# RATIONAL CHARACTER TABLE OF SOME FINITE GROUPS 

H. SHABANI, A. R. ASHRAFI AND M. GHORBANI*


#### Abstract

The aim of this work is to compute the rational character tables of the dicyclic group $T_{4 n}$, the groups of the orders $p q$ and $p q r$. Some general properties of rational character tables are also considered.


## 1. Introduction

In this section, we establish some basic notation, and terminologies that are used throughout this article. Let $p$ be a prime number, and $q$ be a positive integer such that $q \mid p-1$. Define the group $F_{p, q}$ to be presented by

$$
F_{p, q}=\left\langle a, b: a^{p}=b^{q}=1, b^{-1} a b=a^{u}\right\rangle,
$$

where $u$ is an element of order $q$ in the multiplicative group $\mathbb{Z}_{p}^{*}[5$, Page 290]. In the case that $q$ is also a prime, we use the notation $T_{p, q}$ as $F_{p, q}$. It is easy to see that $F_{p, q}$ is a Frobenius group of the order $p q$.

Hölder [3] classified groups of order $p q r ; p, q$, and $r$ are the primes. Using his results, we can prove that all groups of the order pqr ( $p>$ $q>r)$ are isomorphic to one of the following groups:

- $G_{1}=\mathbb{Z}_{p q r}$,
- $G_{2}=\mathbb{Z}_{r} \times F_{p, q}(q \mid p-1)$,
- $G_{3}=\mathbb{Z}_{q} \times F_{p, r}(r \mid p-1)$,
- $G_{4}=\mathbb{Z}_{p} \times F_{q, r}(r \mid q-1)$,
- $G_{5}=F_{p, q r}(q r \mid p-1)$,

MSC(2010): Primary: 20C15; Secondary: 20D15
Keywords: Rational character table, Character table, Galois group. Received: 8 January 2015, Revised: 11 January 2016.
$*$ Corresponding author .

- $G_{i+5}=\left\langle a, b, c: a^{p}=b^{q}=c^{r}=1, a b=b a, c^{-1} b c=\right.$ $\left.b^{u}, c^{-1} a c=a^{v^{i}}\right\rangle$, where $r|p-1, r| q-1, o(u)=r$ in $\mathbb{Z}_{q}^{*}$ and $o(v)=r$ in $\mathbb{Z}_{p}^{*} \quad(1 \leq i \leq r-1)$.
Suppose that $G$ is a finite group, $\operatorname{Irr}(G)$ denotes the set of all irreducible characters of $G, C l(G)$ is the set of conjugacy classes of $G$, and $x, y \in G$. Also assume that $A$ is the set of all character values of $G, \mathbb{Q}(A)$ denotes the field generated by $\mathbb{Q}$ and $A$. If $\Gamma$ is the Galois group of this extension, then $\Gamma$ acts on $\operatorname{Irr}(G)$ by $\chi^{\alpha}(g)=\alpha(\chi(g))$. It is well-known that there exists $\varepsilon$ such that $\mathbb{Q}(A) \subseteq \mathbb{Q}(\varepsilon)$, where $\epsilon$ is a primitive $n-t h$ root of unity. Thus if $\alpha \in \Gamma$, then there exists a unique positive integer $r$ such that $(r, n)=1$ and $\alpha(\varepsilon)=\varepsilon^{r}$. Therefore, it is well-defined to use the notation $\alpha=\sigma_{r}$.

The elements $x$ and $y$ are said to be rational conjugates, if $\langle x\rangle$ and $\langle y\rangle$ are the conjugate subgroups of $G$. The orbits of $G$ under this action are called the rational conjugacy classes of $G$. On the other hand, $\Gamma$ acts on the conjugacy classes of $G$ by $\left(x^{G}\right)^{\sigma_{r}}=\left(x^{r}\right)^{G}$. It is well known that [4, Corollary 6.33] the number of orbits in the actions of $\Gamma$ on the irreducible characters and conjugacy classes of $G$ are equal. Moreover, the orbits of $\Gamma$ on the conjugacy classes of $G$ are the rational conjugacy classes of $G$.

Lemma 1.1. Suppose that $G$ is a finite group, $A$ is the set of all character values of $G$, and $\Gamma=G a l\left(\frac{\mathbb{Q}(\mathbb{A})}{\mathbb{Q}}\right)$. Then the following hold:
(1) If $O$ is an orbit of $\Gamma$ under its action on conjugacy classes of $G$, then the union of elements of $O$ is a rational conjugacy class of $G$, and each rational conjugacy class of $G$ can be obtained in this way.
(2) If $O(\chi)$ denotes the orbit of $\chi$ under the action of $\Gamma$ on $\operatorname{Irr}(G)$, then the summation of all irreducible characters of $O(\chi)$ is a rational-valued character of $G$. Moreover, for any proper subset $T$ of $O(\chi)$, the summation of all irreducible characters of $T$ is not rational-valued.

Proof. Suppose that $A=\{\chi(g) \mid \chi \in \operatorname{Irr}(G) \& g \in G\}$. Then:
(1) Clearly, for each one of the conjugacy class $x^{G}$ and $y^{G}$ of an orbit $O$, there exists $\sigma_{r} \in \Gamma$ such that $(r,|G|)=1$ and $\sigma_{r}\left(x^{G}\right)=\left(x^{r}\right)^{G}$ $=y^{G}$. Therefore, there exists $g \in G$ such that $y=g^{-1} x^{r} g$. This implies that $x$ and $y$ are rational conjugates.
(2) The sum over $O(\chi)$ under the Galois group of the field $\mathbb{Q}(A)$, say, which is generated by the values of $\chi$, is rational because the value of the orbit sum at the group element $g$ is equal to
the trace of $\chi(g)$ with respect to the field extension $\mathbb{Q}(A) / \mathbb{Q}$ multiplied by the order of the stabilizer of $\chi(g)$ in $\operatorname{Gal}(\mathbb{Q}(A) / \mathbb{Q})$.

Suppose that the sum over a proper subset $T$ of $O(\chi)$ would be rational-valued, and assume, without loss of generality, that $\chi$ is in $T$. Take an element $\alpha$ in $\operatorname{Gal}(\mathbb{Q}(A) / \mathbb{Q})$ that maps $\chi$ to a character in the complement of $T$ in $O(\chi)$. Then the sum over the set $\left\{\psi^{\alpha} \mid \psi \in T\right\}$ is equal to the sum over $T$. This contradicts the linear independence of the characters in $O(\chi)$.
This ends the proof.
Suppose that $\mathcal{X}=\left\{X_{1}, \cdots, X_{r}\right\}$ denotes the set of orbits of $\Gamma$ on $\operatorname{Irr}(G)$, and $\mathcal{K}=\left\{K_{1}, \cdots, K_{r}\right\}$ is the set of orbits of $\Gamma$ on $C l(G)$. Then the characters $\gamma_{i}=m_{i} \sum_{\psi \in X_{i}} \psi$ and $1 \leq i \leq r$ are called the irreducible rational characters of $G$, where $m_{i}$ denotes the Schur index of a character in $X_{i}$.

Definition 1.2. Let the pair $(\mathcal{K}, \mathcal{X})$ be as defined above. The square matrix $\mathbb{Q} C T(G)=\left[a_{i j}\right]$ with $a_{i j}=\gamma_{i}\left(K_{j}\right)$ is said to be the rational character table of $G$, where $\gamma_{i}\left(K_{j}\right)$ is equal to $\gamma_{i}(g)$ for any $g \in K_{j}$.

Throughout this paper, our notations are standard, and can be taken from [2]. Our calculations are carried out with the aid of the computer algebra system GAP [6].

## 2. Main Results

Suppose that $G$ is a group, and $A$ is the set of all character values of $G$. In the first section, it is shown that there are two actions of $\Gamma=\operatorname{Gal}\left(\frac{\mathbb{Q}(A)}{\mathbb{Q}}\right)$ on $\operatorname{Irr}(G)$ and $C l(G)$. Suppose that $G$ is a finite group with $\mathbb{Q} C T(G)=\left(\gamma_{i}\left(K_{j}\right)\right)$, where $1 \leq i, j \leq r$, and $r$ denotes the number of irreducible rational characters. Then the row and column orthogonality relations for the rational character table of $G$ can be written in the following form:

$$
\begin{aligned}
\left\langle\gamma_{i}, \gamma_{j}\right\rangle & =\frac{1}{|G|} \sum_{t=1}^{r}\left|K_{t}\right| \gamma_{i}\left(K_{t}\right) \gamma_{j}\left(K_{t}\right)=\delta_{i, j} m_{i}^{2}\left|K_{i}\right|, \\
\left\langle K_{p}, K_{q}\right\rangle & =\sum_{i=1}^{r} \gamma_{i}\left(K_{p}\right) \gamma_{i}\left(K_{q}\right)=\delta_{p, q} m_{p}^{2}\left|C_{G}\left(K_{p}\right)\right|\left|K_{p}\right| .
\end{aligned}
$$

Thus if $g$ and $g^{\prime}$ are two rational conjugate elements, then $\left|C_{G}(g)\right|=$ $\left|C_{G}\left(g^{\prime}\right)\right|$. In the above relations, $\left|K_{i}\right|$ is equal to the number of conjugacy classes $g^{G}$ such that $K_{i}=\cup g^{G}$.

