Journal of Algebraic Systems Vol. 3, No. 2, (2016), pp 97-107

AMENABILITY OF VECTOR-VALUED GROUP ALGEBRAS

A. GHAFFARI AND S. JAVADI*

ABSTRACT. The purpose of carrying out this work is to develop the amenability notations for vector-valued group algebras. We prove that $L^1(G, A)$ is approximately weakly amenable where Ais a unital separable Banach algebra. We give the necessary, and sufficient conditions for the existence of a left invariant mean on $L^{\infty}(G, A^*)$, $LUC(G, A^*)$, $WAP(G, A^*)$, and $C_0(G, A^*)$.

1. INTRODUCTION

In 1972, B. E. Johnson proved that a locally compact group G is amenable if and only if $L^1(G)$ is amenable [7]. The concept of Johnson's amenability for Banach algebras has been a main stream in the theory of Banach algebras. Here we develop the concept of Johnson's amenability for vector-valued Banach algebras.

Let G be a locally compact group with a fixed left Haar measure m and A be a unital separable Banach algebra. Let $L^1(G, A)$ be the set of all measurable vector-valued (equivalence classes of) functions $f: G \to A$ such that $||f||_1 = \int_G ||f(t)|| dm(t) < \infty$. Equipped with the norm $||.||_1$ and the convolution product * specified by:

$$f * g(x) = \int f(t)g(t^{-1}x)dm(t) \ (f,g \in L^1(G,A)),$$

 $L^1(G, A)$ is a Banach algebra. We prove the analogues of the classical results on amenability of Banach algebras. We show that G is amenable

Keywords: Amenability, Banach algebras, Derivation, Group algebra, Invariant mean.

*Corresponding author.

MSC(2010): Primary: 65F05; Secondary: 46L05, 11Y50.

Received: 19 April 2014, Revised: 26 December 2015.

if and only if $L^1(G, A)$ is amenable for each unital separable Banach algebra A. The symbol M(G, A) stands for the space of regular Avalued Borel measures of bounded variation on G. The space $L^1(G, A)$ is a closed two-sided ideal of M(G, A).

Let $L^{\infty}(G, A^*)$ be the set of all functions f of G into A^* that are scalarwise measurable and $N_{\infty}(||f||) = \log \operatorname{ess\,sup}_{t \in G}(||f(t)||) < \infty$. From now on, A will be a separable Banach algebra. By Theorem 8.18.2 in [5], the dual of $L^1(G, A)$ may be identified with $L^{\infty}(G, A^*)$. Note that the dual of $L^1(G, A)$ is in general not $L^{\infty}(G, A^*)$. We show that every continuous derivation, from $L^1(G, A)$ into $L^{\infty}(G, A^*)$ is approximately inner, that is, of the form

$$D(a) = \lim_{\alpha} (F_{\alpha}.a - a.F_{\alpha})$$

for some $\{F_{\alpha}\}_{\alpha \in I} \in L^{\infty}(G, A^*)$.

Let $C(G, A^*)$ be the space of bounded continuous functions from Ginto A^* , let $C_0(G, A^*)$ be the continuous functions from G into A^* vanishing at infinity and let $C_{00}(G, A^*)$ be the continuous functions from G into A^* with compact support under the norm $||f|| = \sup_{t \in G} ||f(t)||$. For $f \in L^{\infty}(G, A^*)$, set $L_x f(t) = f(xt)(x, t \in G)$. Then f is called left uniformly continuous, if the map $x \mapsto L_x f$ from G into $L^{\infty}(G, A^*)$ is continuous with respect to $N_{\infty}(||f||)$ on $L^{\infty}(G, A^*)$. The set of uniformly continuous functions is denoted by $LUC(G, A^*)$. A function $f \in C(G, A^*)$ is called weakly almost periodic if the set $\{L_x f : x \in G\}$ is relatively compact in the weak-topology on $C(G, A^*)$. The set of weakly almost periodic functions are denoted by $WAP(G, A^*)$. In the case $A = \mathbb{C}$, the complex field, these spaces are denoted by $L^1(G)$, $M(G), C(G), C_0(G), C_{00}(G), LUC(G)$ and WAP(G). For general terms in vector-valued functions, we follow [5].

The left invariant means on spaces of vector-valued functions were first considered by Dixmier in [3]. In this work, we set up a relation between a vector-valued mean and a scalar-valued mean, by which we will be able to translate many important results developed in the classic theory. We also present some of the properties of left invariant means on $LUC(G, A^*)$, $WAP(G, A^*)$ and $C_0(G, A^*)$. Our references for the vector-valued integration theory are [1], [2] and [5].

2. Main results

Definition 2.1. Let A be a Banach algebra and X be a subspace of $L^{\infty}(G, A^*)$. A map $M : L^{\infty}(G, A^*) \to A^*$ is called a mean on X if (i) M is linear;

(ii) For each $f \in X$, M(f) belongs to the set $co\{f(x) : x \in G\}$, where

closure is taken in the weak*-topology, and coX denotes the convex hull of a set X.

