Journal of Algebraic Systems

Vol. 3, No. 1, (2015), pp 65-82

FUZZY NEXUS OVER AN ORDINAL

A. A. ESTAJI, T. HAGHDADI* AND J. FAROKHI

Abstract

In this paper, the fuzzy subnexuses over a nexus N are defined and the notions of prime fuzzy subnexuses and fractions induced by them are studied. Finally, it is shown that if S is a meet closed subset of the set $F \operatorname{sub}(N)$, of fuzzy subnexuses of a nexus N, and $h=\Lambda S \in S$, then the fractions $S^{-1} N$ and $\{h\}^{-1} N$ are isomorphic as meet-semilattices.

1. Introduction

Fuzzy sets were introduced by Lotfi A. Zadeh [15] and Dieter Klaua [10] in 1965 as an extension of the classical notion of sets. At the same time, Salii [14] defined a more general kind of structures called L-relations, which were studied by him in an abstract algebraic context. Fuzzy relations, which are used now in different areas such as algebra [6,12], rough set [4, 7], and clustering [3], are special cases of L-relations when L is the unit interval $[0,1]$.

Section 2 of this paper is a prerequisite for the rest of the paper. The definitions and results of this section are taken from $[2,5,8,9,11]$. In Section 3, a fuzzy subnexus over an ordinal is defined, and also a prime fuzzy subnexus over an ordinal is defined. Particularly, we show that for every nexus N, and $f \in F \operatorname{sub}(N)$:
(1) If $|\operatorname{Im} f| \leq 2$, and $\emptyset \neq f_{*} \in \operatorname{Psub}(N)$, then $g \wedge h \subseteq f$ implies that $g \subseteq f$ or $h \subseteq f$.
(2) If $g \wedge h \subseteq f$ implies that $g \subseteq f$ or $h \subseteq f$, for every $g, h \in$ $F \operatorname{sub}(N)$, then $|\operatorname{Imf}| \leq 2$.

[^0](3) If $|\operatorname{Imf}|=2$, and for every $g, h \in F \operatorname{sub}(N), g \wedge h \subseteq f$ implies that $g \subseteq f$ or $h \subseteq f$, then $\emptyset \neq f_{*} \in \operatorname{Psub}(N)$.
In Section 4, we introduce the notion fraction induced by fuzzy subnexuses, and give some characterizations for fraction of N in particular, we show that if S_{1} and S_{2} are meet closed subsets of $F \operatorname{sub}(N)$ and $h=\bigwedge S_{1}=\bigwedge S_{2} \in S_{1} \cap S_{2}$, then $S_{1}^{-1} N \cong S_{2}^{-1} N \cong\{h\}^{-1} N$ as meet-semilattices.

2. Preliminaries

A partially ordered set A is a meet-semilattice, if the infimum for each pair of elements exists. A homomorphism is a function $f: N \rightarrow M$ between the meet-semilattices N and M, such that $f(x \wedge y)=f(x) \wedge$ $f(y)$ for all x and y in N. Each homomorphism is order preserving, i.e. $x \leq y$ implies that $f(x) \leq f(y)$.

A subset D of poset A is directed, provided that it is non-empty, and every finite subset of D has an upper bound in D.

Let A be a poset. For $X \subseteq A$ and $x \in A$, we write:
(1) $\downarrow X=\{a \in A: a \leq x$ for some $x \in X\}$.
(2) $\uparrow X=\{a \in A: a \geq x$ for some $x \in X\}$.
(3) $\downarrow x=\downarrow\{x\}$.
(4) $\uparrow x=\uparrow\{x\}$.

We also say:
(5) X is a lower set, if and only if $X=\downarrow X$.
(6) X is an upper set, if and only if $X=\uparrow X$.
(7) X is an ideal, if and only if it is a directed lower set.
(8) An ideal is principal, if and only if it has a maximum element.

For undefined terms and notations, see [5, 11].
The collection of all ordinal numbers is a proper class, and we denote it as \mathfrak{O}. It is also customary to denote the order relation between ordinals by $\alpha<\beta$ instead of the two equivalent forms $\alpha \subset \beta, \alpha \in \beta$, though the latter is also quite common. If α is an ordinal, then, by definition, we have $\alpha=\{\beta \in \mathfrak{O} \mid \beta<\alpha\}$. If $\alpha, \beta \in \mathfrak{O}$, then either $\alpha<\beta$ or $\beta<\alpha$ or $\alpha=\beta$. If A is a set of ordinals, then $\bigcup A$ is an ordinal.

Let $\gamma, \delta \in \mathfrak{O}, \gamma \geq 1$, and $\delta \geq 1$. An address over γ is a function $a: \delta \rightarrow \gamma$ such that $a(i)=0$ implies that $a(j)=0$, for all $j \geq i$. We denote by $A(\gamma)$, the set of all addresses over γ.

Let $a: \delta \rightarrow \gamma$ be an address over γ. If, for every $i \in \delta, a(i)=0$, then it is called the empty address, and denoted by (). If a is a non-empty address, then there exists a unique element $\beta \in \delta+1$, such that, for every $i \in \beta, a(i) \neq 0$, and for every $\beta \leq i \in \delta, a(i)=0$. We denote this address by $\left(a_{i}\right)_{i \in \beta}$, where $a_{i}=a(i)$ for every $i \in \beta$.

Let $a: \delta \rightarrow \gamma$, and $b: \beta \rightarrow \eta$ be addresses and $\delta \leq \beta$. We say $a=b$, if for every $i \in \delta, a_{i}=b_{i}$, and for every $i \in \beta \backslash \delta, b_{i}=0$. In other words, there exists a unique element $\beta \in \mathfrak{O}$, such that $a=\left(a_{i}\right)_{i \in \beta}=b$.

The level of $a \in A(\gamma)$ is said to be:
(1) 0 , if $a=()$.
(2) β, if ()$\neq a=\left(a_{i}\right)_{i \in \beta}$.

The level of a is denoted by $l(a)$.
Let a and b be two elements of $A(\gamma)$. Then we say that $a \leq b$, if $l(a)=0$ or one of the following cases satisfies for $a=\left(a_{i}\right)_{i \in \beta}$ and $b=\left(b_{i}\right)_{i \in \delta}:$
(1) If $\beta=1$, then $a_{0} \leq b_{0}$.
(2) If $\beta \geq 2$ is a non-limit ordinal, then $\left.a\right|_{\beta-1}=\left.b\right|_{\beta-1}$ and $a_{\beta-1} \leq$ $b_{\beta-1}$.
(3) If β is a limit ordinal, then $a=\left.b\right|_{\beta}$.

Proposition 2.1. [9] $(A(\gamma), \leq)$ is a meet-semilattice.
Let ()$\neq a=\left(a_{i}\right)_{i \in \beta}$ be an element of $A(\gamma)$. For every $\delta \in \beta$ and $0 \leq j \leq a_{\delta}$, we put $a^{(\delta, j)}: \delta+1 \rightarrow \gamma$, such that for every $i \in \delta+1$,

$$
a_{i}^{(\delta, j)}= \begin{cases}a_{i} & \text { if } i \in \delta \\ j & \text { if } i=\delta\end{cases}
$$

Definition 2.2. [9] A nexus N over γ is a set of addresses with the following properties:
(1) $\emptyset \neq N \subseteq A(\gamma)$.
(2) If ()$\neq a=\left(a_{i}\right)_{i \in \beta} \in N$, then for every $\delta \in \beta$ and $0 \leq j \leq a_{\delta}$, $a^{(\delta, j)} \in N$.

