\{1,2, \ldots, n\},\left\{z_{i}, z_{i+1}\right\} \subseteq u_{i}$, where $u_{i} \in \mathcal{U}$.

Let $y_{i}=z_{n-i+2}$, for all $i \in\{1,2, \ldots, n\}$. Then $y_{1}=b, y_{n+1}=a$, and $\left\{y_{i}, y_{i+1}\right\} \subseteq v_{i}$, where $v_{i}=u_{n-i+1} \in \mathcal{U}$, proving $b \gamma^{*} a$, i.e. γ^{*} is symmetric. For transitivity, let $a \gamma^{*} b$ and $b \gamma^{*} c$, for $a, b, c \in H$. Then there exist $n, m \in \mathbb{N}, z_{1}, \ldots, z_{n+1}, w_{1}, \ldots, w_{m+1} \in H$, such that $a=z_{1}$, $z_{n+1}=b=w_{1}, c=w_{m+1}$, and $\left\{z_{i}, z_{i+1}\right\} \subseteq u_{i}$ and $\left\{w_{j}, w_{j+1}\right\} \subseteq v_{j}$, where $u_{i}, v_{j} \in \mathcal{U}$, for all $i \in\{1,2, \ldots, n\}$ and $j \in\{1,2 \ldots, m\}$. Let $x_{i}=z_{i}$, for $i \in\{1,2, \ldots, n\}$, and $x_{i}=w_{j}$, where $i=n+j$, for $j \in\{1,2, \ldots, m\}$. Then $a=x_{1}, c=x_{m+1}$ and $\left\{x_{i}, x_{i+1}\right\} \subseteq r_{i}$, where $r_{i} \in \mathcal{U}$. Thus γ^{*} is an equivalence relation in H.

Theorem 4.3. γ^{*} is the smallest regular strong congruence in H with the property that H / γ^{*} is an MV-algebra.

Proof. In virtue of Theorem 3.4 and Remark 3.5, to prove that γ^{*} is a strong congruence, it is enough to prove that (3.1) holds, and for all $x, y, a \in H$,

$$
x \gamma^{*} y \text { implies that } x \oplus a \gamma_{s}^{*} y \oplus a, \text { and } a \oplus x \gamma_{s}^{*} a \oplus y
$$

Assume that $x \gamma^{*} y$, for $x, y \in H$. Then there exist $n \in \mathbb{N}, a_{1}, \ldots, a_{n+1} \in$ H, such that $x=a_{1}, y=a_{n+1}$, and for all $i \in\{1,2, \ldots, n\},\left\{a_{i}, a_{i+1}\right\} \subseteq$ u_{i}, for some $u_{i} \in \mathcal{U}$. This implies that $x^{*}=a_{1}^{*}, y^{*}=a_{n+1}^{*}$, and $\left\{a_{i}^{*}, a_{i+1}^{*}\right\} \subseteq u_{i}^{*} \in \mathcal{U}$, whence $x^{*} \gamma^{*} y^{*}$. Thus (3.1) holds. Also, if $a \in H$, for $s_{i} \in a_{i} \oplus a$, we have:

$$
\left\{s_{i}, s_{i+1}\right\} \subseteq\left(a_{i} \oplus a\right) \cup\left(a_{i+1} \oplus a\right) \subseteq u_{i} \oplus a \subseteq u_{i} \oplus(a \odot 1)=v_{i} \in \mathcal{U}
$$

or $\left\{s_{i}, s_{i+1}\right\} \subseteq u_{i} \oplus a \subseteq u_{i} \odot(a \oplus 0) \in \mathcal{U}$. Thus for $s_{1} \in x \oplus a=a_{1} \oplus a$ and $s_{n+1} \in y \oplus a=a_{n+1} \oplus a$, we have $s_{1} \gamma^{*} s_{n+1}$. This implies that $x \oplus a \gamma_{s}^{*} y \oplus a$. Similarly, we can show that $x \gamma^{*} y$ implies that $a \oplus x \gamma_{s}^{*} a \oplus y$. Thus γ^{*} is a strong congruence in H.

