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COMPUTING THE PRODUCTS OF CONJUGACY
CLASSES FOR SPECIFIC FINITE GROUPS

MARYAM JALALI-RAD AND ALI REZA ASHRAFI∗

Abstract. Suppose G is a finite group, A and B are conjugacy
classes of G, and η(AB) denotes the number of conjugacy classes
contained in AB. The set of all η(AB), such that A,B run over
conjugacy classes of G, is denoted by η(G). The aim of this paper
is to compute η(G), for G ∈ {D2n, T4n, U6n, V8n, SD8n} or G is a
decomposable group of order 2pq, a group of order 4p or p3, where
p and q are primes.

1. Introduction

Throughout this paper, all groups are assumed to be finite. If G is
such a group, and A and B are conjugacy classes of G, then it is an
elementary fact that AB is a G−invariant subset. Thus, AB can be
written as a union of conjugacy classes of G. The number of distinct
conjugacy classes of G contained in AB is denoted by η(AB). The set
of all η(AB), such that A,B run over conjugacy classes of G, is denoted
by η(G).

The most important works on the problem of computing the num-
ber of G−conjugacy classes in the product of conjugacy classes were
carried out by Adan−Bante. Here, we report some of her interesting
results in this topic. Suppose SL(2, q) is the group of 2 × 2 matrices,
with determinant one over a finite field of order q. Adan−Bante and
Harris [3] proved that if q is even, then the product of any two non-
central conjugacy classes of SL(2, q) is a union of at least q−1 distinct
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conjugacy classes of SL(2, q); and if q > 3 is odd, then the product
of any two non-central conjugacy classes of SL(2, q) is the union of at
least q+3

2
distinct conjugacy classes of SL(2, q). Adan−Bante [1] proved

that, for any finite supersolvable group G, and any conjugacy class A
of G, dl( G

CG(A)
) ≤ 2η(AA−1) − 1, where CG(A) denotes the centralizer

of A in G, and dl(H) is the derived length of a group H. In [2], she
also proved that if p is an odd prime number, G is a finite p−group,
and aG and bG are the conjugacy classes of G of size p; then either
aGbG = (ab)G or aGbG is a union of at least p+1

2
distinct conjugacy

classes. If G is nilpotent, and aG is again a conjugacy class of G of size
p, then either aGaG = (a2)G or aGaG is a union of exactly p+1

2
distinct

conjugacy classes of G of size p.
Darafsheh and Robati [6] continued the works of Adan−Bante and

proved that if [a,G] = {[a, x] | x ∈ G}, and [a,G] be a subset of Z(G),
then we have:

i. η(aGbG) = |aG||bG|/|[a,G] ∩ (b−1)GbG||(ab)G|;
ii. If aGbG ∩ Z(G) ̸= ∅, then η(aGbG) = |aG|;

iii. If |aG| is an odd number, then η(aGaG) = 1;
iv. If |aG| is an even number, then η(aGaG) = 2n, where n is the

number of cyclic direct factors in the decomposition of the Sylow
2−subgroup of [a,G].

We encourage the interested readers to consult also the papers by
Arad and his co-authors [4, 5], and references therein for more infor-
mation on this topic. Our notation is standard, and can be taken from
[9, 10].

2. Main results

The aim of this section is to compute η(G), where

G ∈ {D2n, V8n, T4n, U6n, SD8n}

or G is a group of orders 2pq, 4p, p3, such that p and q are prime num-
bers. The case of |G| = 2pq and G that is indecomposable, is retained
as an open question. The semi-dihedral group SD8n, dicyclic group
T4n, and the groups U6n and V8n have the following presentations, re-
spectively:

SD8n = ⟨a, b | a4n = b2 = e, bab = a2n−1⟩,
T4n = ⟨a, b | a2n = 1, an = b2, b−1ab = a−1⟩,
U6n = ⟨a, b | a2n = b3 = e, bab = a⟩,
V8n = ⟨a, b | a2n = b4 = e, aba = b−1, ab−1a = b⟩.
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It is easy to see the dicyclic group T4n has the order 4n, and the cyclic
subgroup ⟨a⟩ of T4n has the index 2 [10]. The conjugacy classes of U6n

and V8n (n is odd), computed in the famous book of James and Liebeck
[10]. The groups V8n (n is even), and SD8n have the order 8n, and their
conjugacy classes have been computed in [7, 8], respectively.

