Journal of Algebraic Systems Vol. 3, No. 1, (2015), pp 65-82

FUZZY NEXUS OVER AN ORDINAL

A. A. ESTAJI, T. HAGHDADI* AND J. FAROKHI

ABSTRACT. In this paper, the fuzzy subnexuses over a nexus N are defined and the notions of prime fuzzy subnexuses and fractions induced by them are studied. Finally, it is shown that if S is a meet closed subset of the set Fsub(N), of fuzzy subnexuses of a nexus N, and $h = \bigwedge S \in S$, then the fractions $S^{-1}N$ and $\{h\}^{-1}N$ are isomorphic as meet-semilattices.

1. INTRODUCTION

Fuzzy sets were introduced by Lotfi A. Zadeh [15] and Dieter Klaua [10] in 1965 as an extension of the classical notion of sets. At the same time, Salii [14] defined a more general kind of structures called L-relations, which were studied by him in an abstract algebraic context. Fuzzy relations, which are used now in different areas such as algebra [6, 12], rough set [4, 7], and clustering [3], are special cases of L-relations when L is the unit interval [0, 1].

Section 2 of this paper is a prerequisite for the rest of the paper. The definitions and results of this section are taken from [2, 5, 8, 9, 11]. In Section 3, a fuzzy subnexus over an ordinal is defined, and also a prime fuzzy subnexus over an ordinal is defined. Particularly, we show that for every nexus N, and $f \in Fsub(N)$:

- (1) If $|Imf| \leq 2$, and $\emptyset \neq f_* \in Psub(N)$, then $g \wedge h \subseteq f$ implies that $g \subseteq f$ or $h \subseteq f$.
- (2) If $g \wedge h \subseteq f$ implies that $g \subseteq f$ or $h \subseteq f$, for every $g, h \in Fsub(N)$, then $|Imf| \leq 2$.

MSC(2010): Primary: 03E72; Secondary: 06A12, 11Y50

Keywords: Nexus, Ordinal, Prime fuzzy subnexus, Fraction of a nexus.

Received: 7 February 2015, Revised: 14 June 2015.

^{*}Corresponding author.

(3) If |Imf| = 2, and for every $g, h \in Fsub(N), g \land h \subseteq f$ implies that $g \subseteq f$ or $h \subseteq f$, then $\emptyset \neq f_* \in Psub(N)$.

In Section 4, we introduce the notion fraction induced by fuzzy subnexuses, and give some characterizations for fraction of N in particular, we show that if S_1 and S_2 are meet closed subsets of Fsub(N)and $h = \bigwedge S_1 = \bigwedge S_2 \in S_1 \cap S_2$, then $S_1^{-1}N \cong S_2^{-1}N \cong \{h\}^{-1}N$ as meet-semilattices.

2. Preliminaries

A partially ordered set A is a *meet-semilattice*, if the infimum for each pair of elements exists. A homomorphism is a function $f : N \to M$ between the meet-semilattices N and M, such that $f(x \wedge y) = f(x) \wedge f(y)$ for all x and y in N. Each *homomorphism* is order preserving, i.e. $x \leq y$ implies that $f(x) \leq f(y)$.

A subset D of poset A is *directed*, provided that it is non-empty, and every finite subset of D has an upper bound in D.

Let A be a poset. For $X \subseteq A$ and $x \in A$, we write:

- $(1) \downarrow X = \{a \in A : a \le x \text{ for some } x \in X\}.$
- $(2) \uparrow X = \{a \in A : a \ge x \text{ for some } x \in X\}.$
- $(3) \downarrow x = \downarrow \{x\}.$
- $(4) \uparrow x = \uparrow \{x\}.$
- We also say:
- (5) X is a *lower set*, if and only if $X = \downarrow X$.
- (6) X is an *upper set*, if and only if $X = \uparrow X$.
- (7) X is an *ideal*, if and only if it is a directed lower set.

(8) An ideal is *principal*, if and only if it has a maximum element.

For undefined terms and notations, see [5, 11].

The collection of all ordinal numbers is a proper class, and we denote it as \mathfrak{O} . It is also customary to denote the order relation between ordinals by $\alpha < \beta$ instead of the two equivalent forms $\alpha \subset \beta$, $\alpha \in \beta$, though the latter is also quite common. If α is an ordinal, then, by definition, we have $\alpha = \{\beta \in \mathfrak{O} | \beta < \alpha\}$. If $\alpha, \beta \in \mathfrak{O}$, then either $\alpha < \beta$ or $\beta < \alpha$ or $\alpha = \beta$. If A is a set of ordinals, then $\bigcup A$ is an ordinal.

Let $\gamma, \delta \in \mathfrak{O}, \gamma \geq 1$, and $\delta \geq 1$. An *address* over γ is a function $a : \delta \to \gamma$ such that a(i) = 0 implies that a(j) = 0, for all $j \geq i$. We denote by $A(\gamma)$, the set of all addresses over γ .

Let $a : \delta \to \gamma$ be an address over γ . If, for every $i \in \delta$, a(i) = 0, then it is called the *empty address*, and denoted by (). If a is a non-empty address, then there exists a unique element $\beta \in \delta + 1$, such that, for every $i \in \beta$, $a(i) \neq 0$, and for every $\beta \leq i \in \delta$, a(i) = 0. We denote this address by $(a_i)_{i\in\beta}$, where $a_i = a(i)$ for every $i \in \beta$.

Let $a : \delta \to \gamma$, and $b : \beta \to \eta$ be addresses and $\delta \leq \beta$. We say a = b, if for every $i \in \delta$, $a_i = b_i$, and for every $i \in \beta \setminus \delta$, $b_i = 0$. In other words, there exists a unique element $\beta \in \mathfrak{O}$, such that $a = (a_i)_{i \in \beta} = b$.

- The *level* of $a \in A(\gamma)$ is said to be:
- (1) 0, if a = ().
- (2) β , if () $\neq a = (a_i)_{i \in \beta}$.

The level of a is denoted by l(a).

Let a and b be two elements of $A(\gamma)$. Then we say that $a \leq b$, if l(a) = 0 or one of the following cases satisfies for $a = (a_i)_{i \in \beta}$ and $b = (b_i)_{i \in \delta}$:

- (1) If $\beta = 1$, then $a_0 \leq b_0$.
- (2) If $\beta \geq 2$ is a non-limit ordinal, then $a|_{\beta-1} = b|_{\beta-1}$ and $a_{\beta-1} \leq b_{\beta-1}$.
- (3) If β is a limit ordinal, then $a = b|_{\beta}$.

Proposition 2.1. [9] $(A(\gamma), \leq)$ is a meet-semilattice.

Let $() \neq a = (a_i)_{i \in \beta}$ be an element of $A(\gamma)$. For every $\delta \in \beta$ and $0 \leq j \leq a_{\delta}$, we put $a^{(\delta,j)} : \delta + 1 \to \gamma$, such that for every $i \in \delta + 1$,

$$a_i^{(\delta,j)} = \begin{cases} a_i & \text{if } i \in \delta; \\ j & \text{if } i = \delta. \end{cases}$$

Definition 2.2. [9] A *nexus* N over γ is a set of addresses with the following properties:

- (1) $\emptyset \neq N \subseteq A(\gamma)$.
- (2) If () $\neq a = (a_i)_{i \in \beta} \in N$, then for every $\delta \in \beta$ and $0 \leq j \leq a_{\delta}$, $a^{(\delta,j)} \in N$.