The following proposition extends a well-known result of the ordinary character theory to that for the rational character theory [5, Page 167].

Proposition 2.1. Let $G$ be a finite group. Then,

$$
\operatorname{det}(\mathbb{Q} C T(G))^{2}=\prod_{i=1}^{r}\left(\left|C_{G}\left(K_{i}\right)\right| \times\left|K_{i}\right|\right) .
$$

Proof. Suppose $Q=\mathbb{Q} C T(G)=\left(\gamma_{i}\left(K_{j}\right)\right)$. Then,

$$
Q^{t} Q=\left(\gamma_{j}\left(K_{i}\right)\right) \times\left(\gamma_{i}\left(K_{j}\right)\right)
$$

$$
=\left(\sum_{i=1}^{r} \gamma_{i}\left(K_{s}\right) \gamma_{i}\left(K_{t}\right)\right)
$$

$$
=\operatorname{diag}\left(\left|C_{G}\left(K_{i}\right)\right| \times\left|K_{i}\right|\right)
$$

Hence, $\operatorname{det}(\mathbb{Q} C T(G))^{2}=\prod_{i=1}^{r}\left(\left|C_{G}\left(K_{i}\right)\right| \times\left|K_{i}\right|\right)$, proving the result.
Proposition 2.2. If $G$ is cyclic, then $\frac{\mathbb{Q C T}(G)^{2}}{|G|}=I$, where $I$ denotes the identity matrix.

Proof. Suppose $(\mathcal{K}, \mathcal{X})$ is as definition 1 for $G$ such that $\mathcal{K}=\left\{K_{1}, \cdots, K_{r}\right\}$. Consider the following two matrices

$$
A=\operatorname{diag}\left(\sqrt{\left|K_{1}\right|}, \cdots, \sqrt{\left|K_{r}\right|}\right)
$$

and

$$
B=\frac{1}{\sqrt{|G|}} \operatorname{diag}\left(\frac{1}{\sqrt{\left|K_{1}\right|}}, \cdots, \frac{1}{\sqrt{\left|K_{r}\right|}}\right)
$$

Set $C=B Q A$, where $Q=\mathbb{Q} C T(G)$. Then $C C^{t}=I$, and since $G$ is cyclic, $C C^{t}=\frac{Q^{2}}{|G|}=I$, as desired.

Let $\mu(n), \phi(n)$, and $\tau(n)$ denote the Möbius $\mu$-function, Euler totient function, and number of divisor of $n$, respectively. For $n, m \in \mathbb{Z}$ with $n \geq 1$, the Ramanujan sum $c_{n}(m)$ is defined as

$$
c_{n}(m)=\sum_{\substack{1 \leq k \leq n \\(k, n)=1}} e^{\frac{2 \pi i k m}{n}}
$$

The Ramanujan sum is always an integer, and the von Sternecks Formula says that $c_{n}(m)=\frac{\mu\left(\frac{n}{(n, m)}\right) \phi(n)}{\phi\left(\frac{n}{(n, m)}\right)}$.

Theorem 2.3. For a positive integer $n$, let $d_{1}, d_{2}, \ldots, d_{\tau(n)}$ be the divisors of $n$. The rational character table of the cyclic groups $\mathbb{Z}_{n}$ can be computed using $\mathbb{Q} C T\left(\mathbb{Z}_{n}\right)=\left[a_{i j}\right]$, where $a_{i j}=c_{d_{i}}\left(\frac{n}{d_{j}}\right)$.

Proof. Suppose that $\tau(n)$ denotes the number of divisors of $n$. The irreducible characters of the cyclic group $\mathbb{Z}_{n}$ can be computed by $\chi_{k}(m)=$ $\varepsilon^{k m}$, where $\varepsilon=e^{\frac{2 \pi i}{n}}$, and the Schur index of each character is equal to 1 . It is well-known that $\mathbb{Q}(A) \cong \mathbb{Q}(\varepsilon)$, and $\Gamma=\operatorname{Gal}\left(\frac{\mathbb{Q}(A)}{\mathbb{Q}}\right) \cong \mathbb{Z}_{n}^{*}$. Then $\mathcal{X}=\left\{X_{1}, \cdots, X_{\tau(n)}\right\}$ and $\mathcal{K}=\left\{K_{1}, \cdots, K_{\tau(n)}\right\}$, where $X_{i}=$ $\left\{\chi_{k} \left\lvert\,(k, n)=\frac{n}{d_{i}}\right.\right\}$ and $K_{j}=\left\{a \in \mathbb{Z}_{n} \left\lvert\,(a, n)=\frac{n}{d_{j}}\right.\right\}$. This computes the rational character table of $\mathbb{Z}_{n}$, as desired.

Example 2.4. Let $p$ be a prime number. The rational character table of $\mathbb{Z}_{p}$ is recorded in Table 1. In this case, $K_{1}=i d_{\mathbb{Z}_{p}}$ and $K_{2}=\mathbb{Z}_{p}-i d_{\mathbb{Z}_{p}}$.

Table 1. Rational Character Table of $\mathbb{Z}_{p}$.

| $\mathbb{Q} C T\left(\mathbb{Z}_{p}\right)$ | $K_{1}$ | $K_{2}$ |
| :---: | :---: | :---: |
| $\gamma_{1}$ | 1 | 1 |
| $\gamma_{2}$ | $p-1$ | -1 |

Example 2.5. Following James and Liebeck [5, p. 178], the dicyclic group $T_{4 n}$ can be presented as follows:

$$
T_{4 n}=\left\langle a, b \mid a^{2 n}=1, a^{n}=b^{2}, b^{-1} a b=a^{-1}\right\rangle .
$$

It is easy to see that this group has the order $4 n$ and the cyclic subgroup $\langle a\rangle$ has the index 2 in $T_{4 n}$. Suppose that $d_{1}, \cdots, d_{\tau(n)}$ are the positive divisors of $n$. Let $\varepsilon=e^{\frac{2 \pi i}{2 n}}$ and $\operatorname{Irr}(\langle a\rangle)=\left\{\psi_{1}, \psi_{2}, \cdots, \psi_{2 n}\right\}$, where $\psi_{j}\left(a^{r}\right)=\varepsilon^{j r}$, and $r=1,2, \cdots, 2 n$. In [5, p. 420], the character table of $T_{4 n}$ is computed. For the sake of completeness, we describe the character table of $T_{4 n}$ as follow:

- The group $T_{4 n}$ has exactly $n+3$ conjugacy classes as follows: $\{e\},\left\{a^{n}\right\},\left\{a^{r}, a^{-r}\right\}(1 \leq r \leq n-1),\left\{a^{2 j} b \mid 0 \leq j \leq n-1\right\}$, and $\left\{a^{2 j+1} b \mid 0 \leq j \leq n-1\right\}$.
- The group $T_{4 n}$ has exactly $n-1$ non-linear characters $\bar{\psi}_{j}$ such that $\bar{\psi}_{j} \downarrow_{\langle a\rangle}=\psi_{j}+\psi_{n-j}$, where $1 \leq j \leq n-1$. It is easy to see that $\bar{\psi}_{j}\left(a^{\alpha} b^{\beta}\right)=(1-\beta)\left(\varepsilon^{j \alpha}+\varepsilon^{-j \alpha}\right)$. The Schur index of $\bar{\psi}_{j}$ is equal to 2 , where j is odd and is equal to 1 otherwise.
- The group $T_{4 n}$ has exactly four linear characters. These are $\left\{\bar{\psi}_{n}, \bar{\psi}_{n}^{\prime}\right\}$ and $\left\{\chi_{1}, \chi_{2}\right\}$ such that $\bar{\psi}_{n}$ and $\bar{\psi}_{n}^{\prime}$ are two linear characters of $T_{4 n}$ with this property that $\bar{\psi}_{n} \downarrow_{\langle a\rangle}=\bar{\psi}_{n}^{\prime} \downarrow_{\langle a\rangle}=$ $\psi_{n}, \chi_{1}=1$ and $\chi_{2}$ is the lift of the non-trivial irreducible character of $\frac{T_{4 n}}{\langle a\rangle} \cong Z_{2}$ to $T_{4 n}$. Notice that if $n$ is odd, then

$$
\bar{\psi}_{n}\left(a^{\alpha} b^{\beta}\right)=(-1)^{\alpha} i^{\beta} \text { and } \bar{\psi}_{n}^{\prime}\left(a^{\alpha} b^{\beta}\right)=(-1)^{\alpha}(-i)^{\beta} . \text { If } n \text { is even, }
$$ $\bar{\psi}_{n}\left(a^{\alpha} b^{\beta}\right)=(-1)^{\alpha}(-1)^{\beta}$ and $\bar{\psi}_{n}^{\prime}\left(a^{\alpha} b^{\beta}\right)=(-1)^{\beta}$. It is obvious the Schur index of these characters is equal to 1 .