The following simple lemma is crucial throughout this paper:

Lemma 2.1. Suppose G is a finite group, and A and B are conjugacy
classes of G. Then,

(1) η(AB) = η(BA),
(2) If A is central, then η(AB) = 1,
(3) If |A| = |B| = 2, then η(AB) = 1, 2 [2, Proposition 2.7],
(4) η(AB) ≤ |A| [6, Lemma 3.1].

Proposition 2.2.

η(D2n) =

 {1, 2, n+1
2
} 2 - n

{1, 2, n
4
, n
4

+ 1} n ≡ 0 (mod 4)
{1, 2, n+2

4
} n ≡ 2 (mod 4)

.

Proof. The dihedral group D2n can be presented by

D2n = ⟨a, b | an = b2 = e, b−1ab = a−1⟩.

We first assume that n is odd. Then the conjugacy classes of D2n are
{e}, {ar, a−r}, 1 ≤ r ≤ n−1

2
or {asb; 0 ≤ s ≤ n− 1}. Thus the products

of non−identity conjugacy classes are:

• {ar, a−r} · {as, a−s} = {ar+s, a−(r+s)} ∪ {ar−s, a−(r−s)},
• {ar, a−r}·{asb; 0 ≤ s ≤ n−1} = {ar+sb, as−rb; 0 ≤ s ≤ n−1} =
{asb; 0 ≤ s ≤ n− 1},

• {asb; 0 ≤ s ≤ n− 1} · {arb; 0 ≤ r ≤ n− 1} = {asbarb; 0 ≤ r, s ≤
n− 1} =

∪n−1
2

r=0 {ar, a−r}.

Hence, η(D2n) = {1, 2, n+1
2
}. Next, assume that n = 2m. The conju-

gacy classes of D2n are {e}, {am}{ar, a−r}, 1 ≤ r ≤ m−1, {asb; 0 ≤ s ≤
2(n−1), 2 | s}, {asb; 0 ≤ s ≤ 2(n−1), 2 - s}. Suppose 0 ≤ r, l ≤ m−1,
F1 = {0 ≤ s ≤ 2(n− 1), 2 | s}, and F2 = {0 ≤ s ≤ 2(n− 1), 2 - s}. The
products of non−identity conjugacy classes are as follows:
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{ar, a−r} · {al, a−l} = {ar−l, al−r} ∪ {ar+l, a−(l+r)},

{ar, a−r} · {asb; s ∈ F1} =

{
{asb; s ∈ F1} 2 | r
{asb; s ∈ F2} 2 - r ,

{ar, a−r} · {asb; s ∈ F2} =

{
{asb; s ∈ F1} 2 - r
{asb; s ∈ F2} 2 | r ,

{asb; s ∈ F1} · {arb; r ∈ F1} = {e} ∪

{ ∪n−2
4

r=1 {a2r, a−2r} n ≡ 2 (mod 4)∪n
4
r=1{a2r, a−2r} n ≡ 0 (mod 4)

,

{asb; s ∈ F1} · {arb; r ∈ F2} = {e} ∪

{ ∪n−2
4

r=1 {a2r, a−2r} n ≡ 0 (mod 4)∪n
4
r=1{a2r, a−2r} n ≡ 2 (mod 4)

,

{asb; s ∈ F2} · {arb; s ∈ F2} = {e} ∪

{ ∪n−6
4

r=0 (a
2r+1)D2n n ≡ 2 (mod 4)∪n

4
r=0(a

2r+1)D2n n ≡ 0 (mod 4)
.

This completes the proof. �
Proposition 2.3.

η(V8n) =

{
{1, 2, n

2
, n
2

+ 1} n is even
{1, 2, n, n + 1} n is odd

.

Proof. By Lemma 2.1 (1, 2), it is enough to compute η(AB), where A
and B are the non-central conjugacy classes of V8n. Our main proof
considers two separate cases, in which n is odd or even.

We first assume that n is odd. Then by [10], the conjugacy classes
of V8n are as follows:

{e}, {b2}, {a2r+1, a−(2r+1)b2}, 0 ≤ r ≤ n−1
2

, {a2s, a−2s}, {a2sb2, a−2sb2},

1 ≤ s ≤ n−1
2

, {ajbk; k = 1, 3 & 2 | j} and {ajbk; k = 1, 3 & 2 - j}.