Proposition 2.3. [9] Let N be the set of addresses over γ . Then, N is a nexus over γ , if and only if $\emptyset \neq N \subseteq A(\gamma)$, and for every $(a,b) \in N \times A(\gamma), b \leq a$ implies that $b \in N$.

Proposition 2.4. [9] Let N be a nexus over γ . Then (N, \leq) is a meet-semilattice.

Let N be a nexus over γ , and $\emptyset \neq M \subseteq N$. Then M is called a *subnexus* of N, if M itself is a nexus over γ . The set of all subnexuses of N is denoted by Sub(N). It is clear that $\{()\}$ and N are the trivial subnexuses of nexus N.

Proposition 2.5. [9] If N is a nexus over γ , and $\{M_i\}_{i \in I} \subseteq Sub(N)$, then $\bigcup_{i \in I} M_i \in Sub(N)$ and $\bigcap_{i \in I} M_i \in Sub(N)$.

Let N be a nexus over γ , and $X \subseteq N$. The smallest subnexus of N containing X is called the *subnexus of* N generated by X, and denoted

by $\langle X \rangle$. If |X| = 1, then $\langle X \rangle$ is called a cyclic subnexus of N. It is clear that $\langle \emptyset \rangle = \{()\}$, and $\langle N \rangle = N$.

Remark 2.6. [9] Let $\emptyset \neq N \subseteq A(\gamma)$. Then, N is a nexus over γ , if and only if:

$$N = \downarrow N = \bigcup_{a \in N} \downarrow a.$$

A proper subnexus P of a nexus N over γ is said to be a *prime* subnexus of N if $a \wedge b \in P$ implies that $a \in P$ or $b \in P$, for every $a, b \in N$. The set of all prime subnexuses of N is denoted by Psub(N).

Proposition 2.7. [9] Let P be a proper subnexus of a nexus N over γ . Then, P is a prime subnexus of N, if and only if $N \setminus P$ is closed under finite meet.

Corollary 2.8. [9] Let N be a nexus over γ , and $\emptyset \neq X \subseteq N$. If X is closed under finite meet, then there exists $a \in X$, such that $\uparrow a = \uparrow X$, and $a = \bigwedge X$.

A fuzzy subset f on set X is a function $f: X \to [0, 1]$. We denote by F(X) the set of all fuzzy subsets of X. For $f, g \in F(X)$, we say $f \subseteq g$, if and only if $f(x) \leq g(x)$ for every $x \in X$. Let $f \in F(X)$, and $t \in [0, 1]$. Then the set $f_t = \{x \in X : f(x) \geq t\}$ is called the *level* subset of X with respect to f. Also we put $f_* = \{x \in X : f(x) = 1\}$. For $x \in X$ and $t \in (0, 1], x^t \in F(X)$ is called a fuzzy point, if and only if $x^t(y) = 0$ for $y \neq x$ and $x^t(x) = t$. The fuzzy point x^t is said to belong to $f \in F(X)$, written $x^t \in f$, if and only if $f(x) \geq t$. If $f, g \in F(X)$, then $f \subseteq g$, if and only if $x^t \in f$ implies $x^t \in g$ for every fuzzy point $x^t \in F(X)$. For every $f, g \in F(X)$, and $r, s \in [0, 1], (f \cap g)_r = f_r \cap g_r,$ $(f \cup g)_r = f_r \cup g_r$, and if $r \leq s$, then $f_r \supseteq f_s$. For every $\{f_i\}_{i \in I} \subseteq F(X)$ and $r \in [0, 1], \bigcup_{i \in I} (f_i)_r \subseteq (\bigcup_{i \in I} f_i)_r$ and $\bigcap_{i \in I} (f_i)_r = (\bigcap_{i \in I} f_i)_r$. For every $f, g \in F(X), f \subseteq g \Leftrightarrow f_r \subseteq g_r$, for all $r \in [0, 1]$ (see [8]).

3. PRIME FUZZY NEXUS

In this section, the notions of a fuzzy nexus and a prime fuzzy subnexus of a nexus are defined, and we discuss the relation subnexus and fuzzy subnexus, prime subnexus, and prime fuzzy subnexus.

Definition 3.1. Let f be a fuzzy subset on a nexus N. Then f is called a *fuzzy subnexus* of N, if $a \leq b$ implies that $f(b) \leq f(a)$ for all $a, b \in N$. The set of all fuzzy subnexuses of N is denoted by Fsub(N).

Proposition 3.2. Let A be a non-empty subset of a nexus N. Then, $A \in Sub(N)$, if and only if $\chi_A \in Fsub(N)$, where that χ_A is the characteristic function of A. *Proof.* Let $A \in Sub(N)$, and $a \leq b$, for some $a, b \in N$. If $b \in A$, by Proposition 2.3, $a \in A$, and so, $\chi_A(a) = \chi_A(b) = 1$. But if $b \notin A$, then $\chi_A(b) = 0$, and so, $\chi_A(b) \leq \chi_A(a)$, hence, $\chi_A \in Fsub(N)$.

Conversely, let $(a, b) \in A \times N$, and $b \leq a$. Then $1 = \chi_A(a) \leq \chi_A(b)$, which follows that $\chi_A(b) = 1$, i.e. $b \in A$. Hence, $A \in Sub(N)$.

Proposition 3.3. Let f be a fuzzy subset of N. Then $f \in Fsub(N)$, if and only if $f_r \in Sub(N)$, for every $r \in [0, 1]$, where $f_r \neq \emptyset$.

Proof. Suppose $f \in Fsub(N)$ and $f_r \neq \emptyset$, for $r \in [0, 1]$, and let $b \in N, a \in f_r$, such that $b \leq a$. Then $f(b) \geq f(a) \geq t$, and hence, $b \in f_r$.

Conversely, suppose that f is a fuzzy subset of N, such that $f_r \in sub(N)$ for every $r \in [0,1]$. Now let $a, b \in N$, $a \leq b$. We show that $f(b) \leq f(a)$. Let f(b) = r, for $r \in [0,1]$. Thus $b \in f_r \neq \emptyset$, and since $f_r \in Sub(N)$, we can conclude from Proposition 2.3 that $a \in f_r$. Hence, $f(a) \geq r = f(b)$.

