Journal of Algebraic Systems

Vol. 3, No. 1, (2015), pp 83-95

COMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS

MARYAM JALALI-RAD AND ALI REZA ASHRAFI*

Abstract

Suppose G is a finite group, A and B are conjugacy classes of G, and $\eta(A B)$ denotes the number of conjugacy classes contained in $A B$. The set of all $\eta(A B)$, such that A, B run over conjugacy classes of G, is denoted by $\eta(G)$. The aim of this paper is to compute $\eta(G)$, for $G \in\left\{D_{2 n}, T_{4 n}, U_{6 n}, V_{8 n}, S D_{8 n}\right\}$ or G is a decomposable group of order $2 p q$, a group of order $4 p$ or p^{3}, where p and q are primes.

1. Introduction

Throughout this paper, all groups are assumed to be finite. If G is such a group, and A and B are conjugacy classes of G, then it is an elementary fact that $A B$ is a G-invariant subset. Thus, $A B$ can be written as a union of conjugacy classes of G. The number of distinct conjugacy classes of G contained in $A B$ is denoted by $\eta(A B)$. The set of all $\eta(A B)$, such that A, B run over conjugacy classes of G, is denoted by $\eta(G)$.

The most important works on the problem of computing the number of G-conjugacy classes in the product of conjugacy classes were carried out by Adan-Bante. Here, we report some of her interesting results in this topic. Suppose $S L(2, q)$ is the group of 2×2 matrices, with determinant one over a finite field of order q. Adan-Bante and Harris [3] proved that if q is even, then the product of any two noncentral conjugacy classes of $S L(2, q)$ is a union of at least $q-1$ distinct

[^0]conjugacy classes of $S L(2, q)$; and if $q>3$ is odd, then the product of any two non-central conjugacy classes of $S L(2, q)$ is the union of at least $\frac{q+3}{2}$ distinct conjugacy classes of $S L(2, q)$. Adan-Bante [1] proved that, for any finite supersolvable group G, and any conjugacy class A of $G, d l\left(\frac{G}{C_{G}(A)}\right) \leq 2 \eta\left(A A^{-1}\right)-1$, where $C_{G}(A)$ denotes the centralizer of A in G, and $d l(H)$ is the derived length of a group H. In [2], she also proved that if p is an odd prime number, G is a finite p-group, and a^{G} and b^{G} are the conjugacy classes of G of size p; then either $a^{G} b^{G}=(a b)^{G}$ or $a^{G} b^{G}$ is a union of at least $\frac{p+1}{2}$ distinct conjugacy classes. If G is nilpotent, and a^{G} is again a conjugacy class of G of size p, then either $a^{G} a^{G}=\left(a^{2}\right)^{G}$ or $a^{G} a^{G}$ is a union of exactly $\frac{p+1}{2}$ distinct conjugacy classes of G of size p.

Darafsheh and Robati [6] continued the works of Adan-Bante and proved that if $[a, G]=\{[a, x] \mid x \in G\}$, and $[a, G]$ be a subset of $Z(G)$, then we have:
i. $\eta\left(a^{G} b^{G}\right)=\left|a^{G}\right|\left|b^{G}\right| /\left|[a, G] \cap\left(b^{-1}\right)^{G} b^{G}\right|\left|(a b)^{G}\right|$;
ii. If $a^{G} b^{G} \cap Z(G) \neq \emptyset$, then $\eta\left(a^{G} b^{G}\right)=\left|a^{G}\right|$;
iii. If $\left|a^{G}\right|$ is an odd number, then $\eta\left(a^{G} a^{G}\right)=1$;
iv. If $\left|a^{G}\right|$ is an even number, then $\eta\left(a^{G} a^{G}\right)=2^{n}$, where n is the number of cyclic direct factors in the decomposition of the Sylow 2 -subgroup of $[a, G]$.
We encourage the interested readers to consult also the papers by Arad and his co-authors [4, 5], and references therein for more information on this topic. Our notation is standard, and can be taken from [9, 10].

2. Main results

The aim of this section is to compute $\eta(G)$, where

$$
G \in\left\{D_{2 n}, V_{8 n}, T_{4 n}, U_{6 n}, S D_{8 n}\right\}
$$

or G is a group of orders $2 p q, 4 p, p^{3}$, such that p and q are prime numbers. The case of $|G|=2 p q$ and G that is indecomposable, is retained as an open question. The semi-dihedral group $S D_{8 n}$, dicyclic group $T_{4 n}$, and the groups $U_{6 n}$ and $V_{8 n}$ have the following presentations, respectively:

$$
\begin{aligned}
S D_{8 n} & =\left\langle a, b \mid a^{4 n}=b^{2}=e, b a b=a^{2 n-1}\right\rangle \\
T_{4 n} & =\left\langle a, b \mid a^{2 n}=1, a^{n}=b^{2}, b^{-1} a b=a^{-1}\right\rangle, \\
U_{6 n} & =\left\langle a, b \mid a^{2 n}=b^{3}=e, b a b=a\right\rangle, \\
V_{8 n} & =\left\langle a, b \mid a^{2 n}=b^{4}=e, a b a=b^{-1}, a b^{-1} a=b\right\rangle .
\end{aligned}
$$

It is easy to see the dicyclic group $T_{4 n}$ has the order $4 n$, and the cyclic subgroup $\langle a\rangle$ of $T_{4 n}$ has the index 2 [10]. The conjugacy classes of $U_{6 n}$ and $V_{8 n}$ (n is odd), computed in the famous book of James and Liebeck [10]. The groups $V_{8 n}$ (n is even), and $S D_{8 n}$ have the order $8 n$, and their conjugacy classes have been computed in $[7,8]$, respectively.

The following simple lemma is crucial throughout this paper:

Lemma 2.1. Suppose G is a finite group, and A and B are conjugacy classes of G. Then,
(1) $\eta(A B)=\eta(B A)$,
(2) If A is central, then $\eta(A B)=1$,
(3) If $|A|=|B|=2$, then $\eta(A B)=1,2[2$, Proposition 2.7],
(4) $\eta(A B) \leq|A|[6$, Lemma 3.1].

Proposition 2.2.

$$
\eta\left(D_{2 n}\right)=\left\{\begin{array}{lll}
\left\{1,2, \frac{n+1}{2}\right\} & 2 \nmid n & \\
\left\{1,2, \frac{n}{4}, \frac{n}{4}+1\right\} & n \equiv 0 & (\bmod 4) \\
\left\{1,2, \frac{n+2}{4}\right\} & n \equiv 2 & (\bmod 4)
\end{array} .\right.
$$

Proof. The dihedral group $D_{2 n}$ can be presented by

$$
D_{2 n}=\left\langle a, b \mid a^{n}=b^{2}=e, b^{-1} a b=a^{-1}\right\rangle
$$

We first assume that n is odd. Then the conjugacy classes of $D_{2 n}$ are $\{e\},\left\{a^{r}, a^{-r}\right\}, 1 \leq r \leq \frac{n-1}{2}$ or $\left\{a^{s} b ; 0 \leq s \leq n-1\right\}$. Thus the products of non-identity conjugacy classes are:

- $\left\{a^{r}, a^{-r}\right\} \cdot\left\{a^{s}, a^{-s}\right\}=\left\{a^{r+s}, a^{-(r+s)}\right\} \cup\left\{a^{r-s}, a^{-(r-s)}\right\}$,
- $\left\{a^{r}, a^{-r}\right\} \cdot\left\{a^{s} b ; 0 \leq s \leq n-1\right\}=\left\{a^{r+s} b, a^{s-r} b ; 0 \leq s \leq n-1\right\}=$ $\left\{a^{s} b ; 0 \leq s \leq n-1\right\}$,
- $\left\{a^{s} b ; 0 \leq s \leq n-1\right\} \cdot\left\{a^{r} b ; 0 \leq r \leq n-1\right\}=\left\{a^{s} b a^{r} b ; 0 \leq r, s \leq\right.$ $n-1\}=\bigcup_{r=0}^{\frac{n-1}{2}}\left\{a^{r}, a^{-r}\right\}$.

