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FUZZY NEXUS OVER AN ORDINAL

A. A. ESTAJI, T. HAGHDADI∗ AND J. FAROKHI

Abstract. In this paper, the fuzzy subnexuses over a nexus N
are defined and the notions of prime fuzzy subnexuses and fractions
induced by them are studied. Finally, it is shown that if S is a meet
closed subset of the set Fsub(N), of fuzzy subnexuses of a nexus
N, and h =

∧
S ∈ S, then the fractions S−1N and {h}−1N are

isomorphic as meet-semilattices.

1. Introduction

Fuzzy sets were introduced by Lotfi A. Zadeh [15] and Dieter Klaua
[10] in 1965 as an extension of the classical notion of sets. At the
same time, Salii [14] defined a more general kind of structures called
L-relations, which were studied by him in an abstract algebraic context.
Fuzzy relations, which are used now in different areas such as algebra
[6, 12], rough set [4, 7], and clustering [3], are special cases of L-relations
when L is the unit interval [0, 1].

Section 2 of this paper is a prerequisite for the rest of the paper. The
definitions and results of this section are taken from [2, 5, 8, 9, 11]. In
Section 3, a fuzzy subnexus over an ordinal is defined, and also a prime
fuzzy subnexus over an ordinal is defined. Particularly, we show that
for every nexus N , and f ∈ Fsub(N):

(1) If |Imf | ≤ 2, and ∅ ̸= f∗ ∈ Psub(N), then g ∧ h ⊆ f implies
that g ⊆ f or h ⊆ f .

(2) If g ∧ h ⊆ f implies that g ⊆ f or h ⊆ f , for every g, h ∈
Fsub(N), then |Imf | ≤ 2.
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(3) If |Imf | = 2, and for every g, h ∈ Fsub(N), g ∧ h ⊆ f implies
that g ⊆ f or h ⊆ f , then ∅ ̸= f∗ ∈ Psub(N).

In Section 4, we introduce the notion fraction induced by fuzzy sub-
nexuses, and give some characterizations for fraction of N in partic-
ular, we show that if S1 and S2 are meet closed subsets of Fsub(N)
and h =

∧
S1 =

∧
S2 ∈ S1 ∩ S2, then S−1

1 N ∼= S−1
2 N ∼= {h}−1N as

meet-semilattices.

2. Preliminaries

A partially ordered set A is a meet-semilattice, if the infimum for each
pair of elements exists. A homomorphism is a function f : N → M
between the meet-semilattices N and M , such that f(x ∧ y) = f(x) ∧
f(y) for all x and y in N . Each homomorphism is order preserving,
i.e. x ≤ y implies that f(x) ≤ f(y).

A subset D of poset A is directed, provided that it is non-empty,
and every finite subset of D has an upper bound in D.

Let A be a poset. For X ⊆ A and x ∈ A, we write:

(1) ↓ X = {a ∈ A : a ≤ x for some x ∈ X}.
(2) ↑ X = {a ∈ A : a ≥ x for some x ∈ X}.
(3) ↓ x =↓ {x}.
(4) ↑ x =↑ {x}.
We also say:
(5) X is a lower set, if and only if X =↓ X.
(6) X is an upper set, if and only if X =↑ X.
(7) X is an ideal, if and only if it is a directed lower set.
(8) An ideal is principal, if and only if it has a maximum element.

For undefined terms and notations, see [5, 11].
The collection of all ordinal numbers is a proper class, and we denote

it as O. It is also customary to denote the order relation between
ordinals by α < β instead of the two equivalent forms α ⊂ β, α ∈ β,
though the latter is also quite common. If α is an ordinal, then, by
definition, we have α = {β ∈ O|β < α}. If α, β ∈ O, then either α < β
or β < α or α = β. If A is a set of ordinals, then

∪
A is an ordinal.

Let γ, δ ∈ O, γ ≥ 1, and δ ≥ 1. An address over γ is a function
a : δ → γ such that a(i) = 0 implies that a(j) = 0, for all j ≥ i. We
denote by A(γ), the set of all addresses over γ.

Let a : δ → γ be an address over γ. If, for every i ∈ δ, a(i) = 0, then
it is called the empty address, and denoted by (). If a is a non-empty
address, then there exists a unique element β ∈ δ + 1, such that, for
every i ∈ β, a(i) ̸= 0, and for every β ≤ i ∈ δ, a(i) = 0. We denote this
address by (ai)i∈β, where ai = a(i) for every i ∈ β.
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Let a : δ → γ, and b : β → η be addresses and δ ≤ β. We say a = b,
if for every i ∈ δ, ai = bi, and for every i ∈ β \ δ, bi = 0. In other
words, there exists a unique element β ∈ O, such that a = (ai)i∈β = b.

The level of a ∈ A(γ) is said to be:

(1) 0 , if a = ().
(2) β, if () ̸= a = (ai)i∈β.

The level of a is denoted by l(a).
Let a and b be two elements of A(γ). Then we say that a ≤ b,

if l(a) = 0 or one of the following cases satisfies for a = (ai)i∈β and
b = (bi)i∈δ:

(1) If β = 1, then a0 ≤ b0.
(2) If β ≥ 2 is a non-limit ordinal, then a|β−1 = b|β−1 and aβ−1 ≤

bβ−1.
(3) If β is a limit ordinal, then a = b|β.

Proposition 2.1. [9] (A(γ),≤) is a meet-semilattice.