Proposition 3.4. Let N be a nexus over γ , and $\{f_i\}_{i \in I} \subseteq Fsub(N)$. Then:

(1)
$$\bigcup_{i \in I} f_i \in Fsub(N).$$

(2) $\bigcap_{i \in I} f_i \in Fsub(N).$

Proof. Let $a, b \in N$, and $a \leq b$ Then

$$\left(\bigcup_{i\in I} f_i\right)(b) = \bigvee_{i\in I} f_i(b) \le \bigvee_{i\in I} f_i(a) = \left(\bigcup_{i\in I} f_i\right)(a)$$

and

$$(\bigcap_{i \in I} f_i)(b) = \bigwedge_{i \in I} f_i(b) \le \bigwedge_{i \in I} f_i(a) = (\bigcap_{i \in I} f_i)(a).$$

Let N be a nexus over γ . For $f \in F(N)$, we put

$$< f >= \bigcap_{f \subseteq g \in Fsub(N)} g.$$

It is clear that $\langle f \rangle$ is a fuzzy subnexus of N.

Proposition 3.5. Let N be a nexus over γ , and f be a fuzzy subset of N Then:

$$\langle f \rangle (a) = \bigvee_{b \in \uparrow a} f(b).$$

Proof. Let f be a fuzzy subset of N. Define $h : N \longrightarrow [0,1]$, with $h(a) = \bigvee_{b \in \uparrow a} f(b)$. We are going to show that h is the smallest fuzzy

subnexus of N, which $f \subseteq h$. Let $a, b \in N$, and $a \leq b$. Since $\uparrow b \subseteq \uparrow a$, we can conclude that

$$h(a) = \bigvee_{z \in \uparrow a} f(z) \ge \bigvee_{z \in \uparrow b} f(z) = h(b).$$

Hence, $h \in Fsub(N)$. Now, let $g \in Fsub(N)$, $f \subseteq g$. Then for every $b \in \uparrow a$, we have $g(a) \geq f(b)$, which follows that $g(a) \geq \bigvee_{b \in \uparrow a} f(b)$. Hence, $g(a) \geq h(a)$, i.e. $h \subseteq g$.

Proposition 3.6. If N is a nexus over γ , and $f, g \in F(N)$, then

 $< f > \cap < g > \geq < f \cap g > .$

Proof. For every $a \in N$,

$$\begin{split} (< f > \cap < g >)(a) &= \min\{< f > (a), < g > (a)\} \\ &= \min\{\bigvee_{b \in \uparrow a} f(b), \bigvee_{b \in \uparrow a} g(b)\} \\ &\geq \bigvee_{b \in \uparrow a} \min\{f(b), g(b)\} \\ &= \bigvee_{b \in \uparrow a} (f \cap g)(b) \\ &= < f \cap g > (a). \end{split}$$

Hence, $\langle f \rangle \cap \langle g \rangle \ge \langle f \cap g \rangle$.

Example 3.7. Let $\gamma = 3$, $N = \{(), (1), (2)\}$, and $f, g : N \to [0, 1]$ be functions such that

$$f = \left(\begin{array}{cc} () & (1) & (2) \\ 0.1 & 0.2 & 0.3 \end{array}\right)$$

and

$$g = \left(\begin{array}{cc} () & (1) & (2) \\ 0.3 & 0.2 & 0.1 \end{array}\right)$$

It is clear that $\langle f \rangle \cap \langle g \rangle \neq \langle f \cap g \rangle$.

Definition 3.8. Let N be a non-trivial nexus over γ , i.e. $N \neq \{()\}$. A fuzzy subnexus f of N is called a *prime fuzzy subnexus*, if

$$f(a \wedge b) \le \max\{f(a), f(b)\},\$$

for all $a, b \in N$. The set of all prime fuzzy subnexuses of N is denoted by PFsub(N).

It is clear that if $f \in PFsub(N)$, then $f(a \wedge b) = f(a)$ or f(b), for all $a, b \in N$.

Proposition 3.9. Let N be a non-trivial nexsus over γ , and f be a fuzzy subnexus of N. The following assertions are equivalent:

- (1) f is a prime fuzzy subnexus.
- (2) For every $r \in [0, 1]$, if f_r is a non-empty subset N, then f_r is a prime subnexus of N.
- (3) For every $r \in [0,1]$, $N \setminus f_r$ is closed under finite meet.

Proof. (1) \Rightarrow (2). Let $r \in [0, 1]$, and f_r be a non-empty subset of N. If $a, b \in N$ and $a \wedge b \in f_r$, then $r \leq f(a \wedge b) \leq max\{f(a), f(b)\}$, and which follows that $a \in f_r$ or $b \in f_r$. By Proposition 3.3, f_r is a prime subnexus of N.

 $(2) \Rightarrow (3)$. Suppose that $r \in [0, 1]$. If f_r is a non-empty subset of N, then, by Proposition 2.7, $N \setminus f_r$ is closed under finite meet. If $f_r = \emptyset$, then, by Proposition 2.4, we are done.

 $(3) \Rightarrow (1)$. Let $a, b \in N$, and $f(a \wedge b) = r \in [0, 1]$. Since $a \wedge b \notin N \setminus f_r$, we can conclude from the statement (3) that $a \notin N \setminus f_r$ or $b \notin N \setminus f_r$. Hence $a \in f_r$ or $b \in f_r$, and which follows that $f(a \wedge b) \leq max\{f(a), f(b)\}$. The proof is now complete. \Box

Proposition 3.10. Let N be nexus over γ and f be an arbitrary fuzzy subnexus.

- (1) If N is a chain, then f is a prime fuzzy subnexus.
- (2) If f is a prime fuzzy subnexus and one to one, then N is a chain.

Proof. (1) Suppose that $a, b \in N$, and $a \leq b$. Since $f(a) \geq f(b)$ so $f(a \wedge b) = f(a) = max\{f(a), f(b)\}.$

(2) Let $a, b \in N$ and $a \wedge b = c$. If $a \neq c$ and $b \neq c$, then since c < a, c < b and f is one to one, we can conclude that f(c) > f(a), and f(c) > f(b). Therefore, $f(c) > max\{f(a), f(b)\} \ge f(a \wedge b)$, which is a contradiction.

Proposition 3.11. Let $F : M \to N$ be a homomorphism between nexus. Then the following assertions hold:

- (1) If g is a fuzzy subnexus of M, then f = gF is a fuzzy subnexus of N.
- (2) If g is a prime fuzzy subnexus of M, then f = gF is a prime fuzzy subnexus of N.

Proof. (1) It is clear that f is a fuzzy subset of N. Suppose that $a, b \in N$, and $a \leq b$. Since F is a homomorphism, we can conclude that $F(a) \leq F(b)$, which follows that $g(F(a)) \geq g(F(b))$. Hence, f is a fuzzy subnexus of N.

(2) For every $a, b \in N$,

$$f(a \wedge b) = gF(a \wedge b)$$

= $g(F(a \wedge b))$
= $g(F(a) \wedge F(b))$
= $\leq \max\{g(F(a), g(F(b))\}\}$

Hence, f is a prime fuzzy subnexus of N.

Remark 3.12. Let $x \in N$ and $t \in (0, 1]$. Then $\langle x^t \rangle : N \to [0, 1]$, defined by

$$< x^t > (a) = \begin{cases} t & x \in \uparrow a \\ 0 & x \notin \uparrow a \end{cases}$$

is a fuzzy subnexus.

Remark 3.13. It is clear that if N is a nexus, and $|N| \leq 4$, then the nexus N is lineary ordered.