If X is also left invariant, then M is called left invariant if $M(L_a f) = M(f)$ for each $a \in G$ and $f \in X$. Dixmier showed in [3] that if m is a left invariant mean on $L^{\infty}(G)$. Then m induces a left invariant mean M on $L^{\infty}(G, A^*)$ such that $\langle M(f), a \rangle = m(\langle f(.), a \rangle)$ for each $a \in A$, here $\langle f(.), a \rangle$ denotes the functions $x \mapsto \langle f(x), a \rangle$.

Let A and B be two Banach algebras, and let A be a closed ideal in B. For each $a \in A$, put $\rho_a(b) := ||ba|| + ||ab|| \ (b \in B)$, then ρ_a is a seminorm. The topology defined on B by these seminorms is called the strict topology. We write B^{*st} for the dual of B with respect to the strict topology.

Theorem 2.2. Let G be a locally compact group. Then G is amenable if and only if $L^1(G, A)$ is amenable for each unital separable Banach algebra A.

Proof. Suppose that $L^1(G, A)$ is amenable for each unital separable Banach algebra A. Consider $A = \mathbb{C}$. Then G is amenable [7]. Conversely, let X be a Banach $L^1(G, A)$ -bimodule, and let $D : L^1(G, A) \to X^*$ be a continuous derivation. By Proposition 8.1 in [4], $L^1(G, A)$ has a bounded approximate identity. Then there is no loss of generality if we suppose that X is pseudo-unital. By Proposition 2.1.6 in [12], there is a unique $\overline{D} : M(G, A) \to X^*$ that extends D and is continuous with respect to the strict topology on M(G, A), and the weak*-topology on X^* .

We can embed G into M(G, A). The map $\delta_x : G \to M(G, A)$ given by $\delta_x(H) = \chi_H(x)e_A$ for each $x \in G$ and $H \subseteq G$ is the required embedding. We claim that $\Delta = \{\delta_x : x \in G\}$ is dense in M(G, A)with respect to the strict topology. We assume to the contrary that μ is not in $\overline{\Delta}$ where closure is taken in the strict topology, thus there are some $f \in M(G, A)^{*st}$, such that $\langle f, \mu \rangle = 1$, $\langle f, \delta_x \rangle = 0$ for each $x \in G$. By Proposition 23.18 and Proposition 23.33 in [2], the map $x \mapsto \delta_x$ is continuous with respect to the strict topology. This implies that $\langle f, \mu \rangle = \int \langle f, \delta_x \rangle d\mu(x) = 0$ [11].

It suffices to show that $D \mid_{\Delta}$ is inner. Because, if $\mu \in M(G, A)$, there will be a net $\{\delta_{x_{\alpha}}\}_{\alpha \in I}$ in Δ with $\delta_{x_{\alpha}} \to \mu$ in the strict topology. So $\overline{D}(\delta_{x_{\alpha}}) \to \overline{D}(\mu)$ in the weak*-topology. But, there is $\beta^* \in X^*$ such that $\overline{D}(\mu) = w_k^* - \lim_{\alpha} (\beta^* \cdot \delta_{x_{\alpha}} - \delta_{x_{\alpha}} \cdot \beta^*)$. Now let $\beta \in X$. Since X is pseudounital Banach $L^1(G, A)$ -bimodule, then there are $f_1, f_2 \in L^1(G, A)$ and $\hat{\beta} \in X$ such that $\beta = f_1 \cdot \hat{\beta} \cdot f_2$. Hence:

$$\langle \beta^* . \delta_{x_{\alpha}} - \delta_{x_{\alpha}} . \beta^*, \beta \rangle = \langle \beta^* . \delta_{x_{\alpha}} - \delta_{x_{\alpha}} . \beta^*, f_1 . \dot{\beta} . f_2 \rangle \rightarrow \langle \beta^* . \mu - \mu . \beta^*, \beta \rangle.$$

Consequently:

