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MAGMA-JOINED-MAGMAS: A CLASS OF NEW
ALGEBRAIC STRUCTURES

M. H. HOOSHMAND∗

Abstract. By left magma-e-magma, I mean a set containing a
fixed element e, and equipped with the two binary operations “·”
and ⊙, with the property of e⊙(x ·y) = e⊙(x⊙y), namely the left
e-join law. Thus (X, ·, e,⊙) is a left magma-e-magma if and only
if (X, ·) and (X,⊙) are magmas (groupoids), e ∈ X and the left
e-join law holds. The right and two-sided magma-e-magmas are
defined in an analogous way. Also X is a magma-joined-magma if
it is magma-x-magma for all x ∈ X. Therefore, I introduce a big
class of basic algebraic structures with two binary operations, some
of whose sub-classes are group-e-semigroups, loop-e-semigroups,
semigroup-e-quasigroups and etc. A nice infinite (resp. finite)
example of them is the real group-grouplike (R,+, 0,+1) (resp.
Klein group-grouplike). In this paper, I introduce and study the
topic, construct several big classes of such algebraic structures and
characterize all the identical magma-e-magmas in several ways.
The motivation of this study lies in some interesting connections
to f -multiplications, some basic functional equations on algebraic
structures and Grouplikes (recently introduced by me). Finally, I
present some directions for the researches conducted on the sub-
ject.

1. Backgrounds

A binary operation “·” on a set X is a function that maps elements
of the Cartesian product X×X to X. One of the most basic algebraic
structures is a set equipped with an arbitrary binary operation, namely
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magma (groupoid or binary system; see [1, 2]). Thus magma is a basic
type of algebraic structures with one binary operation. Here, I intro-
duce a class of basic algebraic structures with two binary operations.
Motivations. There are three principle motivations for this topic, as
follow:

(a) f -Multiplication of binary operations. Let (X, ·) be a magma,
and f : X → X be an arbitrary function. Another binary
operation ·f in X is defined by x ·f y = f(xy), and is called
f -multiplication of “·”. Thus I obtain the algebraic system
(X, ·, ·f ) whose binary operations “·” and ·f may have some
relations depending on the properties of “·” and f (see [6]). For
example, (X, ·f ) is a semigroup if and only if f is associative in
(X, ·) (i.e., f satisfies the associative equation (2.9)).

(b) Some basic functional equations on algebraic structures. Gen-
eral solution of a functional equation on an algebraic struc-
ture is a challenging problem in the topic (see [3]). Let (X, ·)
be a magma, and consider the algebraic structures (X, ·f ) and
(X, ·, ·f ). Many basic and important functional equations in
(X, ·) can be interpreted as a type or property of the two new
algebraic systems, and vice versa, for instance:
- (X, ·f ) is a semigroup if and only if f satisfies the associative
equation f(xf(yz)) = f(f(xy)z) (for all x, y, z ∈ X).
- (X, ·f ) is commutative if and only if f satisfies the equation
f(xy) = f(yx).
- As we will see in this paper, (X, ·, e, ·f ) is a left e-magmag
(i.e., e ·f (x · y) = e ·f (x ·f y) for all x, y ∈ X) if and only if f
satisfies the following equation in (X, ·)

f(e(xy)) = f(ef(xy)) ; ∀x, y ∈ X. (1.1)

Also, (X, ·, e, ·f ) is a left identical e-magmag if and only if

f(e(xy)) = f(ef(xy)) = f(xy) ; ∀x, y ∈ X. (1.2)

(c) Grouplikes and f -grouplikes. We observe that the second magma
of every group-e-semigroup (G, ·, e,⊙), where e is the identity
of (X,⊙), is a Grouplike that has been introduced in 2013 [4].
A grouplike is something between semigroup and group, and its
axioms are generalizations of the four group axioms. Also every
grouplike is a semigroup containing the minimum ideal that is
also a maximal subgroup.
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2. Magma-e-Magma and its related algebraic structures

Now let’s introduce a class of new algebraic structures with two bi-
nary operations that is connected to magmas, semigroups, monoids,
quasigroups, loops, groups, and other similar structures.

Definition 2.1. A setX with two binary operations “·” and ⊙ is called
a left magma-e-magma (left e-magmag for short) if there is an element
e ∈ X satisfying the following property (called left e-join law)

e⊙ xy = e⊙ (x⊙ y) ; ∀x, y ∈ X, (2.1)

where x · y is denoted by xy, and e⊙ xy = e⊙ (xy).

Thus (X, ·, e,⊙) is a left magma-e-magma if and only if (X, ·) and
(X,⊙) are magmas, e ∈ X, and the left e-join law holds. Therefore,
this topic uses all algebraic structures with one binary operation, and
introduces so many algebraic structures with two binary operations,
the most basic structure of which is magma-e-magma.

If the first (second) magma of (X, ·, e,⊙) belongs to some special
class of magmas, we replace the first (the second) magma with the
name of the class. For instance, a left monoid-e-epigroup is a left
magma-e-magma (X, ·, e,⊙), where (X, ·) is a monoid, and (X,⊙) is
an epigroup. Right magma-e-magma is defined in an analogous way.
A magma-e-magma is both a left and right magma-e-magma, and in
such a case, e is called a joiner.

Now let X be a left magma-e-semigroup. Then

e⊙ xy = e⊙ x⊙ y ; ∀x, y ∈ X, (2.2)

and, using the associativity of ⊙, we have

e⊙((xy)z) = e⊙((xy)⊙z) = (e⊙(xy))⊙z = (e⊙x⊙y)⊙z = e⊙x⊙y⊙z,

e⊙ (x(yz)) = e⊙ (x⊙ (yz)) = e⊙ x⊙ (yz) ; ∀x, y, z ∈ X.

Hence, if it is semigroup-e-semigroup, then

e⊙ (xyz) = e⊙x⊙ y⊙ z = e⊙ (xy)⊙ z = e⊙x⊙ (yz) ; ∀x, y, z ∈ X,

and so

e⊙ x1 · · · xn = e⊙ x1 ⊙ · · · ⊙ xn ; ∀n ∈ N , ∀x1, · · · , xn ∈ X.

Therefore, if x1 = x2 = · · · = xn = x, then putting xn = xx · · · x and
x⊙n = x ⊙ x ⊙ · · · ⊙ x (n times), we have e ⊙ xn = e ⊙ x⊙n for every
positive integer n and all x ∈ X.

Example 2.2. Consider an arbitrary non-empty set X.
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(a) For every magma (X, ·) and each e ∈ X, (X, ·, e, ·) is an e-
magmag (here ⊙ = ·), which is called trivial e-magmag. Thus
in a trivial e-magmag, the types of the first and the second
magmas are the same, e.g. group-e-group.

(b) Let (X,⊙) be a magma with a left (resp. right, two-sided) zero
0. Then for every binary operation “·” in X, (X, ·, 0,⊙) is a
left (resp. right, two-sided) 0-magmag.

(c) Define x ⊙ y = x (resp. x ⊙ y = y) for every x, y ∈ X. Then
for every e ∈ X and all binary operations, “·” in X (X, ·, e,⊙)
is a left (resp. right) magma-e-semigroup. It is not (two-sided)
magma-e-semigroup if · ̸= ⊙.

(d) Consider the additive group (R,+), and fix b ∈ R\{0}. For each
real number a, denote by [a] the largest integer not exceeding
a, and put (a) = a − [a] = {a} (namely decimal or fractional
part of a). Set

[a]b = b[
a

b
] , (a)b = b(

a

b
).

We call [a]b the b-integer part of a, and (a)b the b-decimal part
of a. Also [ ]b and ( )b are called the b-decimal part function
and b-integer part function, respectively (see [7]). Since (a)1 =
(a), we may use the symbol (a)1 for the decimal part of a.
Now for every x, y ∈ R, we put x +b y = (x + y)b, and call
+b b-addition. The binary system (R,+b) is a special case of
semigroups, namely real b-grouplike (see [4]). We claim that
the structure (R,+, e,+b) is a group-e-semigroup for all e ∈ R
because

e+b (x+b y) = (e+ (x+ y)b)b = (e+ x+ y)b

= e+b (x+ y) ; ∀x, y ∈ R.
If e = 0, then we call it real b-group-grouplike, and specially,
real group-grouplike if b = 1.

(e) For an example of finite (nontrivial) e-magmags, consider K =
{e, a, η, α}, and define binary operations “·” and ⊙ by the fol-
lowing multiplication tables

· e a η α
e e a η α
a a e α η
η η α e a
α α η a e

⊙ e a η α
e e a e a
a a e a e
η e a e a
α a e a e

Note that (K, ·) is the Klein four-group and (K,⊙) is the Grou-
plike introduced in [4, example 2.4]. It is easy to see that k-join
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law holds, for every k ∈ K. Thus we call (K, ·, e,⊙) Klein
group-grouplike.

