Journal of Algebraic Systems Vol. 3, No. 2, (2016), pp 127-131

ON ABSOLUTE CENTRAL AUTOMORPHISMS FIXING THE CENTER ELEMENTWISE

Z. KABOUTARI FARIMANI* AND M. M. NASRABADI

ABSTRACT. Let G be a finite p-group. In this work we give the necessary and sufficient conditions on G such that each absolute central automorphism of G fixes the center element-wise. Also we classify all groups of the orders p^3 and p^4 , whose absolute central automorphisms fix the center element-wise.

1. INTRODUCTION

Let G be a group. Our notations are standard. For example, G', L(G), and $\exp(G)$ denote the commutator subgroup, absolute center, and exponent of G, respectively. Let $\operatorname{cl}(G)$ denote the nilpotency class of G. A non-abelian group G of order p^n is of maximal class if $\operatorname{cl}(G) = n-1$. Also we use the notation $G^{p^n} = \langle g^{p^n} | g \in G \rangle$.

An automorphism α of G is called a central automorphism if $x^{-1}\alpha(x) \in Z(G)$ for each $x \in G$. The set of all central automorphisms of group G, denoted by $\operatorname{Aut}_c(G)$, fix G' element-wise. Hegarty, in [1], generalized the concept of center into absolute center. Also he introduced the absolute central automorphisms. An automorphism γ of G is called an absolute central automorphism if it induces the identity on the factor group G/L(G), or equivalently, $x^{-1}\gamma(x) \in L(G)$ for each $x \in G$. Let us denote the set of all absolute central automorphisms of G by $\operatorname{Aut}_l(G)$.

MSC(2010): Primary: 20D45; Secondary: 20D15.

Keywords: Absolute center, Absolute central automorphisms, Finite *p*-groups.

Received: 28 February 2015, Revised: 14 December 2015.

^{*}Corresponding author.

FARIMANI AND NASRABADI

Attar, in [5], and Jafari, in [2], gave the necessary and sufficient conditions on a finite *p*-group *G* such that $\operatorname{Aut}_c(G) = C_{\operatorname{Aut}_c(G)}(Z(G))$. In this paper, we intend to give the necessary and sufficient conditions on *p*-group *G*, in which $\operatorname{Aut}_l(G) = C_{\operatorname{Aut}_l(G)}(Z(G))$, where $C_{\operatorname{Aut}_l(G)}(Z(G))$ is the group of all absolute central automorphisms of *G* fixing Z(G)element-wise.

2. Preliminary results

We first state some results that will be used in the proof of the main theorem.

Let G be a group. For each element, $g \in G$, and $\alpha \in Aut(G)$, $[g, \alpha] = g^{-1}\alpha(g)$ is the *autocommutator* of g and α .

Definition 2.1. Let G be a group. The *absolute center* L(G) of G is defined by:

$$L(G) = \{ g \in G \mid [g, \alpha] = 1, \ \forall \alpha \in \operatorname{Aut}(G) \}.$$

Clearly, it is a characteristic subgroup of G and $L(G) \leq Z(G)$. Likewise,

 $L_n(G) = \{g \in G \mid [g, \alpha_1, \alpha_2, \dots, \alpha_n] = 1, \ \forall \alpha_1, \alpha_2, \dots, \alpha_n \in \operatorname{Aut}(G)\},\$

stands for the n^{th} -absolute center of G.

Definition 2.2. A group G is called the *autonilpotent* of class n if n is the smallest natural number such that $L_n(G) = G$.

Lemma 2.3. [4, Lemma 2.11] If G is a finite autonilpotent group of class 2, then $\operatorname{Aut}_l(G) = \operatorname{Aut}(G)$.

Proposition 2.4. [4, Proposition 2.12] If G is a finite autonilpotent group of class 2, then G/L(G) is abelian.

Lemma 2.5. [3, Corollary 3.7] Let G be a non-abelian finite p-group. Then $L(G) \leq \Phi(G)$.