Before starting our calculations, we notice that if A and B are two
conjugacy classes of length 2, then by Lemma 2.1 (3), η(AB) = 2.
Thus, it is enough to consider the cases where (|A|, |B|) ̸= (2, 2).

• (a2s, a−2s} · {ajbk; k = 1, 3} = {aj+2sbk; k = 1, 3} ∪ {aj−2sbk; k = 1, 3},
• {a2r+1, a−(2r+1)b2} · {ajbk; k = 1, 3 & 2 - j} = {ajbk; k = 1, 3 & 2 |

j} ∪ {ajbk; k = 1, 3 & 2 - j},
• {a2r+1, a−(2r+1)b2} · {ajbk; k = 1, 3 & 2 | j} = {ajbk; k = 1, 3 & 2 - j},
• {a2sb2, a−2sb2} · {ajbk; k = 1, 3 & 2|j} = {ajbk; k = 1, 3 & 2 | j},
• (b)V8n · (b)V8n =

∪n−1
2

s=0 {a2s, a−2s}
∪n−1

2
s=0 {a2sb2, a−2sb2},

• (ab)V8n · (ab)V8n =
∪n−1

2
s=0 {a2s, a−2s}

∪n−1
2

s=0 {a2sb2, a−2sb2},
• (b)V8n · (ab)V8n =

∪n−1
2

r=0 {a2r+1, a−(2r+1)b2}.
Next, we assume that n = 2l is even. Then, by [6], the conjugacy

classes of V8n are {e}, {b2}, {an}, {anb2}, {a2k+1b(−1)k+1
; 0 ≤ k ≤

n − 1}, {a2r+1, a−(2r+1)b2}, 0 ≤ r ≤ n − 1, {a2s, a−2s}, {a2sb2, a−2sb2},
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1 ≤ s ≤ n
2
− 1, {a2kb(−1)k ; 0 ≤ k ≤ n − 1}, {a2kb(−1)k+1

; 0 ≤ k ≤
n − 1}, {a2k+1b(−1)k ; 0 ≤ k ≤ n − 1}. Suppose 0 ≤ k ≤ n − 1, and
0 ≤ r, s ≤ n

2
− 1. Then the product of non-central conjugacy classes

are as follows:

• {a2s, a−2s} · {a2r, a−2r} = {a2(r+s), a−2(r+s)}∪ {a2(r−s), a−2(r−s)}.
• Suppose:

F = {b2} ∪ {anb2}
∪n

2
−1

r=1,2-r{a2s, a−2s}
∪n

2
−1

r=1,2|r{a2sb2, a−2sb2}.

Then {a2kb(−1)k ; 0 ≤ k ≤ n− 1} · {a2kb(−1)k ; 0 ≤ k ≤ n− 1} can
be simplified as follows:

F ∪
{

{anb2} n ≡ 0 (mod 4)
{an} n ≡ 2 (mod 4)

.

Therefore, η(bV8n .bV8n) = n
2

+ 1.
• In a similar argument as above, we have:

η((b)V8n .(b−1)V8n) = η((ab−1)V8n .(ab−1)V8n)

= η((ab−1)V8n .(ab)V8n)

= η((b−1)V8n .(b−1)V8n)

= η((b−1)V8n .(ab)V8n)

= η((ab)V8n .(ab)V8n) =
n

2
+ 1.

• In the following case, it can be proved that η((ab−1)V8n .bV8n) =
n
2
.

(ab−1)V8n · (b−1)V8n =
n−1∪

r=1,2-r

{a2r+1, a−(2r+1)b2}.

• For the following product of conjugacy classes, we have:

η((ab−1)V8n .(b)V8n) = η((b)V8n .(ab)V8n) =
n

2
.

•

(a2r+1)V8n · (b−1)V8n =

{
(ab−1)V8n r ≡ 1 (mod 4)
(b−1)V8n r ≡ 3 (mod 4)

.

•

(a2r+1)V8n · (ab)V8n =

{
(b−1)V8n r ≡ 1 (mod 4)
(b)V8n r ≡ 3 (mod 4)

.

•

(a2r+1)V8n · (ab−1)V8n =

{
(b)V8n r ≡ 1 (mod 4)
(ab)V8n r ≡ 3 (mod 4)

.



