Journal of Algebraic Systems Vol. 3, No. 2, (2016), pp 217-227

ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES

M. HATAMKHANI

ABSTRACT. Let R be a commutative Noetherian ring, \mathfrak{a} be an ideal of R, and $\mathcal{D}(R)$ denote the derived category of R-modules. For any homologically-bounded complex X, we conjecture that $\sup \mathbf{L}\Lambda^{\mathfrak{a}}(X) \leq \max_{R} X$. We prove this in several cases.

1. INTRODUCTION

Throughout this paper, R is a commutative Noetherian ring with non-zero identity, and $\mathcal{D}(R)$ denotes the derived category of R-modules. The full subcategory of homologically-bounded complexes is denoted by $\mathcal{D}_{\Box}(R)$, and that for complexes homologically-bounded to the right (resp. left) is denoted by $\mathcal{D}_{\Box}(R)$ (resp. $\mathcal{D}_{\Box}(R)$). Also $\mathcal{D}_{\Box}^{f}(R)$ (resp. $\mathcal{D}_{\Box}^{Art}(R)$) consists of homologically-bounded complexes with finitelygenerated (resp. Artinian) homologies. The symbol \simeq denotes an isomorphism in the category $\mathcal{D}(R)$. For any complex X in $\mathcal{D}_{\Box}(R)$ (resp. $\mathcal{D}_{\Box}(R)$), there is a bounded to the right (resp. left) complex Uof projective (resp. injective) R-modules such that $U \simeq X$. A such

MSC(2010): Primary: 13D07; Secondary: 13D45

Keywords: Local cohomology modules; Local homology modules; Magnitude; Noetherian dimension.

Received: 23 September 2015, Revised: 22 February 2016.

M. HATAMKHANI

complex U is called a projective (resp. injective) resolution of X. The left-derived tensor product functor $-\otimes_R^{\mathbf{L}} \sim$ is computed by taking a projective resolution of the first argument or of the second one. Also, the right-derived homomorphism functor $\mathbf{R} \operatorname{Hom}_R(-, \sim)$ is computed by taking a projective resolution of the first argument or by taking an injective resolution of the second one.

Let \mathfrak{a} be an ideal of R, and $\mathcal{C}_0(R)$ denote the full sub-category of R-modules. It is known that the \mathfrak{a} -adic completion functor

$$\Lambda^{\mathfrak{a}}(-) = \varprojlim_{n}(R/\mathfrak{a}^{n} \otimes_{R} -) : \mathcal{C}_{0}(R) \to \mathcal{C}_{0}(R)$$

is not right exact, in general. The left-derived functor of $\Lambda^{\mathfrak{a}}(-)$ exists in $\mathcal{D}(R)$, and so, for any complex $X \in \mathcal{D}_{\square}(R)$, the complex $\mathbf{L}\Lambda^{\mathfrak{a}}(X) \in \mathcal{D}_{\square}(R)$ is defined by $\mathbf{L}\Lambda^{\mathfrak{a}}(X) := \Lambda^{\mathfrak{a}}(P)$, where P is a (every) projective resolution of X. Let $X \in \mathcal{D}_{\square}(R)$. For any integer i, the *i*-th local homology module of X with respect to \mathfrak{a} is defined by $H_i^{\mathfrak{a}}(X) := H_i(\mathbf{L}\Lambda^{\mathfrak{a}}(X))$. First E. Matlis [12], in 1974, studied the theory of the local homology. Next Simon in [18] and [19] continued the study of this theory. Later, J.P.C. Greenlees and J.P. May [9] defined local homology groups of a module M using a new approach. Then came the works of Alonso Tarrío, Jeremías López and Lipman [1]. After the works of [17], [4], [5], [8], and [14], started a new era in the study of local homology.

The most essential vanishing result for the local cohomology modules $H^i_{\mathfrak{a}}(M)$ is Grothendieck's Vanishing Theorem, which asserts that $H^i_{\mathfrak{a}}(M) = 0$ for all $i > \dim_R M$. Letting $X \in \mathcal{D}_{\Box}(R)$, Foxby generalized this result for derived local cohomology modules $H^i_{\mathfrak{a}}(X)$. He proved that $H^i_{\mathfrak{a}}(X) = 0$ for all $i > \dim_R X$ [7, Theorem 7.8, Corollary 8.29]. We intend to establish the dual of this result for the derived local homology modules. Let $\check{C}(\underline{\mathfrak{a}})$ denote the \check{C} ech complex of R on a set $\underline{\mathfrak{a}}$ of generators of \mathfrak{a} . By [1, (0.3), aff, p.4] (see also [17, Section 4] for corrections),

$$\mathbf{L}\Lambda^{\mathfrak{a}}(X) \simeq \mathbf{R} \operatorname{Hom}_{R}(\check{C}(\underline{\mathfrak{a}}), X).$$

218

Using this isomorphism Frankild [8, Theorem 2.11] proved that inf $\mathbf{L}\Lambda^{\mathfrak{a}}(X) = \mathrm{width}_{R}(\mathfrak{a}, X)$, where $\mathrm{width}_{R}(\mathfrak{a}, X) := \mathrm{inf}(R/\mathfrak{a} \otimes_{R}^{\mathbf{L}} X)$.