3. Main results

Let G be a finite p-group, and let $\alpha \in Aut_l(G)$ and $p^n = \exp(L(G))$. Since $g^{-1}\alpha(g) \in L(G)$, $\alpha(g) = gl$ for some $l \in L(G)$. Thus $\alpha(g^{p^n}) = g^{p^n}l^{p^n}[l,g]^{\binom{p^n}{2}}$. Now since $L(G) \subseteq Z(G)$, [l,g] = 1. Also $l^{p^n} = 1$. Therefore, $\alpha(g^{p^n}) = g^{p^n}$, for every $g \in G$.

Theorem 3.1. Let G be a non-abelian finite p-group. Then $\operatorname{Aut}_l(G) = C_{\operatorname{Aut}_l(G)}(Z(G))$ if and only if $Z(G)G' \subseteq G'L(G)G^{p^n}$, where $p^n = \exp(L(G))$.

128

Proof. Suppose $Z(G)G' \subseteq G'L(G)G^{p^n}$, where $p^n = \exp(L(G))$. We know $C_{Aut_l(G)}(Z(G)) \leq \operatorname{Aut}_l(G)$. Now assume that $\alpha \in \operatorname{Aut}_l(G)$, and $x \in Z(G)$. We can write $x = abg^{p^n}$ for some $a \in G'$, $b \in L(G)$, and $g \in G$. According to the previously-mentioned points, $\alpha(g^{p^n}) = g^{p^n}$ and $\alpha(b) = b$. Also $\operatorname{Aut}_l(G)$ acts trivially on G'. Hence, $\alpha(x) = x$ and so $\alpha \in C_{Aut_l(G)}(Z(G))$. This shows that $\operatorname{Aut}_l(G) \subseteq C_{Aut_l(G)}(Z(G))$, and whence $\operatorname{Aut}_l(G) = C_{Aut_l(G)}(Z(G))$.

To prove the converse, assume that $\operatorname{Aut}_{l}(G) = C_{\operatorname{Aut}_{l}(G)}(Z(G))$, and $Z(G)G' \not\subseteq G'L(G)G^{p^n}$. Thus exists $x \in Z(G)$, which is not in $G'L(G)G^{p^n}$. Let $G/G'L(G) = \langle x_1G'L(G) \rangle \times \cdots \times \langle x_kG'L(G) \rangle$, where $x_1, x_2, \ldots, x_k \in$ G. Therefore, $xG'L(G) = x_1^{p^{t_1}}G'L(G) \dots x_k^{p^{t_k}}G'L(G)$ for some t_1, \dots, t_k . Since $x \notin G'L(G)G^{p^n}$, then $x_i^{p^{t_i}} \notin G^{p^n}$, and so $p^{t_i} < p^n$ for some *i*. Now select $l \in L(G)$, where $O(l) = min(p^n, O(x_iG'L(G)))$, and define $f: G/G'L(G) \longrightarrow L(G)$ by $x_iG'L(G) \mapsto l$ and $x_iG'L(G) \mapsto 1$, for $j \neq i$. Then f can be considered as a homomorphism. Now, consider the map $\sigma_f : G \longrightarrow G$ defined by $\sigma_f(a) = af(aG'L(G))$. Clearly, σ_f is an endomorphism of G. Now suppose that $x \in Ker(\sigma_f)$. Then $f(xG'L(G)) = x^{-1}$. Also σ_f acts trivially on elements of L(G), so we can write $x^{-1} = \sigma_f(x^{-1}) = x^{-1}f(x^{-1}G'L(G)) = x^{-1}x = 1$. Therefore, x = 1. This shows that σ_f is one-to-one, and since G is finite, one can see that the homomorphism σ_f is a bijection. Hence, σ_f is an absolute central automorphism of G. Moreover, f(xG'L(G)) = $f(x_1^{p^{t_1}}G'L(G)\dots x_k^{p^{t_k}}G'L(G))$, and so $f(xG'L(G)) = f(x_i^{p^{t_i}}G'L(G)) =$ $l^{p^{t_i}}$. Since, $p^{t_i} < p^n$, therefore, $l^{p^{t_i}}$ is a non-trivial element of L(G). Hence, $\sigma_f \notin C_{Aut_l(G)}(Z(G))$, which is a contradiction.