88 JALALI AND ASHRAFI

•

(a2r+1)V8n · (b)V8n =

{
(ab)V8n r ≡ 1 (mod 4)
(ab−1)V8n r ≡ 1 (mod 4)

.

The product of Conjugacy classes of length two by another conjugacy
class of two given types is again a conjugacy class. This completes the
proof. �

Proposition 2.4.

η(T4n) =

{
{1, 2, n

2
, n
2

+ 1} n is even
{1, 2, n+1

2
} n is odd

.

Proof. By [10, p. 420], the conjugacy classes of T4n are {e}, {an},
{ar, a−r}, 1 ≤ r ≤ n−1, {a2jb, 0 ≤ j ≤ n−1}, {a2j+1b, 0 ≤ j ≤ n−1}.
On the other hand, the product of conjugacy classes can be computed,
as follows:

• {ar, a−r} · {as, a−s} = {ar+s, a−(r+s)} ∪ {ar−s, a−(r−s)}.
• Since (ar)T4n · (b)T4n = {ar+2jb, a−r+2jb ; 0 ≤ j ≤ n − 1}, the

product is (b)T4n , when r is even. If r is odd, then the product
will be (ab)T4n .

• We know that (ar)T4n · (ab)T4n = {ar+2j+1b, a−r+2j+1b ; 0 ≤ j ≤
n− 1}. If r is even, then the product is (ab)T4n , and if r is odd,
then the product will be (b)T4n .

•

(b)T4n · (b)T4n =

{ ∪n
r=0,2|r{ar, a−r} 2 | n∪n
r=1,2-r{ar, a−r} 2 - n .

•

(b)T4n · (ab)T4n =

{ ∪n−1
r=1,2-r{ar, a−r} 2 | n∪n−1
r=0,2-r{ar, a−r} 2 - n .

•

(ab)T4n · (ab)T4n =

{ ∪n
r=0,2|r{ar, a−r} 2 | n∪n
r=1,2-r{ar, a−r} 2 - n .

This completes the proof. �

Example 2.5. Suppose G is a non-abelian group of order 4p; p is
prime. By an easy calculation, one can see that η(D8) = η(Q8) =
η(D12) = η(Z3 : Z4) = η(A4) = {1, 2}, where Z3 : Z4 is a non-abelian
group of order 12 different from A4 and D12. Thus, it is enough to
consider that case that p > 3. Our proof considers two cases Thus
4|p− 1 or 4 ̸ |p− 1.
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Case 1. 4|p − 1. If 4|p − 1, then up to isomorphism, there are
three groups of order 4p. These are D4p, T4p, and F4p, where F4p can
be presented by F4p = ⟨a, b|ap = b4 = 1, b−1ab = aλ⟩, and λ2 ≡ −1
(mod p). By Propositions 2 and 4, η(D4p) = η(T4p) = {1, 2, p+1

2
}, and

η(F4p) = {1, 3, 4, p+3
4
}.

Case 2. 4 - p − 1. In this case, there are up to isomorphism two
groups of order 4p. These are D4p and T4p. As in Case 1, η(D4p) =
η(T4p) = {1, 2, p+1

2
}, as desired.

Therefore,

η(G) ∈

 {{1, 2, p+1
2
}} p > 3, 4 - p− 1

{{1, 2, p+1
2
}, {1, 3, 4, p+3

4
}} p > 3, 4 | p− 1

{{1, 2}} p = 3
.

Proposition 2.6. η(U6n) = {1, 2}.

Proof. By [10], the conjugacy classes of U6n are {e}, {a2r}, {a2rb, a2rb2},
{a2r+1, a2r+1b, a2r+1b2}, 0 ≤ r ≤ n− 1 . On the other hand, by Lemma
2.1 (4), η((a2rb)U6n · (a2s+1)U6n) ≤ 2. But, (a2r+1)U6n · (a2s+1)U6n =
{a2(r+s+1)}∪{a2(r+s+1)b, a2(r+s+1)b2}. Thus, η(U6n) = {1, 2}, as desired.