For regularity, assume that $x^{*} \oplus y \gamma_{w}^{*}\left\{0^{*}\right\}$, and $y^{*} \oplus x \gamma_{w}^{*}\left\{0^{*}\right\}$, for $x, y \in$ H. Then $\left(x^{*} \oplus y\right)^{*} \gamma_{w}^{*}\{0\}$, and $\left(y^{*} \oplus x\right)^{*} \gamma_{w}^{*}\{0\}$, and so $\left(x^{*} \oplus y\right)^{*} \oplus y \gamma_{s}^{*} 0 \oplus y$, and $\left(y^{*} \oplus x\right)^{*} \oplus x \gamma_{s}^{*} 0 \oplus x$, whence $0 \oplus x \gamma_{s}^{*} 0 \oplus y$. Since $y \in 0 \oplus y$ and $x \in 0 \oplus x$, so $x \gamma^{*} y$ proving γ^{*} is regular. Therefore, γ^{*} is a regular strong congruence in H, and H / γ^{*} is an MV-algebra.

Now, let δ be a regular strong congruence in H with the property that H / δ is an MV-algebra, and $x \gamma y$, for $x, y \in H$. Then $\{x, y\} \subseteq$ $u \in \mathcal{U}$. Assume that $u=\oplus_{i=1}^{n}\left(\odot_{j=1}^{m} x_{i j}\right)$, where $x_{i j} \in H$. Since δ is a strong congruence, so $u / \delta=\oplus_{i=1}^{n}\left(\odot_{j=1}^{m} x_{i j} / \delta\right)$ is singleton, and since $x / \delta, y / \delta \in u / \delta$ implies that $x / \delta=y / \delta$, i.e., $x \delta y$. Hence, $\gamma \subseteq \delta$. Now, if $x \gamma^{*} y$, there exist $n \in \mathbb{N}$ and $a_{1}, a_{2}, \ldots, a_{n+1} \in H$, such that $x=a_{1}$, $y=a_{n+1}$ and $a_{i} \gamma a_{i+1}$, whence $a_{i} \delta a_{i+1}$. Since δ is transitive, so $x \delta y$, proving $\gamma^{*} \subseteq \delta$. Therefore, γ^{*} is the smallest regular strong congruence in H, such that H / γ^{*} is an MV-algebra.

Remark 4.4. The relation γ^{*} is called the fundamental relation in H, and H / γ^{*} is called the fundamental MV-algebra.

5. Direct products

In this section, we define the direct product of a family of $\mathrm{H}_{v} \mathrm{MV}$ algebras, characterize the $\mathrm{H}_{v} \mathrm{MV}$-subalgebras and (weak) $\mathrm{H}_{v} \mathrm{MV}$-ideals of it, and give some homomorphism theorems.

Let $\left\{\left(H_{i} ; \oplus_{i},{ }^{{ }^{*}}, 0_{i}\right): i \in I\right\}$ be a non-empty family of $\mathrm{H}_{v} \mathrm{MV}$-algebras. The cartesian product $\prod_{i \in I} H_{i}$ of H_{i} 's is defined as the set of all functions $f: I \longrightarrow \cup H_{i}$ with $f(i) \in H_{i}$, for all $i \in I$. For $f, g \in \prod_{i \in I} H_{i}$, define $f=g$, if and only if $f(i)=g(i)$, for all $i \in I$, and

$$
f^{*}(i)=f(i)^{*_{i}} \text { and }(f \oplus g)(i)=f(i) \oplus_{i} g(i), \forall i \in I
$$

Also define $0(i)=0_{i}$, for all $i \in I$. It is easy to check that $\prod_{i \in I} H_{i}$ together with ' \oplus ', ${ }^{(*)}$ satisfies ($\left.\mathrm{H}_{v} \mathrm{MV} 1\right)-\left(\mathrm{H}_{v} \mathrm{MV} 8\right)$. Thus we get