In this section, I often focus on the left structures (because of similar-
ities). In this way, I first consider the basic properties of left e-magmags
and try to put everything in its most natural framework, and then study
more useful structures such as group-e-semigroups, characterize their
identical classes, and determine their general form.

Let X be a magma, and e ∈ X. We call X, left e-unital (resp. right
e-unital) if e is a left (resp. right) identity of X. Hence, X is e-unital
if it is left and right e-unital. If X is e-unital, then e is the unique
(two-sided) identity of X, and sometimes we use the notation (X, ·, e)
for it (so it is usable for monoid, loop, and group). Now, if Y ⊆ X and
ey = y for every y ∈ Y , then we can say that e is a left identity of Y
in X. If this is the case and e ∈ Y , then we call e a left identity of
Y . Also, e is called left bi-identity (resp. middle bi-identity or middle
identity) of X if e(xy) = (ex)y = xy (resp. (xe)y = x(ey) = xy) for
every x, y ∈ X. Analogously, the right and two-sided cases are defined.

Note. It is worth noting that for every non-trivial left magma-e-
magma (X, ·, e,⊙), the second magma (X,⊙) can not be left e-unital.
Thus, in its title, the second magma can not be replaced by monoid,
loop or group. In fact, if e is a left identity of XX ∪X ⊙X in (X,⊙),
then xy = e ⊙ xy = e ⊙ (x ⊙ y) = x ⊙ y (for every x, y ∈ X), and so
· = ⊙.

Now I introduce a required definition for magmas, which is used in
the topic repeatedly.

Definition 2.3. Let e be a fixed element of the magma X. We call
X e-associative if the equation x(yz) = (xy)z holds for every x, y, z of
X such that at least one of them is equal to e. Also we call X weakly
e-associative if the equation holds whenever x = z = e.

Hence, every e-unital magma is e-associative, and X is a semigroup
if and only if it is e-associative for every e ∈ X.

Now, consider the left e-magmag (X, ·, e,⊙). If (X, ·) is left (resp.
right) e-unital, then e ⊙ x = e ⊙ (e ⊙ x) (resp. e ⊙ x = e ⊙ (x ⊙ e))
for every x ∈ X. Thus if (X, ·) is left e-unital, then e is a left identity
of e⊙X in (X,⊙), and if (X, ·) is right e-unital and (X,⊙) is weakly
e-associative, i.e.

e⊙ (x⊙ e) = (e⊙ x)⊙ e ; ∀x ∈ X, (2.3)

then e is a right identity of e⊙X in (X,⊙).
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Therefore, if the first magma is e-unital and the second one is weakly
e-associative, then e is an identity of e⊙X in (X,⊙), and so

e⊙ (e⊙ x) = e⊙ x = (e⊙ x)⊙ e ; ∀x ∈, (2.4)

Specially, e⊙3 is well-defined (i.e. e⊙(e⊙e) = (e⊙e)⊙e) and e⊙3 = e⊙2.
This discussion leads us to the following definition and lemma.

Definition 2.4. Let (X, ·, e,⊙) be a left magma-e-magma. We call it

(a) unital left magma-e-magma or briefly left e-unimag, if the first
magma (X, ·) is e-unital.

(b) left magma-e-ass.magma (resp. left magma-e-weakass.magma)
or briefly left e-assmag (resp. left e-wassmag), if the second
magma (X,⊙) is e-associative (resp. weakly e-associative).

Also every unital left magma-e-ass.magma (resp. unital left magma-e-
weakass.magma) is called left e-uniassmag (resp. left e-uniwassmag),
briefly. (The right and two-sided cases are defined, similarly.)

Thus we have several special (left) e-magmags such as (left) e-unimag,
e-assmag, e-uniassmag, and e-uniwassmag that are more general than
(left) monoid-e-semigroup, loop-e-semigroup, and group-e-semigroup.

Note. As one can see in the above definition and previous expla-
nation, some conditions or properties of an e-magmag may be about
the first or the second magma, only. Hence, if C is a condition (or
property), by first-C e-magmag (resp. second-C e-magmag), we mean
an e-magmag such that its first (resp. second) magma has the con-
dition C. For example, second-associative left e-magmag is the same
left magma-e-semigroup, and every e-uniassmag is first-e-unital and
second-e-associative. This general naming method helps us to call and
consider so many types of e-magmags.

Now considering the previous discussion and definitions:
- If (X, ·, e,⊙) is left e-uniwassmag, then e is an identity of e ⊙ X in
(X,⊙).
- If (X, ·, e,⊙) is left e-assmag, then its left e-join law can be written
as equation (2.2). Moreover, if e ⊙ (xe) = e ⊙ x (e.g. if (X, ·) is right
e-unital), then

(e⊙ x)⊙ (e⊙ y) = ((e⊙ x)⊙ e)⊙ y = (e⊙ (x⊙ e))⊙ y

= (e⊙ (xe))⊙ y = (e⊙ x)⊙ y = e⊙ (x⊙ y) = e⊙ xy,

thus

e⊙ xy = e⊙ x⊙ y = (e⊙ x)⊙ (e⊙ y) ; ∀x, y ∈ X. (2.5)
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The above identity has more properties than equation (2.2), and it
implies that e⊙X is a right e⊙ e-unital submagma of (X,⊙), and so
e⊙ e is its idempotent.

Therefore, we arrive at the following important properties for left
e-uniassmags and magma-e-semigroup. Note that, although left e-
uniassmags (a left e-magmag such that its first magma is e-unital and
the second one is e-associative) have a weaker condition than unital
left magma-e-semigroups, they have many important properties, and
there are useful basic structures in the topic.

Lemma 2.5. (i) If (X, ·, e,⊙) is a left e-assmag such that e⊙ (xe) =
e⊙(ex) = e⊙x (e.g. if (X, ·, e,⊙) is left e-uniassmag), then (e⊙X,⊙)
is an e⊙ e-unital sub-magma.
(ii) If (X, ·, e,⊙) is a unital left magma-e-semigroup, then (e ⊙X,⊙)
is a monoid. Moreover, if the equation xy = e (yx = e) has a solution
in X for every fixed element x ∈ X, then (e⊙X,⊙) is a group.

Proof. (i) Considering equation (2.5), it is enough to show that e⊙X
is e⊙ e -unital.

Putting x = e (resp. y = e) in the identities, we conclude that e⊙ e
is a left (resp. right) identity of the sub-magma e⊙X. Therefore, part
(i) is proved.

(ii) The first part implies that e ⊙ X is a sub-semigroup of (X,⊙)
with the identity element e ⊙ e. Now if x ∈ X and y is the element,
where xy = e, then

(e⊙ x)⊙ (e⊙ y) = e⊙ xy = e⊙ e,

(analogously for another case). Hence, the proof is complete. □
Convention. In this paper, if the first magma of (X, ·, e,⊙) is group,

monoid or loop, then we suppose that e is the identity element of (X, ·),
and so the e-magmag is unital. Hence, for example, by left group-e-
semigroup X we mean (X, ·, e) is a group, (X,⊙) is a semigroup, and
the left e-join law holds.

2.1. Essential map on e-magmags. Let (X, ·, e,⊙) be a left or right
e-magmag. Then we have the maps Je = J ℓ

e , J
e = Jr

e from X into X
defined by

Je(x) = e⊙ x , Je(x) = x⊙ e,

namely left , right e-joiner map (or e-map) , respectively. If Je = Je

(equivalently, e ∈ Z(X,⊙)), then we only use the notation Je for them.
Notice that the left (resp. right) e-map is the same left (resp. right)
e-translation map in (X,⊙). If X is a set with two binary operations
“·” and ⊙, then (X, ·, e,⊙) is left (resp. right) e-magmag if and only if
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Je(xy) = Je(x⊙ y) (resp. Je(xy) = Je(x⊙ y)) for all x, y ∈ X. Thus,
if X is a left e-magmag, then the following statements are equivalent:
- Je is left e-periodic with respect to “·” (i.e. Je(ex) = Je(x) for all x);
- Je is left e-periodic with respect to ⊙ (i.e. Je(e ⊙ x) = Je(x) for all
x);
- Je is left e-periodic with respect to both binary operations(i.e.Je(ex) =
Je(x) = Je(e⊙ x) for all x);
- e⊙ (e⊙ x) = e⊙ x for all x;
- e is a left identity of e⊙X in (X,⊙);
- Je is idempotent.

(Analogously, for the right and two-sided cases.) The e-maps play
an important role for the study and characterization of such algebraic
structures. For example, (X,⊙) is weakly e-associative if and only if
JeJ

e = JeJe (i.e. the composition is commutative). Depending on each
one of the first and the second binary operations, the e-map has im-
portant different properties, one of which is related to the decomposer,
associative and canceler properties introduced and studied in [5]. Here,
we give a short explanation about them.