�
Hormozi and Rodtes [8, Definition 2.1], defined Ceven = C1∪Ceven

2 ∪
Ceven

3 and Codd = C1∪Codd
2 ∪Codd

3 , where C1 = {0, 2, 4, · · · , 2n}, Ceven
2 =

{1, 3, 5, · · · , n−1}, Ceven
3 = {2n+1, 2n+3, 2n+5, · · · , 3n−1}, Codd

2 =
{1, 3, 5, · · · , n}, Codd

3 = {2n + 1, 2n + 3, 2n + 5, · · · , 3n}, C†
even = C1 \

{0, 2n} and C†
odd = Ceven

2 ∪ Ceven
3 . Moreover, Ceven

⋆ = Ceven \ {0, 2n}
and Codd

⋆ = Codd \ {0, n, 2n, 3n}.

Proposition 2.7.

η(SD8n) =

{
{1, 2, n, n + 1} n is even
{1, 2, n+1

2
} n is odd

.

Proof. By [8, Proposition 2.2], the conjugacy classes of SD8n; n ≥ 2,
can be computed in two separate cases, where n is odd or even. If
n is even, then there are 2n + 3 conjugacy classes as: {e}, {a2n},
{ar, a(2n−1)r}; r ∈ Ceven

∗ , {ba2t | t = 0, 1, 2, · · · , 2n−1} and {ba2t+1 | t =
0, 1, 2, · · · , 2n − 1}. If n is odd, then there are 2n + 6 conjugacy
classes as {e}, {an}, {a2n}, {a3n}, {ar, a(2n−1)r}; r ∈ Codd

∗ , {ba4t | t =
0, 1, 2, · · · , n − 1}, {ba4t+1 | t = 0, 1, 2, · · · , n − 1}, {ba4t+2 | t =
0, 1, 2, · · · , n − 1} and {ba4t+3 | t = 0, 1, 2, · · · , n − 1}. On the other
hand by [8], we have:

(1) (2n− 1)r ≡ (4n− r) (mod 4n), if r is even,
(2) (2n− 1)r ≡ (2nr) (mod 4n), if r is odd,
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(3) (2n− 1)(2n + k) ≡ (4n− k) (mod 4n), if k is odd.
If n is even, then the product of conjugacy classes, of SD8n are as

follows:

• {ar, a(2n−1)r & 2|r} · {as, a(2n−1)s & 2|s} = {ar, a(2n−1)r & 2 -
r} · {as, a(2n−1)s & 2 - s} = (ar+s)SD8n ∪ (ar+(2n−1)s)SD8n ,

• {ar, a(2n−1)r & 2|r} · (b)SD8n = {ar, a(2n−1)r & 2 - r} · (ba)SD8n =
(b)SD8n ,

• {ar, a(2n−1)r & 2|r} · (ba)SD8n = {ar, a(2n−1)r & 2 - r} · (b)SD8n =
(ba)SD8n ,

• (b)SD8n · (b)SD8n = (ba)SD8n · (ba)SD8n =
∪
r∈C1

{ar, a(2n−1)r},

• (b)SD8n · (ba)SD8n =
∪

r∈Ceven
2 ∪Ceven

3

{ar, a(2n−1)r}.

If n is odd, then the products of conjugacy classes of SD8n are as
follows:

• (ar)SD8n ·(as)SD8n = {ar+s, a(2n−1)(r+s)}∪{ar+(2n−1)s, as+(2n−1)r},
• (ar)SD8n · (bai)SD8n = (baj)SD8n , where j = i − r, i + 2n − r,

when r is even or odd, respectively.
• (b)SD8n · (b)SD8n = (ba2)SD8n · (ba2)SD8n = (ba)SD8n · (ba3)SD8n =∪

r∈C1,r≡0 (mod 4)

{ar, a(2n−1)r},

• (b)SD8n · (ba)SD8n =
∪

r∈Codd
2 ∪Codd

3 ,r≡1 (mod 4){ar, a(2n−1)r},

• (ba2)SD8n · (ba3)SD8n =
∪

r∈Codd
2 ∪Codd

3 ,r≡1 (mod 4){ar, a(2n−1)r},

• (b)SD8n · (ba2)SD8n =
∪

r∈C1,r≡2 (mod 4)

{ar, a(2n−1)r},

• (ba)SD8n · (ba)SD8n =
∪

r∈C1,r≡2 (mod 4)

{ar, a(2n−1)r},

• (b)SD8n · (ba3)SD8n =
∪

r∈Codd
2 ∪Codd

3 ,r≡3 (mod 4)

{ar, a(2n−1)r},

• (ba)SD8n · (ba2)SD8n =
∪

r∈Codd
2 ∪Codd

3 ,r≡3 (mod 4)