Theorem 5.1. If $\left\{\left(H_{i} ; \oplus_{i},{ }^{{ }^{i}}, 0_{i}\right): i \in I\right\}$ is a non-empty family of $\mathrm{H}_{v} \mathrm{MV}$-algebras;
(1) $\left(\prod_{i \in I} H_{i} ; \oplus,{ }^{*}, 0\right)$ is an $\mathrm{H}_{v} \mathrm{MV}$-algebra,
(2) for each $k \in I$, the mapping $\pi_{k}: \prod_{i \in I} H_{i} \longrightarrow H_{k}$ with $f \mapsto f(k)$ is an epimorphism.
$\prod_{i \in I} H_{i}$ is called the direct product of H_{i} 's. If H_{i} is an $\mathrm{H}_{v} \mathrm{MV}$-algebra with the order \preceq_{i}, the order on $\prod_{i \in I} H_{i}$ is given by $f \preceq g$, if and only if $f(i) \preceq_{i} g(i)$.

The image of f can be written as $\left\{a_{i}\right\}$, where $a_{i} \in H_{i}$. In this case, the hyperoperation ' \oplus ' is written as $\left\{a_{i}\right\} \oplus\left\{b_{i}\right\}=\left\{a_{i} \oplus_{i} b_{i}\right\}$. If $I=\{1,2, \ldots, n\}$ is finite, $\prod_{i \in I} H_{i}$ is written as $H_{1} \times H_{2} \times \cdots \times H_{n}$.

In the sequel, in this section, $\left\{H_{i}: i \in I\right\}$ is a non-empty family of $\mathrm{H}_{v} \mathrm{MV}$-algebras, and $\prod_{i \in I} H_{i}$ is the direct product of H_{i} 's.

Theorem 5.2. Let H_{i} be an $\mathrm{H}_{v} \mathrm{MV}$-algebra, and S_{i} be a non-empty subset of H_{i} with $i \in I$.
(1) If S_{i} is an $\mathrm{H}_{v} \mathrm{MV}$-subalgebra, $\prod_{i \in I} S_{i}$ is an $\mathrm{H}_{v} \mathrm{MV}$-subalgebra of $\prod_{i \in I} H_{i}$.
(2) If S_{i} is an $\mathrm{H}_{v} \mathrm{MV}$-ideal, $\prod_{i \in I} S_{i}$ is an $\mathrm{H}_{v} \mathrm{MV}$-ideal of $\prod_{i \in I} H_{i}$.
(3) If S_{i} is a weak $\mathrm{H}_{v} \mathrm{MV}$-ideal, $\prod_{i \in I} S_{i}$ is a weak $\mathrm{H}_{v} \mathrm{MV}$-ideal of $\prod_{i \in I} H_{i}$.

Proof. Routine.
Theorem 5.3. Let $H_{i}(i \in I)$ be an $\mathrm{H}_{v} \mathrm{MV}$-algebra and S be a nonempty subset of $\prod_{i \in I} H_{i}$.
(1) If S is an $\mathrm{H}_{v} \mathrm{MV}$-subalgebra, there exists unique $\mathrm{H}_{v} \mathrm{MV}$-subalgebra S_{i} of H_{i}, for all $i \in I$, such that $S=\prod_{i \in I} S_{i}$.
(2) If S is an $\mathrm{H}_{v} \mathrm{MV}$-ideal, there exists unique $\mathrm{H}_{v} \mathrm{MV}$-ideal S_{i} of H_{i}, for all $i \in I$, such that $S=\prod_{i \in I} S_{i}$.
(3) If S is a weak $\mathrm{H}_{v} \mathrm{MV}$-ideal, there exists unique weak $\mathrm{H}_{v} \mathrm{MV}$-ideal I_{i} of H_{i}, for all $i \in I$, such that $S=\prod_{i \in I} S_{i}$.