Proposition 2.3. [9] Let N be the set of addresses over γ. Then, N is a nexus over γ, if and only if $\emptyset \neq N \subseteq A(\gamma)$, and for every $(a, b) \in N \times A(\gamma), b \leq a$ implies that $b \in N$.
Proposition 2.4. [9] Let N be a nexus over γ. Then (N, \leq) is a meet-semilattice.

Let N be a nexus over γ, and $\emptyset \neq M \subseteq N$. Then M is called a subnexus of N, if M itself is a nexus over γ. The set of all subnexuses of N is denoted by $\operatorname{Sub}(N)$. It is clear that $\{()\}$ and N are the trivial subnexuses of nexus N.

Proposition 2.5. [9] If N is a nexus over γ, and $\left\{M_{i}\right\}_{i \in I} \subseteq \operatorname{Sub}(N)$, then $\bigcup_{i \in I} M_{i} \in \operatorname{Sub}(N)$ and $\bigcap_{i \in I} M_{i} \in \operatorname{Sub}(N)$.

Let N be a nexus over γ, and $X \subseteq N$. The smallest subnexus of N containing X is called the subnexus of N generated by X, and denoted
by $\langle X\rangle$. If $|X|=1$, then $\langle X\rangle$ is called a cyclic subnexus of N. It is clear that $\langle\emptyset\rangle=\{()\}$, and $\langle N\rangle=N$.

Remark 2.6. [9] Let $\emptyset \neq N \subseteq A(\gamma)$. Then, N is a nexus over γ, if and only if:

$$
N=\downarrow N=\bigcup_{a \in N} \downarrow a
$$

A proper subnexus P of a nexus N over γ is said to be a prime subnexus of N if $a \wedge b \in P$ implies that $a \in P$ or $b \in P$, for every $a, b \in N$. The set of all prime subnexuses of N is denoted by $\operatorname{Psub}(N)$.
Proposition 2.7. [9] Let P be a proper subnexus of a nexus N over γ. Then, P is a prime subnexus of N, if and only if $N \backslash P$ is closed under finite meet.

Corollary 2.8. [9] Let N be a nexus over γ, and $\emptyset \neq X \subseteq N$. If X is closed under finite meet, then there exists $a \in X$, such that $\uparrow a=\uparrow X$, and $a=\bigwedge X$.

A fuzzy subset f on set X is a function $f: X \rightarrow[0,1]$. We denote by $F(X)$ the set of all fuzzy subsets of X. For $f, g \in F(X)$, we say $f \subseteq g$, if and only if $f(x) \leq g(x)$ for every $x \in X$. Let $f \in F(X)$, and $t \in[0,1]$. Then the set $f_{t}=\{x \in X: f(x) \geq t\}$ is called the level subset of X with respect to f. Also we put $f_{*}=\{x \in X: f(x)=1\}$. For $x \in X$ and $t \in(0,1], x^{t} \in F(X)$ is called a fuzzy point, if and only if $x^{t}(y)=0$ for $y \neq x$ and $x^{t}(x)=t$. The fuzzy point x^{t} is said to belong to $f \in F(X)$, written $x^{t} \in f$, if and only if $f(x) \geq t$. If $f, g \in F(X)$, then $f \subseteq g$, if and only if $x^{t} \in f$ implies $x^{t} \in g$ for every fuzzy point $x^{t} \in F(X)$. For evrey $f, g \in F(X)$, and $r, s \in[0,1],(f \cap g)_{r}=f_{r} \cap g_{r}$, $(f \cup g)_{r}=f_{r} \cup g_{r}$, and if $r \leq s$, then $f_{r} \supseteq f_{s}$. For every $\left\{f_{i}\right\}_{i \in I} \subseteq F(X)$ and $r \in[0,1], \bigcup_{i \in I}\left(f_{i}\right)_{r} \subseteq\left(\bigcup_{i \in I} f_{i}\right)_{r}$ and $\bigcap_{i \in I}\left(f_{i}\right)_{r}=\left(\bigcap_{i \in I} f_{i}\right)_{r}$. For evrey $f, g \in F(X), f \subseteq g \Leftrightarrow f_{r} \subseteq g_{r}$, for all $r \in[0,1]$ (see [8]).

3. Prime fuzzy nexus

In this section, the notions of a fuzzy nexus and a prime fuzzy subnexus of a nexus are defined, and we discuss the relation subnexus and fuzzy subnexus, prime subnexus, and prime fuzzy subnexus.

Definition 3.1. Let f be a fuzzy subset on a nexus N. Then f is called a fuzzy subnexus of N, if $a \leq b$ implies that $f(b) \leq f(a)$ for all $a, b \in N$. The set of all fuzzy subnexuses of N is denoted by $\operatorname{Fsub}(N)$.
Proposition 3.2. Let A be a non-empty subset of a nexus N. Then, $A \in \operatorname{Sub}(N)$, if and only if $\chi_{A} \in \operatorname{Fsub}(N)$, where that χ_{A} is the characteristic function of A.

Proof. Let $A \in \operatorname{Sub}(N)$, and $a \leq b$, for some $a, b \in N$. If $b \in A$, by Proposition 2.3, $a \in A$, and so, $\chi_{A}(a)=\chi_{A}(b)=1$. But if $b \notin A$, then $\chi_{A}(b)=0$, and so, $\chi_{A}(b) \leq \chi_{A}(a)$, hence, $\chi_{A} \in F \operatorname{sub}(N)$.

Conversely, let $(a, b) \in A \times N$, and $b \leq a$. Then $1=\chi_{A}(a) \leq \chi_{A}(b)$, which follows that $\chi_{A}(b)=1$, i.e. $b \in A$. Hence, $A \in \operatorname{Sub}(N)$.

Proposition 3.3. Let f be a fuzzy subset of N. Then $f \in \operatorname{Fsub}(N)$, if and only if $f_{r} \in \operatorname{Sub}(N)$, for every $r \in[0,1]$, where $f_{r} \neq \emptyset$.

Proof. Suppose $f \in \operatorname{Fsub}(N)$ and $f_{r} \neq \emptyset$, for $r \in[0,1]$, and let $b \in$ $N, a \in f_{r}$, such that $b \leq a$. Then $f(b) \geq f(a) \geq t$, and hence, $b \in f_{r}$.

Conversly, suppose that f is a fuzzy subset of N, such that $f_{r} \in$ $\operatorname{sub}(N)$ for every $r \in[0,1]$. Now let $a, b \in N, a \leq b$. We show that $f(b) \leq f(a)$. Let $f(b)=r$, for $r \in[0,1]$. Thus $b \in f_{r} \neq \emptyset$, and since $f_{r} \in \operatorname{Sub}(N)$, we can conclude from Proposition 2.3 that $a \in f_{r}$. Hence, $f(a) \geq r=f(b)$.

Proposition 3.4. Let N be a nexus over γ, and $\left\{f_{i}\right\}_{i \in I} \subseteq F \operatorname{sub}(N)$. Then:
(1) $\bigcup_{i \in I} f_{i} \in \operatorname{Fsub}(N)$.
(2) $\bigcap_{i \in I} f_{i} \in \operatorname{Fsub}(N)$.