Let () ̸= a = (ai)i∈β be an element of A(γ). For every δ ∈ β and
0 ≤ j ≤ aδ, we put a(δ,j) : δ + 1 → γ, such that for every i ∈ δ + 1,

a
(δ,j)
i =

{
ai if i ∈ δ;

j if i = δ.

Definition 2.2. [9] A nexus N over γ is a set of addresses with the
following properties:

(1) ∅ ̸= N ⊆ A(γ).
(2) If () ̸= a = (ai)i∈β ∈ N , then for every δ ∈ β and 0 ≤ j ≤ aδ,

a(δ,j) ∈ N .

Proposition 2.3. [9] Let N be the set of addresses over γ. Then,
N is a nexus over γ, if and only if ∅ ̸= N ⊆ A(γ), and for every
(a, b) ∈ N × A(γ), b ≤ a implies that b ∈ N .

Proposition 2.4. [9] Let N be a nexus over γ. Then (N,≤) is a
meet-semilattice.

Let N be a nexus over γ, and ∅ ≠ M ⊆ N . Then M is called a
subnexus of N , if M itself is a nexus over γ. The set of all subnexuses
of N is denoted by Sub(N). It is clear that {()} and N are the trivial
subnexuses of nexus N .

Proposition 2.5. [9] If N is a nexus over γ, and {Mi}i∈I ⊆ Sub(N),
then

∪
i∈I Mi ∈ Sub(N) and

∩
i∈I Mi ∈ Sub(N).

Let N be a nexus over γ, and X ⊆ N . The smallest subnexus of N
containing X is called the subnexus of N generated by X, and denoted
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by < X >. If |X| = 1, then < X > is called a cyclic subnexus of N .
It is clear that < ∅ >= {()}, and < N >= N .

Remark 2.6. [9] Let ∅ ̸= N ⊆ A(γ). Then, N is a nexus over γ, if and
only if:

N =↓ N =
∪
a∈N

↓ a.

A proper subnexus P of a nexus N over γ is said to be a prime
subnexus of N if a ∧ b ∈ P implies that a ∈ P or b ∈ P , for every
a, b ∈ N . The set of all prime subnexuses of N is denoted by Psub(N).

Proposition 2.7. [9] Let P be a proper subnexus of a nexus N over
γ. Then, P is a prime subnexus of N , if and only if N \ P is closed
under finite meet.

Corollary 2.8. [9] Let N be a nexus over γ, and ∅ ̸= X ⊆ N . If X is
closed under finite meet, then there exists a ∈ X, such that ↑ a =↑ X,
and a =

∧
X.

A fuzzy subset f on set X is a function f : X → [0, 1]. We denote
by F (X) the set of all fuzzy subsets of X. For f, g ∈ F (X), we say
f ⊆ g, if and only if f(x) ≤ g(x) for every x ∈ X. Let f ∈ F (X),
and t ∈ [0, 1]. Then the set ft = {x ∈ X : f(x) ≥ t} is called the level
subset of X with respect to f . Also we put f∗ = {x ∈ X : f(x) = 1}.
For x ∈ X and t ∈ (0, 1], xt ∈ F (X) is called a fuzzy point, if and only if
xt(y) = 0 for y ̸= x and xt(x) = t. The fuzzy point xt is said to belong
to f ∈ F (X), written xt ∈ f , if and only if f(x) ≥ t. If f, g ∈ F (X),
then f ⊆ g, if and only if xt ∈ f implies xt ∈ g for every fuzzy point
xt ∈ F (X). For evrey f, g ∈ F (X), and r, s ∈ [0, 1], (f ∩ g)r = fr ∩ gr,
(f ∪g)r = fr∪gr, and if r ≤ s, then fr ⊇ fs. For every {fi}i∈I ⊆ F (X)
and r ∈ [0, 1],

∪
i∈I(fi)r ⊆ (

∪
i∈I fi)r and

∩
i∈I(fi)r = (

∩
i∈I fi)r. For

evrey f, g ∈ F (X), f ⊆ g ⇔ fr ⊆ gr, for all r ∈ [0, 1] (see [8]).

3. Prime fuzzy nexus

In this section, the notions of a fuzzy nexus and a prime fuzzy sub-
nexus of a nexus are defined, and we discuss the relation subnexus and
fuzzy subnexus, prime subnexus, and prime fuzzy subnexus.

Definition 3.1. Let f be a fuzzy subset on a nexus N . Then f is
called a fuzzy subnexus of N , if a ≤ b implies that f(b) ≤ f(a) for all
a, b ∈ N . The set of all fuzzy subnexuses of N is denoted by Fsub(N).

Proposition 3.2. Let A be a non-empty subset of a nexus N . Then,
A ∈ Sub(N), if and only if χA ∈ Fsub(N), where that χA is the
characteristic function of A.
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Proof. Let A ∈ Sub(N), and a ≤ b, for some a, b ∈ N . If b ∈ A, by
Proposition 2.3, a ∈ A, and so, χA(a) = χA(b) = 1. But if b ̸∈ A, then
χA(b) = 0, and so, χA(b) ≤ χA(a), hence, χA ∈ Fsub(N).

Conversely, let (a, b) ∈ A×N , and b ≤ a. Then 1 = χA(a) ≤ χA(b),
which follows that χA(b) = 1, i.e. b ∈ A. Hence, A ∈ Sub(N). �

Proposition 3.3. Let f be a fuzzy subset of N . Then f ∈ Fsub(N),
if and only if fr ∈ Sub(N), for every r ∈ [0, 1], where fr ̸= ∅.