Proof. We first observe that if S is a non-empty subset of $\prod_{i \in I} H_{i}$, for

$$
S_{i}=\left\{a_{i} \in H_{i}: \exists f \in S, \text { such that } f(i)=a_{i}\right\}
$$

we get $\prod_{i \in I} S_{i}=S$.
(1) Assume that S is an $\mathrm{H}_{v} \mathrm{MV}$-subalgebra of $\prod_{i \in I} H_{i}$. We show that S_{i} is an $\mathrm{H}_{v} \mathrm{MV}$-subalgebra of H_{i}. Obviously, $S_{i} \neq \emptyset$ because $0_{i} \in S_{i}$, for all $i \in I$. Let $a_{i}, b_{i} \in S_{i}$, for $i \in I$. Then there exist $f, g \in S$, such that $f(i)=a_{i}$ and $g(i)=b_{i}$, whence $a_{i}^{*_{i}} \oplus_{i} b_{i}=f^{*_{i}}(i) \oplus_{i} g(i)=\left(f^{*} \oplus g\right)(i) \subseteq$ S_{i}, proving S_{i} is an $\mathrm{H}_{v} \mathrm{MV}$-subalgebra of H_{i}.

Now, let T_{i} be an $\mathrm{H}_{v} \mathrm{MV}$-subalgebra of H_{i}, for all $i \in I$, such that $S=\prod_{i \in I} T_{i}$. We show that $T_{i}=S_{i}$, for all $i \in I$. Let $a_{i} \in H_{i}$. Then $a_{i} \in T_{i}$, if and only if there exists $f \in \prod_{i \in I} T_{i}=S=\prod_{i \in I} S_{i}$ such that $f(i)=a_{i}$, if and only if $a_{i} \in S_{i}$ means that $T_{i}=S_{i}$.
(2) By (1), S_{i} is closed with respect to \oplus_{i}, for all $i \in I$. Now, let $a_{i} \preceq_{i} b_{i}$ and $b_{i} \in S_{i}$. Let $f, g \in \prod_{i \in I} H_{i}$ be such that $f(i)=a_{i}$, and $g(i)=b_{i}$. Then:

$$
\begin{aligned}
0_{i}^{*_{i}} \in a_{i}^{*_{i}} \oplus_{i} b_{i} \cap b_{i} \oplus_{i} a_{i}^{*_{i}} & =f^{*_{i}}(i) \oplus_{i} g(i) \cap g(i) \oplus_{i} f^{*_{i}}(i) \\
& =\left(f^{*} \oplus g\right)(i) \cap\left(g \oplus f^{*}\right)(i)
\end{aligned}
$$

whence $0^{*} \in f^{*} \oplus g \cap g \oplus f^{*}$, i.e. $f \preceq g \in \prod_{i \in I} S_{i}=S$. Since S is an $\mathrm{H}_{v} \mathrm{MV}$-ideal, so $f \in S$, and hence, $a_{i}=f(i) \in S_{i}$. The uniqueness is proved similar to the proof of (1).
(3) The proof is similar to the proof of (2).

Definition 5.4. Let $\left\{H_{i}: i \in I\right\}$ be a non-empty family of $\mathrm{H}_{v} \mathrm{MV}$ algebras. The weak direct product of H_{i} 's, denoted by $\prod_{i \in I}^{w} H_{i}$, is defined as the set of all $f \in \prod_{i \in I} H_{i}$, such that for all but a finite number of $i \in I$, we have $f(i)=0_{i}$.

Remark 5.5. Note that when I is finite, the weak direct product and direct product are equal.