$$\overline{D}(\mu) = \beta^* \cdot \mu - \mu \cdot \beta^* \cdot$$

Consider the constant function $1 \in L^{\infty}(G)$. There is a function $f_0 : G \to A^*$ by $f_0(x) = \langle 1, x \rangle a^*$ $(a^* \in A^*, x \in G)$. More generally, each function $g \in L^{\infty}(G)$ has the form $\langle f(.), a \rangle$ with $a \neq 0$, $a^* \in A^*$, $\langle a^*, a \rangle = 1$ and $f(x) = \langle g, x \rangle a^*$. For each $\beta \in X$, define $\langle \Lambda_{\beta}, \mu \rangle = \langle \overline{D}(\mu)\mu, \beta \rangle$ $(\mu \in M(G, A))$. Put $\Lambda_{\beta} = \Lambda_{\beta}|_{\Delta}$. Now define $\langle \rho_{\beta}, x \rangle = \langle \Lambda_{\beta}, \delta_x \rangle = \langle \overline{D}(\delta_x) . \delta_x, \beta \rangle$ $(x \in G)$. Since $\rho_{\beta} \in L^{\infty}(G)$, then there are some $f_{\beta} \in L^{\infty}(G, A^*)$ such that $f_{\beta}(x) = \rho_{\beta}(x)a^*$ $(a^* \in A^*, x \in G)$. By assumption, there is $m \in L^{\infty}(G)^*$ such that $\langle m, 1 \rangle = 1$, $\langle m, L_x f \rangle = \langle m, f \rangle$ for each $f \in L^{\infty}(G)$ and $x \in G$. Thus m induces a left invariant mean M on $L^{\infty}(G, A^*)$. Now put $\langle \lambda, \beta \rangle = \langle M, f_{\beta} \rangle$. The space X becomes a Banach Δ -module via $\delta_x \Box \beta = \beta, \beta \Box \delta_x = \delta_x$. $\beta . \delta_x = \beta^*, \delta_x \Box \beta^* = \delta_x$. $\beta^*. \delta_x$.

Define $\overline{D_0}(\delta_x) = \overline{D}(\delta_x)$. δ_x . It is routinely checked that $\overline{D_0}$ is a derivation, and \overline{D} is inner if and only if $\overline{D_0}$ is inner for this new module structure. It remains to be shown that $\overline{D_0}$ is inner. For $\delta_{x_0} \in M(G, A)$,

$$\begin{aligned} \langle \delta_{x_0} \Box \lambda - \lambda \Box \delta_{x_0}, \beta \rangle &= \langle \lambda, \beta \Box \delta_{x_0} - \delta_{x_0} \Box \beta \rangle \\ &= \langle \lambda, \beta \Box \delta_{x_0} - \beta \rangle = \langle M, f_{\beta \Box \delta_{x_0} - \beta} \rangle \end{aligned}$$

Furthermore, we have

$$\begin{split} \langle f_{\beta \Box \delta_{x_0} - \beta}, x \rangle &= \langle \rho_{\beta \Box \delta_{x_0} - \beta}, x \rangle a^* = \overline{D}(\delta_x) . \delta_x (\beta \Box \delta_{x_0} - \beta) a^* \\ &= \overline{D_0}(\delta_x) (\beta \Box \delta_{x_0} - \beta) a^* = \langle \delta_{x_0} \Box \overline{D_0}(\delta_x) - \overline{D_0}(\delta_x), \beta \rangle a^* \\ &= \langle \overline{D_0}(\delta_{x_0} \delta_x) - \overline{D_0}(\delta_{x_0}) \Box \delta_x - \overline{D_0}(\delta_x), \beta \rangle a^* \\ &= \langle \overline{D_0}(\delta_{x_0} \delta_x), \beta \rangle a^* - \langle \overline{D_0}(\delta_{x_0}), \beta \rangle a^* - \rho_\beta(x) a^* \\ &= \langle \rho_\beta, x_0 x \rangle a^* - \langle \overline{D_0}(\delta_{x_0}), \beta \rangle \langle 1, x \rangle a^* - \rho_\beta(x) a^* \\ &= f_\beta(x_0 x) - \langle \overline{D_0}(\delta_{x_0}), \beta \rangle f_0(x) - f_\beta(x), \end{split}$$

then $\langle \delta_{x_0} \Box \lambda - \lambda \Box \delta_{x_0}, \beta \rangle = -\langle \overline{D_0}(\delta_{x_0}), \beta \rangle$. It follows that $\overline{D_0}(\delta_{x_0}) = \delta_{x_0} \Box \lambda_0 - \lambda_0 \Box \delta_{x_0}$ where $\lambda_0 = -\lambda$. Thus $\overline{D_0}$ is inner. \Box

Theorem 2.3. Let G be a locally compact group. Then the following statements are equivalent:

(i) G is amenable.

- (ii) For every unital separable Banach algebra A, there exists a bounded net $\{\psi_{\alpha}\}_{\alpha \in I} \subseteq L^{1}(G, A)$ such that $\|\delta_{x} * \psi_{\alpha} \psi_{\alpha}\|_{1} \to 0$ whenever $x \in G$.
- (iii) For every unital separable Banach algebra A, there exists a bounded net $\{\psi_{\alpha}\}_{\alpha \in I} \subseteq L^{1}(G, A)$ such that for every compact set $K \subseteq G$, $\|\psi * \psi_{\alpha} - \psi_{\alpha}\|_{1} \to 0$ uniformly for all $\psi \in L^{1}(G, A)$ with $\int_{G \setminus K} \|\psi(t)\| dm(t) = 0$.

Proof. Consider $A = \mathbb{C}$. Then Theorem 6.7 in [10] yields $(ii) \Longrightarrow (i)$, $(iii) \Longrightarrow (i)$.

