Journal of Algebraic Systems

Vol. 3, No. 2, (2016), pp 201-210

NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS

A. YOUSEFIAN DARANI*

Abstract

In this paper, we introduce a new class of modules that is closely related to the class of Noetherian modules. Let R be a commutative ring with identity, and M be an R-module such that $\operatorname{Nil}(M)$ is a divided prime submodule of $M . M$ is called a nonnil-Noetherian R-module if every nonnil submodule of M is finitely-generated. We prove that many properties of the Noetherian modules are also true for the nonnil-Noetherian modules.

Throughout this paper, all rings are commutative with $1 \neq 0$, and all modules are unitary. Let R be a commutative ring with identity, and $\operatorname{Nil}(R)$ be the set of nilpotent elements of R. Recall from [17] and [9] that a prime ideal of R is called a divided prime ideal if $P \subset R x$ for every $x \in R \backslash P$. Thus a divided prime ideal is comparable to every ideal of R. In [9], [10], [11], [12], [13], and [14] shown that the class of rings, $\mathcal{H}=\{R \mid R$ is a commutative ring, and that $\operatorname{Nil}(R)$ is a divided prime ideal of R \}. In [7] and [8], Anderson and Badawi have generalized the concepts of Prüfer, Dedekind, Krull, and Bezout domains to the context of rings that are in the class \mathcal{H}. Also, Lucas and Badawi [15] have generalized the concept of Mori domains to the context of rings that are in the class \mathcal{H}. Let R be a ring, $Z(R)$ be the set of zero-divisors of R, and $S=R \backslash Z(R)$. Then $T(R):=S^{-1} R$ denotes the total quotient ring of R. We start by recalling some background materials. A non-zero-divisor of a ring R is called a regular element,

[^0]and an ideal of R is said to be regular if it contains a regular element. An ideal I of a ring R is said to be a nonnil ideal if $I \nsubseteq \operatorname{Nil}(R)$. If I is a nonnil ideal of a $\operatorname{ring} R \in \mathcal{H}$, then $\operatorname{Nil}(R) \subset I$. In particular, this holds if I is a regular ideal of a ring $R \in \mathcal{H}$. Recall from [10] that for a ring $R \in \mathcal{H}$, the map $\phi: T(R) \rightarrow R_{N i l(R)}$, given by $\phi((a / b)=a / b$, for $a \in R$ and $b \in R \backslash Z(R)$, is a ring homomorphism from $T(R)$ into $R_{N i l(R)}$, and ϕ restricted to R is also a ring homomorphism from R into $R_{N i l(R)}$, given by $\phi(x)=x / 1$ for every $x \in R$.

Let R be a ring, and M be an R-module. M is called a cancellation module if whenever $I M=J M$ for ideals I and J of R, then $I=J$ (see [20]). For a submodule N of M, we denote by $\left(N:_{R} M\right)$ the residual of N by M, i.e. the set of all $r \in R$ such that $r M \subseteq N$. The annihilator of M, which is denoted by $a n n_{R}(M)$, is then $\left(0:_{R} M\right)$. An R-module M is called a multiplication module if every submodule N of M has the form $I M$ for some ideal I of R. Note that since $I \subseteq\left(N:_{R} M\right)$, then $N=I M \subseteq\left(N:_{R} M\right) M \subseteq N$ so that $N=\left(N:_{R} M\right) M$ [22]. Finitelygenerated faithful multiplication modules are cancellation modules [22, Theorem 3.1]. For a submodule N of M, if $N=I M$ for some ideal I of R, then we say that I is a presentation ideal of N. Note that it is possible that for a submodule N, no such presentation ideal exists. For example, assume that M is a vector space over an arbitrary field F with $\operatorname{dim}_{F} M \geq 2$, and let N be a proper subspace of M such that $N \neq 0$. Then if N has a presentation ideal, then $N=I M$ for some ideal I of F. Since the only ideals of F are 0 and F itself, $I=0$ or $I=F$. Hence, $N=0$ or $N=M$, a contradiction. Clearly, every submodule of M has a presentation ideal if and only if M is a multiplication module. Let N and K be the submodules of a multiplication R-module M with $N=I_{1} M$ and $K=I_{2} M$ for some ideals I_{1} and I_{2} of R. The product of N and K, denoted by $N K$, is defined by $N K=I_{1} I_{2} M$. Then, by [5, Theorem 3.4], the product of N and K is independent from presentations of N and K. Moreover, for $a, b \in M$, by $a b$, we mean the product of $R a$ and $R b$. Clearly, $N K$ is a submodule of M and $N K \subseteq N \cap K$ (see [5]).