Theorem 5.6. Let $\left\{H_{i}: i \in I\right\}$ be a non-empty family of $\mathrm{H}_{v} \mathrm{MV}$ algebras.
(1) If $0_{i} \oplus 0_{i}=\left\{0_{i}\right\}$, for all $i \in I, \prod_{i \in I}^{w} H_{i}$ is an $\mathrm{H}_{v} \mathrm{MV}$-ideal of $\prod_{i \in I} H_{i}$.
(2) the mapping $\iota_{k}: H_{k} \longrightarrow \prod_{i \in I}^{w} H_{i}$ given by $\iota_{k}(a)=\left\{a_{i}\right\}_{i \in I}$, in which $a_{k}=a$ and $a_{i}=0_{i}$, for all $i \neq k$, is a weak monomorphism.
(3) If $0_{i} \oplus 0_{i}=\left\{0_{i}\right\}$, for all $i \in I, \iota_{i}\left(H_{i}\right)$ is an $\mathrm{H}_{v} \mathrm{MV}$-ideal of $\prod_{i \in I}^{w} H_{i}$.
Proof. (1) Let $f, g \in \prod_{i \in I} H_{i}$ be such that $f \preceq g$, and $g \in \prod_{i \in I}^{w} H_{i}$. Then $f(i) \preceq_{i} g(i)$ and $g(i)=0_{i}$, for all but a finite number of $i \in$ I whence $0_{i}^{*_{i}} \in f^{*_{i}}(i) \oplus_{i} g(i) \cap g(i) \oplus_{i} f^{*_{i}}(i)$. Now, for $i \in I$ with $g(i)=0_{i}$, we have $0_{i}^{*_{i}} \in f^{*_{i}}(i) \oplus_{i} 0_{i} \cap 0_{i} \oplus_{i} f^{*_{i}}(i)$, which implies that $f(i) \preceq_{i} 0_{i}$, i.e., $f(i)=0_{i}$, proving $f \in \prod_{i \in I}^{w} H_{i}$. Let $f, g \in \prod_{i \in I}^{w} H_{i}$. Then $f(i)=0_{i}$ and $g(j)=0_{j}$, for all but a finite number of $i, j \in I$. Let $k \in I$ be the smallest element, for which $f(k)=g(k)=0_{k}$. Then $(f \oplus g)(k)=f(k) \oplus_{k} g(k)=0_{k} \oplus 0_{k}=\left\{0_{k}\right\}$, for all but a finite number of $k \in I$. Thus $f \oplus g \subseteq \prod_{i \in I}^{w} H_{i}$. Therefore, $\prod_{i \in I}^{w} H_{i}$ is an H_{v} MV-ideal of $\prod_{i \in I} H_{i}$.
(2) Let $a \in H_{k}$. Then $\iota_{k}\left(a^{* k}\right)=\left\{a_{i}\right\}_{i \in I}$ in which $a_{k}=a^{* k}$ and $a_{i}=0_{i}$, for all $i \neq k$. On the other hand, $\iota_{k}(a)^{*}=\left\{a_{i}\right\}_{i \in I}^{*}=\left\{a_{i}^{* i}\right\}_{i \in I}$, in which $a_{k}^{*_{k}}=a^{*_{k}}$ and $a_{i}^{*_{i}}=1$, for all $i \neq k$. This implies that $\iota_{k}\left(a^{*_{k}}\right) \preceq \iota_{k}(a)^{*_{i}}$. Now, let $a, b \in H_{i}$. Then:

$$
\begin{aligned}
\iota_{k}\left(a \oplus_{k} b\right) & =\left\{\iota_{k}(c): c \in a \oplus_{k} b\right\} \\
& =\left\{\left\{a_{i}\right\}_{i \in I}: a_{k}=c \in a \oplus_{k} b, a_{i}=0_{i}, \forall i \neq k\right\} \\
& \subseteq\left\{a_{i} \oplus b_{i}\right\} \text { with } a_{k}=a, b_{k}=b, a_{i}=b_{i}=0_{i}, \forall i \neq k \\
& =\left\{a_{i}\right\}_{i \in I} \oplus\left\{b_{i}\right\}_{i \in I} \text { with } a_{k}=a, b_{k}=b, a_{i}=b_{i}=0_{i}, \forall i \neq k \\
& =\iota_{k}(a) \oplus \iota_{k}(b)
\end{aligned}
$$