 $(i) \Longrightarrow (ii)$ Suppose that G is amenable. Let m be a left invariant mean on $L^{\infty}(G)$, and M be an induced mean on $L^{\infty}(G, A^*)$. Choose $a \in A$ such that, ||a|| = 1. Define $\langle \Gamma_a, f \rangle = \langle M(f), a \rangle$ for each $f \in L^{\infty}(G, A^*)$. Regards Γ_a as an element of $L^{\infty}(G, A^*)^*$. The rest of the proof is essentially the same as the Lemma 6.3 in [10].

 $(i) \Longrightarrow (iii)$ This is just a re-statement of Proposition 6.7 in [10]. \Box

Let $\{e_{\alpha}\}_{\alpha}$ be a bounded approximate identity for $L^{1}(G)$ and e_{A} be an identity in A. By Proposition 8.1 in [4], $\{e_{\alpha} \otimes e_{A}\}_{\alpha}$ is a bounded approximate identity for $L^{1}(G)\hat{\otimes}A$ where $\hat{\otimes}$ denotes the completion of usual tensor product of Banach spaces with respect to the projective tensor norm. We consider $\{e_{\alpha} \otimes e_{A}\}_{\alpha}$ as an element in $(L^{1}(G)\hat{\otimes}A)^{**}$ and $F \in (L^{1}(G)\hat{\otimes}A)^{*}$. Using exactly the same notation as in [6], we put $\langle (e_{\alpha} \otimes e_{A}), F \rangle = \int Fd(e_{\alpha} \otimes e_{A})$. Given a dual Banach space X^{*} and $F \in B(L^{1}(G), A; X^{*})$, we define $\int Fd(e_{\alpha} \otimes e_{A}) \in X^{*}$ by

$$\langle \int Fd(e_{\alpha}\otimes e_A), x \rangle = \int \langle F(f,a), x \rangle d(e_{\alpha}\otimes e_A)(f,a) \rangle$$

where $f \in L^1(G)$, $a \in A$ and $x \in X$.

Theorem 2.4. Let G be a locally compact group and let A be a unital separable Banach algebra. Then $L^1(G, A)$ is approximately weakly amenable.

Proof. Let $D : L^1(G, A) \to L^1(G, A)^*$ be a continuous derivation. It is well-known that the space $L^1(G, A)$ is isometrically isomorphic to $L^1(G) \hat{\otimes} A$. Therefore we define $F : L^1(G) \times A \to L^1(G, A)^*$ by $F(f, a) = D(f \otimes a)$. Put, $g_\alpha = \int F(f, a)d(e_\alpha \otimes e_A)(f, a)$. We know that $L^1(G, A)^* \cong L^{\infty}(G, A^*)$. Then for each $F(f, a) \in L^1(G, A)^*$, its image under isometry onto $L^{\infty}(G, A^*)$ is a map whose values at $x \in G$ is $F(f, a)(x) = \langle D(f \otimes a), x \rangle$. We put $\overline{F}_x : L^1(G) \times A \to A^*$ with $\overline{F}_x(f, a) = F(f, a)(x), f \in L^1(G), a \in A$, and $x \in G$. Note that $\overline{F}_x \in B(L^1(G), A; A^*)$. By the above argument, we define

$$\int \overline{F}_x(f,a)d(e_\alpha \otimes e_A)(f,a) \in A^* \text{ by}$$

$$\langle \int \overline{F}_x(f,a)d(e_\alpha \otimes e_A)(f,a), c \rangle = \int \langle \overline{F}_x(f,a), c \rangle d(e_\alpha \otimes e_A)(f,a), (c \in A).$$

The map $x \mapsto g_{\alpha}(x) = \int F(f, a)(x)d(e_{\alpha} \otimes e_A)(f, a)$ is a scalarwise measurable function, and $N_{\infty}(||g_{\alpha}(x)||) < \infty$ for each α . Then, by Theorem 8.18.2 in [5], there is a map $\kappa_{g_{\alpha}}$ in $B(A, L^{\infty}(G))$ such that, $\langle \kappa_{g_{\alpha}}(a), f \rangle = \int f(x)\langle g_{\alpha}(x), a \rangle dm(x)$ for each $f \in L^1(G)$, and $a \in A$, where $\kappa_{g_{\alpha}}$ is defined by $\kappa_{g_{\alpha}}(a) = \langle g_{\alpha}(x), a \rangle$.