Let R be a ring, and M an R-module. An element $r \in R$ is called a zero-divisor on M, provided that $r m=0$ for some non-zero $m \in M$. We denote by $Z_{R}(M)$ (briefly, $Z(M)$) the set of all zero-divisors of M. It is easy to see that $Z(M)$ is not necessarily an ideal of R but it has the property that if $a, b \in R$ with $a b \in Z(M)$, then either $a \in Z(M)$ or $b \in Z(M)$. A submodule N of M is called a nilpotent submodule if $\left(N:_{R} M\right)^{n} N=0$ for some positive integer n. An element $m \in M$ is said to be nilpotent if $R m$ is a nilpotent submodule of M [3]. We let $\operatorname{Nil}(M)$ to denote the set of all nilpotent elements of M. Then $\operatorname{Nil(M)}$
is a submodule of M, provided that M is a faithful module, and if, in addition, M is multiplication, then $\operatorname{Nil}(M)=\operatorname{Nil}(R) M=\bigcap P$, where the intersection runs over all prime submodules of M, [3, Theorem 6]. If M contains no non-zero nilpotent elements, then M is called a reduced R-module. A submodule N of M is said to be a nonnil submodule if $N \nsubseteq \operatorname{Nil}(M)$. We recall that a proper submodule N of M is prime if, for every $r \in R$ and $m \in M$ with $r m \in N$, either $m \in N$ or $r M \subseteq N$. If N is a prime submodule of M, then $p:=\left(N:_{R} M\right)$ is a prime ideal of R. In this case, we say that N is a p-prime submodule of M. Let N be a submodule of a multiplication R-module M. Then N is a prime submodule of M if and only if $\left(N:_{R} M\right)$ is a prime ideal of R if and only if $N=p M$ for some prime ideal p of R with $\left(0:_{R} M\right) \subseteq p,[22$, Corollary 2.11]. We recall from [4] that a prime submodule of M is called a divided prime submodule of M if $P \subset R m$ for every $m \in M \backslash P$. Thus a divided prime submodule is comparable to every submodule of M.

Let M be an R-module, and set

$$
\begin{aligned}
& T=\{t \in S: \text { for all } \mathrm{m} \in M, \text { with } \mathrm{tm}=0, \mathrm{~m}=0\}= \\
& \qquad(R \backslash Z(M)) \cap(R \backslash Z(R)) .
\end{aligned}
$$

T is a multiplicatively-closed subset of S, and if M is torsion-free, then $T=S$. In particular, if M is a faithful multiplication R-module, then $T=S\left[22\right.$, Lemma 4.1]. We denote $T^{-1} M$ by $\mathfrak{T}(M)$.

Let R be a commutative ring, and set

$$
\mathbb{H}(R)=
$$

$\{M \mid M$ is an R-module, and $\operatorname{Nil}(M)$ is a divided prime submodule of $M\}$, and

$$
\mathbb{H}_{0}(R)=\{M \in \mathbb{H} \mid \operatorname{Nil}(M)=Z(M) M\} .
$$

If $M \in \mathbb{H}(R)$ (resp., $M \in \mathbb{H}_{0}(R)$), then we may write $M \in \mathbb{H}$ (resp., $M \in \mathbb{H}_{0}$) instead if there is no confusion. For an R-module $M \in \mathbb{H}$, $\operatorname{Nil}(M)$ is a prime submodule of M. Thus $P:=\left(\operatorname{Nil}(M):_{R} M\right)$ is a prime ideal of R.

Lemma 1. Let R be a commutative ring, and M an R-module with $\operatorname{Nil}(M)$, a proper submodule. Then, $\left(\operatorname{Nil}(M):_{R} M\right) \subseteq Z(M)$.