Corollary 3.2. Let G be a non-abelian finite p-group, and $\exp(L(G)) = p$. Then $\operatorname{Aut}_l(G) = C_{\operatorname{Aut}_l(G)}(Z(G))$ if and only if $Z(G) \subseteq \Phi(G)$.

Proof. By using Theorem 3.1 and Lemma 2.5, it is clear.

Corollary 3.3. Let G be a finite autonilpotent group of class 2. Then $\operatorname{Aut}_{l}(G) = C_{\operatorname{Aut}_{l}(G)}(Z(G))$ if and only if $Z(G) = L(G)G^{p^{n}}$, where $p^{n} = \exp(L(G))$.

Proof. Suppose $\operatorname{Aut}_l(G) = C_{\operatorname{Aut}_l(G)}(Z(G))$. By the Theorem 3.1 and Proposition 2.4, $Z(G) \subseteq L(G)G^{p^n}$. Also since $G' \subseteq L(G)$, for every $a, b \in G$, we have $[a, b]^{p^n} = 1$, and whence $[a^{p^n}, b] = 1$. This means that for every $a \in G$, $a^{p^n} \in Z(G)$ and $G^{p^n} \leq Z(G)$. Therefore, $L(G)G^{p^n} \subseteq$ Z(G), and so $Z(G) = L(G)G^{p^n}$. The converse holds by Theorem 3.1. **Corollary 3.4.** Let G be a finite autonilpotent group of class 2 and $\exp(L(G)) = p^n$. If $Z(G) = L(G)G^{p^n}$, then each automorphism of G fixes the center element-wise.

Proof. It follows from Lemma 2.3 and Corollary 3.3.

4. Absolute central automorphism of groups of orders $p^3 \\ {\rm AND} \ p^4$

Now we classify all groups G of the orders p^3 and p^4 , whose absolute central automorphism of G fix the center element-wise.

Lemma 4.1. Let G be a group of order p^n of maximal class. Then $\operatorname{Aut}_l(G) = C_{\operatorname{Aut}_l(G)}(Z(G)).$

Proof. For each *p*-group of maximal class, we have $Z(G) \leq G'$. Hence, these groups satisfy $\operatorname{Aut}_l(G) = C_{\operatorname{Aut}_l(G)}(Z(G))$.

Corollary 4.2. For each non-abelian group G of order p^3 , $\operatorname{Aut}_l(G) = C_{\operatorname{Aut}_l(G)}(Z(G))$.

Proof. Let G be a non-abelian group of order p^3 . Then cl(G) = 2, and by Lemma 4.1, $Aut_l(G) = C_{Aut_l(G)}(Z(G))$.

Proposition 4.3. Let G be a non-abelian group of order p^4 . Then $\operatorname{Aut}_l(G) = C_{\operatorname{Aut}_l(G)}(Z(G))$, except when both $L(G) \cong C_p$ and $Z(G) \nsubseteq \Phi(G)$ do occur.