Using the same notation as in [6], we have $e_{\alpha} \otimes e_A = \int f \otimes gd(e_{\alpha} \otimes e_A)(f,g)$. Moreover, $e_{\alpha} \otimes e_A$ is a bounded approximate identity for $L^1(G) \hat{\otimes} A$. Therefore, for each $F : L^1(G) \times A \to L^1(G,A)^*$, $f, g \in L^1(G)$, and $a, b \in A$, we have

$$\begin{split} \lim_{\alpha} \int F(fg,ab) d(e_{\alpha} \otimes e_{A})(f,a) &= \lim_{\alpha} \langle \int (fg \otimes ab) d(e_{\alpha} \otimes e_{A})(f,a), F \rangle \\ &= \lim_{\alpha} \langle \int (gf \otimes ba) d(e_{\alpha} \otimes e_{A})(f,a), F \rangle \\ &= \lim_{\alpha} \int F(gf,ba) d(e_{\alpha} \otimes e_{A})(f,a). \end{split}$$

Hence

$$\begin{split} &\lim_{\alpha} (g \otimes b) \langle f, \kappa_{g_{\alpha}}(\dot{a}) \rangle \\ &= \lim_{\alpha} \int f(x) \langle (g \otimes b).g_{\alpha}(x), \dot{a} \rangle dm(x) \\ &= \lim_{\alpha} \int f(x) \langle \int (g \otimes b).D(f \otimes a)(x)d(e_{\alpha} \otimes e_{A})(f, a), \dot{a} \rangle dm(x) \\ &= \lim_{\alpha} \int f(x) \langle \int D(gf \otimes ba)(x)d(e_{\alpha} \otimes e_{A})(f, a), \dot{a} \rangle dm(x) \\ &- \lim_{\alpha} \int f(x) \langle \int D(g \otimes b).(f \otimes a)(x)d(e_{\alpha} \otimes e_{A})(f, a), \dot{a} \rangle dm(x) \\ &= \int f(x) \lim_{\alpha} \langle \int F(gf, ba)(x)d(e_{\alpha} \otimes e_{A})(f, a), \dot{a} \rangle dm(x) \\ &= \int f(x) \lim_{\alpha} \langle D(g \otimes b) \int (f \otimes a)(x)d(e_{\alpha} \otimes e_{A})(f, a), \dot{a} \rangle dm(x) \\ &= \int f(x) \lim_{\alpha} \langle D(g \otimes b) \int (f \otimes a)(x)d(e_{\alpha} \otimes e_{A})(f, a), \dot{a} \rangle dm(x) \\ &= \int f(x) \lim_{\alpha} \langle \int F(fg, ab)(x)d(e_{\alpha} \otimes e_{A})(f, a), \dot{a} \rangle dm(x) \\ &= \int f(x) \lim_{\alpha} \langle \int F(fg, ab)(x)d(e_{\alpha} \otimes e_{A})(f, a), \dot{a} \rangle dm(x) \\ &= \int f(x) \langle D(g \otimes b)(x), \dot{a} \rangle dm(x) \end{split}$$

$$= \int f(x) \lim_{\alpha} \langle \int F(f, a)(x) d(e_{\alpha} \otimes e_{A})(f, a), \dot{a} \rangle dm(x)(g \otimes b) \\ - \int f(x) \langle D(g \otimes b)(x), \dot{a} \rangle dm(x) \\ = \lim_{\alpha} \int f(x) \langle g_{\alpha}(x), \dot{a} \rangle dm(x)(g \otimes b) - \int f(x) \langle D(g \otimes b)(x), \dot{a} \rangle dm(x) \\ = \lim_{\alpha} \langle f, \kappa_{g_{\alpha}}(\dot{a}) \rangle (g \otimes b) - \langle f, \kappa_{D(g \otimes b)}(\dot{a}) \rangle$$

for all $g \otimes b \in L^1(G) \otimes A$, $\dot{a} \in A$ and $\dot{f} \in L^1(G, A)$. Consequently,

$$\lim_{\alpha} ((g \otimes b)\kappa_{g_{\alpha}}(\dot{a}) - \kappa_{g_{\alpha}}(\dot{a})(g \otimes b)) = -\kappa_{D(g \otimes b)}(\dot{a})$$
$$\lim_{\alpha} \langle (g \otimes b).g_{\alpha}(x), \dot{a} \rangle - \langle g_{\alpha}(x).(g \otimes b), \dot{a} \rangle = -\langle D(g \otimes b)(x), \dot{a} \rangle$$

for all $g \otimes b \in L^1(G) \otimes A$ and $a \in A$. It follows that

$$D(g \otimes b) = \lim_{\alpha} ((g \otimes b).\dot{g_{\alpha}} - \dot{g_{\alpha}}.(g \otimes b))$$

for all $g \otimes b \in L^1(G) \otimes A$, where $g'_{\alpha} = -g_{\alpha}$.

It is known that G is amenable if and only if LUC(G) has a left invariant mean. It is interesting to have a direct proof of this fact. We present a vector version of this characterization.

Theorem 2.5. Let G be a locally compact group, and let A be a unital separable Banach algebra. Then:

- (i) $L^{\infty}(G, A^*)L^1(G, A) = LUC(G, A^*).$
- (ii) G is amenable if and only if LUC(G, A*) has a left invariant mean.