If X is an arbitrary magma, then we have the following type func-
tions:

f(f(x)f∗(y)) = f(x) : left decomposer (2.6)

f(xf∗(y)) = f(x) : left strong decomposer (2.7)

f(f(x)y) = f(xy) : left canceler (2.8)

f(f(xy)z) = f(xf(yz)) : associative (2.9)

f(f(xy)z) = f(xf(yz)) = f((xy)z) = f(x(yz)) : strongly associative.
(2.10)

Note that f : X → X, f(x)f∗(x) = x = f ∗(x)f(x) for all x ∈ X, and
the right cases are defined analogously. The function f is decomposer
(resp. canceler) if it is both left and right decomposer (resp. canceler).

If X = S is semigroup, then every canceler function is strongly
associative, but the converse is true if f is periodic (i.e. there exists T ∈
X such that f(Tx) = f(xT ) = f(x), for all x ∈ X) and idempotent.
Of course, if X = M is monoid, then f is strongly associative if and
only if it is canceler.

If X = G is group, then the following conditions are equivalent :

(i) f is strongly associative;
(ii) f is associative and idempotent;
(iii) f is associative and f 2(e) = f(e);
(iv) f is associative and f(e)-periodic (i.e. f(f(e)x) = f(xf(e)) =

f(x));
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(v) f is strong decomposer;
(vi) f is decomposer and f ∗(G)⊴G or f∗(G)⊴G;
(vii) f is decomposer and f ∗(G) = f∗(G)⊴G;
(viii) f is canceler.
(ix) There exist ∆⊴G and Ω ⊆ G such that G = ∆ ·Ω = ∆ ·Ω and

f = PΩ (where the product is direct, and PΩ is the projection
map from G onto Ω).

The last item characterizes strong decomposer, canceler, and strongly
associative functions on groups ( [5]).

Example 2.6. The b-decimal part function ( )b satisfies the above
equivalent conditions in the additive real numbers group. Here, ∆ =
bZ, Ω = b[0, 1) = Rb, and we have R = bZ+̇b[0, 1), ( )b = Pb[0,1) (+̇
means the sum is direct; see [5, 7]).

Now let’s show that e-map has the mentioned and some other prop-
erties in e-assmags and e-uniassmags.

Lemma 2.7. Assume (X, ·, e,⊙) is a left e-assmag.

(A) If Je is right e-periodic, then:
Je : (X, ·) → (X,⊙) is homomorphism,
Je : (X,⊙) → (X,⊙) is endomorphism and right canceler,
Je : (X, ·) → (X, ·) is right canceler.

(B) If Je is left e-periodic, then Je is left canceler from the both
magmas to themselves.

(C) Hence, if X is a left e-uniassmag, then Je is e-periodic, ho-
momorphism from both magmas into the second magma and
canceler as a function from both magmas to themselves, and so:

Je(xy) = Je(x⊙ y) = Je(x)⊙ Je(y) = Je(Je(x)y) = Je(xJe(y))
= Je(Je(x)⊙ y) = Je(x⊙ Je(y)) ; ∀x, y ∈ X.

(2.11)
(D) If X is a unital left magma-e-semigroup, then all of the above

properties hold, and Je : (X, ·) → (X, ·) is strongly associative.

Proof. Let (X, ·, e,⊙) be a left e-assmag. First note that the condition
e⊙ (xe) = e⊙ x (resp. e⊙ (ex) = e⊙ x) for equation (2.5), equivalent
to Je, is right (resp. left) e-periodic. Thus if Je is right e-periodic, then
equation (2.5) holds, and for every x, y:

Je(xJe(y)) = e⊙ (x(e⊙ y)) = e⊙ (x⊙ (e⊙ y))

= (e⊙ x)⊙ (e⊙ y) = e⊙ x⊙ y = Je(xy).
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Also if Je is left e-periodic (or equivalently idempotent), then:

Je(Je(x)y) = e⊙ ((e⊙ x)y) = e⊙ ((e⊙ x)⊙ y)

= (e⊙ (e⊙ x))⊙ y = e⊙ x⊙ y = Je(xy).

Note that the identity (2.5) is equivalent to

Je(xy) = Je(x⊙ y) = Je(x)⊙ Je(y) ; ∀x, y ∈ X.

and if X is e-uniassmag, then Je is e-periodic, obliviously.
Applying the above facts, we arrive at (A), (B), and (C). Finally, if

X is unital left magma-e-semigroup, then Je is canceler, and so:

Je(Je(xy)z) = Je((xy)z) = Je(x(yz)) = Je(xJe(yz)).

Hence, Je is strongly associative.
□

Example 2.8. Consider the real b-group-grouplike (R,+, 0,+b). Then
J0 = ( )b agrees with Example 2.6 and Lemma 2.7.

Define f : K → K by f(η) = f(e) = e, f(α) = f(a) = a (K is
the Klein group-grouplike). Then, clearly, we have f∗(a) = f∗(e) = e,
f∗(α) = f∗(η) = η, and f∗ = f ∗. One can easily check that f is
strongly associative, strong decomposer, e, η-periodic, and idempotent
from both magmas to themselves. As we mentioned earlier, since (K, ·)
is group, then f ∗(K) = f∗(K) = {e, η}⊴K, f(K) = {e, a} and (K, ·) =
{e, η}·{e, a}, where the product is direct. Now we have f = P{e,a} = Je,
which agrees with the theorem and all the mentioned properties.

2.2. Sub-e-magmags and e-magmag homomorphisms. A (left)
sub-magma-e-magma (sub-e-magmag) of (X, ·, e,⊙) is a subset Y such
that it itself is a left e-magmag with the restrictions of the binary
operations, and which contains the joiner e. Thus Y is a sub-e-magmag
of X if and only if Y is submagma of X with both binary operations
and e ∈ Y .

Now, let f : (X, ·) → (X ′, ·′) , f : (X,⊙) → (X ′,⊙′) be magma ho-
momorphisms. If (X, ·, e,⊙) is left e-magmag, then (f(X), ·′, f(e),⊙′)
is a left f(e)-magmag. Thus if f is onto, then putting e′ = f(e),
(X ′, ·′, e′,⊙′) is also left e′-magmag. Therefore, we call f : (X, ·, e,⊙) →
(X ′, ·′, e′,⊙′) an e-magmag homomorphism if and only if :

(i) f : (X, ·) → (X ′, ·′) is homomorphism,
(ii) f : (X,⊙) → (X ′,⊙′) is homomorphism,
(iii) f(e) = e′.

We say that (X, ·, e,⊙) is isomorphic to (X ′, ·′, e′,⊙′), and denote by

(X, ·, e,⊙) ∼= (X ′, ·′, e′,⊙′),
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if there exists an isomorphism (bijective homomorphism) between them.
If (X, ·, e,⊙) ∼= (X ′, ·′, e′,⊙′), then (X, ·) ∼= (X ′, ·′) and (X,⊙) ∼=
(X ′,⊙′) (but the converse is not true).

For every (left, right and two-sided) e-magmag homomorphism f :
(X, ·, e,⊙) → (X ′, ·′, e′,⊙′), we have two useful kernels, as follows:

ker(f) = kere(f) = {x ∈ X : f(x) = f(e)};
kere⊙e(f) = {x ∈ X : f(x) = f(e⊙ e)}.

(Note that f(e) = e′ and f(e ⊙ e) = e′ ⊙′ e′.) We call kere(f) (resp.
kere⊙e(f)) e-kernel (resp. e⊙e-kernel) of f . It is easy to see that Im(f)
is a sub-e′-magmag of X ′, and kere(f) is a sub-e-magmag of X if e′ is
idempotent with respect to both binary operations.

Remark 2.9. Assume (X, ·, e,⊙) is a left e-assmag, for which Je is right
e-periodic. Lemma 2.7 implies that Je is a left e-magmag homomor-
phism from (X, ·, e,⊙) to the trivial left e⊙e-magmag (X,⊙, e⊙e,⊙).
Since, e⊙ e is ⊙-idempotent (i.e. idempotent with respect to ⊙), then:

ker(Je) = {x ∈ X : Je(x) = e⊙ e} = {x ∈ X : e⊙ x = e⊙ e}
is a left sub-e ⊙ e-magmag of (X,⊙, e ⊙ e,⊙). Hence, if X is left e-
uniassmag, then (X, ·) and (e ⊙ X,⊙) are unital magmas, and Je :
(X, ·) → (e ⊙X,⊙) is a unital magma epimorphism (which maps the
first identity to the second one).

Example 2.10. Considering the above remark, (Rb,+b, 0,+b) is a
subgroup-0-group of (R,+b, 0,+b), and ( )b : (R,+) → (Rb,+b) is a
group epimorphism with kernel {x ∈ R : 0+b x = (x)b = 0+b 0 = 0} =
bZ.