Proof. If $\left(\operatorname{Nil}(M):_{R} M\right) \nsubseteq Z(M)$, then, there exists $a \in R \backslash Z(M)$ with $a \in\left(\operatorname{Nil}(M):_{R} M\right)$. As $\operatorname{Nil}(M)$ is a proper submodule of M, there exists $m \in M \backslash \operatorname{Nil}(M)$. In this case, $a m \in \operatorname{Nil}(M)$. Thus there exists a positive integer k such that $\left(\operatorname{Ram}:_{R} M\right)^{k} R a m=0$. Then we have $\left(\left(\operatorname{Ram}:_{R} M\right)^{k} R m\right) a=\left(\operatorname{Ram}:_{R} M\right)^{k} R a m=0$. As $a \notin$ $Z(M)$, we have $\left(R a m:_{R} M\right)^{k} R m=0$. On the other hand, $a^{k}\left(R m:_{R}\right.$ $M)^{k} R m \subseteq\left(R a m:_{R} M\right)^{k} R m=0$. Moreover, since $a \notin Z(M), a^{k} \notin$
 contradiction.

Let R be a commutative ring, and M an R-module with $\operatorname{Nil}(M)$ a proper submodule. By Lemma $1, R \backslash Z(M) \subseteq R \backslash\left(N i l(M):_{R}\right.$ $M)$. In particular, $T \subseteq R \backslash\left(N i l(M):_{R} M\right)$. Thus we can define a mapping $\Phi: \mathfrak{T}(M) \rightarrow M_{P}$, given by $\Phi(x / s)=x / s$, which is clearly an R-module homomorphism. The restriction of Φ to M is also an R-module homomorphism from M into M_{P} given by $\Phi(m)=m / 1$ for every $m \in M$.

Badawi [14] defined a commutative ring R to be a nonnil-Noetherian ring if every nonnil ideal of R is finitely-generated. In this paper, we introduce a generalization of nonnil-Noetherian rings. Let R be a commutative ring. An R-module M is called a nonnil-Noetherian module if every nonnil submodule of M is finitely-generated. We study the basic properties of the nonnil-Noetherian modules. Moreover, we study the interplay between the nonnil-Noetherian rings and the nonnil-Noetherian modules.

Proposition 2. Let R be a commutative ring, andM a finitely-generated faithful multiplication R-module. Then $\operatorname{Nil}(R)=\left(\operatorname{Nil}(M):_{R} M\right)$.

Proof. Since M is faithful, $\operatorname{Nil}(M)$ is a submodule of M by [3, Theorem 6]. Therefore $\operatorname{Nil}(M)=\left(\operatorname{Nil}(M):_{R} M\right) M$ since M is a multiplication module. On the other hand, since M is a faithful multiplication R-module, it follows from [3, Theorem 6] that $\operatorname{Nil}(M)=\operatorname{Nil}(R) M$. Furthermore, by [22, Theorem 3.1], M is a cencellation R-module. Consequently, $\operatorname{Nil}(R)=\left(\operatorname{Nil}(M):_{R} M\right)$.

Proposition 3. Let R be a commutative ring, andM a finitely-generated faithful multiplication R-module. Then $\operatorname{Nil}(M)_{q}=\operatorname{Nil}\left(M_{q}\right)$ for every prime ideal q of R.

Proof. Since M is a finitely-generated faithful multiplication R-module, M_{q} is a finitely-generated multiplication R_{q}-module by [21, Lemma 9.12] and [6, Corollary 3.5]. Moreover, since M is finitely-generated, we have $\left(0:_{R_{q}} M_{q}\right)=\left(0:_{R} M\right)_{q}=0$, i.e. M_{q} is a faithful R_{q}-module. Hence, by [3, Theorem 6], we have:

$$
\operatorname{Nil}(M)_{q}=[\operatorname{Nil}(R) M]_{q}=\operatorname{Nil}(R)_{q} M_{q}=\operatorname{Nil}\left(R_{q}\right) M_{q}=\operatorname{Nil}\left(M_{q}\right) .
$$

Let R be a commutative ring. We define \mathcal{H}_{0} as follows:

$$
\mathcal{H}_{0}=\{R \in \mathcal{H} \mid \operatorname{Nil}(R)=Z(R)\} .
$$

Proposition 4. Let R be a commutative ring, and M be a finitelygenerated faithful multiplication R-module.
(1) $R \in \mathcal{H}$ if and only if $M \in \mathbb{H}$.
(2) $R \in \mathcal{H}_{0}$ if and only if $M \in \mathbb{H}_{0}$.

