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ON ABSOLUTE CENTRAL AUTOMORPHISMS
FIXING THE CENTER ELEMENTWISE

Z. KABOUTARI FARIMANI∗ AND M. M. NASRABADI

Abstract. Let G be a finite p-group. In this work we give the
necessary and sufficient conditions on G such that each absolute
central automorphism of G fixes the center element-wise. Also we
classify all groups of the orders p3 and p4, whose absolute central
automorphisms fix the center element-wise.

1. Introduction

Let G be a group. Our notations are standard. For example, G′,
L(G), and exp(G) denote the commutator subgroup, absolute center,
and exponent of G, respectively. Let cl(G) denote the nilpotency class
of G. A non-abelian group G of order pn is of maximal class if cl(G) =
n− 1. Also we use the notation Gpn = ⟨gpn|g ∈ G⟩.

An automorphism α ofG is called a central automorphism if x−1α(x)∈
Z(G) for each x ∈ G. The set of all central automorphisms of group
G, denoted by Autc(G), fix G′ element-wise. Hegarty, in [1], general-
ized the concept of center into absolute center. Also he introduced the
absolute central automorphisms. An automorphism γ of G is called an
absolute central automorphism if it induces the identity on the factor
group G/L(G), or equivalently, x−1γ(x) ∈ L(G) for each x ∈ G. Let us
denote the set of all absolute central automorphisms of G by Autl(G).
Autl(G) is a normal subgroup of the full automorphism group of G,
contained in Autc(G).
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Attar, in [5], and Jafari, in [2], gave the necessary and sufficient con-
ditions on a finite p-group G such that Autc(G) = CAutc(G)(Z(G)). In
this paper, we intend to give the necessary and sufficient conditions on
p-group G, in which Autl(G) = CAutl(G)(Z(G)), where CAutl(G)(Z(G))
is the group of all absolute central automorphisms of G fixing Z(G)
element-wise.

2. Preliminary results

We first state some results that will be used in the proof of the main
theorem.

Let G be a group. For each element, g ∈ G, and α ∈ Aut(G),
[g, α] = g−1α(g) is the autocommutator of g and α.

Definition 2.1. Let G be a group. The absolute center L(G) of G is
defined by:

L(G) = {g ∈ G | [g, α] = 1, ∀α ∈ Aut(G)}.
Clearly, it is a characteristic subgroup of G and L(G) ≤ Z(G).
Likewise,

Ln(G) = {g ∈ G | [g, α1, α2, . . . , αn] = 1, ∀α1, α2, . . . , αn ∈ Aut(G)},
stands for the nth-absolute center of G.

Definition 2.2. A group G is called the autonilpotent of class n if n
is the smallest natural number such that Ln(G) = G.

Lemma 2.3. [4, Lemma 2.11] If G is a finite autonilpotent group of
class 2, then Autl(G) = Aut(G).

Proposition 2.4. [4, Proposition 2.12] If G is a finite autonilpotent
group of class 2, then G/L(G) is abelian.

Lemma 2.5. [3, Corollary 3.7] Let G be a non-abelian finite p-group.
Then L(G) ≤ Φ(G).

3. Main results

Let G be a finite p-group, and let α ∈ Autl(G) and pn = exp(L(G)).
Since g−1α(g) ∈ L(G), α(g) = gl for some l ∈ L(G). Thus α(gp

n
) =

gp
n
lp

n
[l, g](

pn

2 ). Now since L(G) ⊆ Z(G), [l, g] = 1. Also lp
n
= 1.

Therefore, α(gp
n
) = gp

n
, for every g ∈ G.

Theorem 3.1.Let G be a non-abelian finite p-group.Then Autl(G)=
CAutl(G)(Z(G))if and only if Z(G)G′⊆G′L(G)Gpn, where pn=exp(L(G)).
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Proof. Suppose Z(G)G′ ⊆ G′L(G)Gpn , where pn = exp(L(G)). We
know CAutl(G)(Z(G)) ≤ Autl(G). Now assume that α ∈ Autl(G), and
x ∈ Z(G). We can write x = abgp

n
for some a ∈ G′, b ∈ L(G), and

g ∈ G. According to the previously-mentioned points, α(gp
n
) = gp

n

and α(b) = b. Also Autl(G) acts trivially on G′. Hence, α(x) = x and
so α ∈ CAutl(G)(Z(G)). This shows that Autl(G) ⊆ CAutl(G)(Z(G)),
and whence Autl(G) = CAutl(G)(Z(G)).

To prove the converse, assume that Autl(G) = CAutl(G)(Z(G)), and
Z(G)G′ ⊈ G′L(G)Gpn. Thus exists x ∈ Z(G), which is not inG′L(G)Gpn.
Let G/G′L(G) = ⟨x1G

′L(G)⟩×· · ·×⟨xkG
′L(G)⟩, where x1, x2, . . . , xk ∈

G. Therefore, xG′L(G) = xpt1
1 G′L(G) . . . xptk

k G′L(G) for some t1, ..., tk.

Since x ̸∈ G′L(G)Gpn , then xpti
i ̸∈ Gpn , and so pti < pn for some i.