Proof. Suppose f ∈ Fsub(N) and fr ̸= ∅, for r ∈ [0, 1], and let b ∈
N, a ∈ fr, such that b ≤ a. Then f(b) ≥ f(a) ≥ t, and hence, b ∈ fr.

Conversly, suppose that f is a fuzzy subset of N , such that fr ∈
sub(N) for every r ∈ [0, 1]. Now let a, b ∈ N , a ≤ b. We show that
f(b) ≤ f(a). Let f(b) = r, for r ∈ [0, 1]. Thus b ∈ fr ̸= ∅, and since
fr ∈ Sub(N), we can conclude from Proposition 2.3 that a ∈ fr. Hence,
f(a) ≥ r = f(b). �

Proposition 3.4. Let N be a nexus over γ, and {fi}i∈I ⊆ Fsub(N).
Then:

(1)
∪

i∈I fi ∈ Fsub(N).
(2)

∩
i∈I fi ∈ Fsub(N).

Proof. Let a, b ∈ N , and a ≤ b Then

(
∪
i∈I

fi)(b) =
∨
i∈I

fi(b) ≤
∨
i∈I

fi(a) = (
∪
i∈I

fi)(a)

and

(
∩
i∈I

fi)(b) =
∧
i∈I

fi(b) ≤
∧
i∈I

fi(a) = (
∩
i∈I

fi)(a).

�

Let N be a nexus over γ. For f ∈ F (N), we put

< f >=
∩

f⊆g∈Fsub(N)

g.

It is clear that < f > is a fuzzy subnexus of N .

Proposition 3.5. Let N be a nexus over γ, and f be a fuzzy subset of
N Then:

< f > (a) =
∨

b∈↑a
f(b).

Proof. Let f be a fuzzy subset of N . Define h : N −→ [0, 1], with
h(a) =

∨
b∈↑af(b). We are going to show that h is the smallest fuzzy
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subnexus of N , which f ⊆ h. Let a, b ∈ N , and a ≤ b. Since ↑ b ⊆ ↑ a,
we can conclude that

h(a) =
∨

z∈↑a
f(z) ≥

∨
z∈↑b

f(z) = h(b).

Hence, h ∈ Fsub(N). Now, let g ∈ Fsub(N), f ⊆ g. Then for every
b ∈↑ a, we have g(a) ≥ f(b), which follows that g(a) ≥

∨
b∈↑af(b).

Hence, g(a) ≥ h(a), i.e. h ⊆ g. �
Proposition 3.6. If N is a nexus over γ, and f, g ∈ F (N), then

< f > ∩ < g >≥< f ∩ g > .

Proof. For every a ∈ N ,

(< f > ∩ < g >)(a) = min{< f > (a), < g > (a)}

= min{
∨

b∈↑a
f(b),

∨
b∈↑a

g(b)}

≥
∨

b∈↑a
min{f(b), g(b)}

=
∨

b∈↑a
(f ∩ g)(b)

= < f ∩ g > (a).

Hence, < f > ∩ < g >≥< f ∩ g > . �
Example 3.7. Let γ = 3, N = {(), (1), (2)}, and f, g : N → [0, 1] be
functions such that

f =

(
() (1) (2)

0.1 0.2 0.3

)
and

g =

(
() (1) (2)

0.3 0.2 0.1

)
.

It is clear that < f > ∩ < g > ̸=< f ∩ g > .

Definition 3.8. Let N be a non-trivial nexus over γ, i.e. N ̸= {()}. A
fuzzy subnexus f of N is called a prime fuzzy subnexus, if

f(a ∧ b) ≤ max{f(a), f(b)},

for all a, b ∈ N . The set of all prime fuzzy subnexuses of N is denoted
by PFsub(N).

It is clear that if f ∈ PFsub(N), then f(a ∧ b) = f(a) or f(b), for
all a, b ∈ N .
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Proposition 3.9. Let N be a non-trivial nexsus over γ, and f be a
fuzzy subnexus of N . The following assertions are equivalent:

(1) f is a prime fuzzy subnexus.
(2) For every r ∈ [0, 1], if fr is a non-empty subset N , then fr is a

prime subnexus of N .
(3) For every r ∈ [0, 1], N \ fr is closed under finite meet.

Proof. (1) ⇒ (2). Let r ∈ [0, 1], and fr be a non-empty subset of N .
If a, b ∈ N and a ∧ b ∈ fr, then r ≤ f(a ∧ b) ≤ max{f(a), f(b)}, and
which follows that a ∈ fr or b ∈ fr. By Proposition 3.3, fr is a prime
subnexus of N .

(2) ⇒ (3). Suppose that r ∈ [0, 1]. If fr is a non-empty subset of N ,
then, by Proposition 2.7, N \ fr is closed under finite meet. If fr = ∅,
then, by Proposition 2.4, we are done.

(3) ⇒ (1). Let a, b ∈ N , and f(a ∧ b) = r ∈ [0, 1]. Since a ∧ b ̸∈
N \ fr, we can conclude from the statement (3) that a ̸∈ N \ fr or
b ̸∈ N \ fr. Hence a ∈ fr or b ∈ fr, and which follows that f(a ∧ b) ≤
max{f(a), f(b)}. The proof is now complete. �
Proposition 3.10. Let N be nexus over γ and f be an arbitrary fuzzy
subnexus.