Proof. Let $a, b \in N$, and $a \leq b$ Then

$$
\left(\bigcup_{i \in I} f_{i}\right)(b)=\bigvee_{i \in I} f_{i}(b) \leq \bigvee_{i \in I} f_{i}(a)=\left(\bigcup_{i \in I} f_{i}\right)(a)
$$

and

$$
\left(\bigcap_{i \in I} f_{i}\right)(b)=\bigwedge_{i \in I} f_{i}(b) \leq \bigwedge_{i \in I} f_{i}(a)=\left(\bigcap_{i \in I} f_{i}\right)(a) .
$$

Let N be a nexus over γ. For $f \in F(N)$, we put

$$
<f>=\bigcap_{f \subseteq g \in F s u b(N)} g .
$$

It is clear that $<f>$ is a fuzzy subnexus of N.
Proposition 3.5. Let N be a nexus over γ, and f be a fuzzy subset of N Then:

$$
<f>(a)=\bigvee_{b \in \uparrow a} f(b)
$$

Proof. Let f be a fuzzy subset of N. Define $h: N \longrightarrow[0,1]$, with $h(a)=\bigvee_{b \in \uparrow a} f(b)$. We are going to show that h is the smallest fuzzy
subnexus of N, which $f \subseteq h$. Let $a, b \in N$, and $a \leq b$. Since $\uparrow b \subseteq \uparrow a$, we can conclude that

$$
h(a)=\bigvee_{z \in \uparrow a} f(z) \geq \bigvee_{z \in \uparrow b} f(z)=h(b)
$$

Hence, $h \in F \operatorname{sub}(N)$. Now, let $g \in F \operatorname{sub}(N), f \subseteq g$. Then for every $b \in \uparrow a$, we have $g(a) \geq f(b)$, which follows that $g(a) \geq \bigvee_{b \in \uparrow a} f(b)$. Hence, $g(a) \geq h(a)$, i.e. $h \subseteq g$.

Proposition 3.6. If N is a nexus over γ, and $f, g \in F(N)$, then

$$
<f>\cap<g>\geq<f \cap g>
$$

Proof. For every $a \in N$,

$$
\begin{aligned}
(<f>\cap<g>)(a) & =\min \{<f>(a),<g>(a)\} \\
& =\min \left\{\bigvee_{b \in \uparrow a} f(b), \bigvee_{b \in \uparrow a} g(b)\right\} \\
& \geq \bigvee_{b \in \uparrow a} \min \{f(b), g(b)\} \\
& =\bigvee_{b \in \uparrow a}(f \cap g)(b) \\
& =<f \cap g>(a) .
\end{aligned}
$$

Hence, $<f>\cap<g>\geq<f \cap g>$.
Example 3.7. Let $\gamma=3, N=\{(),(1),(2)\}$, and $f, g: N \rightarrow[0,1]$ be functions such that

$$
f=\left(\begin{array}{ccc}
() & (1) & (2) \\
0.1 & 0.2 & 0.3
\end{array}\right)
$$

and

$$
g=\left(\begin{array}{ccc}
() & (1) & (2) \\
0.3 & 0.2 & 0.1
\end{array}\right)
$$

It is clear that $<f>\cap<g>\neq<f \cap g>$.
Definition 3.8. Let N be a non-trivial nexus over γ, i.e. $N \neq\{()\}$. A fuzzy subnexus f of N is called a prime fuzzy subnexus, if

$$
f(a \wedge b) \leq \max \{f(a), f(b)\}
$$

for all $a, b \in N$. The set of all prime fuzzy subnexuses of N is denoted by PFsub(N).

It is clear that if $f \in P F \operatorname{sub}(N)$, then $f(a \wedge b)=f(a)$ or $f(b)$, for all $a, b \in N$.

Proposition 3.9. Let N be a non-trivial nexsus over γ, and f be a fuzzy subnexus of N. The following assertions are equivalent:
(1) f is a prime fuzzy subnexus.
(2) For every $r \in[0,1]$, if f_{r} is a non-empty subset N, then f_{r} is a prime subnexus of N.
(3) For every $r \in[0,1], N \backslash f_{r}$ is closed under finite meet.

Proof. (1) $\Rightarrow(2)$. Let $r \in[0,1]$, and f_{r} be a non-empty subset of N. If $a, b \in N$ and $a \wedge b \in f_{r}$, then $r \leq f(a \wedge b) \leq \max \{f(a), f(b)\}$, and which follows that $a \in f_{r}$ or $b \in f_{r}$. By Proposition 3.3, f_{r} is a prime subnexus of N.
$(2) \Rightarrow(3)$. Suppose that $r \in[0,1]$. If f_{r} is a non-empty subset of N, then, by Proposition 2.7, $N \backslash f_{r}$ is closed under finite meet. If $f_{r}=\emptyset$, then, by Proposition 2.4, we are done.
$(3) \Rightarrow(1)$. Let $a, b \in N$, and $f(a \wedge b)=r \in[0,1]$. Since $a \wedge b \notin$ $N \backslash f_{r}$, we can conclude from the statement (3) that $a \notin N \backslash f_{r}$ or $b \notin N \backslash f_{r}$. Hence $a \in f_{r}$ or $b \in f_{r}$, and which follows that $f(a \wedge b) \leq$ $\max \{f(a), f(b)\}$. The proof is now complete.

Proposition 3.10. Let N be nexus over γ and f be an arbitrary fuzzy subnexus.
(1) If N is a chain, then f is a prime fuzzy subnexus.
(2) If f is a prime fuzzy subnexus and one to one, then N is a chain.

Proof. (1) Suppose that $a, b \in N$, and $a \leq b$. Since $f(a) \geq f(b)$ so $f(a \wedge b)=f(a)=\max \{f(a), f(b)\}$.
(2) Let $a, b \in N$ and $a \wedge b=c$. If $a \neq c$ and $b \neq c$, then since $c<a, c<b$ and f is one to one, we can conclude that $f(c)>f(a)$, and $f(c)>f(b)$. Therefore, $f(c)>\max \{f(a), f(b)\} \geq f(a \wedge b)$, which is a contradiction.

Proposition 3.11. Let $F: M \rightarrow N$ be a homomorphism between nexus. Then the following assertions hold:
(1) If g is a fuzzy subnexus of M, then $f=g F$ is a fuzzy subnexus of N.
(2) If g is a prime fuzzy subnexus of M, then $f=g F$ is a prime fuzzy subnexus of N.

Proof. (1) It is clear that f is a fuzzy subset of N. Suppose that $a, b \in N$, and $a \leq b$. Since F is a homomorphism, we can conclude that $F(a) \leq F(b)$, which follows that $g(F(a)) \geq g(F(b))$. Hence, f is a fuzzy subnexus of N.
(2) For every $a, b \in N$,

$$
\begin{aligned}
f(a \wedge b) & =g F(a \wedge b) \\
& =g(F(a \wedge b)) \\
& =g(F(a) \wedge F(b)) \\
& =\leq \max \{g(F(a), g(F(b))\} .
\end{aligned}
$$

Hence, f is a prime fuzzy subnexus of N.
Remark 3.12. Let $x \in N$ and $t \in(0,1]$. Then $\left\langle x^{t}\right\rangle: N \rightarrow[0,1]$, defined by

$$
<x^{t}>(a)= \begin{cases}t & x \in \uparrow a \\ 0 & x \notin \uparrow a\end{cases}
$$

is a fuzzy subnexus.
Remark 3.13. It is clear that if N is a nexus, and $|N| \leq 4$, then the nexus N is lineary ordered.