Proof. (1) $R \in \mathcal{H}$ if and only if $\operatorname{Nil}(R)$ is a divided prime ideal of R if and only if $\left(\operatorname{Nil}(M):_{R} M\right)$ is a divided prime ideal of R by Proposition 2, if and only if $\operatorname{Nil}(M)$ is a divided prime submodule of M by [4, Proposition 6], if and only if $M \in \mathbb{H}$.
(2) First note that since M is a faithful multiplication R-module, it is torsion-free, by [22, Lemma 4.1]. Thus $T=S$, which implies that $Z(M) \subseteq Z(R)$. On the other hand, we have $Z(R) \subseteq Z(M)$ since M is faithful. Hence, $Z(R)=Z(M)$. Now $R \in \mathcal{H}_{0}$ if and only if $\operatorname{Nil}(R)=Z(R)$ if and only if $\operatorname{Nil}(R) M=Z(R) M=Z(M) M$ if and only if $\operatorname{Nil}(M)=Z(M) M$ by [3, Theorem 6] if and and only if $M \in \mathcal{H}_{0}$.

Proposition 5. Let R be a commutative ring, and q a prime ideal of R. If M is a finitely-generated faithful multiplication R-module with $M \in \mathbb{H}(R)$, then $M_{q} \in \mathbb{H}\left(R_{q}\right)$.
Proof. Since q is a prime ideal of R and M a finitely-generated faithful multiplication R-module, it follows from [22, Corollary 2.11] that $q M$ is a prime submodule of M. Hence $\operatorname{Nil}(M) \subseteq q M$ by [3, Theorem 6]. Hence, $\left(N i l(M):_{R} M\right) M \subseteq q M$, and since M is a cancellation R-module, we have $(R \backslash q) \cap\left(N i l(M):_{R} M\right)=\emptyset$. Therefore, by Proposition 3, $\operatorname{Nil}\left(M_{q}\right)=\operatorname{Nil}(M)_{q}$ is a prime submodule of M_{q}. Now suppose that $m=x / s \notin \operatorname{Nil}\left(M_{q}\right)$. Then $x \notin \operatorname{Nil}(M)$ and $\operatorname{Nil}(M)$ divided prime gives $\operatorname{Nil}(M) \subset R x$. If $a / t \in \operatorname{Nil}\left(M_{q}\right)=\operatorname{Nil}(M)_{q}$, then $a \in \operatorname{Nil}(M) \subset R x$. Thus $a=r x$ for some $r \in R$. In this case, $a / t=(r x) / t=(s r x) /(s t)=((s r) / t) m \in R_{q} m$, i.e. $\operatorname{Nil}\left(M_{q}\right) \subset R_{q} m$. Therefore, $\operatorname{Nil}\left(M_{q}\right)$ is a divided prime submodule of M_{q}, and hence, $M_{q} \in \mathbb{H}\left(R_{q}\right)$.

Theorem 6. ([19, Theorem 5]) A non-zero finitely-generated R-module M is Noetherian if and only if every prime submodule of M is finitely generated.

Lemma 7. ([23, Lemma 2.5] Let R be a ring, and M a finitelygenerated faithful multiplication R-module such that $M \in \mathbb{H}$. Then $M / \operatorname{Nil}(M)$ is isomorphic to $\Phi(M) / \operatorname{Nil}(\Phi(M))$ as R-modules.

Theorem 8. Let R be a commutative ring, and let $M \in \mathbb{H}$ be an R-module. The following statements are equivalent:
(1) M is a nonnil-Noetherian R-module.
(2) For every nonnil submodule N of $M, M / N$ is a Noetherian R-module.
(3) M satisfies $A C C$ on nonnil submodules.
(4) M satisfies $A C C$ on nonnil finitely-generated submodules.