(1) If N is a chain, then f is a prime fuzzy subnexus.
(2) If f is a prime fuzzy subnexus and one to one, then N is a

chain.

Proof. (1) Suppose that a, b ∈ N , and a ≤ b. Since f(a) ≥ f(b) so
f(a ∧ b) = f(a) = max{f(a), f(b)}.

(2) Let a, b ∈ N and a ∧ b = c. If a ̸= c and b ̸= c, then since
c < a, c < b and f is one to one, we can conclude that f(c) > f(a),
and f(c) > f(b). Therefore, f(c) > max{f(a), f(b)} ≥ f(a ∧ b), which
is a contradiction. �
Proposition 3.11. Let F : M → N be a homomorphism between
nexus. Then the following assertions hold:

(1) If g is a fuzzy subnexus of M , then f = gF is a fuzzy subnexus
of N .

(2) If g is a prime fuzzy subnexus of M , then f = gF is a prime
fuzzy subnexus of N .

Proof. (1) It is clear that f is a fuzzy subset of N . Suppose that
a, b ∈ N , and a ≤ b. Since F is a homomorphism, we can conclude
that F (a) ≤ F (b), which follows that g(F (a)) ≥ g(F (b)). Hence, f is
a fuzzy subnexus of N .
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(2) For every a, b ∈ N ,

f(a ∧ b) = gF (a ∧ b)

= g(F (a ∧ b))

= g(F (a) ∧ F (b))

= ≤ max{g(F (a), g(F (b))}.

Hence, f is a prime fuzzy subnexus of N . �

Remark 3.12. Let x ∈ N and t ∈ (0, 1]. Then < xt >: N → [0, 1],
defined by

< xt > (a) =

t x ∈↑ a

0 x ̸∈↑ a

is a fuzzy subnexus.

Remark 3.13. It is clear that if N is a nexus, and |N | ≤ 4, then the
nexus N is lineary ordered.

Proposition 3.14. Let N be a nexus over γ. The following assertions
are equivalent:

(1) Nexus N is lineary ordered.
(2) Every fuzzy subnexus of N is prime.

Proof. (1) ⇒ (2). Let f ∈ Fsub(N), and a, b ∈ N . Hence, a ≤ b
or b ≤ a, say a ≤ b, since nexus N is lineary ordered. Therefore,
f(a∧ b) = f(a) ≥ f(b), which follows that f(a∧ b) = max{f(a), f(b)}.

(2) ⇒ (1). Suppose that every fuzzy subnexus of N is prime, and
a, b ∈ N . Put a ∧ b = c, and let a ̸= c, b ̸= c and t = 1

2
∈ [0, 1]. It is

clearly t =< ct > (c) ≤ max{< ct > (a), < ct > (b)} = 0, according to
statement (2). This is a contradiction. Therefore, nexus N is lineary
ordered. �

Proposition 3.15. Let N be a nexus over γ, a, b ∈ N , and r, t ∈ (0, 1].
Then the following assertions hold:

(1) < ar > ∧ < bt >=< (a ∧ b)r∧t >.
(2) < (a ∧ b)t > ∧ < at >=< (a ∧ b)t >.
(3) < (a ∨ b)t > ∧ < at >=< at >.

Proof. For every x ∈ N , a, b ∈↑ x, if and only if a ∧ b ∈↑ x. Hence,
< ar > ∧ < bt >=< (a ∧ b)r∧t >. The rest is similar. �
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Proposition 3.16. Let N be a nexus over γ, a, b ∈ N , and r, t ∈ (0, 1].
We define g : N → [0, 1] by

g(x) =


r a ∈↑ x&b ̸∈↑ x

s a ̸∈↑ x&b ∈↑ x

r ∨ s a, b ∈↑ x

0 a ̸∈↑ x&b ̸∈↑ x

Then the following assertions hold:

(1) g ∈ Fsub(N) and g =< ar > ∨ < bt >.
(2) < ar > ∨ < bt >≤< (a ∨ b)r∨s > .
(3) < (a ∧ b)t > ∨ < at >=< at >.
(4) < (a ∨ b)t > ∨ < at >=< (a ∨ b)t >.
(5) < ar > ∨ < at >=< ar∨t >.

Proof. Evident. �
Proposition 3.17. Let N be a nexus over γ, a, b ∈ N , and r, t ∈ (0, 1].
The following assertions hold:

(1) a ≤ b, if and only if < at >≤< bt >.
(2) r ≤ t, if and only if < ar >≤< at >.
(3) < ar > ∧ < at >=< ar∧t >.

Proof. (1) Let a ≤ b. Since a ∈↑ x, implies that b ∈↑ x, we can
conclude that < at > (x) = t implies that < bt > (x) = t. Hence,
< at >≤< bt >.

Conversely, let < at >≤< bt >. Hence, t =< at > (a) ≤< bt >
(a) ≤ t, i.e. < bt > (a) = t. Therefore, b ∈↑ a.

The rest is similar. �
Example 3.18. Let γ = 3, N = {(), (1), (2)}, and h, f, g : N → [0, 1]
be functions such that

f =

(
() (1) (2)

0.3 0.2 0.125

)
,

g =

(
() (1) (2)

0.4 0.35 0.1

)
and

h =

(
() (1) (2)

0.3 0.2 0.1

)
.