Hence, $\eta\left(D_{2 n}\right)=\left\{1,2, \frac{n+1}{2}\right\}$. Next, assume that $n=2 m$. The conjugacy classes of $D_{2 n}$ are $\{e\},\left\{a^{m}\right\}\left\{a^{r}, a^{-r}\right\}, 1 \leq r \leq m-1,\left\{a^{s} b ; 0 \leq s \leq\right.$ $2(n-1), 2 \mid s\},\left\{a^{s} b ; 0 \leq s \leq 2(n-1), 2 \nmid s\right\}$. Suppose $0 \leq r, l \leq m-1$, $F_{1}=\{0 \leq s \leq 2(n-1), 2 \mid s\}$, and $F_{2}=\{0 \leq s \leq 2(n-1), 2 \nmid s\}$. The products of non-identity conjugacy classes are as follows:

$$
\begin{aligned}
\left\{a^{r}, a^{-r}\right\} \cdot\left\{a^{l}, a^{-l}\right\} & =\left\{a^{r-l}, a^{l-r}\right\} \cup\left\{a^{r+l}, a^{-(l+r)}\right\}, \\
\left\{a^{r}, a^{-r}\right\} \cdot\left\{a^{s} b ; s \in F_{1}\right\} & =\left\{\begin{array}{lll}
\left\{a^{s} b ; s \in F_{1}\right\} & 2 \mid r \\
\left\{a^{s} b ; s \in F_{2}\right\} & 2 \nmid r
\end{array},\right. \\
\left\{a^{r}, a^{-r}\right\} \cdot\left\{a^{s} b ; s \in F_{2}\right\} & =\left\{\begin{array}{lll}
\left\{a^{s} b ; s \in F_{1}\right\} & 2 \nmid r \\
\left\{a^{s} b ; s \in F_{2}\right\} & 2 \mid r
\end{array},\right. \\
\left\{a^{s} b ; s \in F_{1}\right\} \cdot\left\{a^{r} b ; r \in F_{1}\right\} & =\{e\} \cup\left\{\begin{array}{lll}
\bigcup_{r}^{\frac{n-2}{4}=1}\left\{a^{2 r}, a^{-2 r}\right\} & n \equiv 2 & (\bmod 4) \\
\bigcup_{r=1}^{4}\left\{a^{2 r}, a^{-2 r}\right\} & n \equiv 0 & (\bmod 4)
\end{array},\right. \\
\left\{a^{s} b ; s \in F_{1}\right\} \cdot\left\{a^{r} b ; r \in F_{2}\right\} & =\{e\} \cup\left\{\begin{array}{lll}
\bigcup_{r=1}^{\frac{n-2}{4}}\left\{a^{2 r}, a^{-2 r}\right\} & n \equiv 0 & (\bmod 4) \\
\bigcup_{r=1}^{n}\left\{a^{2 r}, a^{-2 r}\right\} & n \equiv 2 & (\bmod 4)
\end{array},\right. \\
\left\{a^{s} b ; s \in F_{2}\right\} \cdot\left\{a^{r} b ; s \in F_{2}\right\} & =\{e\} \cup\left\{\begin{array}{lll}
\bigcup_{r}^{\frac{n-6}{4}}\left(a^{2 r+1}\right)^{D_{2 n}} & n \equiv 2 & (\bmod 4) \\
\bigcup_{r=0}^{\frac{n}{4}}\left(a^{2 r+1}\right)^{D_{2 n}} & n \equiv 0 & (\bmod 4)
\end{array} .\right.
\end{aligned}
$$

This completes the proof.

Proposition 2.3.

$$
\eta\left(V_{8 n}\right)= \begin{cases}\left\{1,2, \frac{n}{2}, \frac{n}{2}+1\right\} & n \text { is even } \\ \{1,2, n, n+1\} & n \text { is odd }\end{cases}
$$

Proof. By Lemma $2.1(1,2)$, it is enough to compute $\eta(A B)$, where A and B are the non-central conjugacy classes of $V_{8 n}$. Our main proof considers two separate cases, in which n is odd or even.

We first assume that n is odd. Then by [10], the conjugacy classes of $V_{8 n}$ are as follows:
$\{e\},\left\{b^{2}\right\},\left\{a^{2 r+1}, a^{-(2 r+1)} b^{2}\right\}, 0 \leq r \leq \frac{n-1}{2},\left\{a^{2 s}, a^{-2 s}\right\},\left\{a^{2 s} b^{2}, a^{-2 s} b^{2}\right\}$,
$1 \leq s \leq \frac{n-1}{2},\left\{a^{j} b^{k} ; k=1,3 \& 2 \mid j\right\}$ and $\left\{a^{j} b^{k} ; k=1,3 \& 2 \nmid j\right\}$.
Before starting our calculations, we notice that if A and B are two conjugacy classes of length 2 , then by Lemma $2.1(3), \eta(A B)=2$. Thus, it is enough to consider the cases where $(|A|,|B|) \neq(2,2)$.

- $\left(a^{2 s}, a^{-2 s}\right\} \cdot\left\{a^{j} b^{k} ; k=1,3\right\}=\left\{a^{j+2 s} b^{k} ; k=1,3\right\} \cup\left\{a^{j-2 s} b^{k} ; k=1,3\right\}$,
- $\left\{a^{2 r+1}, a^{-(2 r+1)} b^{2}\right\} \cdot\left\{a^{j} b^{k} ; k=1,3 \& 2 \nmid j\right\}=\left\{a^{j} b^{k} ; k=1,3 \& 2 \mid\right.$ $j\} \cup\left\{a^{j} b^{k} ; k=1,3 \& 2 \nmid j\right\}$,
- $\left\{a^{2 r+1}, a^{-(2 r+1)} b^{2}\right\} \cdot\left\{a^{j} b^{k} ; k=1,3 \& 2 \mid j\right\}=\left\{a^{j} b^{k} ; k=1,3 \& 2 \nmid j\right\}$,
- $\left\{a^{2 s} b^{2}, a^{-2 s} b^{2}\right\} \cdot\left\{a^{j} b^{k} ; k=1,3 \& 2 \mid j\right\}=\left\{a^{j} b^{k} ; k=1,3 \& 2 \mid j\right\}$,
- $(b)^{V_{8 n}} \cdot(b)^{V_{8 n}}=\bigcup_{s=0}^{\frac{n-1}{2}}\left\{a^{2 s}, a^{-2 s}\right\} \bigcup_{s=0}^{\frac{n-1}{2}}\left\{a^{2 s} b^{2}, a^{-2 s} b^{2}\right\}$,
- $(a b)^{V_{8 n}} \cdot(a b)^{V_{8 n}}=\bigcup_{\left.\substack{n=0 \\ \frac{n-1}{2}} a^{2 s}, a^{-2 s}\right\} \bigcup_{s=0}^{\frac{n-1}{2}}\left\{a^{2 s} b^{2}, a^{-2 s} b^{2}\right\} \text {, }, \text {, }{ }^{n}(b)}$
- $(b)^{V_{8 n}} \cdot(a b)^{V_{8 n}}=\bigcup_{r=0}^{\frac{n-1}{2}}\left\{a^{2 r+1}, a^{-(2 r+1)} b^{2}\right\}$.