2.3. e-Relation, e-congruence and its induced quotient magma.
Here, we consider two essential equivalence relations on every left and
right e-magmags (namely left and right e-relation) that are completely
connected to the left and right essential e-maps.

For every left or right e-magmag X, we define x ∼e y (resp. x ∼e y)
if and only if e ⊙ x = e ⊙ y (resp. x ⊙ e = y ⊙ e). It is clear that
x ∼e y and x ∼e y are two equivalence relations in X and x ∼e y (resp.
x ∼e y) if and only if Je(x) = Je(y) (resp. J

e(x) = Je(y)).
Now let X be a left e-magmag. The equivalence relation ∼e is a

magma congruence with respect to both binary operations if X is left
e-assmag and Je is right e-periodic. Since x1 ∼e y1 and x2 ∼e y2, then:

x1x2 ∼e x1 ⊙ x2 ∼e y1 ⊙ y2 ∼e y1y2;

in fact, by applying equation (2.5)

e⊙ x1x2 = e⊙ (x1 ⊙ x2) = (e⊙ x1)⊙ (e⊙ x2) = (e⊙ y1)⊙ (e⊙ y2)
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= e⊙ (y1 ⊙ y2) = e⊙ y1y2.

Thus if X is left e-assmag and Je is right e-periodic, then we have two
binary operations in X = X/ ∼e (the set of all congruence classes x),
defined by x y := xy and x⊙y := x⊙ y. But the two binary operations
are the same because x⊙ y ∼e xy, and

x⊙ y = x⊙ y = xy = x y.

Therefore, the induced left quotient e-magmag is trivial, and we have
only e-associative quotient magma X with a right e-periodic map Je =
Je:

Je(x) = e x = ex = e⊙ x = Je(x).

Hence, if X is left e-assmag and Je is e-periodic (e.g. if X is left e-
uniassmag), then X = X/ ∼e is an e-unital and e-associative magma.
Identity and Associativity of a magma up to e-relation. First
note that the e-relations ∼e and ∼e can be defined in every arbitrary
magma containing e. Now let (X, ·) be a magma containing the fixed
element e. We say that ”(X, ·)

is left e-unital up to the left e-relation” or simply ”(X, ·) is left ∼e-
unital” if ex ∼e x for every x ∈ X (analogously, for the right and
two-sided cases). Also we say that ”(X, ·)

is associative up to the left e-relation” or simply ”(X, ·) is ∼e- asso-
ciative” if x(yz) ∼e (xy)z for every x, y, z ∈ X.
It is interesting to know that if X is left e-magmag, then:

(X, ·) is left∼e-unital ⇔Je is left e-periodic ⇔ (X,⊙) is left∼e-unital

⇔ Je is idempotent ⇔ e is a left identity of e⊙X in (X,⊙).

Also we have:

(X, ·) is right ∼e-unital ⇔ Je is right e-periodic ⇔ JeJ
e = Je

⇔ (X,⊙) is right ∼e-unital.

Remark 2.11. In this section, one can see the condition ”Je is right
e-periodic”, repeatedly. Hence, the condition that can be replaced
by ”(X, ·) is right ∼e-unital” (or other equivalent conditions) that is
weaker than the condition ”(X, ·) is right e-unital”. Therefore, if X
is a left e-assmag such that (X, ·) is right ∼e-unital, then the quotient
magma X = X/ ∼e exists; it is e-associative and right e-unital, and
also (e ⊙ X,⊙) is a right e ⊙ e-unital magma, and we have the maps
in the next part. Hence, if X is a left e-assmag such that (X, ·) is
∼e-unital (that is weaker than the condition ”X is left e-uniassmag”),
then we have all the above items, and also two unital magmas that are
considered in the next important theorem.
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Other important maps on e-magmags. Up to now, we have
introduced essential e-maps on (left and right) e-magmags. But we
can define some other useful maps, as follow:
As we know, for any arbitrary left e-magmag X, we have the map
Je : X → X with Im(Je) = e ⊙ X, and the equivalence relation ∼e

with the partition X = X/ ∼e, and

x = x/ ∼e= J−1
e ({Je(x)}) : ∀x ∈ X.

Now we can define the other useful well-defined maps, and consider
the relations between the image and partition:
- As usual, the (natural) surjective map πe : X → X is defined by
πe(x) = x with the kernel (only as a map):

ker(πe) := {x ∈ X : πe(x) = πe(e)} = e (2.12)

= {x ∈ X : e⊙ x = e⊙ e} = kere⊙e(Je).

- The injective map λe : X → X is defined by λe(x) := e⊙ x = Je(x).
- Since λe : X → e ⊙ X is bijection and invertible, then we have the
bijective map ϕe := λ−1

e : e⊙X → X with ϕe(e⊙ x) = x = πe(x).
Therefore, we have the following chain maps, composition relations

images, and kernel:

X
Je−−→ e⊙X

ϕe−−→ X
λe−−→ X

πe−−→ X, (2.13)

e⊙X
ϕe−−→ X

λe−−→ X
Je−−→ X

πe−−→ X,

πeλe = ϕeλe = ιX , λeϕe = ιe⊙X , λeπe = Je , ϕeJe = πe, (2.14)

Im(ϕe) = Im(πe) = X , Im(λe) = Im(Je) = e⊙X,
ker(λe) := {x ∈ X : λe(x) = λe(e)} = {e} (2.15)

Thus:

Card(X) = Card(e⊙X) = Card(Je(X)).

Now if X is left ∼e-unital, then e⊙ x = x (for all x), and so are
πeJe = πe and ϕe = πe|e⊙X .

But, if X is e-assmag and the magma is right ∼e-unital, then all the
mentioned maps are also homomorphism, Je is canceler, and we have
the right e-unital quotient magmaX = X/ ∼e and the right e⊙e-unital
magma e⊙X. Therefore, if X is (two-sided) ∼e-unital e-assmag (e.g.
if X is e-uniassmag), then all of the above properties hold. Therefore,
we arrive at the following important theorem.

Theorem 2.12. If X is a left e-assmag, for which one of its magmas
is right ∼e-unital (resp. left e-uniassmag), then the two right unital
magmas (resp. unital magmas) X/ ∼e and e ⊙ X are isomorphic.
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Hence, if X is unital left magma-e-semigroup (resp. loop-e-semigroup),
then X/ ∼e

∼= e⊙X as two monoids (resp. groups).

Proof. Applying the above discussions, maps, identities, lemma 2.7,
and Remark 2.9, one can prove this theorem. □
Example 2.13. Consider the real b-group-grouplike (R,+, 0,+b). We
have

x ∼b y ⇔ 0+bx = 0+b y ⇔ (x)b = (y)b ⇔ x−y ∈ bZ ⇔ x ≡ y (mod b)

Also
x+b y = x+b y = (x+ y)b = x+ y = x+ y,

which agrees with the previous results, and so:

(R,+b)/ ∼b= (R,+)/ ∼b
∼= R/bZ,

where R/bZ is the quotient group R over the cyclic subgroup bZ = ⟨b⟩.
On the other hand,

0 +b R = {(x)b|x ∈ R} = b[0, 1) = Rb,

and the above theorem implies that R/bZ ∼= (Rb,+b), which is the
reference b-bounded group (the group of all least nonnegative (real)
residues mod b, if b > 0) introduced, and studied in [7]. Here, Je =
J0 = ( )b = Pb[0,1) (see Example 2.6) and

π0(x) = x = x+ bZ , λ0(x) = λ0(x+ bZ) = 0 +b x = (x)b = J0(x)

ϕ0(0 +b x) = ϕ0((x)b) = x+ bZ = π0(x).

3. Identical e-Magmags, Magma-joined-Magmas, and Their
Characterization

Now, we introduce some types of e-magmags X, where the e-join
law holds for every e ∈ X. At first, recall that a magma (X, ·) is called
surjective if the function · : X ×X → X is surjective (i.e. every x ∈ X
can be written as x = yz for some y, z ∈ X). Hence, X is surjective if
and only if XX = X. It is obvious that if (X, ·) is left or right unital,
then X is surjective. Thus all monids, loops, and groups are surjective.

Definition 3.1. We call the left e-magmag (X, ·, e,⊙) identical if e is
a left bi-identity of (X,⊙).

Note that (X, ·, e,⊙) is left identical e-magmag if and only if

e⊙ xy = e⊙ (x⊙ y) = x⊙ y ; ∀x, y ∈ X (left identical e-join law)
(3.1)

Therefore, a left e-magmag X is identical if and only if Je(xy) = x⊙ y
or equivalently Je(x⊙ y) = x⊙ y for all x, y ∈ X. If X is left identical
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e-magmag, then both magmas are left ∼e-unital, Je(xe) = Je(x), and
so all the equivalent conditions hold. Also, (X,⊙) is semigroup if and
only if (X,⊙) is ∼e-associative.