It is clear that h ∈ Fsub(N) is prime, and f, g ∈ Fsub(N). Also,
f ∧ g ⊆ h but f * h and g * h.
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Proposition 3.19. Let N be a nexus, and f ∈ Fsub(N).

(1) If |Imf | ≤ 2 and ∅ ≠ f∗ ∈ Psub(N), then g ∧ h ⊆ f implies
that g ⊆ f or h ⊆ f , for every g, h ∈ Fsub(N).

(2) If g ∧ h ⊆ f implies that g ⊆ f or h ⊆ f , for every g, h ∈
Fsub(N), then |Imf | ≤ 2.

(3) If |Imf | = 2 and for every g, h ∈ Fsub(N), g ∧ h ⊆ f implies
that g ⊆ f or h ⊆ f , then ∅ ̸= f∗ ∈ Psub(N).

Proof. (1) If |Imf | = 1, then Imf = {1}, which finishes the proof.
Now, we assume that |Imf | = 2, then Imf = {t, 1} with t < 1.

Suppose that there exist two fuzzy subnexuses h and g over N , such
that g ∧ h ⊆ f but g ̸⊆ f and h ̸⊆ f . Hence, there exist x, y ∈ N , such
that h(x) > f(x) and g(y) > f(y). Since f∗ is a prime subnexus, and
x, y ̸∈ f∗, we can conclude that x ∧ y ̸∈ f∗, which follows that

(h ∧ g)(x ∧ y) = h(x ∧ y) ∧ g(x ∧ y) ≥ h(x) ∧ g(y) > t = f(x ∧ y).

Thus h ∧ g * f , which is a contradicition. Thus g ⊆ f or h ⊆ f .

(2) Let |Imf | ≥ 3. Then there exists a, b, c ∈ N , such that f(a) <
f(b) < f(c). Now, we assume that r, s ∈ (0, 1), such that f(a) < r <
f(b) < s < f(c). If a ∧ b ∈↑ x, then, by Proposition 3.15,

(< ar > ∧ < bs >)(x) =< (a∧b)r∧s > (x) = r < f(b) ≤ f(a∧b) ≤ f(x).

Therefore, < ar > ∧ < bs >⊆ f , which follows that < ar >⊆ f or
< bs >⊆ f . If < ar >⊆ f , then < ar > (a) = r ≤ f(a), which is a
contradiction. Also, if < bs >⊆ f , then < bs > (b) = s ≤ f(b), which
is a contradiction. Hence, |Imf | ≤ 2.

(3) Suppose that f∗ = ∅. Then there exists a, b ∈ N , such that
f(a) = r < f(b) = s < 1 and Imf = {r, s}. Now, we assume that
t, k ∈ (0, 1), such that r < t < s < k < 1. If a ∧ b ∈↑ x, then, by
Proposition 3.15,

(< at > ∧ < bk >)(x) =< (a∧b)t∧k > (x) = t < f(b) ≤ f(a∧b) ≤ f(x).

Therefore, < at > ∧ < bk >⊆ f , which follows that < at >⊆ f or
< bk >⊆ f . Hence, < at > (a) = t ≤ f(a) or < bk > (b) = k ≤ f(b),
which is a contradiction. Thus f∗ ̸= ∅ and f∗ ̸= N . Let a, b ∈ N such
that a ∧ b ∈ f∗, a ̸∈ f∗ and b ̸∈ f∗. Then there exists r ∈ (0, 1) such
that f(a) = f(b) < r < 1 = f(a∧b). If a∧b ∈↑ x, then, by Proposition
3.15,

(< ar > ∧ < br >)(x) =< (a ∧ b)r > (x) = r < 1 = f(x).

Therefore, < ar > ∧ < bs >⊆ f , which follows that < ar >⊆ f or
< bs >⊆ f . Hence, < ar > (a) = r ≤ f(a) or < br > (b) = r ≤ f(b),
which is a contradiction. Therefore, f∗ ∈ Psub(N). �



SHORT TITLE OF THE PAPER SHOULD APPEAR HERE 75

4. Fraction induced by nexus and fuzzy subnexus

In this section, the fractions of a nexus N over an ordinal is defined,
and denoted by S−1N , where S is a meet closed subset of Fsub(N). It
is shown that this structure is a meet-semilattice and isomorphic with
{h}−1N , where h =

∧
S. Also we show that every ideal of S−1N is of

the form of S−1I, where I is a subnexus of N .

Definition 4.1. A meet closed subset of Fsub(N) is a non-empty sub-
set S of Fsub(N), such that f ∧ g ∈ S, for every f, g ∈ S.

Let S be a meet closed subset of Fsub(N). Define the relation ∼S

on N × S as follows:

(a, f) ∼S (b, g) ⇔ ∃h ∈ S ∀t ∈ (0, 1](< at > ∧g ∧ h =< bt > ∧f ∧ h).