Proof. (1) $\Rightarrow(2)$ Let M be a nonnil-Noetherian R-module. Suppose that N is a nonnil submodule of M. Let K / N be a non-zero submodule of M / N. Then K is a nonnil submodule of M. Since M is nonnilNoetherian, K is finitely-generated, and so K / N is finitely-generated. Hence, M / N is a Noetherian R-module.
(2) \Rightarrow (3) Let $N_{1} \subseteq N_{2} \subseteq \cdots$ be an ascending chain of nonnil submodules of M. In this case, M / N_{1} is a Noetherian R-module by assumption. Moreover, $N_{2} / N_{1} \subseteq N_{3} / N_{1} \subseteq \cdots$ is an ascending chain of submodules of M / N_{1}. Since M / N_{1} is Noetherian, there exists a positive integer t such that $N_{t} / N_{1}=N_{s} / N_{1}$ for every $s \geq t$. Thus $N_{t}=N_{s}$ for every $s \geq t$.
$(3) \Rightarrow(4)$ Is clear.
(4) \Rightarrow (1) If M is not a nonnil-Noetherian R-module, then there exists a nonnil submodule N of M such that N is not finitely-generated. Choose a non-nilpotent element $m_{1} \in N$. Then $R m_{1} \subseteq N$, and since N is not finitely-generated, $N \neq R m_{1}$. Now choose a non-zero element $m_{2} \in N \backslash R m_{2}$. In this case, $R m_{1}+R m_{2} \subset N$. Thus we can choose a non-zero $m_{3} \in N \backslash\left(R m_{1}+R m_{2}\right)$. Then $R m_{1}+R m_{2}+R m_{3} \subset N$. Continuing this way, we get a strictly ascending chain $R m_{1} \subset R m_{1}+$ $R m_{2} \subset R m_{1}+R m_{2}+R m_{3} \subset \cdots$ of nonnil submodules of M, a contradiction. Thus M is a nonnil-Noetherian R-module.

Theorem 9. Let R be a commutative ring, and M be an R-module such that $\operatorname{Nil}(M)$ is a submodule of M. If M is a nonnil-Noetherian R-module, then $M / \operatorname{Nil}(M)$ is a Noetherian R-module. The converse is true if $M \in \mathbb{H}$.

Proof. Assume that M is a nonnil-Noetherian R-module. Set $L=$ $M / \operatorname{Nil}(M)$, and let Q be a non-zero prime submodule of L. Then $Q=P / \operatorname{Nil}(M)$ for some nonnil prime submodule P of M, and hence, P is finitely-generated. It obviously follows that $Q=P / N i l(M)$ is a finitely-generated submodule of L. Hence, L is a Noetherian R-module by [19, Theorem 5]. Conversely, suppose that $M / \operatorname{Nil}(M)$ is Noetherian, and $M \in \mathbb{H}$. If N is a nonnil submodule of M, then if follows from $M \in \mathbb{H}$ that $\operatorname{Nil}(M) \subseteq N$, and hence:

$$
\frac{M}{N} \cong \frac{\frac{M}{N i l(M)}}{\frac{N}{N i l(M)}}
$$

is Noetherian. Thus M satisfies condition (2) of Theorem 8 and is nonnil-Noetherian.

Corollary 10. Let R be a commutative ring, and M an R-module with $M \in \mathbb{H}$. If every nonnil prime submodule of M is finitely-generated, then M is a nonnil-Noetherian R-module.

Proof. Suppose that every nonnil prime submodule of M is finitelygenerated. Then every (nonzero) prime submodule of $L=M / \operatorname{Nil}(M)$ is finitely-generated. Hence, L is a R-module by Theorem 6 . Thus, M is a nonnil-Noetherian R-module by Theorem 9 .

Proposition 11. ([23, Proposition 2.2] Let R be a commutative ring, and M a finitely-generated faithful multiplication R-module with $M \in$ \mathbb{H}. Then $\Phi(M) \in \mathbb{H}$.
Corollary 12. Let R be a commutative ring and M an R-module with $M \in \mathbb{H}$. The following statements are equivalent:
(1) M is a nonnil-Noetherian R-module.
(2) $M / \operatorname{Nil}(M)$ is a Noetherian R-module.
(3) $\Phi(M) / \operatorname{Nil}(\Phi(M))$ is a Noetherian R-module.
(4) $\Phi(M)$ is a nonnil-Noetherian R-module.