Proposition 3.14. Let N be a nexus over γ. The following assertions are equivalent:
(1) Nexus N is lineary ordered.
(2) Every fuzzy subnexus of N is prime.

Proof. (1) $\Rightarrow(2)$. Let $f \in F \operatorname{sub}(N)$, and $a, b \in N$. Hence, $a \leq b$ or $b \leq a$, say $a \leq b$, since nexus N is lineary ordered. Therefore, $f(a \wedge b)=f(a) \geq f(b)$, which follows that $f(a \wedge b)=\max \{f(a), f(b)\}$.
$(2) \Rightarrow(1)$. Suppose that every fuzzy subnexus of N is prime, and $a, b \in N$. Put $a \wedge b=c$, and let $a \neq c, b \neq c$ and $t=\frac{1}{2} \in[0,1]$. It is clearly $t=<c^{t}>(c) \leq \max \left\{<c^{t}>(a),<c^{t}>(b)\right\}=0$, according to statement (2). This is a contradiction. Therefore, nexus N is lineary ordered.

Proposition 3.15. Let N be a nexus over $\gamma, a, b \in N$, and $r, t \in(0,1]$. Then the following assertions hold:
(1) $<a^{r}>\wedge<b^{t}>=<(a \wedge b)^{r \wedge t}>$.
(2) $<(a \wedge b)^{t}>\wedge<a^{t}>=<(a \wedge b)^{t}>$.
(3) $<(a \vee b)^{t}>\wedge<a^{t}>=<a^{t}>$.

Proof. For every $x \in N, a, b \in \uparrow x$, if and only if $a \wedge b \in \uparrow x$. Hence, $<a^{r}>\wedge<b^{t}>=<(a \wedge b)^{r \wedge t}>$. The rest is similar.

Proposition 3.16. Let N be a nexus over $\gamma, a, b \in N$, and $r, t \in(0,1]$. We define $g: N \rightarrow[0,1]$ by

$$
g(x)= \begin{cases}r & a \in \uparrow x \& b \notin \uparrow x \\ s & a \notin \uparrow x \& b \in \uparrow x \\ r \vee s & a, b \in \uparrow x \\ 0 & a \notin \uparrow x \& b \notin \uparrow x\end{cases}
$$

Then the following assertions hold:
(1) $g \in F \operatorname{sub}(N)$ and $g=<a^{r}>\vee<b^{t}>$.
(2) $<a^{r}>\vee<b^{t}>\leq<(a \vee b)^{r \vee s}>$.
(3) $<(a \wedge b)^{t}>\vee<a^{t}>=<a^{t}>$.
(4) $<(a \vee b)^{t}>\vee<a^{t}>=<(a \vee b)^{t}>$.
(5) $<a^{r}>\vee<a^{t}>=<a^{r \vee t}>$.

Proof. Evident.
Proposition 3.17. Let N be a nexus over $\gamma, a, b \in N$, and $r, t \in(0,1]$. The following assertions hold:
(1) $a \leq b$, if and only if $<a^{t}>\leq<b^{t}>$.
(2) $r \leq t$, if and only if $<a^{r}>\leq<a^{t}>$.
(3) $<a^{r}>\wedge<a^{t}>=<a^{r \wedge t}>$.

Proof. (1) Let $a \leq b$. Since $a \in \uparrow x$, implies that $b \in \uparrow x$, we can conclude that $<a^{t}>(x)=t$ implies that $<b^{t}>(x)=t$. Hence, $<a^{t}>\leq<b^{t}>$.

Conversely, let $<a^{t}>\leq<b^{t}>$. Hence, $t=<a^{t}>(a) \leq<b^{t}>$ $(a) \leq t$, i.e. $<b^{t}>(a)=t$. Therefore, $b \in \uparrow a$.

The rest is similar.
Example 3.18. Let $\gamma=3, N=\{(),(1),(2)\}$, and $h, f, g: N \rightarrow[0,1]$ be functions such that

$$
\begin{aligned}
& f=\left(\begin{array}{ccc}
() & (1) & (2) \\
0.3 & 0.2 & 0.125
\end{array}\right), \\
& g=\left(\begin{array}{ccc}
() & (1) & (2) \\
0.4 & 0.35 & 0.1
\end{array}\right)
\end{aligned}
$$

and

$$
h=\left(\begin{array}{ccc}
() & (1) & (2) \\
0.3 & 0.2 & 0.1
\end{array}\right) .
$$

It is clear that $h \in \operatorname{Fsub}(N)$ is prime, and $f, g \in F \operatorname{sub}(N)$. Also, $f \wedge g \subseteq h$ but $f \nsubseteq h$ and $g \nsubseteq h$.

Proposition 3.19. Let N be a nexus, and $f \in F \operatorname{sub}(N)$.
(1) If $|\operatorname{Im} f| \leq 2$ and $\emptyset \neq f_{*} \in \operatorname{Psub}(N)$, then $g \wedge h \subseteq f$ implies that $g \subseteq f$ or $h \subseteq f$, for every $g, h \in F \operatorname{sub}(N)$.
(2) If $g \wedge h \subseteq f$ implies that $g \subseteq f$ or $h \subseteq f$, for every $g, h \in$ $\operatorname{Fsub}(N)$, then $|\operatorname{Imf}| \leq 2$.
(3) If $|\operatorname{Im} f|=2$ and for every $g, h \in \operatorname{Fsub}(N), g \wedge h \subseteq f$ implies that $g \subseteq f$ or $h \subseteq f$, then $\emptyset \neq f_{*} \in \operatorname{Psub}(N)$.
Proof. (1) If $|\operatorname{Imf}|=1$, then $\operatorname{Im} f=\{1\}$, which finishes the proof.
Now, we assume that $|\operatorname{Imf}|=2$, then $\operatorname{Imf}=\{t, 1\}$ with $t<1$. Suppose that there exist two fuzzy subnexuses h and g over N, such that $g \wedge h \subseteq f$ but $g \nsubseteq f$ and $h \nsubseteq f$. Hence, there exist $x, y \in N$, such that $h(x)>f(x)$ and $g(y)>f(y)$. Since f_{*} is a prime subnexus, and $x, y \notin f_{*}$, we can conclude that $x \wedge y \notin f_{*}$, which follows that

$$
(h \wedge g)(x \wedge y)=h(x \wedge y) \wedge g(x \wedge y) \geq h(x) \wedge g(y)>t=f(x \wedge y)
$$