Example 3.2. The real b-group-grouplike is identical group-0-semi-
group. In fact, it is identical group-β-semigroup, for every β ∈ bZ. If
β = bk, where k ∈ Z, then:

β +b (x+ y) = β +b x+b y = (kb+ x+ y)b = (x+ y)b = x+b y.

The Klien group-grouplike is identical group-e-semigroup and group-η-
semigroup.

Using the e-map and Je-multiplication, we can give an interesting
interpretation of identical e-magmags and basic idea for their char-
acterization. First, we need to recall f -multiplication (introduced in
[6]). The associative functions have so close relations to (associative)
f -multiplication of binary operations that induce a semigroup.

Now we are ready to show the basic role of e-map and Je-multipli-
cation for identical e-magmags.

Let (X, ·, e,⊙) be a left e-magmag. Then:

(a) ·Je = ⊙Je (conversely, if ·Je = ⊙Je , then (X, ·, e,⊙) is a left
e-magmag).

(b) X is left identical e-magmag if and only if ⊙ = ·Je and if and
only if ⊙ = ⊙Je (equivalently ⊙ = ·Je = ⊙Je); hence if f = Je
and X is left identical e-magmag, then ⊙ = ·f .

Conversely, if ⊙ = ·f , then (for construction and characterization of
the identical e-magmags and their second binary operation), we want
to determine the condition for f = Je.

For answering the question with the weakest conditions, we give a
new discussion, as follow:
Let (X, ·) be a magma containing the fixed element e and f : X → X.
Define fe by fe(x) = f(ex) , for all x ∈ X. Then for every x, y ∈ X,
we have:

·fe = ·f ⇔ x ·fe y = x ·f y ⇔ fe(xy) = f(xy)
⇔ f(e(xy)) = f(xy) ⇔ f |XX(e(xy)) = f |XX(xy)

⇔ f |XX is left e-periodic.
(3.2)

Hence, if XX = X, then:

·fe = ·f ⇔ f is left e-periodic ⇔ fe = f. (3.3)

Now let X be an arbitrary set with two binary operations · , ⊙ and
e ∈ X. If ⊙ = ·f , for some function f : X → X, then fe = Je. If



186 HOOSHMAND

x ∈ X, then:

Je(x) = e⊙ x = e ·f x = f(ex) = fe(x).

Therefore,

⊙ = ·f = ·fe ⇔ ⊙ = ·f , f |XX is left e-periodic (3.4)

⇔ ⊙ = ·fe , f |XX is left e-periodic.

Note that these equivalent conditions (3.4) imply that fe = Je = (fe)e
and f |XX , fe are left e-periodic (because ⊙ = ·f (resp. ⊙ = ·fe),
implying that fe = Je (resp. (fe)e = Je), and a function g is left
e-periodic if and only if g = ge). Hence, if XX = X, then:

⊙ = ·f = ·fe ⇔ ⊙ = ·f , f = Je ⇔ ⊙ = ·f , f = fe (3.5)

⇔ ⊙ = ·f , f is left e-periodic.

Thus we obtain the following important lemma.

Lemma 3.3. Let X be an arbitrary set containing e with two binary
operations “·” and ⊙ such that “·” is surjective, and let f : X → X.

(a) If ⊙ = ·f and f is left e-periodic , then f = Je = fe.
(b) If (X, ·, e,⊙) is a left e-magmag and ⊙ = ·f , where f is left

e-periodic, then X is left identical e-magmag and f = Je = fe.

Now let’s discuss more about a special case of the above topic. If
(X, ·, e,⊙) is a left e-magmag such that ⊙ = ·f , for some f : X → X,
then fe = Je and

fe(xy) = f(e(xy)) = e ·f (xy) = e⊙ (xy) = Je(xy) = Je(x⊙ y)

= Je(x ·f y) = Jef(xy) = f(ef(xy)) = fef(xy) ; ∀x, y ∈ X.

The above identities give us the following relations between f and Je
- If ”·” is surjective, then Jef = Je = fe.
- If ”·” is surjective and f is left e-periodic, then f = Je.
Therefore, if (X, ·) is left e-unital (X is left e-unimag), then f = Je.
- If e is a left identity of f(XX) in (X, ·), then:

Je(xy) = Je(x⊙ y) = f(x⊙ y) = Jef(xy) = f 2(xy).

- If e is a left identity of f(XX) in (X, ·) and ”·” is surjective (resp. ⊙
is surjective (i.e. X ⊙X = X)), then Je = f 2 = Jef (resp. f = Je).
- If e is a left identity of f(XX) in (X, ·), ”·” is surjective and f is
idempotent, then f = Je.

Considering the previous discussion and identities, we arrive at the
following important theorem that is the main key of characterization
for (left) identical e-magmags.
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Theorem 3.4. Assume (X, ·, e,⊙) is a left e-magmag such that (X, ·)
is surjective (namely left e-surmag). Then, the following statements
are equivalent:

(a) X is left identical e-magmag;
(b) There exists a (unique) left e-periodic function f : X → X such

that ⊙ = ·f ;
(c) ⊙ = ·Je;
(d) There exists a (unique) left e-periodic and idempotent function

f : X → X such that ⊙ = ·f ;
(e) ⊙ = ⊙Je;
(g) f = Je is the only function from X to X such that ⊙ = ·f ;
(h) ⊙ = ⊙Je = ·Je.

Proof. By applying Lemma 3.3 and the previous results, one can prove
this theorem.

□
Note that if (X, ·, e,⊙) is a (left) identical e-unimag, then the condi-

tions of the above theorem and so all of its equivalent statements hold.
Moreover, the function f does not require any additional condition.
Hence, we arrive at the next corollary.

Corollary 3.5. Suppose (X, ·, e,⊙) is a left e-unimag. Then X is left
identical e-magmag if and only if there exists a function f : X → X
such that ⊙ = ·f (of course f is unique, that is the same left e-map).

The above theorem leads us to construct left e-magmags, left iden-
tical e-magmags, and other types of them, starting with an arbitrary
magma (X, ·) and using some types of function f : X → X. Also it
provides a characterization of identical e-magmags.

Construction of e-magmags by f-multiplications. Suppose (X, ·)
is an arbitrary magma. Fix an element e ∈ X and consider f : X → X.
Then, we have:

e ·f (xy) = f(e(xy)) , e ·f (x ·f y) = f(ef(xy)).

Thus (X, ·, e, ·f ) is a left e-magmag if and only if f satisfies the following
functional equation in (X, ·)

f(e(xy)) = f(ef(xy)) : ∀x, y ∈ X. (3.6)

Also (X, ·, e, ·f ) is a left identical e-magmag if and only if

f(e(xy)) = f(ef(xy)) = f(xy) : ∀x, y ∈ X. (3.7)

The equation (3.6) (resp. equation (3.7)) is equivalent to fef |XX =
fe|XX (resp. fef |XX = fe|XX = f |XX). Thus if fef = fe (resp. fef =
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fe = f), then f satisfies equation (3.6) (resp. equation (3.7)), and if
”·” is surjective, then the converse is also true. Hence, if XX = X,
then f satisfies equation (3.7) if and only if f is is left e-periodic and
idempotent (equivalently fe = f = f 2). Also for every f : X → X, we
have the following special cases :

(a) If f is right canceler, then f satisfies equation (3.6).
(b) If e is a left identity of XX in (X, ·) and f |XX is idempotent,

then f satisfies equation (3.7).
(c) If f is left e-periodic (e.g. if (X, ·) is left e-unital) and f is right

canceler, then f is idempotent and satisfies equation (3.7).
(d) If (X, ·) is left e-unital, then the two functional equations (3.6),

(3.7), and f(f(x)) = f(x) are equivalent (so f satisfies one of
them if and only if f is idempotent).

Therefore, we can construct a very vast class of left e-magmags and all
left identical e-magmags (Theorem 3.6) using all functions f satisfying
equations (3.6) and (3.7), some of their special cases are mentioned in
the next items (I), (II), and (III). We emphasize that the e-magmags
(X, ·, e, ·f ) do not generate all e-magmags. If X is a set containing e
and x ⊙ y = x (for every x, y ∈ X), then for every binary operation
· ̸= ⊙ inX such that e is its right identity, (X, ·, e,⊙) is a left magma-e-
semigroup and ⊙ ≠ ·f , for all functions f : X → X. Because if ⊙ = ·f ,
then x = x⊙y = x·fy = f(xy), and so f(x) = f(xe) = x·fe = x⊙e = x.
Hence, · = ⊙, which is a contradiction.

Now let (X, ·) be an arbitrary magma and fix e ∈ X.

(I) If f is right canceler, then (X, ·, e, ·f ) is a left e-magmag (but it
is not necessary that f = Je).

(II) If f : X → X is left e-periodic and idempotent, then (X, ·, e, ·f )
is a left identical e-magmag and f = Je.

(III) If X is left e-unital and f : X → X is idempotent, then
(X, ·, e, ·f ) is a left identical e-unimag and f = Je.