{ar, a(2n−1)r},

which completes the proof. �

The Frobenius group Fp,q can be presented by

Fp,q = ⟨a, b | ap = bq = e, b−1ab = au⟩,

where uq ≡ 1 (mod p) [10, Definition 25.6]. Let L be the subgroup
of Z∗

p consisting of the powers of u and r = (p − 1)/q. Choose coset
representatives v1, · · · , vr for L in Z∗

p. By [10, Proposition 25.9], the
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conjugacy classes of Fp,q are as follows:

{e},
(avi)Fp,q = {avil : l ∈ L} (1 ≤ i ≤ r),

(bn)Fp,q = {ambn : 0 ≤ m ≤ p− 1}(1 ≤ n ≤ q − 1).

Then (bi)Fp,q · (bj)Fp,q = (bi+j)Fp,q , when i + j ̸= q. If i + j = q,
then (bi)Fp,q · (bj)Fp,q =

∪r
i=1(a

vi)Fp,q ∪ (bi+j)Fp,q . On the other hand,
(avi)Fp,q · (bj)Fp,q = (bj)Fp,q , and (avi)Fp,q · (avj)Fp,q = ∪(avk)Fp,q such that
vk ≡ viu

m + vju
t (mod p), where 0 ≤ m, t ≤ q − 1. We have explicitly

computed the set η(Fp,q) for several pairs of distinct primes p and q,
such that q - p− 1. However, we were unable to find a general formula
for η(Fp,q).

Question 2.8. Is it possible to find a closed formula for η(Fp,q)?

Suppose p and q are primes, and q|p− 1. Define:

Sp,q = ⟨a, b, c | ap = bq = c2 = e, cac = a−1, bc = cb, b−1ab = ar, rq ≡ 1 (mod p)⟩.

Proposition 2.9. Suppose G is a group of order 2pq, p and q, p > q,
are odd primes, and G ̸∼= Sp,q. Then

η(G) ∈ {{1}, {1, 2,
p + 1

2
}, {1, 2,

q + 1

2
}, {1, 2,

pq + 1

2
}, η(Fp,q)}.

Proof. Suppose p and q are distinct odd primes, and p > q. Following
Zhang et al. [12], if q - p − 1, then there are four non-abelian groups
of order 2pq, and if q|p − 1, the number of such groups is six. These
groups are: R1 = Z2pq, R2 = D2pq, R3 = Zq × D2p, R4 = Zp × D2q,
R5 = Z2 × Fp,q, and Sp,q. The last two groups are for the case when
q|p − 1. We first notice that by Proposition 2, η(R2) = η(D2pq) =
{1, 2, pq+1

2
}. Since R1 is abelian, η(R1) = {1}. On the other hand,

if G is abelian and H is an arbitrary group, then it is easy to see
that η(G × H) = η(H). This implies that η(R4) = η(Zp × D2q) =
η(D2q) = {1, 2, q+1

2
}, η(R3) = η(Zq ×D2p) = η(D2p) = {1, 2, p+1

2
}, and

η(R5) = η(Z2 × Fp,q) = η(Fp,q). �

At the end of this section, we apply [6, Theorem B] for computing
η(G), where G is a non-abelian groups of order p3; p is odd. These
groups can be represented by

i. G1 =< a, b; ap
2

= bp = e; b−1ab = a1+p >,
ii. G2 =< a, b, z; ap = bp = zp = e, az = za, bz = zb, b−1ab = az >.
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It is well-known that G′
1 = Z(G1) = ⟨ap⟩, and G′

2 = Z(G2) = ⟨z⟩.
To apply [6, Theorem B], we first compute [x,G1] and [y,G2], where
x ∈ G1 and y ∈ G2. We have:

[aibj, G1] = {[aibj, arbs]; 0 ≤ r ≤ p2 − 1, 0 ≤ s ≤ p− 1},
= {ai(bjarb−j)(bsa−ib−s)a−r; 0 ≤ r ≤ p2 − 1, 0 ≤ s ≤ p− 1},
= {aiar(1+p)ja−i(1+p)sa−r; 0 ≤ r ≤ p2 − 1, 0 ≤ s ≤ p− 1},
= {ap(rj−is); 0 ≤ r ≤ p2 − 1, 0 ≤ s ≤ p− 1}

and

[aibjzk, G2] = {[aibjzk, arbszt]; 0 ≤ r, s ≤ p− 1},
= {(aibjzk)(arbszt)(aibjzk)−1(arbszt)−1; 0 ≤ r, s ≤ p− 1},
= {aibjar(bs−ja−ib−s)a−r; 0 ≤ r, s ≤ p− 1},
= {aibjar(a−ib−jz(s−j)i)a−r; 0 ≤ r, s ≤ p− 1},
= {z(p−j)(r−i); 0 ≤ r, s ≤ p− 1}.