Next, we assume that $n=2 l$ is even. Then, by [6], the conjugacy classes of $V_{8 n}$ are $\{e\},\left\{b^{2}\right\},\left\{a^{n}\right\},\left\{a^{n} b^{2}\right\},\left\{a^{2 k+1} b^{(-1)^{k+1}} ; 0 \leq k \leq\right.$ $n-1\},\left\{a^{2 r+1}, a^{-(2 r+1)} b^{2}\right\}, 0 \leq r \leq n-1,\left\{a^{2 s}, a^{-2 s}\right\},\left\{a^{2 s} b^{2}, a^{-2 s} b^{2}\right\}$,
$1 \leq s \leq \frac{n}{2}-1,\left\{a^{2 k} b^{(-1)^{k}} ; 0 \leq k \leq n-1\right\},\left\{a^{2 k} b^{(-1)^{k+1}} ; 0 \leq k \leq\right.$ $n-1\},\left\{a^{2 k+1} b^{(-1)^{k}} ; 0 \leq k \leq n-1\right\}$. Suppose $0 \leq k \leq n-1$, and $0 \leq r, s \leq \frac{n}{2}-1$. Then the product of non-central conjugacy classes are as follows:

- $\left\{a^{2 s}, a^{-2 s}\right\} \cdot\left\{a^{2 r}, a^{-2 r}\right\}=\left\{a^{2(r+s)}, a^{-2(r+s)}\right\} \cup\left\{a^{2(r-s)}, a^{-2(r-s)}\right\}$.
- Suppose:
$F=\left\{b^{2}\right\} \cup\left\{a^{n} b^{2}\right\} \bigcup_{r=1,2 \nmid r}^{\frac{n}{2}-1}\left\{a^{2 s}, a^{-2 s}\right\} \bigcup_{r=1,2 \mid r}^{\frac{n}{2}-1}\left\{a^{2 s} b^{2}, a^{-2 s} b^{2}\right\}$.
Then $\left\{a^{2 k} b^{(-1)^{k}} ; 0 \leq k \leq n-1\right\} \cdot\left\{a^{2 k} b^{(-1)^{k}} ; 0 \leq k \leq n-1\right\}$ can be simplified as follows:

$$
F \cup\left\{\begin{array}{lll}
\left\{a^{n} b^{2}\right\} & n \equiv 0 & (\bmod 4) \\
\left\{a^{n}\right\} & n \equiv 2 & (\bmod 4)
\end{array}\right.
$$

Therefore, $\eta\left(b^{V_{8 n}} . b^{V_{8 n}}\right)=\frac{n}{2}+1$.

- In a similar argument as above, we have:

$$
\begin{aligned}
\eta\left((b)^{V_{8 n}} \cdot\left(b^{-1}\right)^{V_{8 n}}\right) & =\eta\left(\left(a b^{-1}\right)^{V_{8 n}} \cdot\left(a b^{-1}\right)^{V_{8 n}}\right) \\
& =\eta\left(\left(a b^{-1}\right)^{V_{8 n}} \cdot(a b)^{V_{8 n}}\right) \\
& =\eta\left(\left(b^{-1}\right)^{V_{8 n}} \cdot\left(b^{-1}\right)^{V_{8 n}}\right) \\
& =\eta\left(\left(b^{-1}\right)^{V_{8 n}} \cdot(a b)^{V_{8 n}}\right) \\
& =\eta\left((a b)^{V_{8 n}} \cdot(a b)^{V_{8 n}}\right)=\frac{n}{2}+1 .
\end{aligned}
$$

- In the following case, it can be proved that $\eta\left(\left(a b^{-1}\right)^{V_{8 n}} \cdot b^{V_{8 n}}\right)=$ $\frac{n}{2}$.

$$
\left(a b^{-1}\right)^{V_{8 n}} \cdot\left(b^{-1}\right)^{V_{8 n}}=\bigcup_{r=1,2 \nmid r}^{n-1}\left\{a^{2 r+1}, a^{-(2 r+1)} b^{2}\right\}
$$

- For the following product of conjugacy classes, we have:

$$
\eta\left(\left(a b^{-1}\right)^{V_{8 n}} \cdot(b)^{V_{8 n}}\right)=\eta\left((b)^{V_{8 n}} \cdot(a b)^{V_{8 n}}\right)=\frac{n}{2} .
$$

$$
\left(a^{2 r+1}\right)^{V_{8 n}} \cdot\left(b^{-1}\right)^{V_{8 n}}=\left\{\begin{array}{lll}
\left(a b^{-1}\right)^{V_{8 n}} & r \equiv 1 & (\bmod 4) \\
\left(b^{-1}\right)^{V_{8 n}} & r \equiv 3 & (\bmod 4)
\end{array}\right.
$$

$$
\left(a^{2 r+1}\right)^{V_{8 n}} \cdot(a b)^{V_{8 n}}=\left\{\begin{array}{lll}
\left(b^{-1}\right)^{V_{8 n}} & r \equiv 1 & (\bmod 4) \\
(b)^{V_{8 n}} & r \equiv 3 & (\bmod 4)
\end{array}\right.
$$

$$
\left(a^{2 r+1}\right)^{V_{8 n}} \cdot\left(a b^{-1}\right)^{V_{8 n}}=\left\{\begin{array}{lll}
(b)^{V_{8 n}} & r \equiv 1 & (\bmod 4) \\
(a b)^{V_{8 n}} & r \equiv 3 & (\bmod 4)
\end{array} .\right.
$$

$$
\left(a^{2 r+1}\right)^{V_{8 n}} \cdot(b)^{V_{8 n}}=\left\{\begin{array}{lll}
(a b)^{V_{8 n}} & r \equiv 1 & (\bmod 4) \\
\left(a b^{-1}\right)^{V_{8 n}} & r \equiv 1 & (\bmod 4)
\end{array}\right.
$$

The product of Conjugacy classes of length two by another conjugacy class of two given types is again a conjugacy class. This completes the proof.

Proposition 2.4.

$$
\eta\left(T_{4 n}\right)=\left\{\begin{array}{ll}
\left\{1,2, \frac{n}{2}, \frac{n}{2}+1\right\} & n \text { is even } \\
\left\{1,2, \frac{n+1}{2}\right\} & n \text { is odd }
\end{array} .\right.
$$

Proof. By [10, p. 420], the conjugacy classes of $T_{4 n}$ are $\{e\},\left\{a^{n}\right\}$, $\left\{a^{r}, a^{-r}\right\}, 1 \leq r \leq n-1,\left\{a^{2 j} b, 0 \leq j \leq n-1\right\},\left\{a^{2 j+1} b, 0 \leq j \leq n-1\right\}$. On the other hand, the product of conjugacy classes can be computed, as follows:

- $\left\{a^{r}, a^{-r}\right\} \cdot\left\{a^{s}, a^{-s}\right\}=\left\{a^{r+s}, a^{-(r+s)}\right\} \cup\left\{a^{r-s}, a^{-(r-s)}\right\}$.
- Since $\left(a^{r}\right)^{T_{4 n}} \cdot(b)^{T_{4 n}}=\left\{a^{r+2 j} b, a^{-r+2 j} b ; 0 \leq j \leq n-1\right\}$, the product is $(b)^{T_{4 n}}$, when r is even. If r is odd, then the product will be $(a b)^{T_{4 n}}$.
- We know that $\left(a^{r}\right)^{T_{4 n}} \cdot(a b)^{T_{4 n}}=\left\{a^{r+2 j+1} b, a^{-r+2 j+1} b ; 0 \leq j \leq\right.$ $n-1\}$. If r is even, then the product is $(a b)^{T_{4 n}}$, and if r is odd, then the product will be $(b)^{T_{4 n}}$.

$$
\begin{aligned}
(b)^{T_{4 n}} \cdot(b)^{T_{4 n}} & =\left\{\begin{array}{ll}
\bigcup_{r=0,2 \mid r}^{n}\left\{a^{r}, a^{-r}\right\} & 2 \mid n \\
\bigcup_{r=1,2 \not r}^{n}\left\{a^{r}, a^{-r}\right\} & 2 \nmid n
\end{array} .\right. \\
(b)^{T_{4 n}} \cdot(a b)^{T_{4 n}} & =\left\{\begin{array}{ll}
\bigcup_{r=1,2 \nmid r}^{n-1}\left\{a^{r}, a^{-r}\right\} & 2 \mid n \\
\bigcup_{r=0,2 \nmid r}^{n-1}\left\{a^{r}, a^{-r}\right\} & 2 \nmid n
\end{array} .\right. \\
(a b)^{T_{4 n}} \cdot(a b)^{T_{4 n}} & =\left\{\begin{array}{ll}
\bigcup_{r=0,2 \mid r}^{n}\left\{a^{r}, a^{-r}\right\} & 2 \mid n \\
\bigcup_{r=1,2 \not r}^{n}\left\{a^{r}, a^{-r}\right\} & 2 \nmid n
\end{array} .\right.
\end{aligned}
$$

This completes the proof.
Example 2.5. Suppose G is a non-abelian group of order $4 p ; p$ is prime. By an easy calculation, one can see that $\eta\left(D_{8}\right)=\eta\left(Q_{8}\right)=$ $\eta\left(D_{12}\right)=\eta\left(Z_{3}: Z_{4}\right)=\eta\left(A_{4}\right)=\{1,2\}$, where $Z_{3}: Z_{4}$ is a non-abelian group of order 12 different from A_{4} and D_{12}. Thus, it is enough to consider that case that $p>3$. Our proof considers two cases Thus $4 \mid p-1$ or $4 \nmid p-1$.

Case 1. $4 \mid p-1$. If $4 \mid p-1$, then up to isomorphism, there are three groups of order $4 p$. These are $D_{4 p}, T_{4 p}$, and $F_{4 p}$, where $F_{4 p}$ can be presented by $F_{4 p}=\left\langle a, b \mid a^{p}=b^{4}=1, b^{-1} a b=a^{\lambda}\right\rangle$, and $\lambda^{2} \equiv-1$ $(\bmod p)$. By Propositions 2 and $4, \eta\left(D_{4 p}\right)=\eta\left(T_{4 p}\right)=\left\{1,2, \frac{p+1}{2}\right\}$, and $\eta\left(F_{4 p}\right)=\left\{1,3,4, \frac{p+3}{4}\right\}$.

Case 2. $4 \nmid p-1$. In this case, there are up to isomorphism two groups of order $4 p$. These are $D_{4 p}$ and $T_{4 p}$. As in Case 1, $\eta\left(D_{4 p}\right)=$ $\eta\left(T_{4 p}\right)=\left\{1,2, \frac{p+1}{2}\right\}$, as desired.

Therefore,

$$
\eta(G) \in\left\{\begin{array}{ll}
\left\{\left\{1,2, \frac{p+1}{2}\right\}\right\} & p>3,4 \nmid p-1 \\
\left\{\left\{1,2, \frac{p+1}{2}\right\},\left\{1,3,4, \frac{p+3}{4}\right\}\right\} & p>3,4 \mid p-1 \\
\{\{1,2\}\} & p=3
\end{array} .\right.
$$

Proposition 2.6. $\eta\left(U_{6 n}\right)=\{1,2\}$.
Proof. By [10], the conjugacy classes of $U_{6 n}$ are $\{e\},\left\{a^{2 r}\right\},\left\{a^{2 r} b, a^{2 r} b^{2}\right\}$, $\left\{a^{2 r+1}, a^{2 r+1} b, a^{2 r+1} b^{2}\right\}, 0 \leq r \leq n-1$. On the other hand, by Lemma 2.1 (4), $\eta\left(\left(a^{2 r} b\right)^{U_{6 n}} \cdot\left(a^{2 s+1}\right)^{U_{6 n}}\right) \leq 2$. But, $\left(a^{2 r+1}\right)^{U_{6 n}} \cdot\left(a^{2 s+1}\right)^{U_{6 n}}=$ $\left\{a^{2(r+s+1)}\right\} \cup\left\{a^{2(r+s+1)} b, a^{2(r+s+1)} b^{2}\right\}$. Thus, $\eta\left(U_{6 n}\right)=\{1,2\}$, as desired.

Hormozi and Rodtes [8, Definition 2.1], defined $C^{\text {even }}=C_{1} \cup C_{2}^{\text {even }} \cup$ $C_{3}^{\text {even }}$ and $C^{\text {odd }}=C_{1} \cup C_{2}^{\text {odd }} \cup C_{3}^{\text {odd }}$, where $C_{1}=\{0,2,4, \cdots, 2 n\}, C_{2}^{\text {even }}=$ $\{1,3,5, \cdots, n-1\}, C_{3}^{\text {even }}=\{2 n+1,2 n+3,2 n+5, \cdots, 3 n-1\}, C_{2}^{\text {odd }}=$ $\{1,3,5, \cdots, n\}, C_{3}^{\text {odd }}=\{2 n+1,2 n+3,2 n+5, \cdots, 3 n\}, C_{\text {even }}^{\dagger}=C_{1} \backslash$ $\{0,2 n\}$ and $C_{\text {odd }}^{\dagger}=C_{2}^{\text {even }} \cup C_{3}^{\text {even }}$. Moreover, $C_{\star}^{\text {even }}=C^{\text {even }} \backslash\{0,2 n\}$ and $C_{\star}^{\text {odd }}=C^{\text {odd }} \backslash\{0, n, 2 n, 3 n\}$.

Proposition 2.7.

$$
\eta\left(S D_{8 n}\right)= \begin{cases}\{1,2, n, n+1\} & n \text { is even } \\ \left\{1,2, \frac{n+1}{2}\right\} & n \text { is odd } .\end{cases}
$$

Proof. By [8, Proposition 2.2], the conjugacy classes of $S D_{8 n} ; n \geq 2$, can be computed in two separate cases, where n is odd or even. If n is even, then there are $2 n+3$ conjugacy classes as: $\{e\},\left\{a^{2 n}\right\}$, $\left\{a^{r}, a^{(2 n-1) r}\right\} ; r \in C_{*}^{\text {even }},\left\{b a^{2 t} \mid t=0,1,2, \cdots, 2 n-1\right\}$ and $\left\{b a^{2 t+1} \mid t=\right.$ $0,1,2, \cdots, 2 n-1\}$. If n is odd, then there are $2 n+6$ conjugacy classes as $\{e\},\left\{a^{n}\right\},\left\{a^{2 n}\right\},\left\{a^{3 n}\right\},\left\{a^{r}, a^{(2 n-1) r}\right\} ; r \in C_{*}^{\text {odd }},\left\{b a^{4 t} \mid t=\right.$ $0,1,2, \cdots, n-1\},\left\{b a^{4 t+1} \mid t=0,1,2, \cdots, n-1\right\},\left\{b a^{4 t+2} \mid t=\right.$ $0,1,2, \cdots, n-1\}$ and $\left\{b a^{4 t+3} \mid t=0,1,2, \cdots, n-1\right\}$. On the other hand by [8], we have:
(1) $(2 n-1) r \equiv(4 n-r)(\bmod 4 n)$, if r is even,
(2) $(2 n-1) r \equiv(2 n r)(\bmod 4 n)$, if r is odd,
(3) $(2 n-1)(2 n+k) \equiv(4 n-k)(\bmod 4 n)$, if k is odd.