Proposition 3.14. Let N be a nexus over γ . The following assertions are equivalent:

- (1) Nexus N is lineary ordered.
- (2) Every fuzzy subnexus of N is prime.

Proof. (1) \Rightarrow (2). Let $f \in Fsub(N)$, and $a, b \in N$. Hence, $a \leq b$ or $b \leq a$, say $a \leq b$, since nexus N is lineary ordered. Therefore, $f(a \wedge b) = f(a) \geq f(b)$, which follows that $f(a \wedge b) = max\{f(a), f(b)\}$.

 $(2) \Rightarrow (1)$. Suppose that every fuzzy subnexus of N is prime, and $a, b \in N$. Put $a \wedge b = c$, and let $a \neq c$, $b \neq c$ and $t = \frac{1}{2} \in [0, 1]$. It is clearly $t = \langle c^t \rangle (c) \leq max \{\langle c^t \rangle (a), \langle c^t \rangle (b)\} = 0$, according to statement (2). This is a contradiction. Therefore, nexus N is lineary ordered.

Proposition 3.15. Let N be a nexus over γ , $a, b \in N$, and $r, t \in (0, 1]$. Then the following assertions hold:

- $(1) < a^r > \wedge < b^t > = < (a \wedge b)^{r \wedge t} >.$
- $\stackrel{\frown}{(2)} < (a \wedge b)^t > \wedge < a^t > = < (a \wedge b)^t >.$
- $(3) < (a \lor b)^t > \land < a^t > = < a^t >.$

Proof. For every $x \in N$, $a, b \in \uparrow x$, if and only if $a \land b \in \uparrow x$. Hence, $\langle a^r \rangle \land \langle b^t \rangle = \langle (a \land b)^{r \land t} \rangle$. The rest is similar.

72

Proposition 3.16. Let N be a nexus over γ , $a, b \in N$, and $r, t \in (0, 1]$. We define $g: N \to [0,1]$ by

$$g(x) = \begin{cases} r & a \in \uparrow x \& b \notin \uparrow x \\ s & a \notin \uparrow x \& b \in \uparrow x \\ r \lor s & a, b \in \uparrow x \\ 0 & a \notin \uparrow x \& b \notin \uparrow x \end{cases}$$

Then the following assertions hold:

(1) $g \in Fsub(N)$ and $g = \langle a^r \rangle \lor \langle b^t \rangle$. $(2) < a^r > \lor < b^t > << (a \lor b)^{r \lor s} > .$ $(3) < (a \land b)^t > \lor < a^t > = < a^t >.$ $(4) < (a \lor b)^t > \lor < a^t > = < (a \lor b)^t >.$ $(5) < a^r > \lor < a^t > = < a^{r \lor t} >.$

Proof. Evident.

Proposition 3.17. Let N be a nexus over γ , $a, b \in N$, and $r, t \in (0, 1]$. The following assertions hold:

- (1) $a \leq b$, if and only if $\langle a^t \rangle \leq \langle b^t \rangle$.
- (2) $r \leq t$, if and only if $\langle a^r \rangle \leq \langle a^t \rangle$.
- $(3) < a^r > \land < a^t > = < a^{r \land t} >.$

Proof. (1) Let $a \leq b$. Since $a \in \uparrow x$, implies that $b \in \uparrow x$, we can conclude that $\langle a^t \rangle (x) = t$ implies that $\langle b^t \rangle (x) = t$. Hence, $\langle a^t \rangle \leq \langle b^t \rangle.$

Conversely, let $\langle a^t \rangle \leq \langle b^t \rangle$. Hence, $t = \langle a^t \rangle (a) \leq \langle b^t \rangle$ $(a) \leq t$, i.e. $\langle b^t \rangle (a) = t$. Therefore, $b \in \uparrow a$.

The rest is similar.

Example 3.18. Let $\gamma = 3$, $N = \{(1), (1), (2)\}$, and $h, f, g : N \to [0, 1]$ be functions such that

$$f = \begin{pmatrix} () & (1) & (2) \\ 0.3 & 0.2 & 0.125 \end{pmatrix},$$
$$g = \begin{pmatrix} () & (1) & (2) \\ 0.4 & 0.35 & 0.1 \end{pmatrix}$$

and

$$h = \left(\begin{array}{cc} () & (1) & (2) \\ 0.3 & 0.2 & 0.1 \end{array}\right)$$

It is clear that $h \in Fsub(N)$ is prime, and $f, g \in Fsub(N)$. Also, $f \wedge g \subseteq h$ but $f \not\subseteq h$ and $g \not\subseteq h$.

Proposition 3.19. Let N be a nexus, and $f \in Fsub(N)$.

- (1) If $|Imf| \leq 2$ and $\emptyset \neq f_* \in Psub(N)$, then $g \wedge h \subseteq f$ implies that $g \subseteq f$ or $h \subseteq f$, for every $g, h \in Fsub(N)$.
- (2) If $g \wedge h \subseteq f$ implies that $g \subseteq f$ or $h \subseteq f$, for every $g, h \in Fsub(N)$, then $|Imf| \leq 2$.
- (3) If |Imf| = 2 and for every $g, h \in Fsub(N), g \land h \subseteq f$ implies that $g \subseteq f$ or $h \subseteq f$, then $\emptyset \neq f_* \in Psub(N)$.

Proof. (1) If |Imf| = 1, then $Imf = \{1\}$, which finishes the proof.

Now, we assume that |Imf| = 2, then $Imf = \{t, 1\}$ with t < 1. Suppose that there exist two fuzzy subnexuses h and g over N, such that $g \wedge h \subseteq f$ but $g \not\subseteq f$ and $h \not\subseteq f$. Hence, there exist $x, y \in N$, such that h(x) > f(x) and g(y) > f(y). Since f_* is a prime subnexus, and $x, y \notin f_*$, we can conclude that $x \wedge y \notin f_*$, which follows that

$$(h \land g)(x \land y) = h(x \land y) \land g(x \land y) \ge h(x) \land g(y) > t = f(x \land y).$$

Thus $h \wedge g \not\subseteq f$, which is a contradicition. Thus $g \subseteq f$ or $h \subseteq f$.

(2) Let $|Imf| \ge 3$. Then there exists $a, b, c \in N$, such that f(a) < f(b) < f(c). Now, we assume that $r, s \in (0, 1)$, such that f(a) < r < f(b) < s < f(c). If $a \land b \in \uparrow x$, then, by Proposition 3.15,

 $(\langle a^r \rangle \land \langle b^s \rangle)(x) = \langle (a \land b)^{r \land s} \rangle(x) = r < f(b) \le f(a \land b) \le f(x).$

Therefore, $\langle a^r \rangle \land \langle b^s \rangle \subseteq f$, which follows that $\langle a^r \rangle \subseteq f$ or $\langle b^s \rangle \subseteq f$. If $\langle a^r \rangle \subseteq f$, then $\langle a^r \rangle (a) = r \leq f(a)$, which is a contradiction. Also, if $\langle b^s \rangle \subseteq f$, then $\langle b^s \rangle (b) = s \leq f(b)$, which is a contradiction. Hence, $|Imf| \leq 2$.