We will proved that ∼S is an equivalence relation. Let a, b, c ∈ N ,
f, g, h ∈ S, (a, f) ∼S (b, g), and (b, g) ∼S (c, h). Then there exists
h1, h2 ∈ S such that

< at > ∧g ∧ h1 =< bt > ∧f ∧ h1

and
< bt > ∧h ∧ h2 =< ct > ∧g ∧ h2,

for every t ∈ (0, 1]. If k = h1 ∧ h2 ∧ g, then k ∈ S, and for every
t ∈ (0, 1], we have

< at > ∧h ∧ k = < at > ∧h ∧ h1 ∧ h2 ∧ g

= < at > ∧g ∧ h1 ∧ h2 ∧ h

= < bt > ∧f ∧ h1 ∧ h2 ∧ h

= < bt > ∧h ∧ h2 ∧ f ∧ h1

= < ct > ∧g ∧ h2 ∧ f ∧ h1

= < ct > ∧f ∧ h1 ∧ h2 ∧ g

= < ct > ∧f ∧ k

Therefore, ∼S on N × S is transtive. It is clear that ∼S on N × S
is reflexive and symmetric. Hence, the relation ∼S on N × S is an
equivalence relation. Write a

f
for the class of (a, f). The set of all

equivalence classes of ∼S on N × S is denoted by S−1N , and it is
called the fraction of N with respect to S.

Definition 4.2. Let S be a meet closed subset of Fsub(N), and a
f
, b
g
∈

S−1N . Then we say a
f
≤ b

g
, if there exists h ∈ S such that

< at > ∧ < bt > ∧f ∧ h = f ∧ g∧ < at > ∧h,
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for every t ∈ (0, 1].

Proposition 4.3. Let S be a meet closed subset of Fsub(N). Then
(S−1N,≤) is a meet-semilattice.

Proof. It is clear that ≤ on S−1N is reflexive. Now, let a
f
≤ b

g
, b

g
≤ a

f
.

Thus there exists h1, h2 ∈ S, such that:

< at > ∧ < bt > ∧f ∧ h1 = f ∧ g∧ < at > ∧h1

and

< bt > ∧ < at > ∧g ∧ h2 = g ∧ f∧ < bt > ∧h2.

By the commutativity of ∧, we have

(< at > ∧g) ∧ (f ∧ g ∧ h1 ∧ h2) = < at > ∧ < bt > ∧f ∧ h1 ∧ g ∧ h2

= g ∧ f∧ < bt > ∧h2 ∧ f ∧ h1

= (< bt > ∧f) ∧ (f ∧ g ∧ h1 ∧ h2).

Since S is a meet closed subset of N , we can conclude that f ∧ g ∧
h1 ∧ h2 ∈ S, which follows that (a, f) ∼S (b, g), and a

f
= b

g
. Thus ≤ on

S−1N is antisymmetric.
Let a

f
≤ b

g
and b

g
≤ c

h
, for some a

f
, b
g
, c
h
∈ S−1N . Then there exists

h1, h2 ∈ S, such that

< at > ∧ < bt > ∧f ∧ h1 = f ∧ g∧ < at > ∧h1

and

< bt > ∧ < ct > ∧g ∧ h2 = g ∧ h∧ < bt > ∧h2.
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Hence,

(f ∧ h∧ < at >) ∧ (g ∧ h1 ∧ h2) = (f ∧ g∧ < at > ∧h1) ∧
(h ∧ h2 ∧ g)

= (f∧ < at > ∧ < bt > ∧h1) ∧
(h ∧ h2 ∧ g)

= (g ∧ h∧ < bt > ∧h2) ∧
(< at > ∧f ∧ h1)

= (g∧ < ct > ∧ < bt > ∧h2) ∧
(< at > ∧f ∧ h1)

= (f∧ < bt > ∧ < at > ∧h1) ∧
(g∧ < ct > ∧h2)

= (f ∧ g∧ < at > ∧h1) ∧
(g∧ < ct > ∧h2)

= (f∧ < ct > ∧ < at >) ∧
(g ∧ h1 ∧ h2).

Since S is a meet closed subset of Fsub(N), we can conclude that
g ∧ h1 ∧ h2 ∈ S, which followes that a

f
≤ c

h
. Thus ≤ on S−1N is

transitive, and (S−1N,≤) is a partially ordered set.
Let a

f
, b
g
∈ S−1N . Since for every t ∈ [0, 1], by Lemma 3.15,

(f ∧ g)∧ < at > ∧ < (a ∧ b)t >= (f ∧ g) ∧ f∧ < (a ∧ b)t >

and

(f ∧ g)∧ < bt > ∧ < (a ∧ b)t >= (f ∧ g) ∧ g∧ < (a ∧ b)t >,

we can conclude that a∧b
f∧g ≤ a

f
and a∧b

f∧g ≤ b
g
. Now, let c

h
∈ S−1N , such

that c
h
≤ a

f
and c

h
≤ b

g
. Then there exists v, w ∈ S, such that

h∧ < at > ∧ < ct > ∧v = h ∧ f∧ < ct > ∧v,

and

h∧ < bt > ∧ < ct > ∧w = h ∧ g∧ < ct > ∧w.
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Hence,

(h ∧ f ∧ g∧ < ct >) ∧ (v ∧ w) = (h ∧ f∧ < ct > ∧v)∧
(h ∧ g∧ < ct > ∧w)

= (h∧ < at > ∧ < ct > ∧v)∧
(h∧ < bt > ∧ < ct > ∧w)

= (h∧ < at > ∧ < bt > ∧ < ct >)∧
(v ∧ w)

= (h∧ < (a ∧ b)t > ∧ < ct >)∧
(v ∧ w).

Since S is a meet closed subset of N , we can conclude that v ∧w ∈ S,
which follows that c

h
≤ a∧b

f∧g . Therefore, a
f
∧ b

g
= a∧b

f∧g . �

Proposition 4.4. Let S be a meet closed subset of Fsub(N). For every
a ∈ N and f, g ∈ S, a

f
= a

g
in S−1N .