If n is even, then the product of conjugacy classes, of $S D_{8 n}$ are as follows:

$$
\begin{aligned}
\text { - } & \left\{a^{r}, a^{(2 n-1) r} \& 2 \mid r\right\} \cdot\left\{a^{s}, a^{(2 n-1) s} \& 2 \mid s\right\}=\left\{a^{r}, a^{(2 n-1) r} \& 2 \nmid\right. \\
& r\} \cdot\left\{a^{s}, a^{(2 n-1) s} \& 2 \nmid s\right\}=\left(a^{r+s}\right)^{S D_{8 n} \cup\left(a^{r+(2 n-1) s}\right)^{S D_{8 n}},} \begin{aligned}
\text { - } & \left\{a^{r}, a^{(2 n-1) r} \& 2 \mid r\right\} \cdot(b)^{S D_{8 n}}=\left\{a^{r}, a^{(2 n-1) r} \& 2 \nmid r\right\} \cdot(b a)^{S D_{8 n}}= \\
& (b)^{S D_{8 n}}, \\
\text { - } & \left\{a^{r}, a^{(2 n-1) r} \& 2 \mid r\right\} \cdot(b a)^{S D_{8 n}}=\left\{a^{r}, a^{(2 n-1) r} \& 2 \nmid r\right\} \cdot(b)^{S D_{8 n}}= \\
& (b a)^{S D_{8 n}}, \\
\text { - } & (b)^{S D_{8 n}} \cdot(b)^{S D_{8 n}}=(b a)^{S D_{8 n}} \cdot(b a)^{S D_{8 n}}=\bigcup_{r \in C_{1}}\left\{a^{r}, a^{(2 n-1) r}\right\}, \\
\text { - } & (b)^{S D_{8 n}} \cdot(b a)^{S D_{8 n}}=\bigcup_{r \in C_{2}^{e v e n} \cup C_{3}^{e v e n}}\left\{a^{r}, a^{(2 n-1) r}\right\} .
\end{aligned}
\end{aligned}
$$

If n is odd, then the products of conjugacy classes of $S D_{8 n}$ are as follows:

- $\left(a^{r}\right)^{S D_{8 n}} \cdot\left(a^{s}\right)^{S D_{8 n}}=\left\{a^{r+s}, a^{(2 n-1)(r+s)}\right\} \cup\left\{a^{r+(2 n-1) s}, a^{s+(2 n-1) r}\right\}$,
- $\left(a^{r}\right)^{S D_{8 n}} \cdot\left(b a^{i}\right)^{S D_{8 n}}=\left(b a^{j}\right)^{S D_{8 n}}$, where $j=i-r, i+2 n-r$, when r is even or odd, respectively.
- $(b)^{S D_{8 n}} \cdot(b)^{S D_{8 n}}=\left(b a^{2}\right)^{S D_{8 n}} \cdot\left(b a^{2}\right)^{S D_{8 n}}=(b a)^{S D_{8 n}} \cdot\left(b a^{3}\right)^{S D_{8 n}}=$

$$
\bigcup_{r \in C_{1}, r \equiv 0}\left\{a_{(\bmod 4)}^{r}, a^{(2 n-1) r}\right\},
$$

- $(b)^{S D_{8 n}} \cdot(b a)^{S D_{8 n}}=\bigcup_{r \in C_{2}^{\text {odd }} \cup C_{3}^{\text {odd }}, r \equiv 1(\bmod 4)}\left\{a^{r}, a^{(2 n-1) r}\right\}$,
- $\left(b a^{2}\right)^{S D_{8 n}} \cdot\left(b a^{3}\right)^{S D_{8 n}}=\bigcup_{r \in C_{2}^{\text {odd }} \cup C_{3}^{\text {odd }}, r \equiv 1(\bmod 4)}\left\{a^{r}, a^{(2 n-1) r}\right\}$,
- $(b)^{S D_{8 n}} \cdot\left(b a^{2}\right)^{S D_{8 n}}=\bigcup_{r \in C_{1}, r \equiv 2(\bmod 4)}\left\{a^{r}, a^{(2 n-1) r}\right\}$,
- $(b a)^{S D_{8 n}} \cdot(b a)^{S D_{8 n}}=\bigcup_{r \in C_{1}, r \equiv 2(\bmod 4)}\left\{a^{r}, a^{(2 n-1) r}\right\}$,
- $(b)^{S D_{8 n}} \cdot\left(b a^{3}\right)^{S D_{8 n}}=\bigcup_{r \in C_{2}^{\text {odd }} \cup C_{3}^{\text {odd }}, r \equiv 3(\bmod 4)}\left\{a^{r}, a^{(2 n-1) r}\right\}$,
- $(b a)^{S D_{8 n}} \cdot\left(b a^{2}\right)^{S D_{8 n}}=\bigcup_{r \in C_{2}^{\text {odd }} \cup C_{3}^{\text {odd }}, r \equiv 3(\bmod 4)}\left\{a^{r}, a^{(2 n-1) r}\right\}$,
which completes the proof.
The Frobenius group $F_{p, q}$ can be presented by

$$
F_{p, q}=\left\langle a, b \mid a^{p}=b^{q}=e, b^{-1} a b=a^{u}\right\rangle,
$$

where $u^{q} \equiv 1(\bmod p)[10$, Definition 25.6]. Let L be the subgroup of \mathbb{Z}_{p}^{*} consisting of the powers of u and $r=(p-1) / q$. Choose coset representatives v_{1}, \cdots, v_{r} for L in \mathbb{Z}_{p}^{*}. By [10, Proposition 25.9], the
conjugacy classes of $F_{p, q}$ are as follows:
$\{e\}$,

$$
\begin{aligned}
& \left(a^{v_{i}}\right)^{F_{p, q}}=\left\{a^{v_{i} l}: l \in L\right\}(1 \leq i \leq r) \\
& \left(b^{n}\right)^{F_{p, q}}=\left\{a^{m} b^{n}: 0 \leq m \leq p-1\right\}(1 \leq n \leq q-1)
\end{aligned}
$$

Then $\left(b^{i}\right)^{F_{p, q}} \cdot\left(b^{j}\right)^{F_{p, q}}=\left(b^{i+j}\right)^{F_{p, q}}$, when $i+j \neq q$. If $i+j=q$, then $\left(b^{i}\right)^{F_{p, q}} \cdot\left(b^{j}\right)^{F_{p, q}}=\bigcup_{i=1}^{r}\left(a^{v_{i}}\right)^{F_{p, q}} \cup\left(b^{i+j}\right)^{F_{p, q}}$. On the other hand, $\left(a^{v_{i}}\right)^{F_{p, q}} \cdot\left(b^{j}\right)^{F_{p, q}}=\left(b^{j}\right)^{F_{p, q}}$, and $\left(a^{v_{i}}\right)^{F_{p, q}} \cdot\left(a^{v_{j}}\right)^{F_{p, q}}=\cup\left(a^{v_{k}}\right)^{F_{p, q}}$ such that $v_{k} \equiv v_{i} u^{m}+v_{j} u^{t}(\bmod p)$, where $0 \leq m, t \leq q-1$. We have explicitly computed the set $\eta\left(F_{p, q}\right)$ for several pairs of distinct primes p and q, such that $q \nmid p-1$. However, we were unable to find a general formula for $\eta\left(F_{p, q}\right)$.