Proof. (i) Let $f \in LUC(G, A^*)$. Let $\{U_\alpha\}$ be a net of neighborhoods of e directed downwards. Let $\{\nu_\alpha\}_{\alpha\in I}$ be an approximate identity of norm 1 in $L^1(G, A)$ such that $supp\nu_\alpha \subseteq U_\alpha$. Given $\epsilon > 0$, there exists $\alpha_0 \in I$ such that for each $\alpha \geq \alpha_0$ and $y \in U_\alpha$, $N_\infty(||f_y - f||) < \epsilon$. Then

$$\begin{aligned} &|\langle f.\nu_{\alpha},\mu\rangle - \langle f,\mu\rangle| \\ &= |\langle f,\nu_{\alpha}*\mu\rangle - \langle f,\mu\rangle| \\ &= \left| \int \langle f(t),\nu_{\alpha}*\mu(t)\rangle dm(t) - \int \langle f(t),\mu(t)\rangle dm(t) \right| \\ &= \left| \int \langle f(t),\int\mu(y^{-1}t)d\nu_{\alpha}(y)\rangle dm(t) - \int \langle f(t),\mu(t)\rangle dm(t) \right| \\ &= \left| \int \langle f(yt),\int\mu(t)d\nu_{\alpha}(y)\rangle dm(t) - \int \langle f(t),\mu(t)\rangle dm(t) \right| \\ &\leq N_{\infty}(||f_{y}-f||)||\mu|||\nu_{\alpha}||_{1}. \end{aligned}$$

GHAFFARI AND JAVADI

On the other hand, $f.\nu_{\alpha} \in L^{\infty}(G, A^*)L^1(G, A)$, and $L^{\infty}(G, A^*)L^1(G, A)$ is a Banach space. It follows that $f \in L^{\infty}(G, A^*)L^1(G, A)$. It is easy to see that $L^{\infty}(G, A^*)L^1(G, A) \subseteq LUC(G, A^*)$, and so $L^{\infty}(G, A^*)L^1(G, A)$ $= LUC(G, A^*)$.

(*ii*) This follows from (*i*) and the proof of Lemma 3.2 in [9]. \Box

Let A be a Banach algebra. Recall that a functional $f \in A^*$ for which $\{f.a : ||a|| \leq 1, a \in A\}$ is relatively compact in the weak-topology of A^* is said to be weakly almost periodic. The set of weakly almost periodic functionals on A is denoted by WAP(A) (see [8]). It is known that $WAP(G) = WAP(L^1(G))$ [13]. Note that for $f \in L^{\infty}(G, A^*)$ and $\mu \in M(G, A)$, we define $\langle f\mu, \nu \rangle = \langle f, \mu * \nu \rangle$ for every $\nu \in L^1(G, A)$.

Theorem 2.6. Let G be a locally compact group, and A be a unital separable Banach algebra. Then:

- (i) If $f \in L^{\infty}(G, A^*)$, then $f \in WAP(L^1(G, A))$ if and only if $\{f\delta_x : x \in G\}$ is relatively weakly compact in $L^{\infty}(G, A^*)$.
- (ii) $WAP(L^{1}(G, A)) = WAP(G, A^{*}).$
- (iii) $WAP(L^1(G, A))$ has a left invariant mean.

Proof. (i) Let $f \in WAP(L^1(G, A))$. It is known that $C_0(G, A)^* = M(G, A^*)$ [2]. Now consider $\delta_x \in M(G, A^*)$. By the Hhan Banach Theorem, we may assume that $m \in L^{\infty}(G, A^*)^*$ is an extension of δ_x with norm one. Then there is a net $\{\mu_{\alpha}\}_{\alpha \in I}$ in $L^1(G, A)$ with $\|\mu_{\alpha}\| \leq 1$ such that $\mu_{\alpha} \to m$ in the weak*-topology. Hence, for every $\phi \in L^1(G, A)$,

$$\langle \phi.f, \mu_{\alpha} \rangle \to \langle \phi.f, m \rangle.$$

Since $\{f.\mu : \|\mu\| \leq 1, \mu \in L^1(G, A)\}$ is relatively weakly compact, then there is an element $g \in L^{\infty}(G, A^*)$ and a subnet $\{\mu_{\beta}\}_{\beta \in I}$ of $\{\mu_{\alpha}\}_{\alpha \in I}$ such that $f.\mu_{\beta} \to g$ in the weak-topology. On the other hand, $\langle m, \phi.f \rangle = \langle \delta_x, \phi.f \rangle = \langle f\delta_x, \phi \rangle$, and so $g = f\delta_x$. Thus the set $\{f\delta_x : x \in G\}$ is contained in $\{f.\mu : \|\mu\| \leq 1, \mu \in L^1(G, A)\}$, where closure is taken in the weak-topology, and the compactness of $\{f\delta_x : x \in G\}$ follows from the compactness of $\{f.\mu : \|\mu\| \leq 1\}$.