(3) Suppose that $f_* = \emptyset$. Then there exists $a, b \in N$, such that f(a) = r < f(b) = s < 1 and $Imf = \{r, s\}$. Now, we assume that $t, k \in (0, 1)$, such that r < t < s < k < 1. If $a \wedge b \in \uparrow x$, then, by Proposition 3.15,

 $(\langle a^t \rangle \land \langle b^k \rangle)(x) = \langle (a \land b)^{t \land k} \rangle(x) = t < f(b) \le f(a \land b) \le f(x).$

Therefore, $\langle a^t \rangle \land \langle b^k \rangle \subseteq f$, which follows that $\langle a^t \rangle \subseteq f$ or $\langle b^k \rangle \subseteq f$. Hence, $\langle a^t \rangle \langle a \rangle = t \leq f(a)$ or $\langle b^k \rangle \langle b \rangle = k \leq f(b)$, which is a contradiction. Thus $f_* \neq \emptyset$ and $f_* \neq N$. Let $a, b \in N$ such that $a \land b \in f_*$, $a \notin f_*$ and $b \notin f_*$. Then there exists $r \in (0, 1)$ such that $f(a) = f(b) < r < 1 = f(a \land b)$. If $a \land b \in \uparrow x$, then, by Proposition 3.15,

$$(\langle a^r \rangle \land \langle b^r \rangle)(x) = \langle (a \land b)^r \rangle(x) = r \langle 1 = f(x).$$

Therefore, $\langle a^r \rangle \land \langle b^s \rangle \subseteq f$, which follows that $\langle a^r \rangle \subseteq f$ or $\langle b^s \rangle \subseteq f$. Hence, $\langle a^r \rangle \langle a \rangle = r \leq f(a)$ or $\langle b^r \rangle \langle b \rangle = r \leq f(b)$, which is a contradiction. Therefore, $f_* \in Psub(N)$.

4. FRACTION INDUCED BY NEXUS AND FUZZY SUBNEXUS

In this section, the fractions of a nexus N over an ordinal is defined, and denoted by $S^{-1}N$, where S is a meet closed subset of Fsub(N). It is shown that this structure is a meet-semilattice and isomorphic with $\{h\}^{-1}N$, where $h = \bigwedge S$. Also we show that every ideal of $S^{-1}N$ is of the form of $S^{-1}I$, where I is a subnexus of N.

Definition 4.1. A meet closed subset of Fsub(N) is a non-empty subset S of Fsub(N), such that $f \land g \in S$, for every $f, g \in S$.

Let S be a meet closed subset of Fsub(N). Define the relation \sim_S on $N \times S$ as follows:

 $(a, f) \sim_S (b, g) \Leftrightarrow \exists h \in S \ \forall t \in (0, 1] (\langle a^t \rangle \land g \land h = \langle b^t \rangle \land f \land h).$ We will proved that \sim_S is an equivalence relation. Let $a, b, c \in N$, $f, g, h \in S, (a, f) \sim_S (b, g)$, and $(b, g) \sim_S (c, h)$. Then there exists $h_1, h_2 \in S$ such that

$$\langle a^t \rangle \wedge g \wedge h_1 = \langle b^t \rangle \wedge f \wedge h_1$$

and

$$< b^t > \wedge h \wedge h_2 = < c^t > \wedge g \wedge h_2,$$

for every $t \in (0, 1]$. If $k = h_1 \wedge h_2 \wedge g$, then $k \in S$, and for every $t \in (0, 1]$, we have

$$\langle a^{t} \rangle \wedge h \wedge k = \langle a^{t} \rangle \wedge h \wedge h_{1} \wedge h_{2} \wedge g$$

$$= \langle a^{t} \rangle \wedge g \wedge h_{1} \wedge h_{2} \wedge h$$

$$= \langle b^{t} \rangle \wedge f \wedge h_{1} \wedge h_{2} \wedge h$$

$$= \langle b^{t} \rangle \wedge h \wedge h_{2} \wedge f \wedge h_{1}$$

$$= \langle c^{t} \rangle \wedge g \wedge h_{2} \wedge f \wedge h_{1}$$

$$= \langle c^{t} \rangle \wedge f \wedge h_{1} \wedge h_{2} \wedge g$$

$$= \langle c^{t} \rangle \wedge f \wedge h_{1} \wedge h_{2} \wedge g$$

$$= \langle c^{t} \rangle \wedge f \wedge h_{1} \wedge h_{2} \wedge g$$

Therefore, \sim_S on $N \times S$ is transitve. It is clear that \sim_S on $N \times S$ is reflexive and symmetric. Hence, the relation \sim_S on $N \times S$ is an equivalence relation. Write $\frac{a}{f}$ for the class of (a, f). The set of all equivalence classes of \sim_S on $N \times S$ is denoted by $S^{-1}N$, and it is called the fraction of N with respect to S.

Definition 4.2. Let S be a meet closed subset of Fsub(N), and $\frac{a}{f}, \frac{b}{g} \in S^{-1}N$. Then we say $\frac{a}{f} \leq \frac{b}{g}$, if there exists $h \in S$ such that

$$\langle a^t \rangle \wedge \langle b^t \rangle \wedge f \wedge h = f \wedge g \wedge \langle a^t \rangle \wedge h,$$

for every $t \in (0, 1]$.

Proposition 4.3. Let S be a meet closed subset of Fsub(N). Then $(S^{-1}N, \leq)$ is a meet-semilattice.

Proof. It is clear that \leq on $S^{-1}N$ is reflexive. Now, let $\frac{a}{f} \leq \frac{b}{g}, \frac{b}{g} \leq \frac{a}{f}$. Thus there exists $h_1, h_2 \in S$, such that:

$$\langle a^t \rangle \land \langle b^t \rangle \land f \land h_1 = f \land g \land \langle a^t \rangle \land h_1$$

and

$$\langle b^t \rangle \wedge \langle a^t \rangle \wedge g \wedge h_2 = g \wedge f \wedge \langle b^t \rangle \wedge h_2$$

By the commutativity of \wedge , we have

$$(\langle a^t \rangle \wedge g) \wedge (f \wedge g \wedge h_1 \wedge h_2) = \langle a^t \rangle \wedge \langle b^t \rangle \wedge f \wedge h_1 \wedge g \wedge h_2$$
$$= g \wedge f \wedge \langle b^t \rangle \wedge h_2 \wedge f \wedge h_1$$
$$= (\langle b^t \rangle \wedge f) \wedge (f \wedge g \wedge h_1 \wedge h_2).$$

Since S is a meet closed subset of N, we can conclude that $f \wedge g \wedge h_1 \wedge h_2 \in S$, which follows that $(a, f) \sim_S (b, g)$, and $\frac{a}{f} = \frac{b}{g}$. Thus \leq on $S^{-1}N$ is antisymmetric.