Thus $h \wedge g \nsubseteq f$, which is a contradicition. Thus $g \subseteq f$ or $h \subseteq f$.
(2) Let $|\operatorname{Im} f| \geq 3$. Then there exists $a, b, c \in N$, such that $f(a)<$ $f(b)<f(c)$. Now, we assume that $r, s \in(0,1)$, such that $f(a)<r<$ $f(b)<s<f(c)$. If $a \wedge b \in \uparrow x$, then, by Proposition 3.15,
$\left(<a^{r}>\wedge<b^{s}>\right)(x)=<(a \wedge b)^{r \wedge s}>(x)=r<f(b) \leq f(a \wedge b) \leq f(x)$.
Therefore, $<a^{r}>\wedge<b^{s}>\subseteq f$, which follows that $<a^{r}>\subseteq f$ or $<b^{s}>\subseteq f$. If $<a^{r}>\subseteq f$, then $<a^{r}>(a)=r \leq f(a)$, which is a contradiction. Also, if $<b^{s}>\subseteq f$, then $<b^{s}>(b)=s \leq f(b)$, which is a contradiction. Hence, $|\operatorname{Imf}| \leq 2$.
(3) Suppose that $f_{*}=\emptyset$. Then there exists $a, b \in N$, such that $f(a)=r<f(b)=s<1$ and $\operatorname{Im} f=\{r, s\}$. Now, we assume that $t, k \in(0,1)$, such that $r<t<s<k<1$. If $a \wedge b \in \uparrow x$, then, by Proposition 3.15,

$$
\left(<a^{t}>\wedge<b^{k}>\right)(x)=<(a \wedge b)^{t \wedge k}>(x)=t<f(b) \leq f(a \wedge b) \leq f(x)
$$

Therefore, $<a^{t}>\wedge<b^{k}>\subseteq f$, which follows that $<a^{t}>\subseteq f$ or $<b^{k}>\subseteq f$. Hence, $<a^{t}>(a)=t \leq f(a)$ or $<b^{k}>(b)=k \leq f(b)$, which is a contradiction. Thus $f_{*} \neq \emptyset$ and $f_{*} \neq N$. Let $a, b \in N$ such that $a \wedge b \in f_{*}, a \notin f_{*}$ and $b \notin f_{*}$. Then there exists $r \in(0,1)$ such that $f(a)=f(b)<r<1=f(a \wedge b)$. If $a \wedge b \in \uparrow x$, then, by Proposition 3.15,

$$
\left(<a^{r}>\wedge<b^{r}>\right)(x)=<(a \wedge b)^{r}>(x)=r<1=f(x) .
$$

Therefore, $<a^{r}>\wedge<b^{s}>\subseteq f$, which follows that $<a^{r}>\subseteq f$ or $<b^{s}>\subseteq f$. Hence, $<a^{r}>(a)=r \leq f(a)$ or $<b^{r}>(b)=r \leq f(b)$, which is a contradiction. Therefore, $f_{*} \in \operatorname{Psub}(N)$.

4. Fraction induced by nexus and fuzzy subnexus

In this section, the fractions of a nexus N over an ordinal is defined, and denoted by $S^{-1} N$, where S is a meet closed subset of $F \operatorname{sub}(N)$. It is shown that this structure is a meet-semilattice and isomorphic with $\{h\}^{-1} N$, where $h=\bigwedge S$. Also we show that every ideal of $S^{-1} N$ is of the form of $S^{-1} I$, where I is a subnexus of N.

Definition 4.1. A meet closed subset of $F \operatorname{sub}(N)$ is a non-empty subset S of $F \operatorname{sub}(N)$, such that $f \wedge g \in S$, for every $f, g \in S$.

Let S be a meet closed subset of $F \operatorname{sub}(N)$. Define the relation \sim_{S} on $N \times S$ as follows:

$$
(a, f) \sim_{S}(b, g) \Leftrightarrow \exists h \in S \forall t \in(0,1]\left(<a^{t}>\wedge g \wedge h=<b^{t}>\wedge f \wedge h\right)
$$

We will proved that \sim_{S} is an equivalence relation. Let $a, b, c \in N$, $f, g, h \in S,(a, f) \sim_{S}(b, g)$, and $(b, g) \sim_{S}(c, h)$. Then there exists $h_{1}, h_{2} \in S$ such that

$$
<a^{t}>\wedge g \wedge h_{1}=<b^{t}>\wedge f \wedge h_{1}
$$

and

$$
<b^{t}>\wedge h \wedge h_{2}=<c^{t}>\wedge g \wedge h_{2}
$$

for every $t \in(0,1]$. If $k=h_{1} \wedge h_{2} \wedge g$, then $k \in S$, and for every $t \in(0,1]$, we have

$$
\begin{aligned}
<a^{t}>\wedge h \wedge k & =<a^{t}>\wedge h \wedge h_{1} \wedge h_{2} \wedge g \\
& =<a^{t}>\wedge g \wedge h_{1} \wedge h_{2} \wedge h \\
& =<b^{t}>\wedge f \wedge h_{1} \wedge h_{2} \wedge h \\
& =<b^{t}>\wedge h \wedge h_{2} \wedge f \wedge h_{1} \\
& =<c^{t}>\wedge g \wedge h_{2} \wedge f \wedge h_{1} \\
& =<c^{t}>\wedge f \wedge h_{1} \wedge h_{2} \wedge g \\
& =<c^{t}>\wedge f \wedge k
\end{aligned}
$$

Therefore, \sim_{S} on $N \times S$ is transtive. It is clear that \sim_{S} on $N \times S$ is reflexive and symmetric. Hence, the relation \sim_{S} on $N \times S$ is an equivalence relation. Write $\frac{a}{f}$ for the class of (a, f). The set of all equivalence classes of \sim_{S} on $N \times S$ is denoted by $S^{-1} N$, and it is called the fraction of N with respect to S.

Definition 4.2. Let S be a meet closed subset of $F \operatorname{sub}(N)$, and $\frac{a}{f}, \frac{b}{g} \in$ $S^{-1} N$. Then we say $\frac{a}{f} \leq \frac{b}{g}$, if there exists $h \in S$ such that

$$
<a^{t}>\wedge<b^{t}>\wedge f \wedge h=f \wedge g \wedge<a^{t}>\wedge h
$$

for every $t \in(0,1]$.

Proposition 4.3. Let S be a meet closed subset of $F \operatorname{sub}(N)$. Then $\left(S^{-1} N, \leq\right)$ is a meet-semilattice.

Proof. It is clear that \leq on $S^{-1} N$ is reflexive. Now, let $\frac{a}{f} \leq \frac{b}{g}, \frac{b}{g} \leq \frac{a}{f}$. Thus there exists $h_{1}, h_{2} \in S$, such that:

$$
<a^{t}>\wedge<b^{t}>\wedge f \wedge h_{1}=f \wedge g \wedge<a^{t}>\wedge h_{1}
$$

and

$$
<b^{t}>\wedge<a^{t}>\wedge g \wedge h_{2}=g \wedge f \wedge<b^{t}>\wedge h_{2}
$$

By the commutativity of \wedge, we have

$$
\begin{aligned}
\left(<a^{t}>\wedge g\right) \wedge\left(f \wedge g \wedge h_{1} \wedge h_{2}\right) & =<a^{t}>\wedge<b^{t}>\wedge f \wedge h_{1} \wedge g \wedge h_{2} \\
& =g \wedge f \wedge<b^{t}>\wedge h_{2} \wedge f \wedge h_{1} \\
& =\left(<b^{t}>\wedge f\right) \wedge\left(f \wedge g \wedge h_{1} \wedge h_{2}\right)
\end{aligned}
$$

Since S is a meet closed subset of N, we can conclude that $f \wedge g \wedge$ $h_{1} \wedge h_{2} \in S$, which follows that $(a, f) \sim_{S}(b, g)$, and $\frac{a}{f}=\frac{b}{g}$. Thus \leq on $S^{-1} N$ is antisymmetric.