Now select l ∈ L(G), where O(l) = min(pn, O(xiG
′L(G))), and define

f : G/G′L(G) −→ L(G) by xiG
′L(G) 7→ l and xjG

′L(G) 7→ 1, for
j ̸= i. Then f can be considered as a homomorphism. Now, consider
the map σf : G −→ G defined by σf (a) = af(aG′L(G)). Clearly,
σf is an endomorphism of G. Now suppose that x ∈ Ker(σf ). Then
f(xG′L(G)) = x−1. Also σf acts trivially on elements of L(G), so we
can write x−1 = σf (x

−1) = x−1f(x−1G′L(G)) = x−1x = 1. There-
fore, x = 1. This shows that σf is one-to-one, and since G is finite,
one can see that the homomorphism σf is a bijection. Hence, σf is
an absolute central automorphism of G. Moreover, f(xG′L(G)) =

f(xpt1
1 G′L(G) . . . xptk

k G′L(G)), and so f(xG′L(G)) = f(xpti
i G′L(G)) =

lp
ti . Since, pti < pn, therefore, lp

ti is a non-trivial element of L(G).
Hence, σf ̸∈ CAutl(G)(Z(G)), which is a contradiction. □

Corollary 3.2. Let G be a non-abelian finite p-group, and exp(L(G)) =
p. Then Autl(G) = CAutl(G)(Z(G)) if and only if Z(G) ⊆ Φ(G).

Proof. By using Theorem 3.1 and Lemma 2.5, it is clear. □

Corollary 3.3. Let G be a finite autonilpotent group of class 2. Then
Autl(G) = CAutl(G)(Z(G)) if and only if Z(G) = L(G)Gpn, where pn =
exp(L(G)).

Proof. Suppose Autl(G) = CAutl(G)(Z(G)). By the Theorem 3.1 and
Proposition 2.4, Z(G) ⊆ L(G)Gpn . Also since G′ ⊆ L(G), for every
a, b ∈ G, we have [a, b]p

n
= 1, and whence [ap

n
, b] = 1. This means that

for every a ∈ G, ap
n ∈ Z(G) and Gpn ≤ Z(G). Therefore, L(G)Gpn ⊆

Z(G), and so Z(G) = L(G)Gpn . The converse holds by Theorem 3.1.
□
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Corollary 3.4. Let G be a finite autonilpotent group of class 2 and
exp(L(G)) = pn. If Z(G) = L(G)Gpn, then each automorphism of G
fixes the center element-wise.

Proof. It follows from Lemma 2.3 and Corollary 3.3. □

4. Absolute central automorphism of groups of orders p3

and p4

Now we classify all groups G of the orders p3 and p4, whose absolute
central automorphism of G fix the center element-wise.

Lemma 4.1. Let G be a group of order pn of maximal class. Then
Autl(G) = CAutl(G)(Z(G)).

Proof. For each p-group of maximal class, we have Z(G) ≤ G′. Hence,
these groups satisfy Autl(G) = CAutl(G)(Z(G)). □
Corollary 4.2. For each non-abelian group G of order p3, Autl(G) =
CAutl(G)(Z(G)).

Proof. Let G be a non-abelian group of order p3. Then cl(G) = 2, and
by Lemma 4.1, Autl(G) = CAutl(G)(Z(G)). □
Proposition 4.3. Let G be a non-abelian group of order p4. Then
Autl(G) = CAutl(G)(Z(G)), except when both L(G) ∼= Cp and Z(G) ⊈
Φ(G) do occur.

Proof. Suppose |G| = p4. Then G is nilpotent of class at most 3. Since
G is non-abelian, so cl(G) = 3 or 2. If cl(G) = 3, by Lemma 4.1,
G satisfies Autl(G) = CAutl(G)(Z(G)). Now suppose that cl(G) = 2.
Since G is not an extra-special p-group, we have |Z(G)| ̸= p. Hence,
|Z(G)| = p2. Thus |L(G)| = 1, p or p2. If |L(G)| = 1, then Autl(G) =
⟨1⟩, and so G satisfies Autl(G) = CAutl(G)(Z(G)). If |L(G)| = p, then
exp(L(G)) = p, and by Corollary 3.2, Autl(G) = CAutl(G)(Z(G)) if and
only if Z(G) ⊆ Φ(G). Thus in this state, when Z(G) ⊈ Φ(G), then
Autl(G) ̸= CAutl(G)(Z(G)). Finally, let |L(G)| = p2. Then L(G) =
Z(G), and hence, Autl(G) = CAutl(G)(Z(G)). Therefore, in all states,
Autl(G) = CAutl(G)(Z(G)), except when both L(G) ∼= Cp and Z(G) ⊈
Φ(G) do occur. □
Proposition 4.4. Using GAP [6] and the previous results, the only
non-abelian groups G of order 16 such that Autl(G) = CAutl(G)(Z(G)),
are D16 = ⟨x, y | x8 = y2 = 1, y−1xy = x−1⟩, Q16 = ⟨x, y | x8 =
1, x4 = y2, y−1xy = x−1⟩, S16 = ⟨x, y | x8 = y2 = 1, y−1xy = x3⟩,
⟨x, y | x4 = y4 = 1, y−1xy = x−1⟩,⟨x, y | x4 = y4 = (xy)2 = (xy−1)2 =
1⟩, ⟨x, y | x2 = y8 = 1, x−1yx = y−3⟩.
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ثابت نقطه�وار را گروه مرکز که مطلق مرکزی خودریختی�های بررسی
می�دارند نگه

نصرآبادی محمد�مهدی فریمانی، کبوتری زهرا
ایران بیرجند، بیرجند، دانشگاه

فراهم G گروه برای کافی و لازم شرط مقاله این در ما باشد. متناهی گروه -p یک G کنیم فرض
تمام ما هم�چنین دارد. نگه ثابت نقطه�وار را مرکز G از مطلق مرکزی خودریختی هر به�طوری�که می�کنیم
دسته�بندی می�دارند، نگه ثابت را مرکز آن�ها مطلق مرکزی خودریختی�های که را p۴ و p٣ مرتبه�ی از گروه�ها

می�کنیم.

. متناهی p-گروه�های مطلق، مرکزی خودریختی�های مطلق، مرکز کلیدی: کلمات
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