Proof. Since (< at > ∧g) ∧ (f ∧ g) = (< at > ∧f) ∧ (f ∧ g), and
f ∧ g ∈ S, we have (a, f) ∼S (a, g), and a

f
= a

g
in S−1N . �

Proposition 4.5. Let N be a nexus over γ, and let S be a meet closed
subset of Fsub(N).

(1) Every ideal of S−1N is of the form of S−1I, where I is a sub-
nexus of N .

(2) If K is a finite ideal of S−1N, and h =
∧
S ∈ S, then there

exists a cyclic subnexus I of N such that K = S−1I.
(3) If M is a prime ideal of S−1N , then there exists I ∈ Psub(N)

such that M = S−1I.
(4) If M is a maximal ideal of S−1N , then there exists I ∈ Sub(N)

such that M = S−1I, and I is a maximal subnexus of N .

Proof. (1) Let K be an ideal of S−1N, and

I = {a ∈ N | a
f
∈ K for some f ∈ S}.

Suppose that a, b ∈ N , b ∈ I, and a ≤ b. Then there exists f ∈ S, such
that b

f
∈ K. By Proposition 3.17, < at >≤< bt > for every t ∈ (0, 1].

Then
< at > ∧ < bt > ∧f =< at > ∧f

for every t ∈ (0, 1]. Hence, a
f
≤ b

f
∈ K. Since K is an ideal of S−1N ,

we can conclude that a
f

∈ K, which follows that a ∈ I. Now, by

Proposition 2.3, I is a subnexus of N , and it is clear that K = S−1I.

(2) Let K be a finite ideal of S−1N . It is well known that every
finite directed subset of S−1N has the largest element. Since K is
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a directed lower set, we can conclude that there exists a
f
∈ K, such

that K =↓ a
f
. We put I =↓ a, and we claim that K = S−1I. Let

b
g
∈ K. Then there exists k ∈ S, such that, for every t ∈ (0, 1],

g∧ < at > ∧ < bt > ∧k = g ∧ f∧ < bt > ∧k, which follows that

(< (a ∧ b)t > ∧g) ∧ (g ∧ f ∧ k) = (< at > ∧ < bt > ∧g)∧
(g ∧ f ∧ k)

= (< bt > ∧f) ∧ (g ∧ f ∧ k),

for every t ∈ (0, 1]. Therefore, b
g

= a∧b
f

∈ S−1I. Now, let b ∈ I and

g ∈ S. Then, by Proposition 3.17,

g∧ < at > ∧ < bt > ∧h = < bt > ∧h
= g ∧ f∧ < bt > ∧h,

for every t ∈ (0, 1]. Hence, b
g
≤ a

f
∈ K. Since K is an ideal of S−1N ,

we can conclude that b
g
∈ K. The proof is now complete.

(3) Let I = {a ∈ N | a
f
∈ M for some f ∈ S}. Then, by statement

(1), M = S−1I. Let a, b ∈ N , such that a ∧ b ∈ I. Then a∧b
f

∈ S−1I

for some f ∈ S. Since a∧b
f

= a
f
∧ b

f
and S−1I is a prime ideal, we

can conclude that a
f
∈ S−1I or b

f
∈ S−1I. Hence, a ∈ I or b ∈ I, i.e.

I ∈ Psub(N).

(4) Let I = {a ∈ N | a
f
∈ M for some f ∈ S}. Then, by statement

(1), M = S−1I. Suppose I is not a maximal subnexus of N . Then
there exist a subnexus J between I and N . Put M1 = S−1J . Then M1

is an ideal of S−1N , and S−1I ⊂ S−1J , which is contradicition. �

Lemma 4.6. Let S be a meet closed subset of Fsub(N), and h =
∧
S.

For every a, b ∈ N and f, g ∈ S

(1) If (a, h) ∼S (b, h), then (a, h) ∼{h} (b, h).
(2) If h ∈ S and (a, h) ∼{h} (b, h), then (a, h) ∼S (b, h).

(3) If a
f
≤ b

g
in S−1N , then a

h
≤ b

h
in {h}−1N .

Proof. (1) We first suppose that (a, h) ∼S (b, h). Then there exists
v ∈ S such that

< at > ∧h =< at > ∧h ∧ v =< bt > ∧h ∧ v =< bt > ∧h.

It follows that (a, h) ∼{h} (b, h).

(2) By hypothesis, < at > ∧h =< bt > ∧h. Since h ∈ S, we can
conclude that (a, h) ∼S (b, h).
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(3) Since a
f
≤ b

g
in S−1N , we can conclude that there exists v ∈ S,

such that

< at > ∧ < bt > ∧f ∧ v = f ∧ g∧ < at > ∧v.
It is clear that f ∧ v ∧ h = h = f ∧ g ∧ v ∧ h. Then:

h∧ < at > ∧ < bt > = < at > ∧ < bt > ∧f ∧ v ∧ h

= f ∧ g∧ < at > ∧h ∧ v

= h∧ < at >,

i.e. a
h
≤ b

h
in {h}−1N . �

Proposition 4.7. Let S be a meet closed subset of Fsub(N), and h =∧
S. We define φ : S−1N −→ {h}−1N with φ( a

f
) = a

h
. Then we have

the following conclusions:

(1) φ is an onto meet-semilattice homomorphism.
(2) If h ∈ S, then φ is one to one. In particular, this shows if

h ∈ S, then S−1N ∼= {h}−1N as meet-semilattices.