Therefore, [x,G1] = Z(G1), and [y,G2] = Z(G2) and, by [6, Theorem
A(ii)], xG1(x−1)G1 = [x,G1] and yG2(y−1)G2 = [y,G2]. This implies that
for each u, v ∈ G1 and u′, v′ ∈ G2, |[u,G1] ∩ vG1(v−1)G1 | = |[u,G1] ∩
[v,G1]| = p, and |[u′, G2] ∩ v′G2(v′−1)G2 | = |[u′, G2] ∩ [v′, G2]| = p. If
u, v ∈ G1 and u′, v′ ∈ G2 are non-identity, then by [6, Theorem B(i)],
η(G1) = η(G2) = {1, p}.

3. Concluding Remarks

In this paper, the set η(G) was computed for some classes of finite
groups. It seems that computing η(G) for some known group G returns
to some open questions in the number theory. For example, the group

G = Sp,q in Proposition 9 has exactly 4q2+p−1
2q

conjugacy classes. These
are:

eG = {e}, cG = {c, ca, ca2, · · · , cap−1},
(bi)G = {bi, bia, bia2, · · · , biap−1}; 1 ≤ i ≤ q − 1,

(cbi)G = {cbi, cbia, cbia2, · · · , cbiap−1}; 1 ≤ i ≤ q − 1,

(ai)G = {ai, air, · · · , airq−1

, a−i, a−ir, · · · , a−irq−1}; 1 ≤ i ≤ p− 1

2q
.
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Since (a−ibai) = a−i−1(ab)ai = a−i−1(bar)ai = a−i−1bai+r = a−i−2(ab)
ai+r = a−i−2(bar)ai+r = a−i−2bai+2r = · · · = bai(1−r),

(ckbjai)−1(bl)(ckbjai) = a−ib−jc−kblckbjai

= a−ib−jblbjai

= a−iblai

= (a−ibai)l

= (bai(1−r))l = (blai(1−rl)).

On the other hand, since (a−ibai) = a−i−1(ab)ai = a−i−1(bar)ai =
a−i−1(b)ai+r = a−i−2(ab)ai+r = a−i−2(bar)ai+r = a−i−2bai+2r = · · · =
bai(1−r),

(aibjck)−1c(aibjck) = c−kb−ja−icaibjck

= c−kb−jcaiaibjck

= c−kb−jca2ibjck

= c−kcb−ja2ibjck

= c−k+1(b−ja2ibj)k

= c−k(camc)ck−1

= c−ka−mck−1

= c−k+1amck−2

=
...

= c−k+(k−1)a(−1)k2irjck−k

= ca(−1)k2irj .

By a similar argument as above, we have:

(aibjck)−1al(aibjck) = c−kb−ja−ialaibjck

= c−kb−jalbjck

= c−kar
j lck

= c−k+1(c−1ar
j lc)ck−1

= c−k+1(c−1ac)r
j lck−1

= c−k+2a−rj lck−2

=
...

= a(−1)krj l.

We are now ready to compute the product of conjugacy classes in G.
We first noticed that (cai)(cbjal) = a−iccbjal = a−ic2bjal = a−ibjal



94 JALALI AND ASHRAFI

= bja−irjal = bja−irj+l. Thus, cG · (cbi)G = {c, ca, ca2, · · · , cap−1} ·
{cbi, cbia, cbia2, · · · , cbiap−1} = {bi, bia, bia2, · · · , biap−1} = (bi)G. But
(cai)(caj) = (a−ic)caj = a−i+j and so cG · cG = {c, ca, ca2, · · · , cap−1} ·
{c, ca, ca2, · · · , cap−1} = {e, a, · · · , ap−1, a−1, · · · , a−(p−1)} =

∪ p−1
2q

i=0 (ai)G.