On the other hand, $\mathbb{Q}(A)=\mathbb{Q}\left(\varepsilon+\varepsilon^{-1}\right)$, where $A$ is the character values of $T_{4 n}$ and $[\mathbb{Q}(A): \mathbb{Q}]=\frac{\phi(2 n)}{2}$. Thus the Galois group is abelian of order $\frac{\phi(2 n)}{2}$. Suppose that $n$ is odd. Then the action of Galois group $\Gamma$ on $\operatorname{Irr}\left(T_{4 n}\right)$ has exactly $\tau(2 n)+1$ orbits, as follow:

$$
\begin{aligned}
X_{1} & =\{1\} \\
X_{2} & =\left\{\chi_{2}\right\} \\
X_{i} & =\left\{\overline{\psi_{j}} \left\lvert\,(j, 2 n)=\frac{2 n}{d_{i}}\right. ; j=1, \cdots, n-1\right\}(3 \leq i \leq \tau(2 n)), \\
X_{\tau(2 n)+1} & =\left\{\bar{\psi}_{n}, \bar{\psi}^{\prime}{ }_{n}\right\} .
\end{aligned}
$$

Notice that $\left|X_{i}\right|=\frac{\phi\left(d_{i}\right)}{2}$. We now consider the action of Galois group $\Gamma$ on $C l\left(T_{4 n}\right)$. The orbits of this action are as follows:

$$
\begin{aligned}
K_{1} & =\{1\}, \\
K_{2} & =\left\{a^{n}\right\}, \\
K_{i} & =\left\{a^{r}, a^{2 n-r} \left\lvert\,(r, 2 n)=\frac{2 n}{d_{i}}\right.\right\}(3 \leq i \leq \tau(2 n)), \\
K_{\tau(2 n)+1} & =\left\{a^{j} b \mid 0 \leq j \leq 2 n-1\right\} .
\end{aligned}
$$

Then $\mathcal{X}=\left\{X_{1}, X_{2}, \cdots, X_{\tau(2 n)}, X_{\tau(2 n)+1}\right\} \quad$ and $\quad \mathcal{K} \quad=$ $\left\{K_{1}, K_{2}, \cdots, K_{\tau(2 n)}, K_{\tau(2 n)+1}\right\}$. We now assume that $n$ is even. Then, similar to the case of odd $n$, we have exactly $\tau(2 n)+2$ orbits, as follow:

$$
\begin{aligned}
X_{1} & =\{1\} \\
X_{2} & =\left\{\chi_{2}\right\} \\
X_{i} & =\left\{\overline{\psi_{j}} \left\lvert\,(j, 2 n)=\frac{2 n}{d_{i}}\right. ; j=1, \cdots, n-1\right\}(3 \leq i \leq \tau(2 n)), \\
X_{\tau(2 n)+1} & =\left\{\bar{\psi}_{n}\right\} \\
X_{\tau(2 n)+2} & =\left\{\bar{\psi}_{n}^{\prime}\right\} .
\end{aligned}
$$

Again $\left|X_{i}\right|=\frac{\phi\left(d_{i}\right)}{2}$, and we have:

$$
\begin{aligned}
K_{1} & =\{1\} \\
K_{2} & =\left\{a^{n}\right\} \\
K_{i} & =\left\{a^{r}, a^{2 n-r} \left\lvert\,(r, 2 n)=\frac{2 n}{d_{i}}\right.\right\}(3 \leq i \leq \tau(2 n)), \\
K_{\tau(2 n)+1} & =\left\{a^{2 j} b \mid 0 \leq j \leq n-1\right\}, \\
K_{\tau(2 n)+2} & =\left\{a^{2 j+1} b \mid 0 \leq j \leq n-1\right\} .
\end{aligned}
$$

Therefore, we have:

$$
\begin{aligned}
X & =\left\{X_{1}, X_{2}, \cdots, X_{\tau(2 n)+1}, X_{\tau(2 n)+2}\right\} \\
\mathcal{K} & =\left\{K_{1}, K_{2}, \cdots, K_{\tau(2 n)+1}, K_{\tau(2 n)+2}\right\}
\end{aligned}
$$

Notice that, by [7], the Schur index of $T_{4 n}$ can be computed as follows:

$$
t_{i}=\left\{\begin{array}{ccc}
1 & X_{i} & \text { contains } \bar{\psi}_{j} \text { when } j \text { is even } \\
2 & X_{i} & \text { contains } \bar{\psi}_{j} \text { when } j \text { is odd }
\end{array}\right.
$$

The rational character tables of $T_{4 n}$ are recorded in Tables 2 and 3 .

Table 2. Rational Character Table of $T_{4 n} ; n$ is odd.

| $\mathbb{Q} C T\left(T_{4 n}\right)$ | $K_{1}$ | $K_{2}$ | $K_{i}$ | $K_{\tau(2 n)+1}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\gamma_{1}$ | 1 | 1 | 1 | 1 |
| $\gamma_{2}$ | 1 | 1 | 1 | -1 |
| $\gamma_{i}$ | $t_{i} \phi\left(d_{i}\right)$ | $t_{i} c_{d_{i}}(n)$ | $t_{i} c_{d_{i}}(r)$ | 0 |
| $\gamma_{\tau(2 n)+1}$ | 2 | 2 | $2 \times(-1)^{r}$ | 0 |

Table 3. Rational Character Table of $T_{4 n}, n$ is even.

| $\mathbb{Q} C T\left(T_{4 n}\right)$ | $K_{1}$ | $K_{2}$ | $K_{i}$ | $K_{\tau(2 n)+1}$ | $K_{\tau(2 n)+2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\gamma_{1}$ | 1 | 1 | 1 | 1 | 1 |
| $\gamma_{2}$ | 1 | 1 | 1 | -1 | -1 |
| $\gamma_{i}$ | $t_{i} \phi\left(d_{i}\right)$ | $t_{i} c_{d_{i}}(n)$ | $t_{i} c_{c_{i}}(r)$ | 0 | 0 |
| $\gamma_{\tau(2 n)+1}$ | 1 | 1 | $(-1)^{r}$ | -1 | 1 |
| $\gamma_{\tau(2 n)+2}$ | 1 | 1 | $(-1)^{r}$ | 1 | -1 |

Lemma 2.6. Let $A, A_{1}$, and $A_{2}$ be the set of all entries of the character tables $G_{1} \times G_{2}, G_{1}$ and $G_{2}$, respectively. Let $\Gamma_{1}=\operatorname{Gal}\left(\frac{\mathbb{Q}\left(A_{1}\right)}{\mathbb{Q}}\right), \Gamma_{2}=$ $\operatorname{Gal}\left(\frac{\mathbb{Q}\left(A_{2}\right)}{\mathbb{Q}}\right)$ and $\Gamma=\operatorname{Gal}\left(\frac{\mathbb{Q}(A)}{\mathbb{Q}}\right)$. If $\operatorname{gcd}\left(\left|G_{1}\right|,\left|G_{2}\right|\right)=1$, then $\Gamma=\Gamma_{1} \times \Gamma_{2}$.

Proof. The proof follows from the fact that all entries of the character tables $G_{1}$ and $G_{2}$ are the sum of roots of unity of the orders $\left|G_{1}\right|$ and $\left|G_{2}\right|$, respectively.

Lemma 2.7. [4, Exercise 10.10] Let $\chi \in \operatorname{Irr}\left(G_{1}\right), \psi \in \operatorname{Irr}\left(G_{2}\right)$, and $\operatorname{gcd}(m(\chi), \psi(1)|\mathbb{Q}(\psi): \mathbb{Q}|)=\operatorname{gcd}(m(\psi), \chi(1)|\mathbb{Q}(\chi): \mathbb{Q}|)=1$. Then $m(\chi \psi)=m(\chi) m(\psi)$.