Question 2.8. Is it possible to find a closed formula for $\eta\left(F_{p, q}\right)$?
Suppose p and q are primes, and $q \mid p-1$. Define:

$$
S_{p, q}=\left\langle a, b, c \mid a^{p}=b^{q}=c^{2}=e, c a c=a^{-1}, b c=c b, b^{-1} a b=a^{r}, r^{q} \equiv 1(\bmod p)\right\rangle .
$$

Proposition 2.9. Suppose G is a group of order $2 p q, p$ and $q, p>q$, are odd primes, and $G \not \neq S_{p, q}$. Then

$$
\eta(G) \in\left\{\{1\},\left\{1,2, \frac{p+1}{2}\right\},\left\{1,2, \frac{q+1}{2}\right\},\left\{1,2, \frac{p q+1}{2}\right\}, \eta\left(F_{p, q}\right)\right\} .
$$

Proof. Suppose p and q are distinct odd primes, and $p>q$. Following Zhang et al. [12], if $q \nmid p-1$, then there are four non-abelian groups of order $2 p q$, and if $q \mid p-1$, the number of such groups is six. These groups are: $R_{1}=Z_{2 p q}, R_{2}=D_{2 p q}, R_{3}=Z_{q} \times D_{2 p}, R_{4}=Z_{p} \times D_{2 q}$, $R_{5}=Z_{2} \times F_{p, q}$, and $S_{p, q}$. The last two groups are for the case when $q \mid p-1$. We first notice that by Proposition 2, $\eta\left(R_{2}\right)=\eta\left(D_{2 p q}\right)=$ $\left\{1,2, \frac{p q+1}{2}\right\}$. Since R_{1} is abelian, $\eta\left(R_{1}\right)=\{1\}$. On the other hand, if G is abelian and H is an arbitrary group, then it is easy to see that $\eta(G \times H)=\eta(H)$. This implies that $\eta\left(R_{4}\right)=\eta\left(Z_{p} \times D_{2 q}\right)=$ $\eta\left(D_{2 q}\right)=\left\{1,2, \frac{q+1}{2}\right\}, \eta\left(R_{3}\right)=\eta\left(Z_{q} \times D_{2 p}\right)=\eta\left(D_{2 p}\right)=\left\{1,2, \frac{p+1}{2}\right\}$, and $\eta\left(R_{5}\right)=\eta\left(Z_{2} \times F_{p, q}\right)=\eta\left(F_{p, q}\right)$.

At the end of this section, we apply [6, Theorem B] for computing $\eta(G)$, where G is a non-abelian groups of order $p^{3} ; p$ is odd. These groups can be represented by

$$
\begin{aligned}
& \text { i. } G_{1}=<a, b ; a^{p^{2}}=b^{p}=e ; b^{-1} a b=a^{1+p}> \\
& \text { ii. } G_{2}=<a, b, z ; a^{p}=b^{p}=z^{p}=e, a z=z a, b z=z b, b^{-1} a b=a z>.
\end{aligned}
$$

It is well-known that $G_{1}^{\prime}=Z\left(G_{1}\right)=\left\langle a^{p}\right\rangle$, and $G_{2}^{\prime}=Z\left(G_{2}\right)=\langle z\rangle$. To apply [6, Theorem B], we first compute $\left[x, G_{1}\right]$ and $\left[y, G_{2}\right]$, where $x \in G_{1}$ and $y \in G_{2}$. We have:

$$
\begin{aligned}
{\left[a^{i} b^{j}, G_{1}\right] } & =\left\{\left[a^{i} b^{j}, a^{r} b^{s}\right] ; 0 \leq r \leq p^{2}-1,0 \leq s \leq p-1\right\}, \\
& =\left\{a^{i}\left(b^{j} a^{r} b^{-j}\right)\left(b^{s} a^{-i} b^{-s}\right) a^{-r} ; 0 \leq r \leq p^{2}-1,0 \leq s \leq p-1\right\}, \\
& =\left\{a^{i} a^{r(1+p)^{j}} a^{-i(1+p)^{s}} a^{-r} ; 0 \leq r \leq p^{2}-1,0 \leq s \leq p-1\right\}, \\
& =\left\{a^{p(r j-i s)} ; 0 \leq r \leq p^{2}-1,0 \leq s \leq p-1\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[a^{i} b^{j} z^{k}, G_{2}\right] } & =\left\{\left[a^{i} b^{j} z^{k}, a^{r} b^{s} z^{t}\right] ; 0 \leq r, s \leq p-1\right\} \\
& =\left\{\left(a^{i} b^{j} z^{k}\right)\left(a^{r} b^{s} z^{t}\right)\left(a^{i} b^{j} z^{k}\right)^{-1}\left(a^{r} b^{s} z^{t}\right)^{-1} ; 0 \leq r, s \leq p-1\right\} \\
& =\left\{a^{i} b^{j} a^{r}\left(b^{s-j} a^{-i} b^{-s}\right) a^{-r} ; 0 \leq r, s \leq p-1\right\} \\
& =\left\{a^{i} b^{j} a^{r}\left(a^{-i} b^{-j} z^{(s-j) i}\right) a^{-r} ; 0 \leq r, s \leq p-1\right\} \\
& =\left\{z^{(p-j)(r-i)} ; 0 \leq r, s \leq p-1\right\} .
\end{aligned}
$$

Therefore, $\left[x, G_{1}\right]=Z\left(G_{1}\right)$, and $\left[y, G_{2}\right]=Z\left(G_{2}\right)$ and, by $[6$, Theorem A(ii) $], x^{G_{1}}\left(x^{-1}\right)^{G_{1}}=\left[x, G_{1}\right]$ and $y^{G_{2}}\left(y^{-1}\right)^{G_{2}}=\left[y, G_{2}\right]$. This implies that for each $u, v \in G_{1}$ and $u^{\prime}, v^{\prime} \in G_{2},\left|\left[u, G_{1}\right] \cap v^{G_{1}}\left(v^{-1}\right)^{G_{1}}\right|=\mid\left[u, G_{1}\right] \cap$ $\left[v, G_{1}\right] \mid=p$, and $\left|\left[u^{\prime}, G_{2}\right] \cap v^{\prime G_{2}}\left(v^{\prime-1}\right)^{G_{2}}\right|=\left|\left[u^{\prime}, G_{2}\right] \cap\left[v^{\prime}, G_{2}\right]\right|=p$. If $u, v \in G_{1}$ and $u^{\prime}, v^{\prime} \in G_{2}$ are non-identity, then by [6, Theorem B(i)], $\eta\left(G_{1}\right)=\eta\left(G_{2}\right)=\{1, p\}$.