Considering the above construction, Lemma 3.3, and Theorem 3.4, we
are ready to characterize all the left identical e-magmags.

Theorem 3.6. (Characterization and construction of left identical e-
magmags)
Let (X, ·) be a magma with the fixed element e and ⊙ be another binary
operation in X. Then, (X, ·, e,⊙) is a left identical e-magmag if and
only if there exists a (unique) left e-periodic and idempotent function
f from X to X such that ⊙ = ·f .
Moreover, denoting the set of all binary operations in X by Bio(X),



MAGMA-JOINED-MAGMAS 189

we have:

{⊙ ∈ Bio(X) | (X, ·, e,⊙), left identical e-magmag}

= {·f | f : (X, ·) → (X, ·) is left e-periodic and idempotent}

= {·f | (X, ·, e, ·f ) is left identical e-magmag}

= {·f | f satisfies equation (3.7)} = {·fe | f satisfies equation (3.7)},
Moreover,

Card{⊙ ∈ Bio(X) | (X, ·, e,⊙) is left identical e-magmag}

= Card{fe | f satisfies equation (3.7)}.

Proof. If (X, ·, e,⊙) is a left identical e-magmag, then we know that
⊙ = ·Je and Je is left e-periodic and idempotent. Also if ⊙ = ·f , where
f is left e-periodic, then f = fe = Je (so Je is the only function from
X to X such that ⊙ = ·f ).

Conversely, if there exists a left e-periodic and idempotent function
f such that ⊙ = ·f , then f satisfies equation (3.7), and so (X, ·, e,⊙) is
a left identical e-magmag. Note that if f satisfies equation (3.7), then
·f = ·fe , and

(fe)e(y) = f(e(ey)) = f(ef(ey)) = f(ey) = f 2
e (y) = fe(y),

for all y ∈ X. Thus (fe)e = fe = f 2
e , which means that fe is left

e-periodic and idempotent. By applying these facts and the previous
discussions, one can see that the above sets are equal.

Finally, define the map ψ from

{⊙ ∈ Bio(X) | (X, ·, e,⊙) is left identical e-magmag}

to

{fe | f satisfies equation (3.7)},
by ψ(⊙) = fe (where f is the unique function such that ⊙ = ·f ). It is
a well-defined bijection map. □

Corollary 3.7. Let (X, ·) be a surjective magma with the fixed element
element e and ⊙ be another binary operation in X. Then there is a
one-to-one correspondence between the set of all binary operations ⊙
such that (X, ·, e,⊙) is left identical e-magmag and the set of all left
e-periodic and idempotent functions from X to X. Hence, if (X, ·)
is a magma with the left identity element e, then in all the results of
Theorem 3.6, the term ”left e-periodic and idempotent” can be replaced
only by ”idempotent”.
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The structure of left identical e-magmags shows us more interest-
ing and useful properties, one of which is about a relation between
associativity of the second magma and a property of the e-map (as a
function defined in the first magma). Since ⊙ = ·Je , then (X,⊙) is
semigroup if and only if Je : (X, ·) → (X, ·) is associative. Thus we can
drive more traits of left identical magma-e-semigroups, semigroup-e-
magmas, group-e-semigroups, etc. by paying attention to the structure
of such e-magmags.

Theorem 3.8. Every left identical monoid-e-ass.magma is left (iden-
tical) monoid-e-semigroup, and e is middle identity of the (second)
semigroup. Therefore, if (X, ·, e,⊙) is a left identical e-uniassmag,
then associativity of (X, ·) implies associativity of (X,⊙) (i.e. if (X, ·)
is semigroup, then (X,⊙) is also semigroup).

Proof. Put f = Je. Thus f : (X, ·) → (X, ·) is canceler, by Lemma
2.7(C). Since (X, ·) is semigroup, then f is strongly associative, and
also ⊙ = ·f (by Theorem 3.6). Therefore, (X,⊙) is a semigroup. Now
we have:

x⊙ e⊙y = x ·f e ·f y = f(f(xe)y) = f(f(x)y) = f(xy) = x ·f y = x⊙y.
(There is also a direct proof for this lemma.) □

Since associativity of Je plays a basic role in this part of study,
we encourage to study this condition in general (in arbitrary left e-
magmags). First for every x, y, z ∈ X, we have:

Je(Je(xy)z) = e⊙((e⊙(x⊙y))⊙z) , Je(xJe(yz)) = e⊙(x⊙(e⊙(y⊙z))).
Thus if X is left magma-e-ass.magma, then:

Je(Je(xy)z) = (e⊙e⊙ (x⊙y))⊙z , Je(xJe(yz)) = (e⊙x⊙e)⊙ (y⊙z),
Moreover, if e⊙x⊙ e = e⊙x (i.e. Je is right e-periodic or equivalently
JeJ

e = Je) and e⊙ e⊙ (x⊙ y) = e⊙ (x⊙ y) ( equivalently J2
e |X⊙X =

Je|X⊙X), then:

Je(Je(xy)z) = e⊙ ((x⊙y)⊙z) , Je(xJe(yz)) = e⊙ (x⊙ (y⊙z)). (3.8)
Note that if Je is (two-sided) e-periodic or (more strongly) X is left
e-uniassmag, then both conditions hold. Therefore,

Je is associative ⇔ (X,⊙) is ∼e −associative⇔ (X, ·Je) is semigroup,

Hence, we arrive at the following lemma as a result of the study.

Lemma 3.9. Let X be a left e-assmag, for which one of its magmas
is right ∼e-unital. Then (the quotient magma exists and) the following
statements are equivalent:
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(a) Je is associative;
(b) Je is strongly associative;
(c) (X,⊙) is ∼e-associative;
(d) The quotient magma X/ ∼e is (right e-unital) semigroup;
(e) (X, ·Je) is semigroup.

Proof. The above discussion, Remark 2.11 and Theorem 2.12 prove this
lemma. □
Corollary 3.10. Assume that X is a left identical e-assmag for which
its second magma is right ∼e-unital and ∼e-associative. Then it is
semigroup. Thus X is a left identical magma-e-semigroup if and only
if Je is associative.

Note: Similar definitions, discussions, and constructions can be
stated for the right and two-sided case. Thus (X, ·, e,⊙) is identical
e-magmag if and only if

e⊙xy = e⊙ (x⊙y) = x⊙y = xy⊙e = (x⊙y)⊙e ; ∀x, y ∈ X. (3.9)

Hence, if (X, ·, e,⊙) is identical e-magmag, then e is a (two-sided) iden-
tity for the subset X⊙X (with respect to the second binary operation).

As a subclass of the left identical e-magmags, the left identical
group-e-semigroups have more useful properties (see Definition 3.16
and Lemma 3.17), and we can give the general form of f in the char-
acterization and construction. In this class of e-magmags, the left,
right, and two-sided cases are the same, as one can see in the following
discussion and lemma.

Now consider a left identical e-magmag (X, ·, e,⊙). If (X, ·) is right
e-unital, then putting y = e (resp. x = e and replacing y by x) in
equation (3.1), we have e ⊙ x = e ⊙ (x ⊙ e) = x ⊙ e (resp. e ⊙ ex =
e ⊙ (e ⊙ x) = e ⊙ x), which implies that e is a central element of
(X,⊙) (resp. Je is left e-periodic: Je(ex) = Je(x), and so ex ∼e x for
all x ∈ X). Therefore, X is (two-sided) identical e-magmag, and so
equation (3.2) holds. Moreover, (X,⊙) is weakly e-associative because:

(e⊙ x)⊙ e = e⊙ x = x⊙ e = e⊙ (x⊙ e)

(analogously, for the right identical e-magmag).
Therefore, we have proved the following lemma, where the left, right,

and two-sided cases of identical structures are equivalent.

Lemma 3.11. Consider (X, ·, e,⊙).

(a) If X is left (resp. right) identical e-magmag and (X, ·) is right
(resp. left) e-unital, then X is (two-sided) identical e-wassmag
and Je is left (resp. right) e-periodic.
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(b) If X is left or right identical e-magmag and left or right e-
unimag, then X is (two-sided) identical e-uniwassmag.

(c) The following statements are equivalent:
(i) X is unital left identical e-magmag (i.e. left identical e-unimag);
(ii) X is unital right identical e-magmag (i.e. right identical e-

unimag);
(iii) X is unital and identical e-magmag (i.e. identical e-unimag);
(iv) X is left or/and right identical e-magmag and left or/and right

e-unimag.

In addition, all the equivalent statements (i)-(iv) imply that e is a cen-
tral element of (X,⊙).

Therefore, construction and characterization of the left, right, and
two-sided unital and identical e-magmags are the same. It will be more
useful and interesting if we have an identical group-e-semigroup. Since
such algebraic structures and identical e-magmags have some additional
properties, we consider them in the next part of the paper.