Let $\frac{a}{f} \leq \frac{b}{g}$ and $\frac{b}{g} \leq \frac{c}{h}$, for some $\frac{a}{f}, \frac{b}{g}, \frac{c}{h} \in S^{-1} N$. Then there exists $h_{1}, h_{2} \in S$, such that

$$
<a^{t}>\wedge<b^{t}>\wedge f \wedge h_{1}=f \wedge g \wedge<a^{t}>\wedge h_{1}
$$

and

$$
<b^{t}>\wedge<c^{t}>\wedge g \wedge h_{2}=g \wedge h \wedge<b^{t}>\wedge h_{2}
$$

Hence,

$$
\begin{aligned}
\left(f \wedge h \wedge<a^{t}>\right) \wedge\left(g \wedge h_{1} \wedge h_{2}\right)= & \left(f \wedge g \wedge<a^{t}>\wedge h_{1}\right) \wedge \\
& \left(h \wedge h_{2} \wedge g\right) \\
= & \left(f \wedge<a^{t}>\wedge<b^{t}>\wedge h_{1}\right) \wedge \\
& \left(h \wedge h_{2} \wedge g\right) \\
= & \left(g \wedge h \wedge<b^{t}>\wedge h_{2}\right) \wedge \\
& \left(<a^{t}>\wedge f \wedge h_{1}\right) \\
= & \left(g \wedge<c^{t}>\wedge<b^{t}>\wedge h_{2}\right) \wedge \\
& \left(<a^{t}>\wedge f \wedge h_{1}\right) \\
= & \left(f \wedge<b^{t}>\wedge<a^{t}>\wedge h_{1}\right) \wedge \\
& \left(g \wedge<c^{t}>\wedge h_{2}\right) \\
= & \left(f \wedge g \wedge<a^{t}>\wedge h_{1}\right) \wedge \\
& \left(g \wedge<c^{t}>\wedge h_{2}\right) \\
= & \left(f \wedge<c^{t}>\wedge<a^{t}>\right) \wedge \\
& \left(g \wedge h_{1} \wedge h_{2}\right) .
\end{aligned}
$$

Since S is a meet closed subset of $F \operatorname{sub}(N)$, we can conclude that $g \wedge h_{1} \wedge h_{2} \in S$, which followes that $\frac{a}{f} \leq \frac{c}{h}$. Thus \leq on $S^{-1} N$ is transitive, and ($S^{-1} N, \leq$) is a partially ordered set.

Let $\frac{a}{f}, \frac{b}{g} \in S^{-1} N$. Since for every $t \in[0,1]$, by Lemma 3.15,

$$
(f \wedge g) \wedge<a^{t}>\wedge<(a \wedge b)^{t}>=(f \wedge g) \wedge f \wedge<(a \wedge b)^{t}>
$$

and

$$
(f \wedge g) \wedge<b^{t}>\wedge<(a \wedge b)^{t}>=(f \wedge g) \wedge g \wedge<(a \wedge b)^{t}>
$$

we can conclude that $\frac{a \wedge b}{f \wedge g} \leq \frac{a}{f}$ and $\frac{a \wedge b}{f \wedge g} \leq \frac{b}{g}$. Now, let $\frac{c}{h} \in S^{-1} N$, such that $\frac{c}{h} \leq \frac{a}{f}$ and $\frac{c}{h} \leq \frac{b}{g}$. Then there exists $v, w \in S$, such that

$$
h \wedge<a^{t}>\wedge<c^{t}>\wedge v=h \wedge f \wedge<c^{t}>\wedge v
$$

and

$$
h \wedge<b^{t}>\wedge<c^{t}>\wedge w=h \wedge g \wedge<c^{t}>\wedge w
$$

Hence,

$$
\begin{aligned}
\left(h \wedge f \wedge g \wedge<c^{t}>\right) \wedge(v \wedge w)= & \left(h \wedge f \wedge<c^{t}>\wedge v\right) \wedge \\
& \left(h \wedge g \wedge<c^{t}>\wedge w\right) \\
= & \left(h \wedge<a^{t}>\wedge<c^{t}>\wedge v\right) \wedge \\
& \left(h \wedge<b^{t}>\wedge<c^{t}>\wedge w\right) \\
= & \left(h \wedge<a^{t}>\wedge<b^{t}>\wedge<c^{t}>\right) \wedge \\
& (v \wedge w) \\
= & \left(h \wedge<(a \wedge b)^{t}>\wedge<c^{t}>\right) \wedge \\
& (v \wedge w)
\end{aligned}
$$

Since S is a meet closed subset of N, we can conclude that $v \wedge w \in S$, which follows that $\frac{c}{h} \leq \frac{a \wedge b}{f \wedge g}$. Therefore, $\frac{a}{f} \wedge \frac{b}{g}=\frac{a \wedge b}{f \wedge g}$.

Proposition 4.4. Let S be a meet closed subset of $\operatorname{Fsub}(N)$. For every $a \in N$ and $f, g \in S, \frac{a}{f}=\frac{a}{g}$ in $S^{-1} N$.
Proof. Since $\left(<a^{t}>\wedge g\right) \wedge(f \wedge g)=\left(<a^{t}>\wedge f\right) \wedge(f \wedge g)$, and $f \wedge g \in S$, we have $(a, f) \sim_{S}(a, g)$, and $\frac{a}{f}=\frac{a}{g}$ in $S^{-1} N$.
Proposition 4.5. Let N be a nexus over γ, and let S be a meet closed subset of $\operatorname{Fsub}(N)$.
(1) Every ideal of $S^{-1} N$ is of the form of $S^{-1} I$, where I is a subnexus of N.
(2) If K is a finite ideal of $S^{-1} N$, and $h=\Lambda S \in S$, then there exists a cyclic subnexus I of N such that $K=S^{-1} I$.
(3) If M is a prime ideal of $S^{-1} N$, then there exists $I \in \operatorname{Psub}(N)$ such that $M=S^{-1} I$.
(4) If M is a maximal ideal of $S^{-1} N$, then there exists $I \in \operatorname{Sub}(N)$ such that $M=S^{-1} I$, and I is a maximal subnexus of N.
Proof. (1) Let K be an ideal of $S^{-1} N$, and

$$
I=\left\{a \in N \left\lvert\, \frac{a}{f} \in K\right. \text { for some } f \in S\right\} .
$$

Suppose that $a, b \in N, b \in I$, and $a \leq b$. Then there exists $f \in S$, such that $\frac{b}{f} \in K$. By Proposition 3.17, $<a^{t}>\leq<b^{t}>$ for every $t \in(0,1]$. Then

$$
<a^{t}>\wedge<b^{t}>\wedge f=<a^{t}>\wedge f
$$

for every $t \in(0,1]$. Hence, $\frac{a}{f} \leq \frac{b}{f} \in K$. Since K is an ideal of $S^{-1} N$, we can conclude that $\frac{a}{f} \in K$, which follows that $a \in I$. Now, by Proposition 2.3, I is a subnexus of N, and it is clear that $K=S^{-1} I$.
(2) Let K be a finite ideal of $S^{-1} N$. It is well known that every finite directed subset of $S^{-1} N$ has the largest element. Since K is
a directed lower set, we can conclude that there exists $\frac{a}{f} \in K$, such that $K=\downarrow \frac{a}{f}$. We put $I=\downarrow a$, and we claim that $K=S^{-1} I$. Let $\frac{b}{g} \in K$. Then there exists $k \in S$, such that, for every $t \in(0,1]$, $g \wedge<a^{t}>\wedge<b^{t}>\wedge k=g \wedge f \wedge<b^{t}>\wedge k$, which follows that