proving that ι_{k} is a weak homomorphism. Obviously, ι_{k} is one-to-one.
(3) Let $\left\{a_{i}\right\} \preceq\left\{b_{i}\right\}$, and $\left\{b_{i}\right\} \in \iota_{k}\left(H_{k}\right)$. Then $0^{*} \in\left\{a_{i}\right\}^{*} \oplus\left\{b_{i}\right\} \cap$ $\left\{b_{i}\right\} \oplus\left\{a_{i}\right\}^{*}$, and $b_{k}=a \in H_{k}$ and $b_{i}=0_{i}$, for all $i \neq k$, whence $0_{i}^{*_{i}} \in a_{i}^{*_{i}} \oplus_{i} b_{i}, b_{k}=a$, and $b_{i}=0_{i}$, for all $i \neq k$. This implies that $0^{*_{i}} \in a_{i}^{*_{i}} \oplus_{i} 0_{i}$, for all $i \neq k$, and hence, $a_{i} \preceq 0_{i}$, i.e., $a_{i}=0_{i}$, for all $i \neq k$. Thus $\left\{a_{i}\right\} \in \iota_{k}\left(H_{k}\right)$. Now, let $\left\{a_{j}\right\},\left\{b_{j}\right\} \in \iota_{i}\left(H_{i}\right)$. Then $a_{j}=b_{j}=0_{j}$, for all $j \neq i$, and so, $\left\{a_{j}\right\} \oplus\left\{b_{j}\right\}=\left\{a_{j} \oplus_{j} b_{j}\right\}$ in which $a_{j} \oplus_{j} b_{j}=0_{j} \oplus_{j} 0_{j}=\left\{0_{j}\right\}$, proving $\left\{a_{j}\right\} \oplus\left\{b_{j}\right\} \subseteq \iota_{i}\left(H_{i}\right)$.
Theorem 5.7. Let $\left\{f_{i}: H_{i} \longrightarrow K_{i}: i \in I\right\}$ be a non-empty family of homomorphisms of $\mathrm{H}_{v} \mathrm{MV}$-algebras, and the mapping $f=\prod f_{i}$: $\prod_{i \in I} H_{i} \longrightarrow \prod_{i \in I} K_{i}$ be given by $\left\{a_{i}\right\} \mapsto\left\{f_{i}\left(a_{i}\right)\right\}$. Then f is a homomorphism such that $f\left(\prod_{i \in I}^{w} H_{i}\right) \subseteq \prod_{i \in I}^{w} K_{i}$, ker $f=\prod_{i \in I}$ ker f_{i} and $\operatorname{Imf}=\prod_{i \in I} \operatorname{Im} f_{i}$. Thus f is a monomorphism (resp. an epimorphism) if and only if so is each f_{i}.

Proof. Routine.

Theorem 5.8. Let $\left\{H_{i}: i \in I\right\}$ be a non-empty family of $\mathrm{H}_{v} \mathrm{MV}$ algebras, and $\beta_{i}^{*_{i}}$ be the fundamental equivalence relation in H_{i}, for all $i \in I$, and β^{*} be the fundamental equivalence relation in $\prod_{i \in I} H_{i}$. Then $\left(\prod_{i \in I} H_{i}\right) / \beta^{*} \simeq \prod_{i \in I} H_{i} / \beta_{i}^{*_{i}}$.
Proof. Consider the relation $\tilde{\beta}$ in $\prod_{i \in I} H_{i}$, as follows:

$$
\left\{a_{i}\right\} \tilde{\beta}\left\{b_{i}\right\} \Leftrightarrow a_{i} \beta_{i}^{*_{i}} b_{i}, \forall i \in I
$$