3.1. Magma-joined-magmas. During the study, we see some alge-
braic structures (X, ·,⊙) such that the e-join law holds, for every e ∈ X.
They have close relations to identical e-magmags if both magmas are
semigroups.

Definition 3.12. LetX be a set with the two binary operations “·” and
⊙. We call (X, ·,⊙) left magma-joined-magma or left joined-magmag
(briefly) if

t⊙ xy = t⊙ (x⊙ y) ; ∀t, x, y ∈ X (left join law). (3.10)

Therefore, (X, ·,⊙) is left joined-magmag if and only if it is left e-
magmag for every e ∈ X.

Example 3.13. The algebraic structure (R,+,+b) is group-joined-
semigroup (b-real group-grouplike), because

t+b (x+ y) = (t+ x+ y)b = (t+ (x+ y)b)b = t+b x+b y.

The Klein group-grouplike is a finite group-joined-semigroup. Also the
algebraic structures (X, ·,⊙) in Example 2.2(a) and Example 2.2(c) are
(trivial) joined-magmag and magma-joined-semigroup, respectively.

It is interesting to know that every left identical semigroup-e-semi-
group is semigroup-joined-semigroup.

Lemma 3.14. Let S be a set with the fixed element e and two binary
operations “·” and ⊙. Then:

(S, ·, e,⊙) is left identical semigroup-e-semigroup
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⇒ (S, ·,⊙) is left semigroup-joined-semigroup

⇒ (S, ·, e,⊙) is left semigroup-e-semigroup.

But the converses are not valid. Therefore, if there exists e0 ∈ S such
that (S, ·, e0,⊙) is left identical semigroup-e0-semigroup, then (S, ·, e,⊙)
is left semigroup-e-semigroup for every e ∈ S.

Proof. If (S, ·, e,⊙) is left identical semigroup-e-semigroup and t, x, y∈
X, then:

t⊙ xy = e⊙ (t⊙ xy) = e⊙ (txy) = e⊙ (t⊙ x⊙ y) = t⊙ x⊙ y.

Thus the first part of the lemma is proved.
Now consider a semigroup (S,⊙) containing the left zero 0ℓ and

the left identity 1ℓ. If · ≠ ⊙ is another associative binary operation
in S, then (S, ·, 0ℓ,⊙) is left semigroup-0ℓ-semigroup. But it is not
left semigroup-1ℓ-semigroup and left semigroup-joined-semigroup (e.g.
([0,+∞),+, 0, ·), where + and · are the usual addition and multiplica-
tion).

Also, if (S, ·) is an arbitrary semigroup with more than two elements
and x ⊙ y = x, for every x, y ∈ S, then (S, ·,⊙) is a left semigroup-
joined -semigroup. But, if e is an arbitrary fixed element of S, then
e⊙ (xy) = e = e⊙x⊙y ̸= x⊙y = x (for every x ̸= e). Thus (S, ·, e,⊙)
is not left identical semigroup- e -semigroup.

□
3.2. More properties for (two-sided) e-magmags. The(two-sided)
e-magmags have more properties than the left and right cases, and there
is a type of them between e-magmags and identical e-magmags. In this
section, we focus on them and introduce another class of (two-sided)
e-magmags that has so close relation to the identical e-magmags and
magma-joined-magmas.

By Z(X) (resp. Zt(X)), we denote the set of all central [rep. central
idempotent] elements of X.
(A) Suppose (X, ·, e,⊙) is an e-magmag:

- If e is an idempotent element of (X, ·) (i.e. e2 = e), then e⊙3 is well-
defined, and e⊙3 = e⊙2.
- If (X, ·) is left (resp. right) e-unital, then e ⊙ x = e ⊙ (e ⊙ x) ,
x⊙ e = (e⊙ x)⊙ e (resp. e⊙ x = e⊙ (x⊙ e) and x⊙ e = (x⊙ e)⊙ e)
for every x ∈ X. Hence, if e is its identity, then:

e⊙x = e⊙(e⊙x) = e⊙(x⊙e) , x⊙e = (x⊙e)⊙e = (e⊙x)⊙e (3.11)

- Therefore, if (X, ·) is left e-unital, then:
e ∈ Z(X,⊙) ⇔ e is a right identity of e⊙X in (X,⊙)
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⇔ e commutes with every element of e⊙X in (X,⊙)

⇔ e is an identity of e⊙X in (X,⊙)

(analogously, if e is a right identity).
Hence, if e is its identity, then:

e ∈ Z(X,⊙) ⇔ e is an identity of e⊙X in (X,⊙)

⇔ (X,⊙) is weakly e-associative

⇔ e commutes with every elements of e⊙X in (X,⊙)

⇔ e⊙ (e⊙ x) = (x⊙ e)⊙ e

⇔ e⊙x = e⊙ (e⊙x) = e⊙ (x⊙ e) = x⊙ e = (e⊙x)⊙ e = (x⊙ e)⊙ e,

for all x ∈ X. Thus we have proved the following lemma.

Lemma 3.15. In every e-uniwassmag, e is the central element of the
second magma. Hence, an e-unimag is e-uniwassmag if and only if e
is second-central.

Now we need to introduce other classes of e-magmags that are be-
tween e-magmags and identical e-magmags.

Definition 3.16. We call an e-magmag (X, ·, e,⊙) full e-magmag if

e⊙ xy = e⊙ (x⊙ y) = xy ⊙ e = (x⊙ y)⊙ e ; ∀x, y ∈ X. (3.12)

Note that X satisfies the above identities (3.12) if and only if it
satisfies:

t⊙ xy = t⊙ (x⊙ y) = xy ⊙ t = (x⊙ y)⊙ t ; t, x, y ∈ P,

for (only) t = e, that is our idea for introducing ”full joined-magmags”.
At the first, we have the following elementary properties about them:

(i) The following implications hold, but the converses are not true;

X is an identical e-magmag ⇒ X is a full e-magmag

⇒ X is an e-magmag.

We only give counter-examples; the implications are obvious.
X is an e-magmag ⇏ X is a full e-magmag : consider an ar-

bitrary trivial e-magmag (X, ·, e, ·), for which e does not com-
mute with some elements of XX.
X is a full e-magmag ⇏ X is an identical e-magmag : con-

sider an arbitrary e-magmag (X, ·, e,⊙), for which (X,⊙) is a
magma with the zero e = 0, and it is not null (i.e. x0y0 ̸= e for
some x0, y0 ∈ X).

(ii) Every left (right) e-magmag is a full e-magmag if and only if e
commutes with every element of X ⊙X ∪XX in (X,⊙) (e.g.
if e is second-central).
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(iii) An e-magmag (X, ·, e,⊙) is full if and only if one (all) of the
following conditions hold:

(a) e commutes with every element of X ⊙X in (X,⊙),
(b) e commutes with every element of XX in (X,⊙),
(iv) A full e-magmag (X, ·, e,⊙) is identical if and only if one (all)

of the following conditions hold:
(a) e is a left or right identity of X ⊙X in (X,⊙),
(b) e is an identity of X ⊙X in (X,⊙).

Now we arrive at the following lemma.

Lemma 3.17. If one of the following conditions holds, then e is second-
central (and then X is a full e-magmag):

(1) X is a left e-magmag such that (X, ·) is right e-unital and e is
a left identity of X ⊙ e in (X,⊙).

(2) X is a right e-magmag such that (X, ·) is left e-unital, and e is
a right identity of e⊙X in (X,⊙).

(3) X is an e-magmag, and one of the following properties holds:
(3-1) (X, ·) is left e-unital, and e commutes with every elements of

e⊙X in (X,⊙).

(3-2) (X, ·) is right e-unital, and e commutes with every element of
X ⊙ e in (X,⊙).

(4) X is an e-unimag, and e commutes with every elements of e⊙X
or X ⊙ e in (X,⊙).

Proof. If (1) holds, then:

e⊙ x = e⊙ (xe) = e⊙ (x⊙ e) = x⊙ e,

and similarly for (2). Now one can get the results by the previous
explanations. □

Similar to the above discussion, we have more properties if (X, ·, e,⊙)
is a full e-magmag.
(B) Suppose that (X, ·, e,⊙) is a full e-magmag:
- If (X, ·) is left (resp. right) e-unital, then e⊙x = e⊙(e⊙x) = x⊙e =
(e⊙x)⊙e = xe⊙e (resp. e⊙x = e⊙(x⊙e) = x⊙e = (x⊙e)⊙e = ex⊙e)
for every x ∈ X. Thus e ∈ Z(X,⊙), (X,⊙) is weakly e-associative, e
is an identity of e ⊙X = X ⊙ e in (X,⊙), Je is idempotent, and also
Je is e-periodic with respect the two binary operations, i.e:

Je(e⊙ x) = Je(x⊙ e) = Je(x) = Je(ex) = Je(xe) (= J2
e (x)).