 $S^{-1}N$ is antisymmetric. Let $\frac{a}{f} \leq \frac{b}{g}$ and $\frac{b}{g} \leq \frac{c}{h}$, for some $\frac{a}{f}, \frac{b}{g}, \frac{c}{h} \in S^{-1}N$. Then there exists $h_1, h_2 \in S$, such that

$$\langle a^t \rangle \land \langle b^t \rangle \land f \land h_1 = f \land g \land \langle a^t \rangle \land h_1$$

and

$$\langle b^t \rangle \wedge \langle c^t \rangle \wedge g \wedge h_2 = g \wedge h \wedge \langle b^t \rangle \wedge h_2.$$

Hence,

$$(f \wedge h \wedge \langle a^t \rangle) \wedge (g \wedge h_1 \wedge h_2) = (f \wedge g \wedge \langle a^t \rangle \wedge h_1) \wedge (h \wedge h_2 \wedge g)$$

$$= (f \wedge \langle a^t \rangle \wedge \langle b^t \rangle \wedge h_1) \wedge (h \wedge h_2 \wedge g)$$

$$= (g \wedge h \wedge \langle b^t \rangle \wedge h_2) \wedge (\langle a^t \rangle \wedge f \wedge h_1)$$

$$= (g \wedge \langle c^t \rangle \wedge \langle b^t \rangle \wedge h_2) \wedge (\langle a^t \rangle \wedge f \wedge h_1)$$

$$= (f \wedge \langle b^t \rangle \wedge \langle a^t \rangle \wedge h_1) \wedge (g \wedge \langle c^t \rangle \wedge h_2)$$

$$= (f \wedge g \wedge \langle a^t \rangle \wedge h_1) \wedge (g \wedge \langle c^t \rangle \wedge h_2)$$

$$= (f \wedge g \wedge \langle a^t \rangle \wedge h_2)$$

$$= (f \wedge \langle c^t \rangle \wedge \langle a^t \rangle) \wedge (g \wedge h_1 \wedge h_2).$$

Since S is a meet closed subset of Fsub(N), we can conclude that $g \wedge h_1 \wedge h_2 \in S$, which follows that $\frac{a}{f} \leq \frac{c}{h}$. Thus \leq on $S^{-1}N$ is transitive, and $(S^{-1}N, \leq)$ is a partially ordered set. Let $\frac{a}{f}, \frac{b}{g} \in S^{-1}N$. Since for every $t \in [0, 1]$, by Lemma 3.15,

$$(f \wedge g) \wedge < a^t > \wedge < (a \wedge b)^t > = (f \wedge g) \wedge f \wedge < (a \wedge b)^t >$$

and

$$(f \wedge g) \wedge < b^t > \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (f \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge g \wedge < (a \wedge b)^t > = (g \wedge g) \wedge = (g \wedge g) \wedge$$

we can conclude that $\frac{a \wedge b}{f \wedge g} \leq \frac{a}{f}$ and $\frac{a \wedge b}{f \wedge g} \leq \frac{b}{g}$. Now, let $\frac{c}{h} \in S^{-1}N$, such that $\frac{c}{h} \leq \frac{a}{f}$ and $\frac{c}{h} \leq \frac{b}{g}$. Then there exists $v, w \in S$, such that

$$h \wedge < a^t > \wedge < c^t > \wedge v = h \wedge f \wedge < c^t > \wedge v,$$

and

$$h \wedge < b^t > \wedge < c^t > \wedge w = h \wedge g \wedge < c^t > \wedge w.$$

Hence,

$$\begin{aligned} (h \wedge f \wedge g \wedge < c^t >) \wedge (v \wedge w) &= (h \wedge f \wedge < c^t > \wedge v) \wedge \\ & (h \wedge g \wedge < c^t > \wedge w) \\ &= (h \wedge < a^t > \wedge < c^t > \wedge v) \wedge \\ & (h \wedge < b^t > \wedge < c^t > \wedge w) \\ &= (h \wedge < a^t > \wedge < b^t > \wedge < c^t >) \wedge \\ & (v \wedge w) \\ &= (h \wedge < (a \wedge b)^t > \wedge < c^t >) \wedge \\ & (v \wedge w). \end{aligned}$$

Since S is a meet closed subset of N, we can conclude that $v \wedge w \in S$, which follows that $\frac{c}{h} \leq \frac{a \wedge b}{f \wedge g}$. Therefore, $\frac{a}{f} \wedge \frac{b}{g} = \frac{a \wedge b}{f \wedge g}$.

Proposition 4.4. Let S be a meet closed subset of Fsub(N). For every $a \in N$ and $f, g \in S$, $\frac{a}{f} = \frac{a}{a}$ in $S^{-1}N$.

Proof. Since $(\langle a^t \rangle \land g) \land (f \land g) = (\langle a^t \rangle \land f) \land (f \land g)$, and $f \land g \in S$, we have $(a, f) \sim_S (a, g)$, and $\frac{a}{f} = \frac{a}{g}$ in $S^{-1}N$.

Proposition 4.5. Let N be a nexus over γ , and let S be a meet closed subset of Fsub(N).

- (1) Every ideal of $S^{-1}N$ is of the form of $S^{-1}I$, where I is a subnexus of N.
- (2) If K is a finite ideal of $S^{-1}N$, and $h = \bigwedge S \in S$, then there exists a cyclic subnexus I of N such that $K = S^{-1}I$.
- (3) If M is a prime ideal of $S^{-1}N$, then there exists $I \in Psub(N)$ such that $M = S^{-1}I$.
- (4) If M is a maximal ideal of $S^{-1}N$, then there exists $I \in Sub(N)$ such that $M = S^{-1}I$, and I is a maximal subnexus of N.

Proof. (1) Let K be an ideal of $S^{-1}N$, and

 $I = \{ a \in N \mid \frac{a}{f} \in K \text{ for some } f \in S \}.$

Suppose that $a, b \in N$, $b \in I$, and $a \leq b$. Then there exists $f \in S$, such that $\frac{b}{f} \in K$. By Proposition 3.17, $\langle a^t \rangle \leq \langle b^t \rangle$ for every $t \in (0, 1]$. Then

$$< a^t > \land < b^t > \land f = < a^t > \land f$$

for every $t \in (0, 1]$. Hence, $\frac{a}{f} \leq \frac{b}{f} \in K$. Since K is an ideal of $S^{-1}N$, we can conclude that $\frac{a}{f} \in K$, which follows that $a \in I$. Now, by Proposition 2.3, I is a subnexus of N, and it is clear that $K = S^{-1}I$.