Theorem 2.8. Suppose that $G_{1}$ and $G_{2}$ are finite groups of the orders $n_{1}$ and $n_{2}$, respectively, where $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$. If $\chi$ and $\psi$ satisfy the hypothesis of Lemma 2.7 for any $\chi \in \operatorname{Irr}\left(G_{1}\right)$ and $\psi \in \operatorname{Irr}\left(G_{2}\right)$, then we have

$$
\mathbb{Q} C T\left(G_{1} \times G_{2}\right)=\mathbb{Q} C T\left(G_{1}\right) \otimes \mathbb{Q} C T\left(G_{2}\right) .
$$

Proof. By Lemma 2.6, $\Gamma=\Gamma_{1} \times \Gamma_{2}$, where $\Gamma_{1}=\operatorname{Gal}\left(\frac{\mathbb{Q}\left(A_{1}\right)}{\mathbb{Q}}\right), \Gamma_{2}=$ $\operatorname{Gal}\left(\frac{\mathbb{Q}\left(A_{2}\right)}{\mathbb{Q}}\right)$, and $\Gamma=\operatorname{Gal}\left(\frac{\mathbb{Q}(A)}{\mathbb{Q}}\right)$. Let $A, A_{1}$ and $A_{2}$ be the entries of the character tables $G_{1} \times G_{2}, G_{1}$, and $G_{2}$, respectively. Suppose that the action of $\Gamma_{1}$ on $\operatorname{Irr}\left(G_{1}\right)$ and the action of $\Gamma_{2}$ on $\operatorname{Irr}\left(G_{2}\right)$ have the classes $\left\{X_{1}, \ldots, X_{r}\right\}$ and $\left\{Y_{1}, \ldots, Y_{s}\right\}$, respectively. It is well-known that, $\operatorname{Irr}\left(G_{1} \times G_{2}\right)=\operatorname{Irr}\left(G_{1}\right) \times \operatorname{Irr}\left(G_{2}\right)$. Thus it is sufficient to prove that for each $\chi \in X_{i},(1 \leq i \leq r)$ and for each $\psi \in Y_{j},(1 \leq j \leq s)$, $[\chi \psi]=[\chi][\psi]$, where $[\chi]=\sum_{\sigma \in \Gamma} \chi^{\sigma}$. It is clear that for every $\sigma \in \Gamma$, there exist $\sigma_{1} \in \Gamma_{1}$ and $\sigma_{2} \in \Gamma_{2}$ such that $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$. This implies that

$$
\begin{aligned}
{[\chi \psi] } & =\left\{(\chi \psi)^{\sigma} \mid \sigma \in \Gamma\right\} \\
& =\left\{(\chi \psi)^{\left(\sigma_{1}, \sigma_{2}\right)} \mid \sigma_{1} \in \Gamma_{1}, \sigma_{2} \in \Gamma_{2}\right\} \\
& =\left\{\chi^{\sigma_{1}} \psi^{\sigma_{2}} \mid \sigma_{1} \in \Gamma_{1}, \sigma_{2} \in \Gamma_{2}\right\}=[\chi][\psi] .
\end{aligned}
$$

Suppose that $X_{i}=\left\{\chi_{i_{t}}\right\}_{t}$ and $Y_{j}=\left\{\psi_{j_{l}}\right\}_{l}$, then if $\gamma_{i}=m_{i} \sum_{t} \chi_{i_{t}}$ and $\delta_{j}=m_{j} \sum_{l} \psi_{j_{l}}$, by Lemma 2.7, we have:

$$
\gamma_{i} \delta_{j}=m_{i} m_{j} \sum_{t, l} \chi_{i_{t}} \psi_{j_{l}}
$$

Similarly, the rational conjugacy classes of $G_{1} \times G_{2}$ are equal to the product of the rational conjugacy classes of $G_{1}$ and $G_{2}$. Let $K_{f}$ and $L_{t}$ be the rational conjugacy classes of $G_{1}$ and $G_{2}$, respectively. Then we have

$$
\gamma_{\chi_{i} \psi_{j}}\left(\left(K_{f}, L_{s}\right)\right)=\gamma_{\chi_{i}}\left(K_{f}\right) \gamma_{\psi_{j}}\left(L_{s}\right) .
$$

This completes the proof.

Example 2.9. Let $p$ and $q$ be two prime numbers such that $p>q$, and $G$ be a finite group of the order $p q$. It is well-known that $G \cong \mathbb{Z}_{p q}$ or $G \cong T_{p, q}$. As a result of Theorem 2.8, one can easily prove that the rational character table of $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$ is $\mathbb{Q} C T\left(\mathbb{Z}_{p}\right) \otimes \mathbb{Q} C T\left(\mathbb{Z}_{q}\right)$.

Table 4. Rational Character Table of $\mathbb{Z}_{p q}$.

| $\mathbb{Q} C T\left(\mathbb{Z}_{p q}\right)$ | $K_{1}$ | $K_{2}$ | $K_{3}$ | $K_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\gamma_{1}$ | 1 | 1 | 1 | 1 |
| $\gamma_{2}$ | $q-1$ | -1 | $q-1$ | -1 |
| $\gamma_{3}$ | $p-1$ | $p-1$ | -1 | -1 |
| $\gamma_{4}$ | $p q-p-q+1$ | $1-p$ | $1-q$ | 1 |

Here, $K_{1}=\{i d\}, K_{2}=\{p, 2 p, \ldots,(q-1) p\}, K_{3}=\{q, 2 q, \ldots,(p-$ 1) $q\}$, and $\left.K_{4}=a \in \mathbb{Z}_{p q}:(a, p q)=1\right\}$.

Proposition 2.10. Suppose that $p$ is prime, and $q \mid p-1$ and $d_{1}, \cdots, d_{\tau(q)}$ are the positive divisors of $q$. Then the rational character table of $G=F_{p, q}$ is given in Table 5.

Table 5. Rational Character Table of $F_{p, q}$.

| $\mathbb{Q} C T\left(F_{p, q}\right)$ | $K_{1}$ | $K_{2}$ | $K_{j}$ |
| :---: | :---: | :---: | :---: |
| $\gamma_{1}$ | 1 | 1 | 1 |
| $\gamma_{i}$ | $\phi\left(d_{i}\right)$ | $\phi\left(d_{i}\right)$ | $c_{d_{i}}\left(\frac{q}{d_{j}}\right)$ |
| $\gamma_{\tau(q)+1}$ | $p-1$ | -1 | 0 |

Proof. Suppose that $\alpha=e^{\frac{2 \pi i}{q}}$ and $\beta=e^{\frac{2 \pi i}{p}}$. According to [5, Proposition 25.9 and Theorem 25.10], the $q$ linear characters of $F_{p, q}$ are defined as $\chi_{i}\left(a^{x} b^{y}\right)=\alpha^{i y}$, where $0 \leq i \leq q-1$. Moreover, the $r=\frac{p-1}{q}$ nonlinear characters of $F_{p, q}$ are

$$
\psi_{j}(g)=\left\{\begin{array}{ll}
\sum_{s \in S} \beta^{s x v_{j}} & g=a^{x} \\
0 & g=a^{x} b^{y}
\end{array},\right.
$$

where $S$ is a subgroup of $\mathbb{Z}_{p}^{\star}$ containing all powers of $u$, and the representatives of the cosets of $S$ in $\mathbb{Z}_{p}^{\star}$ can be considered as $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$. The conjugacy classes of $F_{p, q}$ are:

$$
\{1\},
$$

$$
\begin{aligned}
& \left(a^{v_{i}}\right)^{G}=\left\{a^{v_{i} s}: s \in S\right\}, \quad(1 \leq i \leq r), \\
& \left(b^{n}\right)^{G}=\left\{a^{m} b^{n}: 0 \leq m \leq p-1\right\}, \quad(1 \leq n \leq q-1) .
\end{aligned}
$$

Then the action of the Galois group $\Gamma=\operatorname{Gal}\left(\frac{\mathbb{Q}\left(\alpha, \sum_{s \in S} \beta^{s}\right)}{\mathbb{Q}}\right)$ on $\operatorname{Irr}\left(F_{p, q}\right)$ has exactly $\tau(q)+1$ orbits, as:

$$
\begin{aligned}
X_{1} & =\{1\}, \\
X_{i} & =\left\{\chi_{j} \left\lvert\,(j, q)=\frac{q}{d_{i}}\right. ; j=1, \cdots, \tau(q)\right\}(2 \leq i \leq \tau(q)), \\
X_{\tau(q)+1} & =\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{r}\right\} .
\end{aligned}
$$

On the other hand, the orbits of the action of Galois group $\Gamma$ on $C l\left(F_{p, q}\right)$ are:

$$
\begin{aligned}
K_{1} & =\{1\} \\
K_{2} & =\left\{a^{i}: 1 \leq i \leq p-1\right\} \\
K_{j+1} & =\cup_{(k, q)=\frac{q}{d_{j}}}\left(b^{k}\right)^{G}, \quad(2 \leq j \leq \tau(q)) .
\end{aligned}
$$

By [1, Theorem 4.2], the Schur index of all irreducible characters of $F_{p, q}$ is 1 , and the proof is completed.

Corollary 2.11. Let $p$ and $q$ be two prime numbers such that $p>q$ and $q \mid p-1$. The rational character table of the group $T_{p, q}$ is as Table 6.