$$
\begin{aligned}
\left(<(a \wedge b)^{t}>\wedge g\right) \wedge(g \wedge f \wedge k)= & \left(<a^{t}>\wedge<b^{t}>\wedge g\right) \wedge \\
& (g \wedge f \wedge k) \\
= & \left(<b^{t}>\wedge f\right) \wedge(g \wedge f \wedge k)
\end{aligned}
$$

for every $t \in(0,1]$. Therefore, $\frac{b}{g}=\frac{a \wedge b}{f} \in S^{-1} I$. Now, let $b \in I$ and $g \in S$. Then, by Proposition 3.17,

$$
\begin{aligned}
g \wedge<a^{t}>\wedge<b^{t}>\wedge h & =<b^{t}>\wedge h \\
& =g \wedge f \wedge<b^{t}>\wedge h
\end{aligned}
$$

for every $t \in(0,1]$. Hence, $\frac{b}{g} \leq \frac{a}{f} \in K$. Since K is an ideal of $S^{-1} N$, we can conclude that $\frac{b}{g} \in K$. The proof is now complete.
(3) Let $I=\left\{a \in N \left\lvert\, \frac{a}{f} \in M\right.\right.$ for some $\left.f \in S\right\}$. Then, by statement (1), $M=S^{-1} I$. Let $a, b \in N$, such that $a \wedge b \in I$. Then $\frac{a \wedge b}{f} \in S^{-1} I$ for some $f \in S$. Since $\frac{a \wedge b}{f}=\frac{a}{f} \wedge \frac{b}{f}$ and $S^{-1} I$ is a prime ideal, we can conclude that $\frac{a}{f} \in S^{-1} I$ or $\frac{b}{f} \in S^{-1} I$. Hence, $a \in I$ or $b \in I$, i.e. $I \in \operatorname{Psub}(N)$.
(4) Let $I=\left\{a \in N \left\lvert\, \frac{a}{f} \in M\right.\right.$ for some $\left.f \in S\right\}$. Then, by statement (1), $M=S^{-1} I$. Suppose I is not a maximal subnexus of N. Then there exist a subnexus J between I and N. Put $M_{1}=S^{-1} J$. Then M_{1} is an ideal of $S^{-1} N$, and $S^{-1} I \subset S^{-1} J$, which is contradicition.

Lemma 4.6. Let S be a meet closed subset of $F \operatorname{sub}(N)$, and $h=\bigwedge S$. For every $a, b \in N$ and $f, g \in S$
(1) If $(a, h) \sim_{S}(b, h)$, then $(a, h) \sim_{\{h\}}(b, h)$.
(2) If $h \in S$ and $(a, h) \sim_{\{h\}}(b, h)$, then $(a, h) \sim_{S}(b, h)$.
(3) If $\frac{a}{f} \leq \frac{b}{g}$ in $S^{-1} N$, then $\frac{a}{h} \leq \frac{b}{h}$ in $\{h\}^{-1} N$.

Proof. (1) We first suppose that $(a, h) \sim_{S}(b, h)$. Then there exists $v \in S$ such that

$$
<a^{t}>\wedge h=<a^{t}>\wedge h \wedge v=<b^{t}>\wedge h \wedge v=<b^{t}>\wedge h
$$

It follows that $(a, h) \sim_{\{h\}}(b, h)$.
(2) By hypothesis, $<a^{t}>\wedge h=<b^{t}>\wedge h$. Since $h \in S$, we can conclude that $(a, h) \sim_{S}(b, h)$.
(3) Since $\frac{a}{f} \leq \frac{b}{g}$ in $S^{-1} N$, we can conclude that there exists $v \in S$, such that

$$
<a^{t}>\wedge<b^{t}>\wedge f \wedge v=f \wedge g \wedge<a^{t}>\wedge v .
$$

It is clear that $f \wedge v \wedge h=h=f \wedge g \wedge v \wedge h$. Then:

$$
\begin{aligned}
h \wedge<a^{t}>\wedge<b^{t}> & =<a^{t}>\wedge<b^{t}>\wedge f \wedge v \wedge h \\
& =f \wedge g \wedge<a^{t}>\wedge h \wedge v \\
& =h \wedge<a^{t}>,
\end{aligned}
$$

i.e. $\frac{a}{h} \leq \frac{b}{h}$ in $\{h\}^{-1} N$.

Proposition 4.7. Let S be a meet closed subset of $F \operatorname{sub}(N)$, and $h=$ $\wedge S$. We define $\varphi: S^{-1} N \longrightarrow\{h\}^{-1} N$ with $\varphi\left(\frac{a}{f}\right)=\frac{a}{h}$. Then we have the following conclusions:
(1) φ is an onto meet-semilattice homomorphism.
(2) If $h \in S$, then φ is one to one. In particular, this shows if $h \in S$, then $S^{-1} N \cong\{h\}^{-1} N$ as meet-semilattices.
Proof. (1) By Lemma 4.6, φ is well defined, and it also preserves the order. Let $\frac{a}{f}, \frac{b}{g} \in S^{-1} N$. Then, by the proof of Proposition 4.3,

$$
\varphi\left(\frac{a}{f} \wedge \frac{b}{g}\right)=\varphi\left(\frac{a \wedge b}{f \wedge g}\right)=\frac{a \wedge b}{h}=\frac{a}{h} \wedge \frac{b}{h}=\varphi\left(\frac{a}{f}\right) \wedge \varphi\left(\frac{b}{g}\right) .
$$

Therefore, φ is an onto meet-semilattice homomorphism.
(2) Let $\frac{a}{f}, \frac{b}{g} \in S^{-1} N$, and $\varphi\left(\frac{a}{f}\right)=\varphi\left(\frac{b}{g}\right)$. Then $\frac{a}{h}=\frac{b}{h}$ and

$$
<a^{t}>\wedge h \wedge g=<a^{t}>\wedge h=<b^{t}>\wedge h=<b^{t}>\wedge f \wedge h,
$$

for every $t \in(0,1]$. Since $h \in S$, we can conclude that $\frac{a}{f}=\frac{b}{g}$, which followes that φ is one to one.
Proposition 4.8. Let N be a nexus over γ, and let S be a meet closed subset of $\operatorname{Fsub}(N)$. If $h=\Lambda S$, then $\{h\}^{-1} N \cong \overbrace{\downarrow h}$ as meetsemilattices, where $\overbrace{\downarrow}=\left\{h \wedge\left\langle a^{1}\right\rangle ; a \in N\right\}$.
Proof. We define $\varphi:\{h\}^{-1} N \longrightarrow \overbrace{\downarrow h}$ with $\varphi\left(\frac{a}{h}\right)=<a^{1}>\wedge h$. For every $a, b \in N$,

$$
\frac{a}{h}=\frac{b}{h} \Rightarrow<a^{1}>\wedge h=<b^{1}>\wedge h \Rightarrow \varphi\left(\frac{a}{h}\right)=\varphi\left(\frac{b}{h}\right) .
$$