Conversely, suppose that $f \in L^{\infty}(G, A^*)$ and $\mu \in L^1(G, A)$ with $\|\mu\| \leq 1$, and $\{f\delta_x : x \in G\}$ is relatively weakly compact. By the Krein-Smulian Theorem, $co\{f\delta_x : x \in G\}$ is relatively weakly compact. We claim that

$$f\mu \in \overline{co\{f\delta_x : x \in G\}},$$

where closure is taken in the weak-topology. We assume to the contrary that $f\mu$ is not in $\overline{co\{f\delta_x: x \in G\}}$. By the Hahn Banach Theorem,

there exists $F \in L^{\infty}(G, A^*)^*$, such that

$$Re|\langle F, f\mu \rangle| \ge \gamma_1 > \gamma_2 > Re|\langle F, f\delta_x \rangle|,$$

where $\gamma_1, \gamma_2 \in \mathbb{R}$, and $x \in G$. By Theorem 8.14.8 in [5], the integral $\int f \delta_x d\mu$ belongs to $L^{\infty}(G, A^*)$. Moreover, for any $\nu \in L^1(G, A)$, $\langle \int f \delta_x d\mu, \nu \rangle = \int \langle f \cdot \delta_x, \nu \rangle d\mu = \int \langle f, \delta_x * \nu \rangle d\mu = \langle f, \mu * \nu \rangle = \langle f\mu, \nu \rangle$ (see Chapter 3 in [11]). By Theorem 3.28 in [11], we have

$$|\langle F, f\mu\rangle| = |\int \langle F, f\delta_x\rangle d\mu| \le \int |\langle F, f\delta_x\rangle| d|\mu|(x) < Re\langle F, f\mu\rangle.$$

This is a contradiction, and so $\{f.\mu : \|\mu\| \leq 1, \mu \in L^1(G, A)\}$ is contained in the closure of $co\{f\delta_x : x \in G\}$, and the compactness of $\overline{\{f.\mu : \|\mu\| \leq 1, \mu \in L^1(G, A)\}}$ follows from the compactness of $\overline{co\{f\delta_x : x \in G\}}$. Consequently, $f \in WAP(L^1(G, A))$, and the proof is complete.

(*ii*) Let $f \in WAP(G, A^*)$. Then the set $\{L_x f : x \in G\}$ is relatively weakly compact in $C(G, A^*)$. Note that for each $x \in G$, we have $\langle f \delta_x, \mu \rangle = \langle f, \delta_x * \mu \rangle = \int \langle f(t), \int \mu(y^{-1}t) d\delta_x(t) \rangle dm(t) = \langle L_x f, \mu \rangle$. Then, by the Eberlien-Smulian Theorem, $\{f \delta_x : x \in G\}$ is relatively weakly compact in $L^{\infty}(G, A^*)$, and from (*i*), $f \in WAP(L^1(G, A))$.

Conversely, let $f \in WAP(L^1(G, A))$. The map $x \mapsto f\delta_x$ is continuous with respect to the weak*-topology. From (i), $\{f\delta_x : x \in G\}$ is relatively weakly compact. Then $x \to f\delta_x$ is continuous with respect to the weak-topology. Now, let $\{U_\alpha\}$ be a net of neighborhood of e directed downwards. Let $\{\nu_\alpha\}_{\alpha\in I}$ be an approximate identity of norm 1 in $L^1(G, A)$ such that $supp\nu_\alpha \subseteq U_\alpha$. Given $\epsilon > 0$ and $F \in$ $L^{\infty}(G, A^*)^*$, there exists an α_0 such that for each $\alpha \ge \alpha_0$ and $x \in U_\alpha$, $|\langle F, f\delta_x \rangle - \langle F, f \rangle| < \epsilon$, and so $|\int \langle F, f\delta_x \rangle d\nu_\alpha - \langle F, f \rangle| < \epsilon$. By Theorem 8.14.8 in [5] and the Krein-Smulian Theorem, $\int f\delta_x d\nu_\alpha \in L^{\infty}(G, A^*)$. Moreover, for any $\mu \in L^1(G, A)$, $\langle \int f\delta_x d\nu_\alpha(x), \mu \rangle = \langle f\nu_\alpha, \mu \rangle$. Therefore, for each $\alpha \ge \alpha_0$,

$$\begin{aligned} |\langle F, f\nu_{\alpha} \rangle - \langle F, f \rangle| &= |\langle F, \int f\delta_{x} d\nu_{\alpha}(x) \rangle - \langle F, f \rangle| \\ &= |\int \langle F, f\delta_{x} \rangle d\nu_{\alpha} - \langle F, f \rangle| < \epsilon. \end{aligned}$$

So $f\nu_{\alpha} \to f$ in the weak-topology. An argument similar to that in the proof of Lemma 6.3 in [10] shows that we can find a bounded net $\{\nu_{\alpha}\}_{\alpha\in I}$ consisting of convex combination of elements in $\{\nu_{\alpha}\}_{\alpha\in I}$ such that $f\nu_{\alpha} \to f$ in the norm topology. In addition, $L^{\infty}(G, A^*)L^1(G, A)$ is a Banach space. Then from Theorem 2.5, $f \in C(G, A^*)$. Since $\{f\delta_x : x \in G\}$ is relatively weakly compact, then by the Eberlian-Smulian Theorem, $\{L_x f : x \in G\}$ is relatively weakly compact in $C(G, A^*)$. Hence, $f \in WAP(G, A^*)$.