In this case, the rational conjugacy classes are $K_{1}=\{i d\}, K_{2}=$ $\langle a\rangle \backslash\{i d\}$ and $K_{3}=T_{p, q} \backslash\langle a\rangle$.

Table 6. Rational Character Table of $T_{p, q}$.

| $\mathbb{Q} C T\left(T_{p, q}\right)$ | $K_{1}$ | $K_{2}$ | $K_{3}$ |
| :---: | :---: | :---: | :---: |
| $\gamma_{1}$ | 1 | 1 | 1 |
| $\gamma_{2}$ | $q-1$ | $q-1$ | -1 |
| $\gamma_{3}$ | $p-1$ | -1 | 0 |

From now on, we consider the groups of the order pqr $(p>q>r)$. To compute the rational character tables of a group $G$ of this order, we first calculate the character table of all groups of this order. In Theorem 2.3, the rational character table of the cyclic $\mathbb{Z}_{n}$ is computed. Thus it is enough to assume that group $G$ is non-cyclic. We now apply Theorems 2.3 and 2.8 to compute the rational character tables of $\mathbb{Z}_{r} \times F_{p, q}, \mathbb{Z}_{q} \times T_{p, r}$ and $\mathbb{Z}_{p} \times T_{q, r}$ as $\mathbb{Q} C T\left(\mathbb{Z}_{r}\right) \otimes \mathbb{Q} C T\left(F_{p, q}\right), \mathbb{Q} C T\left(\mathbb{Z}_{q}\right) \otimes \mathbb{Q} C T\left(T_{p, r}\right)$, and $\mathbb{Q} C T\left(\mathbb{Z}_{p}\right) \otimes \mathbb{Q} C T\left(T_{q, r}\right)$, respectively.

The character table of $G_{5}$ can be computed directly from Proposition 2.10. We now compute the character table of groups $G_{i+5}$. Let $G=$
$G_{i+5}$, to compute the conjugacy classes of $G$. We assume that $U=\langle u\rangle$ and $V=\langle v\rangle$ are the subgroups of order $r$ of $\mathbb{Z}_{q}^{*}$ and $\mathbb{Z}_{p}^{*}$, respectively. Then we have,

Lemma 2.12. The conjugacy classes of $G$ are

$$
\{1\},\left(a^{v_{i}}\right)^{G},\left(b^{u_{i}}\right)^{G},\left(c^{i}\right)^{G},\left(b^{u_{i}^{\prime}} a^{v_{i}^{\prime}}\right)^{G}
$$

where $u_{i}$ is a coset representative of $U$ in $\mathbb{Z}_{q}^{*}, v_{i}$ is a coset representative of $V$ in $\mathbb{Z}_{p}^{*}$, and $\left(u_{i}^{\prime}, v_{i}^{\prime}\right)$ is a coset representative of $\langle(u, v)\rangle$ in $\mathbb{Z}_{q}^{*} \times \mathbb{Z}_{p}^{*}$.

Proof. It is easy to see that for $1 \leq k \leq r-1, c^{-k} b c^{k}=b^{u^{k}}$ and so $b^{u^{i}}$ s are conjugate and so $\left|b^{G}\right| \geq r$. On the other hand, $\langle b a\rangle \leq C_{G}(b)$, and hence, $\left|C_{G}(b)\right| \geq p q$. This implies that $\left|b^{G}\right| \leq r$, and thus $\left|b^{G}\right|=r$. Further, one can prove that $\left(b^{u_{i}}\right)^{G}\left(1 \leq i \leq \frac{q-1}{r}\right)$ and $\left(a^{v_{j}}\right)^{G}(1 \leq j \leq$ $\frac{p-1}{r}$ ) are conjugacy classes of $G$. Therefore,

$$
\begin{aligned}
c^{G} & =\left\{c b^{i} a^{j} \mid 0 \leq i \leq q-1,0 \leq j \leq p-1\right\}, \\
& \vdots \\
\left(c^{r-1}\right)^{G} & =\left\{c^{r-1} b^{i} a^{j} \mid 0 \leq i \leq q-1,0 \leq j \leq p-1\right\}, \\
\left(b^{u_{i}^{\prime}} a^{v_{i}^{\prime}}\right)^{G} & =\left\{b^{u_{i}^{\prime}} a^{v_{i}^{\prime}}, b^{u_{i}^{\prime} u} a^{v_{i}^{\prime} v}, \cdots, b^{u_{i}^{\prime} u^{r-1}} a^{v_{i}^{\prime}} v^{r-1}\right\},
\end{aligned}
$$

where $\left(u_{i}^{\prime}, v_{i}^{\prime}\right)$ is a coset representative of $\langle(u, v)\rangle$ in $\mathbb{Z}_{q}^{*} \times \mathbb{Z}_{p}^{*}$ and $|\langle(u, v)\rangle|=r$.

It follows from Lemma 2.12 that $G$ has $\frac{p-1}{r}+\frac{q-1}{r}+\frac{(p-1)(q-1)}{r}+r$ conjugacy classes and then the same number of irreducible characters. On the other hand,

$$
G / G^{\prime}=\left\langle c \mid c^{r}=1\right\rangle \cong \mathbb{Z}_{r}
$$

Hence, $G$ has $r$ linear characters lifted from linear characters of $G / G^{\prime}$. These characters are as $\tilde{\chi}_{n}: G / G^{\prime} \rightarrow C$ with $\tilde{\chi}_{n}\left(c^{m} G^{\prime}\right)=\epsilon^{m n}$, where $\epsilon=e^{\frac{2 \pi i}{r}}$ and $m, n=0,1, \cdots, r-1$.

According to [5, Theorem 17.11], all linear characters of $G$ are as $\chi_{n}: G \rightarrow C$ with $\chi_{n}(g)=\tilde{\chi}_{n}\left(g G^{\prime}\right)$. Hence,

$$
\begin{aligned}
\chi_{n}\left(a^{w}\right) & =\tilde{\chi}_{n}\left(a^{w} G^{\prime}\right)=\tilde{\chi}_{n}\left(G^{\prime}\right)=\chi_{n}(1)=1, \\
\chi_{n}\left(b^{v}\right) & =\tilde{\chi}_{n}\left(b^{v} G^{\prime}\right)=\tilde{\chi}_{n}\left(G^{\prime}\right)=\chi_{n}(1)=1, \\
\chi_{n}\left(b^{v_{0}} a^{w_{0}}\right) & =\tilde{\chi}_{n}\left(b^{v_{0}} a^{w_{0}} G^{\prime}\right)=\tilde{\chi}_{n}\left(G^{\prime}\right)=\chi_{n}(1)=1, \\
\chi_{n}\left(c^{t}\right) & =\tilde{\chi}_{n}\left(c^{t} G^{\prime}\right)=\epsilon^{t n}(0 \leq n \leq r-1 \text { and } 1 \leq t \leq r-1) .
\end{aligned}
$$

where $\left(v_{0}, w_{0}\right)$ is a coset representative of $\langle(u, v)\rangle$ in $\mathbb{Z}_{q}^{*} \times \mathbb{Z}_{p}^{*}$.

Here, we determine all the non-linear irreducible characters of $G$. First notice that $H=\langle a\rangle$ is a normal subgroup of $G$, and if $u^{r} \equiv$ $1(\bmod q)$, then

$$
G / H=\left\langle b, c \mid b^{q}=c^{r}=1, c^{-1} b c=b^{u}\right\rangle \cong F_{q, r} .
$$

According to Proposition 2.10, the Frobenius group $F_{q, r}$ has $r$ linear characters and $\frac{q-1}{r}$ irreducible characters of degree $r$. Let us denote the non-linear characters by $\tilde{\varphi}_{m}$. Then we have:

$$
\begin{aligned}
\tilde{\varphi}_{m}(H) & =r, \\
\tilde{\varphi}_{m}\left(b^{x} H\right) & =\sum_{i=0}^{r-1} \lambda^{u_{m} x u^{i}}\left(1 \leq m \leq \frac{q-1}{r}, 1 \leq x \leq q-1\right), \\
\tilde{\varphi}_{m}\left(b^{x} c^{y} H\right) & =0(1 \leq y \leq r-1),
\end{aligned}
$$

where $\lambda=e^{\frac{2 \pi i}{q}}$ and $u_{1}, \cdots, u_{m}$ are distinct coset representative of $U=$ $\langle u\rangle$ in $\mathbb{Z}_{q}^{*}$. By lifting these characters, we can compute $\frac{q-1}{r}$ irreducible characters of $G$ of degree $r$ denoted by $\varphi_{m}\left(1 \leq m \leq \frac{q-1}{r}\right)$, e.g.