(2) Let K be a finite ideal of $S^{-1}N$. It is well known that every finite directed subset of $S^{-1}N$ has the largest element. Since K is

a directed lower set, we can conclude that there exists $\frac{a}{f} \in K$, such that $K = \downarrow \frac{a}{f}$. We put $I = \downarrow a$, and we claim that $K = S^{-1}I$. Let $\frac{b}{a} \in K$. Then there exists $k \in S$, such that, for every $t \in (0,1]$, $g \wedge \langle a^t \rangle \rangle \langle b^t \rangle \langle b^t \rangle \rangle \langle b^t \rangle \langle b^t \rangle \langle b^t \rangle \rangle \langle b^t \rangle \langle b^t$

$$\begin{aligned} (<(a \wedge b)^t > \wedge g) \wedge (g \wedge f \wedge k) &= (\wedge < b^t > \wedge g) \wedge \\ & (g \wedge f \wedge k) \\ &= (\wedge f) \wedge (g \wedge f \wedge k), \end{aligned}$$

for every $t \in (0,1]$. Therefore, $\frac{b}{g} = \frac{a \wedge b}{f} \in S^{-1}I$. Now, let $b \in I$ and $g \in S$. Then, by Proposition 3.17,

$$g \wedge \langle a^t \rangle \wedge \langle b^t \rangle \wedge h = \langle b^t \rangle \wedge h$$
$$= g \wedge f \wedge \langle b^t \rangle \wedge h$$

for every $t \in (0, 1]$. Hence, $\frac{b}{g} \leq \frac{a}{f} \in K$. Since K is an ideal of $S^{-1}N$, we can conclude that $\frac{b}{g} \in K$. The proof is now complete.

(3) Let $I = \{a \in N | a \in M \text{ for some } f \in S\}$. Then, by statement (1), $M = S^{-1}I$. Let $a, b \in N$, such that $a \wedge b \in I$. Then $\frac{a \wedge b}{f} \in S^{-1}I$ for some $f \in S$. Since $\frac{a \wedge b}{f} = \frac{a}{f} \wedge \frac{b}{f}$ and $S^{-1}I$ is a prime ideal, we can conclude that $\frac{a}{f} \in S^{-1}I$ or $\frac{b}{f} \in S^{-1}I$. Hence, $a \in I$ or $b \in I$, i.e. $I \in Psub(N).$

(4) Let $I = \{a \in N | a \in M \text{ for some } f \in S\}$. Then, by statement (1), $M = S^{-1}I$. Suppose I is not a maximal subnexus of N. Then there exist a subnexus J between I and N. Put $M_1 = S^{-1}J$. Then M_1 is an ideal of $S^{-1}N$, and $S^{-1}I \subset S^{-1}J$, which is contradicition.

Lemma 4.6. Let S be a meet closed subset of Fsub(N), and $h = \bigwedge S$. For every $a, b \in N$ and $f, g \in S$

- (1) If $(a, h) \sim_S (b, h)$, then $(a, h) \sim_{\{h\}} (b, h)$.
- (2) If $h \in S$ and $(a, h) \sim_{\{h\}} (b, h)$, then $(a, h) \sim_{S} (b, h)$. (3) If $\frac{a}{f} \leq \frac{b}{q}$ in $S^{-1}N$, then $\frac{a}{h} \leq \frac{b}{h}$ in $\{h\}^{-1}N$.

Proof. (1) We first suppose that $(a, h) \sim_S (b, h)$. Then there exists $v \in S$ such that

$$\langle a^t \rangle \wedge h = \langle a^t \rangle \wedge h \wedge v = \langle b^t \rangle \wedge h \wedge v = \langle b^t \rangle \wedge h.$$

It follows that $(a, h) \sim_{\{h\}} (b, h)$.

(2) By hypothesis, $\langle a^t \rangle \wedge h = \langle b^t \rangle \wedge h$. Since $h \in S$, we can conclude that $(a, h) \sim_S (b, h)$.

(3) Since $\frac{a}{f} \leq \frac{b}{g}$ in $S^{-1}N$, we can conclude that there exists $v \in S$, such that

$$\langle a^t \rangle \wedge \langle b^t \rangle \wedge f \wedge v = f \wedge g \wedge \langle a^t \rangle \wedge v.$$

It is clear that $f \wedge v \wedge h = h = f \wedge g \wedge v \wedge h$. Then:

$$h \wedge \langle a^t \rangle \wedge \langle b^t \rangle = \langle a^t \rangle \wedge \langle b^t \rangle \wedge f \wedge v \wedge h$$
$$= f \wedge g \wedge \langle a^t \rangle \wedge h \wedge v$$
$$= h \wedge \langle a^t \rangle,$$
$$\frac{a}{2} \langle b \rangle^{-1} N$$

i.e. $\frac{a}{h} \le \frac{b}{h}$ in $\{h\}^{-1}N$.

Proposition 4.7. Let S be a meet closed subset of Fsub(N), and $h = \bigwedge S$. We define $\varphi : S^{-1}N \longrightarrow \{h\}^{-1}N$ with $\varphi(\frac{a}{f}) = \frac{a}{h}$. Then we have the following conclusions:

- (1) φ is an onto meet-semilattice homomorphism.
- (2) If $h \in S$, then φ is one to one. In particular, this shows if $h \in S$, then $S^{-1}N \cong \{h\}^{-1}N$ as meet-semilattices.

Proof. (1) By Lemma 4.6, φ is well defined, and it also preserves the order. Let $\frac{a}{f}, \frac{b}{q} \in S^{-1}N$. Then, by the proof of Proposition 4.3,

$$\varphi(\frac{a}{f} \wedge \frac{b}{g}) = \varphi(\frac{a \wedge b}{f \wedge g}) = \frac{a \wedge b}{h} = \frac{a}{h} \wedge \frac{b}{h} = \varphi(\frac{a}{f}) \wedge \varphi(\frac{b}{g}).$$

Therefore, φ is an onto meet-semilattice homomorphism.

(2) Let
$$\frac{a}{f}, \frac{b}{g} \in S^{-1}N$$
, and $\varphi(\frac{a}{f}) = \varphi(\frac{b}{g})$. Then $\frac{a}{h} = \frac{b}{h}$ and
 $\langle a^t \rangle \wedge h \wedge g = \langle a^t \rangle \wedge h = \langle b^t \rangle \wedge h = \langle b^t \rangle \wedge f \wedge h$

for every $t \in (0, 1]$. Since $h \in S$, we can conclude that $\frac{a}{f} = \frac{b}{g}$, which followes that φ is one to one.

Proposition 4.8. Let N be a nexus over γ , and let S be a meet closed subset of Fsub(N). If $h = \bigwedge S$, then $\{h\}^{-1}N \cong \overbrace{\downarrow h}^{}$ as meet-semilattices, where $\overbrace{\downarrow h}^{} = \{h \land < a^1 >; a \in N\}.$

Proof. We define $\varphi : \{h\}^{-1}N \longrightarrow \widehat{\downarrow h}$ with $\varphi(\frac{a}{h}) = \langle a^1 \rangle \wedge h$. For every $a, b \in N$,

$$\frac{a}{h} = \frac{b}{h} \Rightarrow < a^1 > \wedge h = < b^1 > \wedge h \Rightarrow \varphi(\frac{a}{h}) = \varphi(\frac{b}{h}).$$

Hence, φ is well defined. It is clear that φ is onto. Now, let $\frac{a}{h} \neq \frac{b}{h}$. We show that $\varphi(\frac{a}{h}) \neq \varphi(\frac{b}{h})$. Since $\frac{a}{h} \neq \frac{b}{h}$, there exists $t \in (0, 1]$, such that $\langle a^t \rangle \wedge h \neq \langle b^t \rangle \wedge h$. If t = 1, then $\varphi(\frac{a}{h}) \neq \varphi(\frac{b}{h})$. Let t < 1 and $\langle a^1 \rangle \wedge h = \langle b^1 \rangle \wedge h$. For every $x \in N$,