Proof. (1) \Rightarrow (2) This follows from Theorem 9. (2) \Rightarrow (3) This is a direct consequence of Lemma 7. (3) \Rightarrow (4) Again follows from Theorem 9 because $\Phi(M) \in \mathbb{H}$ by Proposition 11 .

Theorem 13. Let R be a commuative ring, and M a finitely-generated multiplication R-module. Then M is a nonnil-Noetherian R-module if and only if R is a nonnil-Noetherian ring.

Proof. Assume that M is a nonnil-Noetherian R-module, and let I be a nonnil ideal of R. Then $I M$ is a nonnil submodule of M by Proposition 2. Hence, $I M$ is finitely-generated submodule of M. It follows from the fact that M is a cancellation R-module and [16, Lemma 3.5] that I is a finitely-generated ideal of R. Consequently, R is a nonnil-Noetherian ring. Conversely, assume that R is a nonnil-Noetherian ring, and let N be a nonnil submodule of M. Then by Proposition $2,\left(N:_{R} M\right)$ is a nonnil ideal of R. Hence, $\left(N:_{R} M\right)$ is a finitely-generated ideal of R, and hence, $N=\left(N:_{R} M\right) M$ is a finitely-generated submodule of M. Thus M is a nonnil-Noetherian R-module.

Theorem 14. Let R be a commutative ring, and M a finitely-generated faithful multiplication R-module with $M \in \mathbb{H}$. If each nonnil prime submodule of M has a power that is finitely-generated, then M is a nonnil-Noetherian R-module.

Proof. Let P be a nonnil prime ideal of R. Then $P M$ is a nonnil prime submodule of M by Proposition 2 and the fact that M is a cancellation module. Hence, there exists a positive integer t such that $(P M)^{t}=P^{t} M$ is a finitely-generated submodule of M. Hence, P^{t} is finitely-generated by [16, Lemma 3.5]. It follows from [14, Theorem 1.6] that R is a nonnil-Noetherian ring. Therefore, M is a nonnilNoetherian R-module by Theorem 13.

Proposition 15. Let R be a commutative ring, and M a Noetherian multiplication R-module. If $P \subset Q$ are prime submodules of M such that there exists a prime submodule properly between P and Q, then there are infinitely many prime submodules of M properly between P and Q.

Proof. Without loss of generality, we may assume that M is faithful, otherwise, by replacing R with $R / \operatorname{Ann}(M)$, we can assume that M is faithful. If we set $p=\left(P:_{R} M\right)$, and $q=\left(Q:_{R} M\right)$, then $p \subset$ q are prime ideals of R by [22, Corollary 2.11]. Suppose that $N=$ $I M$ is a prime submodule of M properly between P and Q. Then I is a prime ideal of R properly between p and q by [22, Corollary 2.11]. On the other hand, since M is a Noetherian R-module, it follows that R is a Noetherian ring. Hence, by [18, Theorem 144], there are infinitely many prime ideals of R properly between p and q. As there is a one-to-one correspondence between the prime ideals of R and the prime submodules of M, it follows that there are infinitely many prime submodules of M properly between P and Q.

Theorem 16. Let R be a commutative ring, and $M \in \mathbb{H}$ be a nonnilNoetherian multiplication R-module. If $P \subset Q$ are prime submodules of M such that there exists a prime submodule properly between P and Q, then there are infinitely many prime submodules of M properly between P and Q.

Proof. If we set $L=M / \operatorname{Nil}(M)$, then L is a Noetherian R-module by Theorem 9. Suppose that $P \subset Q$ are prime submodules of M such that there exists a prime submodule N properly between P and Q. Then the prime submodule $N / \operatorname{Nil}(M)$ is properly between the prime submodules $P / \operatorname{Nil}(M) \subset Q / \operatorname{Nil}(M)$ of the R-module L. Hence, there are infinitely many prime submodules of L properly between $P / \operatorname{Nil}(M)$ and $Q / N i l(M)$ by Proposition 15. Therefore, there are infinitely many prime submodules of M properly between P and Q.