$$
\begin{aligned}
\varphi_{m}\left(a^{x}\right) & =r(0 \leq x \leq p-1) \\
\varphi_{m}\left(b^{y} a^{x}\right) & =\sum_{i=0}^{r-1} \lambda^{u_{m} y u^{i}}(0 \leq x \leq p-1,1 \leq y \leq q-1), \\
\varphi_{m}\left(c^{k}\right) & =0(1 \leq k \leq r-1)
\end{aligned}
$$

Similarly, for the normal subgroup $K=\langle b\rangle$ of $G$, we have:

$$
G / K \cong\left\langle a, c \mid a^{p}=c^{r}=1, c^{-1} a c=a^{v}\right\rangle \cong F_{p, r} .
$$

Consequently, this group has $\frac{p-1}{r}$ irreducible characters of degree $r$ denoted by $\tilde{\theta}_{l}\left(1 \leq l \leq \frac{p-1}{r}\right)$. Similar to the last discussion, the irreducible characters of $G$ lifted from $\tilde{\theta}_{l}$ are as follows:

$$
\begin{aligned}
\theta_{l}\left(a^{x}\right) & =\theta_{l}\left(b^{y} a^{x}\right)=\sum_{i=0}^{r-1} \gamma^{v_{l} x v^{i}}, \\
\theta_{l}\left(b^{y}\right) & =r \\
\theta_{l}\left(c^{k}\right) & =0(1 \leq k \leq r-1),
\end{aligned}
$$

where $\gamma=e^{\frac{2 \pi i}{p}}$ and $v_{1}, \cdots, v_{l}$ are distinct coset representative of $V=$ $\langle v\rangle$ in $\mathbb{Z}_{p}^{*}$.

Finally, by considering subgroup $G^{\prime}=\langle b a\rangle \cong \mathbb{Z}_{q} \times \mathbb{Z}_{p}$, its irreducible characters are of the form $\psi_{i} \xi_{j}(0 \leq i \leq q-1,0 \leq j \leq p-1)$ and

$$
\psi_{i}\left(b^{y}\right)=\lambda^{i y}, \xi_{j}\left(a^{x}\right)=\gamma^{j x} .
$$

This leads us to conclude that

$$
\psi_{i} \xi_{j}\left(b^{y} a^{x}\right)=\psi_{i}\left(b^{y}\right) \xi_{j}\left(a^{x}\right)=\lambda^{i y} \gamma^{j x} .
$$

Let now $m \in \mathbb{Z}_{q}^{*}$ and $n \in \mathbb{Z}_{p}^{*}$, then

$$
\left(\psi_{m} \xi_{n} \uparrow G\right)(1)=\frac{|G|}{|\langle b a\rangle|}\left(\psi_{m} \xi_{n}\right)(1)=\frac{p q r}{p q}=r .
$$

On the other hand,

$$
\begin{aligned}
\left|C_{G}\left(b^{y}\right)\right| & =\left|C_{G^{\prime}}\left(b^{y}\right)\right|=\left|C_{G}\left(a^{x}\right)\right|=\left|C_{G^{\prime}}\left(a^{x}\right)\right|=\left|C_{G}\left(b^{y} a^{x}\right)\right| \\
& =\left|C_{G^{\prime}}\left(b^{y} a^{x}\right)\right|=p q,
\end{aligned}
$$

and so

$$
\begin{aligned}
\left(\psi_{m} \xi_{n} \uparrow G\right)\left(a^{x}\right) & =\sum_{i=0}^{r-1} \xi_{n}\left(a^{x v^{i}}\right)=\sum_{i=0}^{r-1} \gamma^{n x v^{i}}, \\
\left(\psi_{m} \xi_{n} \uparrow G\right)\left(b^{y}\right) & =\sum_{i=0}^{r-1} \psi_{m}\left(b^{y u^{i}}\right)=\sum_{i=0}^{r-1} \lambda^{m y u^{i}}, \\
\left(\psi_{m} \xi_{n} \uparrow G\right)\left(b^{y} a^{x}\right) & =\sum_{i=0}^{r-1} \psi_{m}\left(b^{y u^{i}}\right) \xi_{n}\left(a^{x v^{i}}\right)=\sum_{i=0}^{r-1} \lambda^{m y u^{i}} \gamma^{n x v^{i}} \\
\left(\psi_{m} \xi_{n} \uparrow G\right)\left(c^{k}\right) & =0(k=1, \cdots, r-1) .
\end{aligned}
$$

Since

$$
\psi_{m} \xi_{n} \uparrow G=\psi_{m u^{i}} \xi_{n v^{i}} \uparrow G,
$$

thus, we get $z=\frac{(p-1)(q-1)}{r}$ characters of $G$. There still remains the question as to whether such characters are distinct irreducible. Assume $\left(u_{i}^{\prime}, v_{i}^{\prime}\right)$ be coset representative of subgroup $\{(1,1),(u, v), \cdots$, $\left.\left(u^{r-1}, v^{r-1}\right)\right\}$ of $\mathbb{Z}_{q}^{*} \times \mathbb{Z}_{p}^{*}$ and $\eta_{j}=\psi_{u_{j}^{\prime}} \xi_{v_{j}^{\prime}} \uparrow G$. According to Frobenius Reciprocity Theorem, for $H=G^{\prime}=\langle b a\rangle$, we verify:

$$
\begin{aligned}
\left\langle\eta_{j} \downarrow H, \psi_{u_{j}^{\prime} u^{i}} \xi_{v_{j}^{\prime} j^{j}}\right\rangle_{H} & =\left\langle\eta_{j}, \psi_{u_{j}^{\prime}} \xi_{v_{j}^{\prime}} \uparrow G\right\rangle_{G} \\
& =\left\langle\eta_{j}, \eta_{j}\right\rangle_{G} .
\end{aligned}
$$

Therefore, we can observe that

$$
\eta_{j} \downarrow H=\left\langle\eta_{j}, \eta_{j}\right\rangle_{G}\left(\sum_{i=0}^{r-1} \psi_{v_{j}^{\prime} u^{i}} \xi_{v_{j}^{\prime} v^{i}}\right)+\chi,
$$

where $\chi=0$ or it is a character of $H$. Hence, $\eta_{j}(1) \geq r\left\langle\eta_{j}, \eta_{j}\right\rangle_{G}$. Finally, $\eta_{j}(1)=r$ implies that $\left\langle\eta_{j}, \eta_{j}\right\rangle_{G}=1$, and so $\eta_{j}$ is irreducible. On the other hand, for $\left(u_{j}^{\prime}, v_{j}^{\prime}\right) \in \mathbb{Z}_{q}^{*} \times \mathbb{Z}_{p}^{*}$, all $\psi_{u_{j}^{\prime}} \xi_{v_{j}^{\prime}}$ 's are linearly independent, and thus all $\eta_{j} \downarrow H\left(1 \leq j \leq \frac{(p-1)(q-1)}{r}\right)$ are distinct. Consequently,
the irreducible characters $\eta_{1}, \cdots \eta_{z}$ are distinct. We summarize the character table of $G$ in the following theorem:

Theorem 2.13. Let $p>q>r$ be distinct prime numbers, $l_{1}=$ $\frac{(p-1)(q-1)}{r}, l_{2}=\frac{p-1}{r}, l_{3}=\frac{q-1}{r}$ and $\epsilon=e^{\frac{2 \pi i}{r}}$. Then the group $G$ has $l_{1}+l_{2}+l_{3}+r$ irreducible characters, as reported in Table 7.

Table 7. Character Table of Group $G_{i+5}$ for $1 \leq i \leq r$.

| $g$ | 1 | $a^{v_{i}}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \leq i \leq l_{1}$ | $b^{u_{i}}$ | $b^{u_{i}^{\prime}} a^{v_{i}^{\prime}}$ | $c^{k} \leq l_{2}$ | $1 \leq i \leq l_{3}$ | $1 \leq k \leq r-1$ |
| $\chi_{n}$ <br> $0 \leq n \leq r-1$ <br> $\eta_{s}$ <br> $1 \leq \eta_{s} \leq l_{3}$ <br> $\theta_{l}$ | 1 | $r$ | $E$ | 1 | 1 |

where $\lambda=e^{\frac{2 \pi i}{q}}, u_{1}, \cdots, u_{l_{1}}$ are distinct coset representative of $U=$ $\langle u\rangle$ in $\mathbb{Z}_{q}^{*}, v_{1}, \cdots, v_{l_{2}}$ are distinct coset representative of $V=\langle v\rangle$ in $\mathbb{Z}_{p}^{*}$, $\left(u_{i}^{\prime}, v_{i}^{\prime}\right)$ are coset representative of $\langle(u, v)\rangle$ in $\mathbb{Z}_{q}^{*} \times \mathbb{Z}_{p}^{*}$ and

$$
\begin{aligned}
& A=\sum_{j=1}^{r} \lambda^{u_{m} u_{i} u^{j}}, B=\sum_{j=1}^{r} \lambda^{u_{m} u_{i}^{\prime} u^{j}}, C=\sum_{j=1}^{r} \gamma^{v_{l} v_{i} v^{j}}, D=\sum_{j=1}^{r} \gamma^{v_{l} v_{i}^{\prime} v^{j}}, \\
& E=\sum_{j=1}^{r} \gamma^{v_{s}^{\prime} v_{i} v^{j}}, F=\sum_{j=1}^{r} \lambda^{u_{s}^{\prime} u_{i} u^{j}}, G=\sum_{j=1}^{r} \lambda^{u_{s}^{\prime} u_{i}^{\prime} u^{j}} \gamma^{v_{s}^{\prime} v_{i}^{\prime} v^{j}} .
\end{aligned}
$$

and $1 \leq l \leq l_{1}, 1 \leq m \leq l_{2}, 1 \leq s \leq l_{3}, 1 \leq n \leq r-1$.
Suppose $\mathfrak{G}(p, q, r)$ be the set of all groups of order $p q r$, where $p, q$, and $r$ are distinct prime numbers with $p>q>r$.