3. Concluding Remarks

In this paper, the set $\eta(G)$ was computed for some classes of finite groups. It seems that computing $\eta(G)$ for some known group G returns to some open questions in the number theory. For example, the group $G=S_{p, q}$ in Proposition 9 has exactly $\frac{4 q^{2}+p-1}{2 q}$ conjugacy classes. These are:

$$
\begin{aligned}
e^{G} & =\{e\}, c^{G}=\left\{c, c a, c a^{2}, \cdots, c a^{p-1}\right\} \\
\left(b^{i}\right)^{G} & =\left\{b^{i}, b^{i} a, b^{i} a^{2}, \cdots, b^{i} a^{p-1}\right\} ; 1 \leq i \leq q-1 \\
\left(c b^{i}\right)^{G} & =\left\{c b^{i}, c b^{i} a, c b^{i} a^{2}, \cdots, c b^{i} a^{p-1}\right\} ; 1 \leq i \leq q-1, \\
\left(a^{i}\right)^{G} & =\left\{a^{i}, a^{i r}, \cdots, a^{i r^{q-1}}, a^{-i}, a^{-i r}, \cdots, a^{-i r^{q-1}}\right\} ; 1 \leq i \leq \frac{p-1}{2 q} .
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { Since }\left(a^{-i} b a^{i}\right)=a^{-i-1}(a b) a^{i}=a^{-i-1}\left(b a^{r}\right) a^{i}=a^{-i-1} b a^{i+r}=a^{-i-2}(a b) \\
a^{i+r}=a^{-i-2}\left(b a^{r}\right) a^{i+r}=a^{-i-2} b a^{i+2 r}=\cdots=b a^{i(1-r)}, \\
\left(c^{k} b^{j} a^{i}\right)^{-1}\left(b^{l}\right)\left(c^{k} b^{j} a^{i}\right)
\end{array}\right)=a^{-i} b^{-j} c^{-k} b^{l} c^{k} b^{j} a^{i}, ~=a^{-i} b^{-j} b^{l} b^{j} a^{i} .
$$

On the other hand, since $\left(a^{-i} b a^{i}\right)=a^{-i-1}(a b) a^{i}=a^{-i-1}\left(b a^{r}\right) a^{i}=$ $a^{-i-1}(b) a^{i+r}=a^{-i-2}(a b) a^{i+r}=a^{-i-2}\left(b a^{r}\right) a^{i+r}=a^{-i-2} b a^{i+2 r}=\cdots=$ $b a^{i(1-r)}$,

$$
\begin{aligned}
\left(a^{i} b^{j} c^{k}\right)^{-1} c\left(a^{i} b^{j} c^{k}\right) & =c^{-k} b^{-j} a^{-i} c a^{i} b^{j} c^{k} \\
& =c^{-k} b^{-j} c a^{i} a^{i} b^{j} c^{k} \\
& =c^{-k} b^{-j} c a^{2 i} b^{j} c^{k} \\
& =c^{-k} c b^{-j} a^{2 i} b^{j} c^{k} \\
& =c^{-k+1}\left(b^{-j} a^{2 i} b^{j}\right)^{k} \\
& =c^{-k}\left(c a^{m} c\right) c^{k-1} \\
& =c^{-k} a^{-m} c^{k-1} \\
& =c^{-k+1} a^{m} c^{k-2} \\
& =\vdots \\
& =c^{-k+(k-1)} a^{(-1)^{k} 2 i r^{j}} c^{k-k} \\
& =c a^{(-1)^{k} 2 i r^{j}} .
\end{aligned}
$$

By a similar argument as above, we have:

$$
\begin{aligned}
\left(a^{i} b^{j} c^{k}\right)^{-1} a^{l}\left(a^{i} b^{j} c^{k}\right) & =c^{-k} b^{-j} a^{-i} a^{l} a^{i} b^{j} c^{k} \\
& =c^{-k} b^{-j} a^{l} b^{j} c^{k} \\
& =c^{-k} a^{r j} c^{k} \\
& =c^{-k+1}\left(c^{-1} a^{r^{j} l} c\right) c^{k-1} \\
& =c^{-k+1}\left(c^{-1} a c\right)^{r^{j} l} c^{k-1} \\
& =c^{-k+2} a^{-r^{j} l} c^{k-2} \\
& =\vdots \\
& =a^{(-1)^{k} r^{j} l} .
\end{aligned}
$$

We are now ready to compute the product of conjugacy classes in G. We first noticed that $\left(c a^{i}\right)\left(c b^{j} a^{l}\right)=a^{-i} c c b^{j} a^{l}=a^{-i} c^{2} b^{j} a^{l}=a^{-i} b^{j} a^{l}$
$=b^{j} a^{-i r^{j}} a^{l}=b^{j} a^{-i r^{j}+l}$. Thus, $c^{G} \cdot\left(c b^{i}\right)^{G}=\left\{c, c a, c a^{2}, \cdots, c a^{p-1}\right\}$. $\left\{c b^{i}, c b^{i} a, c b^{i} a^{2}, \cdots, c b^{i} a^{p-1}\right\}=\left\{b^{i}, b^{i} a, b^{i} a^{2}, \cdots, b^{i} a^{p-1}\right\}=\left(b^{i}\right)^{G}$. But $\left(c a^{i}\right)\left(c a^{j}\right)=\left(a^{-i} c\right) c a^{j}=a^{-i+j}$ and so $c^{G} \cdot c^{G}=\left\{c, c a, c a^{2}, \cdots, c a^{p-1}\right\}$. $\left\{c, c a, c a^{2}, \cdots, c a^{p-1}\right\}=\left\{e, a, \cdots, a^{p-1}, a^{-1}, \cdots, a^{-(p-1)}\right\}=\bigcup_{i=0}^{\frac{p-1}{2 q}}\left(a^{i}\right)^{G}$. Again, $\left(c a^{i}\right)\left(b^{j} a\right)=c\left(a^{i} b^{j}\right) a=c\left(b^{j} a^{l r^{i}}\right) a=c b^{j} a^{l r^{i}}$ and so $c^{G} \cdot\left(b^{i}\right)^{G}=$ $\left\{c, c a, c a^{2}, \cdots, c a^{p-1}\right\} \cdot\left\{b^{i}, b^{i} a, b^{i} a^{2}, \cdots, b^{i} a^{p-1}\right\}=\left(c b^{i}\right)^{G}$.

Next, since $\left(c b^{i} a^{j}\right)\left(c a^{l}\right)=c b^{i}\left(a^{j} c\right) a^{l}=c b^{i} c a^{-j} a^{l}=c^{2} b^{i} a^{l-j}=b^{i} a^{l-j}$,

$$
\left(c b^{i}\right)^{G} \cdot c^{G}=\left\{b^{i}, b^{i} a, b^{i} a^{2}, \cdots, b^{i} a^{p-1}\right\}=\left(b^{i}\right)^{G} .
$$

To compute $\left(c b^{i}\right)^{G} \cdot\left(c b^{j}\right)^{G}$, we noticed that $\left(c b^{i} a^{l}\right)\left(c b^{j} a^{m}\right)=c b^{i}\left(c a^{-l}\right) b^{j} a^{m}$ $=c^{2} b^{i} a^{-l} b^{j} a^{m}=b^{i} a^{-l} b^{j} a^{m}=b^{i+j} a^{-l r^{j}+m}$. Thus, if $i+j \neq q$, then $\left(c b^{i}\right)^{G} \cdot\left(c b^{j}\right)^{G}=\left(b^{i+j}\right)^{G}$. Otherwise, $\left(c b^{i}\right)^{G} .\left(c b^{j}\right)^{G}=\left(\cup_{1 \leq i \leq \frac{p-1}{2 q}}\left(a_{i}\right)^{G}\right) \cup$ $\left(b^{q}\right)^{G}$. A similar argument shows that when $i+j \neq q$, we have $\left(b^{i}\right)^{G} \cdot\left(b^{j}\right)^{G}=\left(b^{i+j}\right)^{G}$, otherwise $\left(b^{i}\right)^{G} .\left(b^{j}\right)^{G}=\left(\cup_{1 \leq i \leq \frac{p-1}{2 q}}\left(a_{i}\right)^{G}\right) \cup\left(b^{q}\right)^{G}$.