Proof. (1) By Lemma 4.6, φ is well defined, and it also preserves the
order. Let a

f
, b
g
∈ S−1N . Then, by the proof of Proposition 4.3,

φ(
a

f
∧ b

g
) = φ(

a ∧ b

f ∧ g
) =

a ∧ b

h
=

a

h
∧ b

h
= φ(

a

f
) ∧ φ(

b

g
).

Therefore, φ is an onto meet-semilattice homomorphism.

(2) Let a
f
, b
g
∈ S−1N , and φ( a

f
) = φ( b

g
). Then a

h
= b

h
and

< at > ∧h ∧ g =< at > ∧h =< bt > ∧h =< bt > ∧f ∧ h,

for every t ∈ (0, 1]. Since h ∈ S, we can conclude that a
f

= b
g
, which

followes that φ is one to one. �
Proposition 4.8. Let N be a nexus over γ, and let S be a meet

closed subset of Fsub(N). If h =
∧
S, then {h}−1N ∼=

︷︸︸︷
↓ h as meet-

semilattices, where
︷︸︸︷
↓ h = {h∧ < a1 >; a ∈ N}.

Proof. We define φ : {h}−1N −→
︷︸︸︷
↓ h with φ( a

h
) =< a1 > ∧h. For

every a, b ∈ N ,

a

h
=

b

h
⇒< a1 > ∧h =< b1 > ∧h ⇒ φ(

a

h
) = φ(

b

h
).

Hence, φ is well defined. It is clear that φ is onto. Now, let a
h
̸= b

h
. We

show that φ( a
h
) ̸= φ( b

h
). Since a

h
̸= b

h
, there exists t ∈ (0, 1], such that

< at > ∧h ̸=< bt > ∧h. If t = 1, then φ( a
h
) ̸= φ( b

h
). Let t < 1 and

< a1 > ∧h =< b1 > ∧h. For every x ∈ N ,
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(1) If a, b ∈↑ x, then < at > (x) = t =< bt > (x), which follows
that (< at > ∧h)(x) = t ∧ h(x) = (< bt > ∧h)(x).

(2) If a, b ̸∈↑ x, then < at > (x) = 0 =< bt > (x), which follows
that (< at > ∧h)(x) = 0 = (< bt > ∧h)(x).

(3) If a ∈↑ x and b ̸∈↑ x, then

h(x) = 1 ∧ h(x)

= (< a1 > ∧h)(x)

= (< b1 > ∧h)(x)

= 0 ∧ h(x)

= 0,

which follows that (< at > ∧h)(x) = 0 = (< bt > ∧h)(x).

(4) Similarly, if a ̸∈↑ x and b ∈↑ x, then

(< at > ∧h)(x) = 0 = (< bt > ∧h)(x)

Therefore, < at > ∧h =< bt > ∧h, which is a contradicition. Then
< a1 > ∧h ̸=< b1 > ∧h. Hence φ is one to one. Let a

h
, b
h
∈ {h}−1N .

Then, by Proposition 3.15 and the proof of Proposition 4.3,

φ( a
h
∧ b

h
) = φ(a∧b

h
)

= < (a ∧ b)1 > ∧h
= (< a1 > ∧h) ∧ (< b1 > ∧h)

= φ( a
h
) ∧ φ( b

h
).

Therefore, φ is a meet-semilattice isomorphism. �

Corollary 4.9. Let N be a nexus over γ, and let S1, S2 be meet closed
subsets of Fsub(N). If

∧
S1 =

∧
S2 ∈ S1 ∩ S2, then S−1

1 N ∼= S−1
2 N as

meet-semilattices.

Proof. By Propositions 4.7 and 4.8, it is clear. �

Proposition 4.10. Let N be a nexus over γ, and {()} ̸= X ⊆ N \{()}
be closed under finite meet. Then for every t ∈ (0, 1], St = {< at >
|a ∈ X} is closed under finite meet, and there exists b ∈ X, such that
< bt >=

∧
St.

Proof. By Proposition 3.15, St is closed under finite meet. Since X ⊆
N , and X is closed under finite meet, we can conclude from Corollary
2.8 that there exists b ∈ X, such that b =

∧
X. By Proposition 3.17,

< bt >=
∧

a∈X < at >. �
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FUZZY NEXUS OVER AN ORDINAL

A.A. ESTAJI, T. HAGHDADI AND J. FAROKHI

ترتيبى عدد یک روی فازی پیوند

فرخی جواد و حقدادی تکتم استاجی، اکبر علی
بیرجند صنعتی دانشگاه سبزواری، حکیم دانشگاه

مطالعه به چنین هم می�کنیم. تعریف را N پیوند یک از فازی پیوندهای زیر مقاله این در ما
اگر که می�دهیم نشان نهایت در می�پردازیم. قسمتی خارج زیرپیوندهای و اول فازی زیرپیوندهای
گاه آن ،h =

∧
S ∈ S و باشد N فازی زیرپیوندهای از مقطعی بسته مجموعه زیر یک S
بود. خواهند یکریخت مقطعی های مشبکه نیم عنوان به� S−١N و {h}−١N

. قسمتی خارج پیوند و اول فازی زیرپیوندهای ، ترتيبى عدد پیوند، کلیدی: کلمات
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