Theorem 2.14. Let $G \in \mathfrak{G}(p, q, r)$. Then, the rational character table of $G$ is equal to one of the Tables 8-13.

Proof. Using Theorems 2.3, 2.8 and Proposition 2.10, the rational character table of groups $G_{1}-G_{5}$ are as reported in Tables 8-12. Let $G=G_{i+5}$ for $1 \leq i \leq r-1$. According to [7, Theorem 3], the Schur index of $G$ is equal to 1 . Since $p, q, a n d r$ are prime numbers, one can easily check that $\left\langle a^{s}\right\rangle=\left\langle a^{t}\right\rangle,\left\langle b^{m}\right\rangle=\left\langle b^{n}\right\rangle,\left\langle c^{k}\right\rangle=\left\langle c^{l}\right\rangle$, and $\left\langle b^{x} a^{y}\right\rangle=\left\langle b^{v} a^{z}\right\rangle$,
where $1 \leq s, t, y, z \leq p-1,1 \leq m, n, x, v \leq q-1,1 \leq k, l \leq r-1$. This implies that all rational conjugacy classes are

$$
\begin{aligned}
& K_{1}=\{i d\}, \quad K_{2}=\cup_{i=1}^{l_{1}}\left(a^{v_{i}}\right)^{G}, K_{3}=\cup_{i=1}^{l_{2}}\left(b^{u_{i}}\right)^{G}, \\
& K_{4}=\cup_{i=1}^{l_{3}}\left(b^{u_{i}^{\prime}} a^{v_{i}^{\prime}}\right)^{G}, K_{5}=\cup_{k=1}^{r-1}\left(c^{k}\right)^{G} .
\end{aligned}
$$

On the other hand, let $\mathbb{Q}(A)=\mathbb{Q}\left(\epsilon, \lambda^{u}+\lambda^{u^{-1}}, \gamma^{v}+\gamma^{v^{-1}}\right)$, so the action of Galois group $\Gamma$ on $\operatorname{Irr}(G)$ has exactly five orbits, as follow:

$$
\begin{gathered}
X_{1}=\{1\}, X_{2}=\left\{\chi_{n}: 1 \leq n \leq r-1\right\}, X_{3}=\left\{\eta_{s}: 1 \leq s \leq l_{3}\right\}, \\
X_{4}=\left\{\theta_{l}: 1 \leq l \leq l_{1}\right\}, X_{4}=\left\{\varphi_{m}: 1 \leq m \leq l_{2}\right\} .
\end{gathered}
$$

This completes the proof.

## 3. Appendix

In this section, the rational character tables of the groups $G_{1}, G_{2}$, $G_{3}, G_{4}, G_{5}$ and $G_{i+5}, 1 \leq i \leq r-1$, all of which having the order $p q r$ are presented. These tables are computed by the methods given by Proposition 2.10 and Theorems 2.3, 2.8, and 2.14.

Table 8. Rational Character Table of Group $G_{1}$.

| $\mathbb{Q} C T\left(G_{1}\right)$ | $K_{1}$ | $K_{2}$ | $K_{3}$ | $K_{4}$ | $K_{5}$ | $K_{6}$ | $K_{7}$ | $K_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\gamma_{1}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\gamma_{2}$ | $r-1$ | -1 | $r-1$ | -1 | $r-1$ | -1 | $r-1$ | -1 |
| $\gamma_{3}$ | $q-1$ | $q-1$ | -1 | -1 | $q-1$ | $q-1$ | -1 | -1 |
| $\gamma_{4}$ | $a_{1}$ | $1-q$ | $1-r$ | 1 | $a_{1}$ | $1-q$ | $1-r$ | 1 |
| $\gamma_{5}$ | $p-1$ | $p-1$ | $p-1$ | $p-1$ | -1 | -1 | -1 | -1 |
| $\gamma_{6}$ | $a_{2}$ | $1-p$ | $a_{2}$ | $1-p$ | $1-r$ | 1 | $1-r$ | 1 |
| $\gamma_{7}$ | $a_{3}$ | $p-1$ | -1 | -1 | $1-q$ | $1-q$ | 1 | 1 |
| $\gamma_{8}$ | $a_{4}$ | $-a_{3}$ | $-a_{2}$ | $p-1$ | $-a_{1}$ | $1-q$ | -1 | -1 |

Here, $a_{1}=(q-1)(r-1), a_{2}=(p-1)(r-1), a_{3}=(p-1)(q-1)$, and $a_{4}=(p-1)(q-1)(r-1)$. The rational conjugacy classes are,

$$
\begin{aligned}
K_{1} & =\left\{i d_{G_{1}}\right\}, \\
K_{2} & =\{p q, 2 p q, \ldots,(r-1) p q\}, \\
K_{3} & =\{p r, 2 p r, \ldots,(q-1) p r\}, \\
K_{4} & =\{q r, 2 q r, \ldots,(p-1) q r\}, \\
K_{5} & =\{p, 2 p, \ldots,(r-1)(q-1) p\}, \\
K_{6} & =\{q, 2 q, \ldots,(r-1)(p-1) q\}, \\
K_{7} & =\{r, 2 r, \ldots,(q-1)(p-1) r\}, \\
K_{8} & =\left\{a \in \mathbb{Z}_{p q r}:(a, p q r)=1\right\} .
\end{aligned}
$$

Table 9. Rational Character Table of Group $G_{2}$.

| $\mathbb{Q} C T\left(G_{2}\right)$ | $K_{1}$ | $K_{2}$ | $K_{3}$ | $K_{4}$ | $K_{5}$ | $K_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\gamma_{1}$ | 1 | 1 | 1 | 1 | 1 | 1 |
| $\gamma_{2}$ | $r-1$ | -1 | $r-1$ | -1 | $r-1$ | -1 |
| $\gamma_{3}$ | $q-1$ | $q-1$ | $q-1$ | $q-1$ | -1 | -1 |
| $\gamma_{4}$ | $a_{1}$ | $1-q$ | $a_{1}$ | $1-q$ | $1-r$ | 1 |
| $\gamma_{5}$ | $p-1$ | $p-1$ | -1 | -1 | 0 | 0 |
| $\gamma_{6}$ | $a_{2}$ | $1-p$ | $1-r$ | 1 | 0 | 0 |

Here, $a_{1}=(q-1)(r-1)$ and $a_{2}=(p-1)(r-1)$. Let $F_{p, q}=$ $\left\langle a, b: a^{p}=b^{q}=1, b^{-1} a b=a^{u}\right\rangle$. Also consider that $L_{1}=\left\{i d_{\mathbb{Z}_{r}}\right\}$ and $L_{2}=\mathbb{Z}_{r} \backslash L_{1}$ are the rational conjugacy classes of $\mathbb{Z}_{r}$ and $T_{1}=\left\{i d_{F_{p, q}}\right\}$, $T_{2}=\left\{a, \ldots, a^{p-1}\right\}$ and $T_{3}=F_{p, q} \backslash\langle a\rangle$ are the rational conjugacy classes of $F_{p, q}$. Then we have $K_{1}=L_{1} \times T_{1}, K_{2}=L_{2} \times T_{1}, K_{3}=L_{1} \times T_{2}$, $K_{4}=L_{2} \times T_{2}, K_{5}=L_{1} \times T_{3}$, and $K_{6}=L_{2} \times T_{3}$.