On the other hand, the equalities $\left(b^{i} a^{j}\right)\left(c a^{l}\right)=b^{i}\left(a^{j} c\right) a^{l}=b^{i}\left(c a^{-j}\right) a^{l}$ $=b^{i}\left(c a^{-j}\right) a^{l}=b^{i}\left(c a^{-j}\right) a^{l}=c b^{i} a^{-j+l}$ imply that:

$$
\begin{aligned}
\left(b^{i}\right)^{G} \cdot c^{G} & =\left\{b^{i}, b^{i} a, b^{i} a^{2}, \cdots, b^{i} a^{p-1}\right\} \cdot\left\{c, c a, c a^{2}, \cdots, c a^{p-1}\right\} \\
& =\left\{c b^{i}, c b^{i} a, c b^{i} a^{2}, \cdots, c b^{i} a^{p-1}\right\}=\left(c b^{i}\right)^{G} .
\end{aligned}
$$

Other calculations were similar and were recorded as follows:
i. $c^{G} \cdot\left(a^{i}\right)^{G}=\left\{c, c a, c a^{2}, \cdots, c a^{p-1}\right\}=c^{G}$,
ii. $\left(b^{i}\right)^{G} \cdot\left(c b^{j}\right)^{G}=\left\{c b^{i+j}, c b^{i+j} a, c b^{i+j} a^{2}, \cdots, c b^{i+j} a^{p-1}\right\}=\left(c b^{i+j}\right)^{G}$,
iii. $\left(b^{i}\right)^{G} \cdot\left(a^{j}\right)^{G}=\left\{b^{i}, b^{i} a, b^{i} a^{2}, \cdots, b^{i} a^{p-1}\right\}=\left(b^{i}\right)^{G}$,
iv. $\left(a^{i}\right)^{G} \cdot\left(b^{j}\right)^{G}=\left\{b^{j}, b^{j} a, b^{j} a^{2}, \cdots, b^{j} a^{p-1}\right\}=\left(b^{j}\right)^{G}$,
v. $\left(a^{i}\right)^{G} \cdot\left(c b^{j}\right)^{G}=\left\{c b^{i}, c b^{i} a, c b^{i} a^{2}, \cdots, c b^{i} a^{p-1}\right\}=\left(c b^{j}\right)^{G}$.

Again, we were unable to compute $\eta\left(\left(a_{i}\right)^{G} \cdot\left(a_{i}\right)^{G}\right)$, in general. Our calculations given above and computing by the small group library of GAP [11] show that $\left\{1, \frac{p+2 q-1}{2 q}\right\} \subset \eta(G)$.

Question 3.1. What is $\eta\left(S_{p, q}\right)$?
Using a simple calculation, one can see that $\eta\left(U_{6 n}\right)=\{1,2\}, \eta\left(D_{10}\right)=$ $\{1,2,3\}, \eta\left(V_{48}\right)=\{1,2,3,4\}, \eta\left(S L(2,3) \ltimes Z_{4}\right)=\{1,2,3,4,5\}$, and $\eta\left(\left(Z_{3} \times\left(\left(Z_{4} \times Z_{2}\right) \ltimes Z_{2}\right)\right) \ltimes Z_{2}\right)=\{1,2,3,4,5,6\}$. In the small group library notation of GAP [11], $S L(2,3) \ltimes Z_{4}=\operatorname{SmallGroup}(96,66)$ and $\left(Z_{3} \times\left(\left(Z_{4} \times Z_{2}\right) \ltimes Z_{2}\right)=\operatorname{SmallGroup}(96,13)\right.$. Thus, it is natural to ask the following question:

Question 3.2. Is there a group G, such that $\eta(G)=\{1,2, \cdots, n\}$, where $n \geq 7$. For which values of n, we can find a group G, such that $\eta(G)=\{1,2, \cdots, n\}$?

Acknowledgment

We are indebted to the referee for his/her suggestions and helpful remarks. The research works of the authors were partially supported by the University of Kashan, under the grant No of 364988/77.

References

1. E. Adan-Bante, Derived length and products of conjugacy classes, Israel J. Math. 168 (2008) 93-100.
2. E. Adan-Bante, On nilpotent groups and conjugacy classes, Houston J. Math. 36 (2) (2010) 345-356.
3. E. Adan-Bante and J. M. Harris, On conjugacy classes of $S L(2, q)$, Rev. Colombiana Mat. 46 (2012) (2) 97-111.
4. Z. Arad, D. Chillag and G. Moran, Groups with a small covering number, In: Products of Conjugacy Classes in Groups, Lecture Notes in Math. 1112, Berlin, Springer-Verlag, pp. 222-244, 1985.
5. Z. Arad and E. Fisman, An analogy between products of two conjugacy classes and products of two irreducible characters in finite groups, Proc. Edin. Math. Soc. 30 (1987) 7-22.
6. M. R. Darafsheh and S. Mahmood Robati, Products of conjugacy classes and products of irreducible characters in finite groups, Turkish J. Math. 37 (2013) (4) 607-616.
7. M. R. Darafsheh and N. S. Poursalavati, On the existence of the orthogonal basis of the symmetry classes of tensors associated with certain groups, SUT J. Math. 37 (1) (2001) 1-17.
8. M. Hormozi and K. Rodtes, Symmetry classes of tensors associated with the semi-dihedral groups $S D_{8 n}$, Colloq. Math. 131 (2013) (1) 59-67.
9. I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
10. G. James and M. Liebeck, Representations and Characters of Groups, Cambridge Univ. Press, London-New York, 1993.
11. The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.7.5; 2014.
12. C. Zhang, J. -X. Zhou and Y. -Q. Feng, Automoprphisms of cubic Cayley graphs of order 2pq, Discrete Math. 309 (2009) 2687-2695.

Maryam Jalali

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, P.O.Box 87317-51167, Kashan, I. R. Iran

Ali Reza Ashrafi
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, P.O.Box $87317-51167$, Kashan, I. R. Iran
Email: ashrafi@kashanu.ac.ir

Journal of Algebraic Systems

COMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS

MARYAM JALALI-RAD AND ALI REZA ASHRAFI

محاسبه حاصلضرب كلاسهاى تزويج برخى گروههاى متناهى

> مريم جلالى راد و علىرضا اشرفى

كاشان - دانشگاه كاشان - دانشكده علوم رياضى-گروه رياضى محض

فرض كنيد G يك گروه متناهى و A و A و دو كلاس تزويج از آن باشند. در اينصورت

كلمات كليدى: كلاس تزويج، زيرمجموعه G- پايا، p-گروه.

[^0]: MSC(2010): Primary: 20E45; Secondary: 20C15
 Keywords: Conjugacy class, G-invariant subset, p-group.
 Received: 30 November 2014, Revised: 27 April 2015.
 $*$ Corresponding author .