- (1) If $a, b \in \uparrow x$, then $\langle a^t \rangle (x) = t = \langle b^t \rangle (x)$, which follows that $(\langle a^t \rangle \wedge h)(x) = t \wedge h(x) = (\langle b^t \rangle \wedge h)(x)$.
- (2) If $a, b \notin \uparrow x$, then $\langle a^t \rangle (x) = 0 = \langle b^t \rangle (x)$, which follows that $(\langle a^t \rangle \wedge h)(x) = 0 = (\langle b^t \rangle \wedge h)(x)$.
- (3) If $a \in \uparrow x$ and $b \notin \uparrow x$, then

$$h(x) = 1 \wedge h(x)$$

= $(\langle a^1 \rangle \wedge h)(x)$
= $(\langle b^1 \rangle \wedge h)(x)$
= $0 \wedge h(x)$
= $0,$

which follows that $(\langle a^t \rangle \wedge h)(x) = 0 = (\langle b^t \rangle \wedge h)(x)$.

(4) Similarly, if $a \notin \uparrow x$ and $b \in \uparrow x$, then

$$(\langle a^t \rangle \wedge h)(x) = 0 = (\langle b^t \rangle \wedge h)(x)$$

Therefore, $\langle a^t \rangle \wedge h = \langle b^t \rangle \wedge h$, which is a contradicition. Then $\langle a^1 \rangle \wedge h \neq \langle b^1 \rangle \wedge h$. Hence φ is one to one. Let $\frac{a}{h}, \frac{b}{h} \in \{h\}^{-1}N$. Then, by Proposition 3.15 and the proof of Proposition 4.3,

$$\begin{array}{lll} \varphi(\frac{a}{h} \wedge \frac{b}{h}) & = & \varphi(\frac{a \wedge b}{h}) \\ & = & < (a \wedge b)^1 > \wedge h \\ & = & (< a^1 > \wedge h) \wedge (< b^1 > \wedge h) \\ & = & \varphi(\frac{a}{h}) \wedge \varphi(\frac{b}{h}). \end{array}$$

Therefore, φ is a meet-semilattice isomorphism.

Corollary 4.9. Let N be a nexus over γ , and let S_1, S_2 be meet closed subsets of Fsub(N). If $\bigwedge S_1 = \bigwedge S_2 \in S_1 \cap S_2$, then $S_1^{-1}N \cong S_2^{-1}N$ as meet-semilattices.

Proof. By Propositions 4.7 and 4.8, it is clear.

Proposition 4.10. Let N be a nexus over γ , and $\{()\} \neq X \subseteq N \setminus \{()\}$ be closed under finite meet. Then for every $t \in (0,1]$, $S_t = \{ < a^t > | a \in X \}$ is closed under finite meet, and there exists $b \in X$, such that $< b^t > = \bigwedge S_t$.

Proof. By Proposition 3.15, S_t is closed under finite meet. Since $X \subseteq N$, and X is closed under finite meet, we can conclude from Corollary 2.8 that there exists $b \in X$, such that $b = \bigwedge X$. By Proposition 3.17, $\langle b^t \rangle = \bigwedge_{a \in X} \langle a^t \rangle$.

Acknowledgment

We are indebted to the referees for helpful comments that have helped improve the paper.

References

- D. Afkhami, N. Ahmadkhah and A. Hasankhani, A fraction of nexuses, *Int. J. Algebra* 5 (18) (2011), 883-896.
- D. Afkhami Taba, A. Hasankhani and M. Bolurian, Soft nexuses, Computers and Mathematics with Applications 64 (2012), 1812-1821.
- J.C. Bezdek, Fuzzy partitions and relations and axiomatic basis for clustering, Fuzzy Sets and Systems 1 (1978), 111-127.
- B. Davvaz, Roughness based on fuzzy ideals, *Information Sciences* 176 (2006), 2417-2437.
- K. Devlin, The Joy of Sets: Fundamentals of Contemporary Set, Springer-Verlag New York Berlin Heidelberg London Paris (1993).
- E. Eslami and John N. Mordeson, Completions and fuzzy power series subrings, Fuzzy Sets and Systems 82 (1996), 97-102.
- A.A. Estaji S. Khodaii and S. Bahrami, On rough set and fuzzy sublattice, Information Sciences 181 (2011), 3981-3994.
- A.A. Estaji and H. Zeinaliyan, Fuzzy primary and fuzzy P-primary subacts, World Applied Sciences Journal 16(11) (2012), 1571-1577.
- A.A. Estaji and A.As. Estaji, Nexus over an ordinal, Journal of Uncertain Systems 9(3) (2015), 183-197.
- D. Klaua, Uber einen Ansatz zur mehrwertigen Mengenlehre, Monatsb. Deutsch. Akad. Wiss. Berlin 7 (1965), 859-876.
- G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, *Continuous Lattices and Domains*, Cambridge University Press, 2003.
- H. Hadji-Abadi and M.M. Zahedi, Some results on fuzzy prime spectrum of a ring, *Fuzzy Sets and Systems* 77 (1996), 235-240.
- A. Saeidi Rashkolia, A. Hasankhani, Fuzzey Subnexuses, Italian Journal of pure and applied mathematics 28 (2011), 229-242.
- V.N. Salii, Binary L-relations, Izv. Vysh. Uchebn. Zaved., Matematika 44(1) (1965), 133-145.
- 15. L.A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338-353.

A. A. Estaji

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

Email: aaestaji@hsu.ac.ir

T. Haghdadi

Faculty of Basic Sciences, Birjand University of technology Birjand, Iran. Email: t.haghdady@gmail.com

J. Farokhi

Faculty of Basic Sciences, Birjand University of technology Birjand, Iran. Email: javadfarrokhi90@gmail.com

Journal of Algebraic Systems

FUZZY NEXUS OVER AN ORDINAL

A.A. ESTAJI, T. HAGHDADI AND J. FAROKHI

پیوند فازی روی یک عدد ترتیبی علی اکبر استاجی، تکتم حقدادی و جواد فرخی دانشگاه حکیم سبزواری، دانشگاه صنعتی بیرجند

ما در این مقاله زیر پیوندهای فازی از یک پیوند N را تعریف میکنیم. هم چنین به مطالعه زیرپیوندهای فازی اول و زیرپیوندهای خارج قسمتی میپردازیم. در نهایت نشان میدهیم که اگر S یک زیر مجموعه بسته مقطعی از زیرپیوندهای فازی N باشد و $S \in S = h$ ، آن گاه $(h^{-1}N)$ و $N^{-1}N$ به عنوان نیم مشبکه های مقطعی یکریخت خواهند بود.

کلمات کلیدی: پیوند، عدد ترتیبی ، زیرپیوندهای فازی اول و پیوند خارج قسمتی .