Hence, φ is well defined. It is clear that φ is onto. Now, let $\frac{a}{h} \neq \frac{b}{h}$. We show that $\varphi\left(\frac{a}{h}\right) \neq \varphi\left(\frac{b}{h}\right)$. Since $\frac{a}{h} \neq \frac{b}{h}$, there exists $t \in(0,1]$, such that $<a^{t}>\wedge h \neq<b^{t}>\wedge h$. If $t=1$, then $\varphi\left(\frac{a}{h}\right) \neq \varphi\left(\frac{b}{h}\right)$. Let $t<1$ and $<a^{1}>\wedge h=<b^{1}>\wedge h$. For every $x \in N$,
(1) If $a, b \in \uparrow x$, then $<a^{t}>(x)=t=<b^{t}>(x)$, which follows that $\left(<a^{t}>\wedge h\right)(x)=t \wedge h(x)=\left(<b^{t}>\wedge h\right)(x)$.
(2) If $a, b \notin \uparrow x$, then $<a^{t}>(x)=0=<b^{t}>(x)$, which follows that $\left(<a^{t}>\wedge h\right)(x)=0=\left(<b^{t}>\wedge h\right)(x)$.
(3) If $a \in \uparrow x$ and $b \notin \uparrow x$, then

$$
\begin{aligned}
h(x) & =1 \wedge h(x) \\
& =\left(<a^{1}>\wedge h\right)(x) \\
& =\left(<b^{1}>\wedge h\right)(x) \\
& =0 \wedge h(x) \\
& =0,
\end{aligned}
$$

which follows that $\left(<a^{t}>\wedge h\right)(x)=0=\left(<b^{t}>\wedge h\right)(x)$.
(4) Similarly, if $a \notin \uparrow x$ and $b \in \uparrow x$, then

$$
\left(<a^{t}>\wedge h\right)(x)=0=\left(<b^{t}>\wedge h\right)(x)
$$

Therefore, $<a^{t}>\wedge h=<b^{t}>\wedge h$, which is a contradicition. Then $<a^{1}>\wedge h \neq<b^{1}>\wedge h$. Hence φ is one to one. Let $\frac{a}{h}, \frac{b}{h} \in\{h\}^{-1} N$. Then, by Proposition 3.15 and the proof of Proposition 4.3,

$$
\begin{aligned}
\varphi\left(\frac{a}{h} \wedge \frac{b}{h}\right) & =\varphi\left(\frac{a \wedge b}{h}\right) \\
& =<(a \wedge b)^{1}>\wedge h \\
& =\left(<a^{1}>\wedge h\right) \wedge\left(<b^{1}>\wedge h\right) \\
& =\varphi\left(\frac{a}{h}\right) \wedge \varphi\left(\frac{b}{h}\right) .
\end{aligned}
$$

Therefore, φ is a meet-semilattice isomorphism.
Corollary 4.9. Let N be a nexus over γ, and let S_{1}, S_{2} be meet closed subsets of $F \operatorname{sub}(N)$. If $\bigwedge S_{1}=\bigwedge S_{2} \in S_{1} \cap S_{2}$, then $S_{1}^{-1} N \cong S_{2}^{-1} N$ as meet-semilattices.

Proof. By Propositions 4.7 and 4.8, it is clear.
Proposition 4.10. Let N be a nexus over γ, and $\{()\} \neq X \subseteq N \backslash\{()\}$ be closed under finite meet. Then for every $t \in(0,1], S_{t}=\left\{<a^{t}\right\rangle$ $\mid a \in X\}$ is closed under finite meet, and there exists $b \in X$, such that $<b^{t}>=\bigwedge S_{t}$.

Proof. By Proposition 3.15, S_{t} is closed under finite meet. Since $X \subseteq$ N, and X is closed under finite meet, we can conclude from Corollary 2.8 that there exists $b \in X$, such that $b=\bigwedge X$. By Proposition 3.17, $<b^{t}>=\bigwedge_{a \in X}<a^{t}>$.

Acknowledgment

We are indebted to the referees for helpful comments that have helped improve the paper.

References

1. D. Afkhami, N. Ahmadkhah and A. Hasankhani, A fraction of nexuses, Int. J. Algebra 5 (18) (2011), 883-896.
2. D. Afkhami Taba, A. Hasankhani and M. Bolurian, Soft nexuses, Computers and Mathematics with Applications 64 (2012), 1812-1821.
3. J.C. Bezdek, Fuzzy partitions and relations and axiomatic basis for clustering, Fuzzy Sets and Systems 1 (1978), 111-127.
4. B. Davvaz, Roughness based on fuzzy ideals, Information Sciences 176 (2006), 2417-2437.
5. K. Devlin, The Joy of Sets: Fundamentals of Contemporary Set, Springer-Verlag New York Berlin Heidelberg London Paris (1993).
6. E. Eslami and John N. Mordeson, Completions and fuzzy power series subrings, Fuzzy Sets and Systems 82 (1996), 97-102.
7. A.A. Estaji S. Khodaii and S. Bahrami, On rough set and fuzzy sublattice, Information Sciences 181 (2011), 3981-3994.
8. A.A. Estaji and H. Zeinaliyan, Fuzzy primary and fuzzy P-primary subacts, World Applied Sciences Journal 16(11) (2012), 1571-1577.
9. A.A. Estaji and A.As. Estaji, Nexus over an ordinal, Journal of Uncertain Systems 9(3) (2015), 183-197. .
10. D. Klaua, Über einen Ansatz zur mehrwertigen Mengenlehre, Monatsb. Deutsch. Akad. Wiss. Berlin 7 (1965), 859-876.
11. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, Continuous Lattices and Domains, Cambridge University Press, 2003.
12. H. Hadji-Abadi and M.M. Zahedi, Some results on fuzzy prime spectrum of a ring, Fuzzy Sets and Systems 77 (1996), 235-240.
13. A. Saeidi Rashkolia, A. Hasankhani, Fuzzey Subnexuses, Italian Journal of pure and applied mathematics 28 (2011), 229-242.
14. V.N. Salii, Binary L-relations, Izv. Vysh. Uchebn. Zaved., Matematika 44(1) (1965), 133-145.
15. L.A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338-353.

A. A. Estaji

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.
Email: aaestaji@hsu.ac.ir T. Haghdadi

Faculty of Basic Sciences, Birjand University of technology Birjand, Iran.
Email: t.haghdady@gmail.com

J. Farokhi

Faculty of Basic Sciences, Birjand University of technology Birjand, Iran.
Email: javadfarrokhi90@gmail.com

Journal of Algebraic Systems

FUZZY NEXUS OVER AN ORDINAL

A.A. ESTAJI, T. HAGHDADI AND J. FAROKHI

پ्يوند فازى روى يك عدد ترتيبى

$$
\begin{aligned}
& \text { على اكبر استاجي، تكتم حقدادى و جواد فرخى } \\
& \text { دانشگاه حكيم سبزوارى، دانشگاه صنغتى بيرجند }
\end{aligned}
$$

ما در اين مقاله زير ريوندهاى فازى از يك ييوند N را تعريف میكنيه. هـ تينين به مطالعه

كلمات كليدى: پيوند، عدد ترتيبى ، زيرييوندهاى فازى اول و بِيوند خارج قسمتى .

[^0]: MSC(2010): Primary: 03E72; Secondary: 06A12, 11Y50
 Keywords: Nexus, Ordinal, Prime fuzzy subnexus, Fraction of a nexus. Received: 7 February 2015, Revised: 14 June 2015.
 *Corresponding author.