Again, (cai)(bja) = c(aibj)a = c(bjalr
i
)a = cbjalr

i
and so cG · (bi)G =

{c, ca, ca2, · · · , cap−1} · {bi, bia, bia2, · · · , biap−1} = (cbi)G.
Next, since (cbiaj)(cal) = cbi(ajc)al = cbica−jal = c2bial−j = bial−j,

(cbi)G · cG = {bi, bia, bia2, · · · , biap−1} = (bi)G.

To compute (cbi)G·(cbj)G, we noticed that (cbial)(cbjam) = cbi(ca−l)bjam

= c2bia−lbjam = bia−lbjam = bi+ja−lrj+m. Thus, if i + j ̸= q, then

(cbi)G · (cbj)G = (bi+j)G. Otherwise, (cbi)G.(cbj)G =
(
∪1≤i≤ p−1

2q
(ai)

G
)
∪

(bq)G. A similar argument shows that when i + j ̸= q, we have

(bi)G · (bj)G = (bi+j)G, otherwise (bi)G.(bj)G =
(
∪1≤i≤ p−1

2q
(ai)

G
)
∪ (bq)G.

On the other hand, the equalities (biaj)(cal) = bi(ajc)al = bi(ca−j)al

= bi(ca−j)al = bi(ca−j)al = cbia−j+l imply that:

(bi)G · cG = {bi, bia, bia2, · · · , biap−1} · {c, ca, ca2, · · · , cap−1}
= {cbi, cbia, cbia2, · · · , cbiap−1} = (cbi)G.

Other calculations were similar and were recorded as follows:

i. cG · (ai)G = {c, ca, ca2, · · · , cap−1} = cG,
ii. (bi)G ·(cbj)G = {cbi+j, cbi+ja, cbi+ja2, · · · , cbi+jap−1} = (cbi+j)G,

iii. (bi)G · (aj)G = {bi, bia, bia2, · · · , biap−1} = (bi)G,
iv. (ai)G · (bj)G = {bj, bja, bja2, · · · , bjap−1} = (bj)G,
v. (ai)G · (cbj)G = {cbi, cbia, cbia2, · · · , cbiap−1} = (cbj)G.

Again, we were unable to compute η((ai)
G · (ai)

G), in general. Our
calculations given above and computing by the small group library of
GAP [11] show that {1, p+2q−1

2q
} ⊂ η(G).

Question 3.1. What is η(Sp,q)?

Using a simple calculation, one can see that η(U6n) = {1, 2}, η(D10) =
{1, 2, 3}, η(V48) = {1, 2, 3, 4}, η(SL(2, 3) n Z4) = {1, 2, 3, 4, 5}, and
η((Z3 × ((Z4 × Z2) n Z2)) n Z2) = {1, 2, 3, 4, 5, 6}. In the small group
library notation of GAP [11], SL(2, 3)nZ4 = SmallGroup(96, 66) and
(Z3 × ((Z4 × Z2) n Z2) = SmallGroup(96, 13). Thus, it is natural to
ask the following question:

Question 3.2. Is there a group G, such that η(G) = {1, 2, · · · , n},
where n ≥ 7. For which values of n, we can find a group G, such that
η(G) = {1, 2, · · · , n}?
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COMPUTING THE PRODUCTS OF CONJUGACY
CLASSES FOR SPECIFIC FINITE GROUPS

MARYAM JALALI-RAD AND ALI REZA ASHRAFI

متناهی گروه�های برخی تزویج کلاس�های حاصل�ضرب محاسبه

اشرفی علی�رضا و راد جلالی مریم
محض ریاضی ریاضی-گروه علوم دانشکده - کاشان دانشگاه - کاشان

این�صورت در باشند. آن از تزویج کلاس دو B و A و متناهی گروه یک G کنید فرض
B و A که η(AB)هایی مجموعه و η(AB)با را AB در مشمول تزویج کلاس�های تعداد
محاسبه مقاله این هدف می�دهیم. نشان η(G) با را می�کنند تغییر G تزویج کلاس�های روی
هستند، اول اعدادی q و p ،٢pq مرتبه از تجزیه قابل غیر گروهی G آن در که است η(G)هایی

است: زیر گروه�های از یکی G یا ۴p مرتبه از گروهی ،p٣ مرتبه از گروهی
D٢n, T۴n, U۶n, V٨n, SD٨n.

p−گروه. پایا، −G زیرمجموعه تزویج، کلاس کلیدی: کلمات
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