Acknowledgments

The author would like to thank the referees for carefully reading the manuscript and for giving constructive comments which substantially helped improving the quality of the paper.

References

1. J. Abaffy, C. G. Broyden and E. Spedicato, A class of direct methods for linear equations, Numer. Math. 45 (1984), 361-376.
2. J. Abaffy and E. Spedicato, $A B S$ Projection Algorithms: Mathematical Techniques for Linear and Nonlinear Equations, Ellis Horwood, Chichester, 1989.
3. M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra 36 (2008), 4620-4642.
4. M. M. Ali, Invertibility of multiplication modules III, New Zeland J. Math. 39 (2009), 193-213.
5. R. Ameri, On the prime submodules of multiplication modules, Inter. J. of Math. and Math. Sci. 27 (2003), 1715-1724.
6. D. D. Anderson, Some remarks on multiplication modules II, Communications in Algebra 28 (2000), 2577-2583.
7. D. F. Anderson and A. Badawi, On ϕ-Prüfer rings and ϕ-Bezout rings, Houston J. Math. 30 (2004), 331-343.
8. D. F. Anderson and A. Badawi, On ϕ-Dedekind rings and ϕ-Krull rings, Houston J. Math. 31 (2005), 1007-1022.
9. A. Badawi, On divided commutative rings, Communications in Algebra 27 (1999), 1465-1474.
10. A. Badawi, On ϕ-pseudo-valuation rings, Lecture Notes Pure Appl. Math. 205 (1999), 101-110, Marcel Dekker, New York/Basel.
11. A. Badawi, On ϕ-pseudo-valuation rings, II, Houston J. Math. 26 (2000), 473480.
12. A. Badawi, On ϕ-chained rings and ϕ-pseudo-valuation rings, Houston J. Math. 27(2001), 725-736.
13. A. Badawi, On divided rings and ϕ-pseudo-valuation rings, International J. of Commutative Rings 1 (2002), 51-60.
14. A. Badawi, On nonnil-Noetherian rings, Communications in Algebra 31 (2003), 1669-1677.
15. A. Badawi and T. Lucas, On ϕ-Mori rings, Houston J. Math. 32 (2006), 1-31.
16. Y. H. Cho, On multiplication modules (II), Communications of the Korean Mathematical Society. 13(4) (1998), 727-733.
17. D. E. Dobbs, Divided rings and going down, Pacific Journal of Mathematics 67 (1976), 353-363.
18. I. Kaplansky, Commutative Rings, Chicago: The University of Chicago Press, 1974.
19. S. C. Lee, finitely-generated modules, J. Korean Math. Soc. 28(1) (1991), 1-11.
20. G. Naoum and A. S. Mijbass, Weak cancellation modules, Kyungpook Math. J. 37 (1997), 73-82.
21. R. Y. Sharp, Steps in Commutative Algebra, London Mathematical Society, 1990.
22. Z. A. El-Bast and P. Smith, Multiplication modules, Communications in Algebra 16(4)(1988), 755-799.
23. A. Yousefian Darani and S. Motmaen, On Φ-Dedekind modules, Submitted.

A. Yousefian Darani

Department of Mathematics and Applications, University of Mohaghegh Ardabili, P.O.Box 5619911367, Ardabil, Iran.

Email: yousefian@uma.ac.ir

NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS

A. YOUSEFIAN DARANI

مدولهاى نايوتج-نوترى روى حلقههاى جابجايى

 نايوج-نوترى نيز برقرارند.

كلمات كليدى: حلقه نوترى، مدول نوترى، زيرمدول با توليد متناهى، زيرمدول تقسيششده، فى-مدول.

[^0]: MSC(2010): Primary: 13A05; Secondary: 13F05, 11Y50
 Keywords: Noetherian rings, Noetherian modules, Finitely-generated submodules, Divided submodules, Phi-modules.
 Received: 8 August 2015, Revised: 6 February 2016.
 $*$ Corresponding author .