(*iii*) It is an immediate consequence of Theorem 4.3 in [14] and (ii). $\hfill \Box$

In the next theorem, we present an interesting property about a left invariant mean when considered on $C_0(G, A^*)$. Analogous to the scalar function case, we can easily obtain the following theorem.

Theorem 2.7. Let G be a non-compact amenable group and let $f \in C_0(G, A^*)$. If M is left invariant mean on $L^{\infty}(G, A^*)$, then |M(f)| = 0.

Proof. Let M be a left invariant mean on $L^{\infty}(G, A^*)$ and $f \in L^{\infty}(G, A^*)$. Then the set $\{f(t) : \|f(t)\| \leq \|f\|_{\infty}\}$ is weak*-closed in A^* and $M(f) \in \{f(x) : x \in G\}$, where closure is taken in the weak*-topology. It follows that $|M(f)| \leq \|f\|_{\infty}$. Using the Urysohn Lemma, it is easy to see that $\overline{C_{00}(G, A^*)}^{\|\cdot\|} = C_0(G, A^*)$. Then it is enough to prove that the result in the case where $f \in C_{00}(G, A^*)$. Let K = suppf. There exists an infinite sequence $\{a_n\}_{n\in\mathbb{N}}$ in G such that $a_0 = e$, and $(a_iK) \cap (a_jK) = \emptyset$, whenever $i, j \in \mathbb{N}, i \neq j$ [10]. Put $g_n = \sum_{i=0}^n L_{a_i}f$ $(n \in \mathbb{N})$. For any $n \in \mathbb{N}$,

$$|M(g_n)| = |nM(f)| \le ||g_n||_{\infty} = ||f||_{\infty}.$$

Consequently, M(f) = 0.

Acknowledgments

The authors would like to thank the referee for his/her careful reading of the paper and many valuable suggestions.

References

- 1. J. Diestel and J. J. Uhl, Jr., Vector measures, Amer. Math. Soc. 1977.
- N. Dinculeanu, Integration on locally compact spaces, Noorhoff International Publishing, Leyden 1974.
- J. Dixmier, Les moyennes invariantes dans les semi-groupes et leur applicaions, Acta Sci. Math. (Szeged) 12 (1950), 213-227.
- R. S. Doran, J. Wichmann, Approximate identities and factorization in Banach modules, Lecture Notes in Mathematics, 768, Springer Verlag, 1979.
- R. E. Edwards, Functional analysis, Theory and applications, Holt, Rinehart and Winston, New York, 1965.
- E. Effros, Amenability and Virtual Diagonals for von Neumann algebras, J. Funct. Anal. 78 (1988), 137-153.

- B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- 8. A. Ghaffari, Strongly and weakly almost periodic linear maps on semigroup algebras, *Semigroup Forum* **76** (2008), 95-106.
- 9. A. Ghaffari and S. Javadi, φ -means of some Banach subspaces on a Banach algebras, *Proceedings of the Romanian Academy* **13** (2012), 302-309.
- J. P. Pier, Amenable locally compact groups, John Wiley And Sons New York, 1984.
- 11. W. Rudin, Functional analysis, McGraw Hill New York, 1991.
- V. Runde, Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer Verlag, 2002.
- A. Ulgar, Continuity of weakly almost periodic functionals on L¹(G), Quart. J. Math. Oxford Ser. 237 (1986), 495-497.
- C. Zhang, Vector-valued means and weakly almost periodic functions, *Intenat. J. Math.* 17 (1994), 227-238.

A. Ghaffari

Department of Mathematics, University of Semnan, P.O.Box 35195-363, Semnan, Iran.

Email: aghaffari@semnan.ac.ir

S. Javadi

Faculty of Engineering- East Guilan, University of Guilan, P.O.Box 44891-63157, Rudsar, Iran.

Email: s.javadi62@gmail.com

Journal of Algebraic Systems

AMENABILITY OF VECTOR VALUED GROUP ALGEBRAS

JAVADI S. AND GHAFFARI A.

میانگینپذیری جبرهای باناخ برداریمقدار

علی غفاری- سمانه جوادی دانشگاه سمنان- دانشکده ریاضی دانشگاه گیلان- دانشکده فنی شرق گیلان

هدف این مقاله توسیع مفهوم میانگینپذیری جبرهای گروهی برداریمقدار است. نشان میدهیم اگر . A جبر باناخ جدایی پذیر یکدار باشد، آنگاه جبر گروهی ($L^{\prime}(G, A)$ میانگینپذیر ضعیف تقریبی است. همچنین شرایط لازم و کافی برای وجود میانگین پایای چپ روی ($UC(G, A^*), WAP(G, A^*)$ و $C_{\circ}(G, A^*)$

كلمات كليدى: ميانگينپذيرى، جبر باناخ، مشتق، جبر گروهى، ميانگين پايا.