Obviously, $\tilde{\beta}$ is a congruence relation in $\prod_{i \in I} H_{i}$. To prove regularity, let $\left\{a_{i}\right\},\left\{b_{i}\right\} \in \prod_{i \in I} H_{i}$ be such that $\left\{a_{i}\right\}^{*} \oplus\left\{b_{i}\right\} \tilde{\beta}\left\{\left\{0_{i}\right\}\right\}$ and $\left\{b_{i}\right\}^{*} \oplus$ $\left\{a_{i}\right\} \tilde{\beta}\left\{\left\{0_{i}\right\}\right\}$. Then $\left\{a_{i}^{*_{i}} \oplus_{i} b_{i}\right\} \tilde{\beta}\left\{\left\{0_{i}\right\}\right\}$ and $\left\{b_{i}^{*_{i}} \oplus_{i} a_{i}\right\} \tilde{\beta}\left\{\left\{0_{i}\right\}\right\}$, whence $\left\{c_{i}\right\} \tilde{\beta}\left\{0_{i}\right\}$ and $\left\{d_{i}\right\} \tilde{\beta}\left\{0_{i}\right\}$, for all $c_{i} \in a_{i}^{*_{i}} \oplus_{i} b_{i}$ and $d_{i} \in b_{i}^{*_{i}} \oplus_{i} a_{i}$. Hence, $c_{i} \beta_{i}^{*_{i}} 0_{i}$ and $d_{i} \beta_{i}^{*_{i}} 0_{i}$, i.e., $a_{i}^{*_{i}} \oplus_{i} b_{i} \beta_{i}^{*_{i}}\left\{0_{i}\right\}$ and $b_{i}^{*_{i}} \oplus_{i} a_{i} \beta_{i}^{*_{i}}\left\{0_{i}\right\}$, whence $a_{i} \beta_{i}^{*_{i}} b_{i}$, proving $\left\{a_{i}\right\} \tilde{\beta}\left\{b_{i}\right\}$.

Now, define ${ }^{\text {(*) }}$ and ' \oplus ' on $\left(\prod_{i \in I} H_{i}\right) / \tilde{\beta}$ by
$\left(\left\{a_{i}\right\} / \tilde{\beta}\right)^{*}=\left\{a_{i}^{*_{i}}\right\} / \tilde{\beta},\left\{a_{i}\right\} / \tilde{\beta} \oplus\left\{b_{i}\right\} / \tilde{\beta}=\left\{\left\{c_{i}\right\} / \tilde{\beta}: c_{i} \in a_{i} / \beta^{*_{i}} \oplus_{i} b_{i} / \beta^{*_{i}}\right\}$.
It is easy to check that $\tilde{\beta}$ is the smallest regular congruence relation in $\prod_{i \in I} H_{i}$, such that $\left(\prod_{i \in I} H_{i}\right) / \tilde{\beta}$ is an $\mathrm{H}_{v} \mathrm{MV}$-algebra, so $\tilde{\beta}=\beta^{*}$.

Now, by Theorem 3.15, the mapping $\natural_{i}: H_{i} \longrightarrow H_{i} / \beta_{i}^{*_{i}}$ is an epimorphism with $k e r \natural_{i}=0_{i} / \beta_{i}^{*_{i}}$ and so, by Theorem 5.7, $\prod_{\natural_{i}}: \prod_{i \in I} H_{i} \longrightarrow$ $\prod_{i \in I} H_{i} / \beta_{i}^{*_{i}}$ is an epimorphism with

$$
\operatorname{ker}\left(\prod \natural_{i}\right)=\prod_{i \in I} k e r \natural_{i}=\prod_{i \in I} 0_{i} / \beta_{i}^{*_{i}}=0 / \beta^{*} .
$$

Thus, by Corollary 3.17, $\left(\prod_{i \in I} H_{i}\right) / \beta^{*} \simeq \prod_{i \in I} H_{i} / \beta_{i}^{* i}$.

6. Conclusions and the future works

Based on the first work on $\mathrm{H}_{v} \mathrm{MV}$-algebras, in this paper, we introduced some types of congruences, studied the quotient $\mathrm{H}_{v} \mathrm{MV}$-algebra, and obtained some homomorphism theorems. Moreover, we obtained the fundamental equivalence relation on an $\mathrm{H}_{v} \mathrm{MV}$-algebra, the smallest equivalence relation on an $\mathrm{H}_{v} \mathrm{MV}$-algebra to make it to an MValgebra. Finally, we introduced the direct product of a non-empty family of $\mathrm{H}_{v} \mathrm{MV}$-algebras. We proved that the direct product of a family of $\mathrm{H}_{v} \mathrm{MV}$-subalgebras ($\mathrm{H}_{v} \mathrm{MV}$-ideals, weak $\mathrm{H}_{v} \mathrm{MV}$-ideals) is again an $\mathrm{H}_{v} \mathrm{MV}$-subalgebra ($\mathrm{H}_{v} \mathrm{MV}$-ideal, weak $\mathrm{H}_{v} \mathrm{MV}$-ideal). Also we characterized the $\mathrm{H}_{v} \mathrm{MV}$-subalgebras ($\mathrm{H}_{v} \mathrm{MV}$-ideals, weak $\mathrm{H}_{v} \mathrm{MV}$-ideals) of the direct product of a family of $\mathrm{H}_{v} \mathrm{MV}$-algebras via the $\mathrm{H}_{v} \mathrm{MV}$-subalgebras ($\mathrm{H}_{v} \mathrm{MV}$-ideals, weak $\mathrm{H}_{v} \mathrm{MV}$-ideals) of any member of the family. Then
using the fundamental equivalence relation, we obtained some homomorphism theorems.