Proof. Suppose $|G| = p^4$. Then G is nilpotent of class at most 3. Since G is non-abelian, so cl(G) = 3 or 2. If cl(G) = 3, by Lemma 4.1, G satisfies $Aut_l(G) = C_{Aut_l(G)}(Z(G))$. Now suppose that cl(G) = 2. Since G is not an extra-special p-group, we have $|Z(G)| \neq p$. Hence, $|Z(G)| = p^2$. Thus |L(G)| = 1, p or p^2 . If |L(G)| = 1, then $Aut_l(G) = \langle 1 \rangle$, and so G satisfies $Aut_l(G) = C_{Aut_l(G)}(Z(G))$. If |L(G)| = p, then exp(L(G)) = p, and by Corollary 3.2, $Aut_l(G) = C_{Aut_l(G)}(Z(G))$ if and only if $Z(G) \subseteq \Phi(G)$. Thus in this state, when $Z(G) \notin \Phi(G)$, then $Aut_l(G) \neq C_{Aut_l(G)}(Z(G))$. Finally, let $|L(G)| = p^2$. Then L(G) = Z(G), and hence, $Aut_l(G) = C_{Aut_l(G)}(Z(G))$. Therefore, in all states, $Aut_l(G) = C_{Aut_l(G)}(Z(G))$, except when both $L(G) \cong C_p$ and $Z(G) \notin \Phi(G)$ do occur.

Proposition 4.4. Using GAP [6] and the previous results, the only non-abelian groups G of order 16 such that $\operatorname{Aut}_l(G) = C_{\operatorname{Aut}_l(G)}(Z(G))$, are $D_{16} = \langle x, y \mid x^8 = y^2 = 1, y^{-1}xy = x^{-1} \rangle$, $Q_{16} = \langle x, y \mid x^8 = 1, x^4 = y^2, y^{-1}xy = x^{-1} \rangle$, $S_{16} = \langle x, y \mid x^8 = y^2 = 1, y^{-1}xy = x^3 \rangle$, $\langle x, y \mid x^4 = y^4 = 1, y^{-1}xy = x^{-1} \rangle$, $\langle x, y \mid x^4 = y^4 = (xy)^2 = (xy^{-1})^2 = 1 \rangle$, $\langle x, y \mid x^2 = y^8 = 1, x^{-1}yx = y^{-3} \rangle$.

130

Acknowledgments

The authors would like to thank the referees and editor for their helpful comments, which improved the paper.

References

- 1. P. V. Hegarty, The absolute center of a group, J. Algebra. 169 (1994), 929–935.
- S. H. Jafari, Central automorphism groups fixing the center element-wise, Int. Electron. J. Algebra. 9 (2011), 167–170.
- H. Meng, X. Guo, The absolute center of finite groups, J. Group Theory. 18 (2015), 887–904.
- 4. M. M. Nasrabadi, Z. Kaboutari Farimani, Absolute central automorphisms that are inner, *Indag. Math.* **26** (2015), 137–141.
- M. Shabani Attar, Finite p-groups in which each central automorphism fixes center elementwise, Comm. Algebra. 40 (2012), 1096–1102.
- The GAP Group. GAP-Groups, Algorithms and Programming, Version 4.6.4. (2013) (http://www.gap-system.org/)

Z. Kaboutari Farimani

Department of Mathematics, University of Birjand, Birjand, Iran. Email: z_kaboutari@birjand.ac.ir; kaboutarizf@gmail.com

M. M. Nasrabadi

Department of Mathematics, University of Birjand, Birjand, Iran. Email: mnasrabadi@birjand.ac.ir Journal of Algebraic Systems

ON ABSOLUTE CENTRAL AUTOMORPHISMS FIXING THE CENTER ELEMENTWISE

Z. KABOUTARI FARIMANI AND M. M. NASRABADI

بررسی خودریختیهای مرکزی مطلق که مرکز گروه را نقطهوار ثابت نگه میدارند

> زهرا کبوتری فریمانی، محمدمهدی نصرآبادی دانشگاه بیرجند، بیرجند، ایران

فرض کنیم G یک p– گروه متناهی باشد. ما در این مقاله شرط لازم و کافی برای گروه G فراهم میکنیم به طوریکه هر خودریختی مرکزی مطلق از G مرکز را نقطهوار ثابت نگه دارد. همچنین ما تمام گروهها از مرتبهی p^{r} و p^{r} را که خودریختیهای مرکزی مطلق آنها مرکز را ثابت نگه میدارند، دسته بندی میکنیم.

کلمات کلیدی: مرکز مطلق، خودریختیهای مرکزی مطلق، p-گروههای متناهی .