- If (X, ·) is e-unital, then we have all the above properties, and X is
an e-uniwassmag.
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(C) Finally, assume that (X, ·, e,⊙) is an identical e-magmag:
Without any additional condition, we have:

e⊙ ex = e⊙ (e⊙ x) = e⊙ x = (e⊙ x)⊙ e = ex⊙ e
e⊙ xe = e⊙ (x⊙ e) = x⊙ e = (x⊙ e)⊙ e = xe⊙ e.

(3.13)

Thus:

Je(e⊙ x) = JeJe(x) = Je(e⊙ x) = J2
e (x) = Je(x) = Je(ex) = Je(ex);

Je(x⊙ e) = JeJ
e(x) = Je(x⊙ e) = Je2(x) = Je(x) = Je(xe) = Je(xe).

Therefore, Je and Je are idempotent maps and Je (resp. Je) is left
(resp. right) e-periodic with respect to two binary operations.
- We have the following equivalent conditions:

e ∈ Z(X,⊙) ⇔ (X,⊙) is weakly e-associative

⇔ e⊙ (e⊙ x) = (x⊙ e)⊙ e : ∀x ∈ X ⇔ ex⊙ e = xe⊙ e ; ∀x ∈ X

⇔ e⊙ ex = e⊙ x = ex⊙ e = e⊙ xe = x⊙ e = xe⊙ e ; ∀x ∈ X

Thus if (X, ·) is left or right e-unital, then all of the above properties
hold.
- If (X, ·) is e-unital, then X is identical e-uniwassmag, and e and e⊙e
are central elements of (X,⊙). Moreover, if (e⊙ e)⊙ (e⊙ e) = e⊙ (e⊙
(e⊙e)) or (e⊙e)⊙(e⊙e) = ((e⊙e)⊙e)⊙e, then e⊙e ∈ Zt(X,⊙) ̸= ∅,
because:

(e⊙ e)⊙ (e⊙ e) = e⊙ (e⊙ (e⊙ e)) = e⊙ (e⊙ e) = e⊙ e.

Hence, if X is an identical e-uniassmag, then e ⊙ e ∈ Zt(X,⊙) and
e ∈ Z(X,⊙).

4. Relations to Grouplikes

One of the most important properties of a class of e-magmags is
that their second magma has a unique central idempotent element.
The property is more useful and interesting if it is an identical loop-e-
semigroup. If this is the case, the second magma is a grouplike. Hence,
at first, we give a summary about grouplikes introduced in [4].

A grouplike is a semigroup (Γ, ·) that satisfies the following axioms:

(1) There exists ε ∈ Γ such that:

εx = ε2x = xε2 = xε : ∀x ∈ Γ,

(2) For every ε satisfying (1) and every x ∈ Γ, there exists y ∈ Γ
such that:

xy = yx = ε2.
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Every ε ∈ Γ satisfying the axioms (1) and (2) is called an identity-like.
As one can see in [4], condition (1) is equivalent to Zt(Γ) ̸= ∅, and

every grouplike contains a unique idempotent identity-like element that
is also its unique central idempotent.

Now, let Γ be a grouplike and let ϵ be the unique idempotent identity-
like element of Γ. Then, we call ϵ standard identity-like, and use the
notation (Γ, ·, ϵ) . Γ is a standard grouplike if ϵ is the only idempotent
of Γ. Γ is a zero grouplike if ϵ is a zero of Γ. Every y that corresponds
to x in axiom (2) is called inverse-like of x, and is denoted by x′ϵ or x

′.
If (Γ, ·) is grouplike and is not group, then we call it proper grouplike.
Now, we state a clear comparison between the grouplike and group
axioms:

Lemma 4.1. A structure (Γ, ·) is a grouplike if and only if it satisfies
the following axioms:

(i) Closure;
(ii) Associativity;
(iii) There exists a unique element e ∈ Γ such that ex = xe, and

e2 = e for all x ∈ X;
(iv) For every x ∈ Γ, there exists y ∈ Γ (not necessarily unique)

such that:

xy = yx = e.

Proof. See [4]. □

Corollary 4.2. A semigroup (Γ, ·) is grouplike if and only if Zt(Γ) =
{e}, and for every x ∈ Γ, there exists y ∈ Γ such that xy = yx = e.

Example 4.3. Every group is standard group-like.
The structure (R,+b, 0) is a proper grouplike (namely real b-grouplike,

and specially real grouplike if b = 1). The set of all identity-likes of
(R,+b) is bZ that is also the set of all inverse-likes of 0.

Every semigroup S containing the zero for which 0 is its only central
idempotent element is a zero grouplike.

The magma (K,⊙) is Klein four-grouplike, and {e, η} is the set of
all its identity-likes.

Now we come back to our topic and show an important property of
magma-e-semigroups related to grouplikes.

Theorem 4.4. Let (X, ·, e,⊙) be a unital magma-e-semigroup. Then:

(a) e ∈ Z(X,⊙), e ⊙ e ∈ Zt(X,⊙), and (e ⊙ X,⊙, e ⊙ e) is a
monoid.
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(b) If e is a left (resp. right) identity of the sub-semigroup Zt(X,⊙)
and the equation xδ = e (resp. δx = e) has a solution in X for
every δ ∈ Zt(X,⊙), then Zt(X,⊙) = {e⊙ e}.

(c) If e is a left (resp. right) identity of It(X,⊙) and the equation
xδ = e (resp. δx = e) has a solution in X, for every δ ∈
It(X,⊙), then It(X,⊙) = Zt(X,⊙) = {e⊙ e}.

(d) If e is a left (esp. right) identity of Zt(X,⊙) and the equation
xy = e (resp. yx = e) has a solution in X, for every y ∈ X,
then (X,⊙, e ⊙ e) is a grouplike (and so (e ⊙X,⊙, e ⊙ e) is a
group).

Proof. Let δ ∈ It(X, ·), e⊙ δ = δ, and βδ = e for some β ∈ X. Then:

e⊙ β ⊙ δ = e⊙ βδ = e⊙ e,

and so:

δ = e⊙ δ = e⊙ eδ = e⊙ e⊙ δ = e⊙ β ⊙ δ ⊙ δ = e⊙ β ⊙ δ = e⊙ e

Now Lemma 3.17, Corollary 4.2, and part (C) at the end of the pervious
section complete the proof. □

Future direction of the research. An important research field of the
topic is the study of the left, right, two-sided, and full magma-joined-
magmas, specially group-joined-semigroups, loop-joined-semigroups,
and their characterization and comparison to the magma-distributed-
magmas (specially ring-like structures). Another one study of group-
likes as the second magma of identical group-e-semigroups. Also it is
connected to the topic functional equations on algebraic structures and
all magmas with a single binary operation.
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جدید جبری ساختارهای از دسته�ای : ماگما-پیوست-ماگما
هوشمند هادی محمد

ایران شیراز، اسلامی، آزاد دانشگاه شیراز، واحد نخبگان، و جوان پژوهشگران باشگاه

با ⊙ و ”·“ دو�تایی عمل به مجهز و e ثابت عضو شامل مجموعه�ای -e-ماگما ماگما از ما منطور
یک (X, ·, e,⊙) بنابراین می�باشد. چپ e-وصل قانون نام به e⊙ (x · y) = e⊙ (x⊙ y) ویژگی
قانون و e ∈ X باشند، (گروه�واره) ماگما (X,⊙) و (X, ·) اگر تنها و اگر است چپ -e-ماگما ماگما
همچنین می�شود. تعریف مشابه روش به نیز دو�طرفه و راست -e-ماگما ماگما باشد. برقرار چپ e-وصل
ما بنابراین .x ∈ X هر برای باشد -x-ماگما ماگما اگر تنها و اگر است -پیوست-ماگما ماگما X
آنها های کلاس زیر از بعضی که می�کنیم معرفی دو�تایی عمل دو با جبری ساختارهای از بزرگی دسته یک
نا�متناهی زیبای مثال یک می�باشد. غیره و -e-گروه�واره نیم�گروه ، -e-نیم�گروه دور ، -e-نیم�گروه گروه
مقاله این در می�باشد. کلاین) (گروه-شبه�گروه (R,+, ١+,٠) حقیقی گروه-شبه�گروه آنها برای (متناهی)
ماگما همه و ساخته را جبری ساختارهای چنین از بزرگ دسته چندین می�کنیم، معرفی را مبحث آن ما
از بعضی خاطر به مطالعه این انگیزه می�نماییم. مشخص�سازی روش چند با را یکانی -e-ماگما�های
تازگی به (که شبه�گروه�ها و جبری ساختارهای روی تابعی معادلات از بعضی f-ضرب�ها، با ارتباط�ها
را موضوع این در تحقیقیاتی افق�های از بعضی ما سرانجام می�باشد. شده�است) معرفی نویسنده توسط

می�دهیم. شرح

. ماگما شبه�گروه، جبری، ساختار کلیدی: کلمات
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