Table 10. Rational Character Table of Group $G_{3}$.

| $\mathbb{Q} C T\left(G_{3}\right)$ | $K_{1}$ | $K_{2}$ | $K_{3}$ | $K_{4}$ | $K_{5}$ | $K_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\gamma_{1}$ | 1 | 1 | 1 | 1 | 1 | 1 |
| $\gamma_{2}$ | $q-1$ | -1 | $q-1$ | -1 | $q-1$ | -1 |
| $\gamma_{3}$ | $r-1$ | $r-1$ | $r-1$ | $r-1$ | -1 | -1 |
| $\gamma_{4}$ | $a_{1}$ | $1-r$ | $a_{1}$ | $1-r$ | $1-q$ | 1 |
| $\gamma_{5}$ | $p-1$ | $p-1$ | -1 | -1 | 0 | 0 |
| $\gamma_{6}$ | $a_{2}$ | $1-p$ | $1-q$ | 1 | 0 | 0 |

Here, $a_{1}=(q-1)(r-1)$ and $a_{2}=(p-1)(q-1)$. Let $F_{p, r}=\left\langle a, b: a^{p}=\right.$ $\left.b^{r}=1, b^{-1} a b=a^{u}\right\rangle$. Consider $L_{1}=\left\{i d_{\mathbb{Z}_{q}}\right\}$ and $L_{2}=\mathbb{Z}_{q} \backslash L_{1}$ are the rational conjugacy classes of $\mathbb{Z}_{q}$ and $T_{1}=\left\{i d_{F_{p, r}}\right\}, T_{2}=\left\{a, \ldots, a^{p-1}\right\}$,
and $T_{3}=F_{p, r} \backslash\langle a\rangle$ are the rational conjugacy classes of $F_{p, r}$. Then $K_{1}=L_{1} \times T_{1}, K_{2}=L_{2} \times T_{1}, K_{3}=L_{1} \times T_{2}, K_{4}=L_{2} \times T_{2}, K_{5}=L_{1} \times T_{3}$, and $K_{6}=L_{2} \times T_{3}$.

Table 11. Rational Character Table of Group $G_{4}$.

| $\mathbb{Q} C T\left(G_{4}\right)$ | $K_{1}$ | $K_{2}$ | $K_{3}$ | $K_{4}$ | $K_{5}$ | $K_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\gamma_{1}$ | 1 | 1 | 1 | 1 | 1 | 1 |
| $\gamma_{2}$ | $p-1$ | -1 | $p-1$ | -1 | $p-1$ | -1 |
| $\gamma_{3}$ | $r-1$ | $r-1$ | $r-1$ | $r-1$ | -1 | -1 |
| $\gamma_{4}$ | $a_{1}$ | $1-r$ | $a_{1}$ | $1-r$ | $1-p$ | 1 |
| $\gamma_{5}$ | $q-1$ | $q-1$ | -1 | -1 | 0 | 0 |
| $\gamma_{6}$ | $a_{2}$ | $1-q$ | $1-p$ | 1 | 0 | 0 |

Here, $a_{1}=(q-1)(r-1)$. Let $F_{q, r}=\left\langle a, b: a^{q}=b^{r}=1, b^{-1} a b=a^{u}\right\rangle$. Consider $L_{1}=\left\{i d_{\mathbb{Z}_{p}}\right\}$ and $L_{2}=\mathbb{Z}_{p} \backslash L_{1}$ are the rational conjugacy classes of $\mathbb{Z}_{p}$, and $T_{1}=\left\{i d_{F_{q, r}}\right\}, T_{2}=\left\{a, \ldots, a^{q-1}\right\}$ and, $T_{3}=F_{q, r} \backslash\langle a\rangle$ are the rational conjugacy classes of $F_{q, r}$. Then $K_{1}=L_{1} \times T_{1}, K_{2}=$ $L_{2} \times T_{1}, K_{3}=L_{1} \times T_{2}, K_{4}=L_{2} \times T_{2}, K_{5}=L_{1} \times T_{3}$, and $K_{6}=L_{2} \times T_{3}$.

Table 12. Rational Character Table of Group $G_{5}$.

| $\mathbb{Q} C T\left(G_{5}\right)$ | $K_{1}$ | $K_{2}$ | $K_{3}$ | $K_{4}$ | $K_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\gamma_{1}$ | 1 | 1 | 1 | 1 | 1 |
| $\gamma_{2}$ | $r-1$ | $r-1$ | -1 | $r-1$ | -1 |
| $\gamma_{3}$ | $q-1$ | $q-1$ | $q-1$ | -1 | -1 |
| $\gamma_{4}$ | $a_{1}$ | $a_{1}$ | $1-q$ | $1-r$ | 1 |
| $\gamma_{5}$ | $p-1$ | -1 | 0 | 0 | 0 |

Here, $a_{1}=(p-1)(r-1)$ and $a_{2}=(p-1)(q-1)$. Let $F_{p, q r}=$ $\left\langle a, b: a^{p}=b^{q r}=1, b^{-1} a b=a^{u}\right\rangle$. Then, the rational conjugacy classes are, $K_{1}=\left\langle i d_{G_{5}}\right\rangle, K_{2}=\left\{a^{i}: 1 \leq i \leq p-1\right\}, K_{3}=\cup_{i=1}^{r-1}\left(b^{i q}\right)^{G_{5}}$, $K_{4}=\cup_{i=1}^{q-1}\left(b^{i r}\right)^{G_{5}}$ and $K_{5}=\cup_{(k, q r)=1}\left(b^{k}\right)^{G_{5}}$.

Table 13. Rational Character Table of Group $G=$ $G_{i+5}, 1 \leq i \leq r-1$.

| $\mathbb{Q} C T\left(G_{i+5}\right)$ | $K_{1}$ | $K_{2}$ | $K_{3}$ | $K_{4}$ | $K_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\gamma_{1}$ | 1 | 1 | 1 | 1 | 1 |
| $\gamma_{2}$ | $r-1$ | $r-1$ | $r-1$ | $r-1$ | -1 |
| $\gamma_{3}$ | $q-1$ | $q-1$ | -1 | -1 | 0 |
| $\gamma_{4}$ | $p-1$ | -1 | $p-1$ | -1 | 0 |
| $\gamma_{5}$ | $(p-1)(q-1)$ | $-q+1$ | $-p+1$ | 1 | 0 |

Here, $K_{1}=\left\{i d_{G_{i+5}}\right\}, K_{2}=\cup_{i=1}^{l_{1}}\left(a^{v_{i}}\right)^{G}, K_{3}=\cup_{i=1}^{l_{2}}\left(b^{u_{i}}\right)^{G}, K_{4}=$ $\cup_{i=1}^{l_{3}}\left(b^{u_{i}^{\prime}} a^{v_{i}^{\prime}}\right)^{G}$ and $K_{5}=\cup_{k=1}^{r-1}\left(c^{k}\right)^{G}$ are the rational conjugacy classes of $G$ and $\gamma_{1}=1, \gamma_{2}=\sum_{n=1}^{r-1} \chi_{n}, \gamma_{3}=\sum_{s=1}^{l_{3}} \eta_{s}, \gamma_{4}=\sum_{l=1}^{l_{1}} \theta_{l}$ and $\gamma_{5}=\sum_{m=1}^{l_{2}} \varphi_{m}$.

## Acknowledgments

The authors are indebted to the anonymous referees for their comments and helpful remarks. We are also very grateful to professor Thomas Breuer for giving us a proof for Lemma 1.1. The first and second authors were partially supported by the University of Kashan under grant number $364988 / 5$, and the third author was partially supported by the Shahid Rajaee Teacher Training University under grant number 22926 .

## References

1. H. Behravesh, Quasi-permutation representations of $F_{p, q}$, Vietnam J. Math. 31 (2003), 249-254.
2. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Oxford Univ. Press, Clarendon, Oxford, 1985.
3. H. Hölder, Die Gruppen der Ordnungen $p^{3}, p q^{2}, p q r, p^{4}$, Math. Ann. XLIII (1893), 371-410.
4. I. M. Iscaacs, Character Theory of Finite Groups, Dover, New-York, 1976.
5. G. James, M. Liebeck, Representations and Characters of Groups, Cambridge Univ. Press, London-New York, 1993.
6. The Gap Team, GAP - Groups, Algorithms and Programming, Version 4.
7. T. Yamada, On the group algebras of metabelian groups over algebraic number fields I, Osaka J. Math. 6 (1969), 211-228.

## H. Shabani

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-51167, I. R. Iran.

Email: shabani@grad.kashanu.ac.ir

## A. R. Ashrafi

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-51167, I. R. Iran.
Email: ashrafi@kashanu.ac.ir

## M. Ghorbani

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran.
Email: mghorbani@srttu.edu

## RATIONAL CHARACTER TABLE OF SOME FINITE GROUPS

H. Shabani, A. R. Ashrafi and M. Ghorbani

جدول سرشتهاى گوياى برخى از گروههاى متناهى
حسين شبانى'، سيد عليرضا اشرفى' ' و مجتبى قربانى'

 در اين مقاله، به محاسبه جدول سرشتهای گروره دودورى

پ پرداختهايم. هم چنين برخى از خواص جدول گويا-سرشت نيز آورده شدهاست. كلمات كليدى: جدول سرشتهاى گويا، جدول سرشت، گروه گالوا.