The category of $\mathrm{H}_{v} \mathrm{MV}$-algebras and fuzzy $\mathrm{H}_{v} \mathrm{MV}$-ideals could be the topics for further research works.

Acknowledgment

The authors would like to express their sincere thanks to the referees for their valuable suggestions and comments.

References

1. M. Bakhshi, H ${ }_{v}$ MV-algebras I, Quasigroups Related Systems 22 (2014), 9-18.
2. C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490.
3. C. C. Chang, A new proof of the completeness of the Lukasiewicz axioms, Tran. Amer. Math. Soc. 93 (1959), 74-80.
4. P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, 1993.
5. P. Corsini and V. Leorenu, Applications of Hyperstructure Theory, Kluwer Academic Publishers, Dordrecht, 2003.
6. B. Davvaz, A brief survey of the theory of H_{v}-structures, Proc. 8th International Congress on Algebraic Hyperstructures and Applications, 1-9 Sep., 2002, Samothraki, Greece, Spanidis Press, (2003), 39-70.
7. Sh. Ghorbani, A. Hassankhani and E. Eslami, Hyper MV-algebras, Set-Valued Mathematics and Applications, 1 (2008), 205-222.
8. Sh. Ghorbani, E. Eslami and A. Hassankhani, Quotient hyper MV-algebras, Sci. Math. Jpn. 66 (2007), 371-386.
9. F. Marty, Sur une generalization de la notion de groups, 8th congress Math. Scandinaves, Stockhholm, (1934), 45-49.
10. L. Torkzadeh and A. Ahadpanah, Hyper MV-ideals in hyper MV-algebras, Math. Log. Quart. 56 (2010), 51-62.
11. T. Vougiouklis, The fundamental relation in hyperrings, The general hyperfield, Proc of the 4th int. congress on algebraic hyperstructures and appl. (A.H.A 1990). World Sientific, Xanthi, Greece, (1991), pp 203211
12. T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press, Florida, 1994.
13. T. Vougiouklis, A new class of hyperstructures, J. Combin. inform. Syst. Sci. 20 (1995), 229-235.

Mahmood Bakhshi

Department of Mathematics, University of Bojnord, P.O.Box 1339, Bojnord, Iran.
Email: bakhshi@ub.ac.ir

Journal of Algebraic Systems

$H_{v} M V$-ALGEBRAS II

M. BAKHSHI

$$
\begin{aligned}
& \text { r- جبرها } \\
& \text { گروه رياضى دانشگاه بجنورد }
\end{aligned}
$$

در اين مقاله، تحقيق در مورد HV ${ }^{\text {H }}$-جبرها را ادامه مى دهيم. به اين ترتيب كه ساختار

 حاصلضرب مستقيم H - جبر ها را بررسى و نتايج مرتبط با آنها را ا ارائه مى دهيي.

$$
\text { كلمات كليدى: MV- جبر، HV } M V \text {-جبر، MV-جبر اساسى. }
$$

[^0]: MSC(2010): Primary: 03B50; Secondary: 06D35
 Keywords: MV-algebra, H_{v} MV-algebra, Fundamental MV-algebra. Received: 6 April 2014, Revised: 17 July 2015.