The aim of this work was to find an upper bound for $\sup \mathbf{L}\Lambda^{\mathfrak{a}}(X)$. Finding a good upper bound for $\sup \mathbf{L}\Lambda^{\mathfrak{a}}(X)$ was considered in [17] and [8]. In fact, we conjecture that $H_i^{\mathfrak{a}}(X) = 0$ for all $i > \max_R X$. Our investigation on this conjecture is the core of this paper. We show the correctness of this conjecture in several cases. Namely, we prove that if for all $i \in \mathbb{Z}$, either:

 $\operatorname{Coass}_{R} H_{i}(X) = \mathcal{A}tt_{R}H_{i}(X),$

 $H_i(X)$ is finitely-generated, Artinian or Matlis reflexive,

 $H_i(X)$ is linearly-compact,

R is complete local, and $H_i(X)$ has finitely many minimal coassociated prime ideals; or:

R is complete local with the maximal ideal \mathfrak{m} , and $\mathfrak{m}^n H_i(X)$ is minimax for some integer $n \ge 0$,

then $H_i^{\mathfrak{a}}(X) = 0$ for all $i > \max_R X$.

First, Sazeedeh [16] studied connections between the Gorenstein injective modules and the local cohomology modules. The Gorenstein flat dimension of X is defined by

 $Gfd_R X := \inf \{ \sup \{ l \in \mathbb{Z} | Q_l \neq 0 \} | Q \text{ is a bounded to the right}$ complex of Gorenstein flat R-modules and $Q \simeq X \}.$

For more details on the theory of Gorenstein homological dimensions for complexes, we refer the reader to [2].

2. Results

In what follows, we denote the faithful exact functor,

$$\operatorname{Hom}_{R}(-, \underset{\mathfrak{m}\in\operatorname{Max} R}{\oplus} E(R/\mathfrak{m}))$$

by $(-)^{\vee}$. Let M be an R-module. A prime ideal \mathfrak{p} of R is said to be a coassociated prime ideal of M if there is an Artinian quotient L of M such that $\mathfrak{p} = (0 :_R L)$. The set of all coassociated prime ideals of M

is denoted by $\operatorname{Coass}_R M$. Also, $\mathcal{A}tt_R M$ is defined by

 $\mathcal{A}tt_R M := \{ \mathfrak{p} \in \operatorname{Spec} R | \mathfrak{p} = (0:_R L) \text{ for some quotient } L \text{ of } M \}.$

Clearly, $\operatorname{Coass}_R M \subseteq \operatorname{Att}_R M$ and the equality holds if either R or M is Artinian. More generally, if M is representable, then it is easy to check that $\operatorname{Coass}_R M = \operatorname{Att}_R M$. If $0 \longrightarrow M \longrightarrow N \longrightarrow L \longrightarrow 0$ is an exact sequence of R-modules and R-homomorphisms, then it is easy to check that:

$$\operatorname{Coass}_R L \subseteq \operatorname{Coass}_R N \subseteq \operatorname{Coass}_R L \cup \operatorname{Coass}_R M$$
,

and:

$$Att_R L \subseteq Att_R N \subseteq Att_R L \cup Att_R M.$$

Also if R is local, then one can see that $\operatorname{Coass}_R M = \operatorname{Ass}_R M^{\vee}$. For an R-module M, set $\operatorname{cd}_{\mathfrak{a}} M := \sup\{i | H^i_{\mathfrak{a}}(M) \neq 0\}$. By [9, Corollary 3.2], $H^{\mathfrak{a}}_i(M) = 0$ for all $i > \operatorname{cd}_{\mathfrak{a}} R$. Next, we recall the definition of the notion $\operatorname{mag}_R M$.

Definition 2.1. Let M be an R-module.

i) (See [20]) The magnitude of M is defined by

 $\operatorname{mag}_{R} M := \sup \{ \dim R/\mathfrak{p} | \mathfrak{p} \in \operatorname{Coass}_{R} M \}.$

If M = 0, then we put $\operatorname{mag}_{R} M = -\infty$.

- ii) (See [15]) The Noetherian dimension of M is defined inductively as follows: when M = 0, put $\operatorname{Ndim}_R M = -1$. Then, by induction, for an integer $d \ge 0$, we put $\operatorname{Ndim}_R M = d$ if $\operatorname{Ndim}_R M < d$ is false, and for every ascending sequence $M_0 \subseteq M_1 \subseteq \ldots$ of submodules of M, there exists n_0 such that $\operatorname{Ndim}_R M_{n+1}/M_n < d$ for all $n > n_0$.
- iii) (See [14]) The co-localization of M at a prime ideal \mathfrak{p} of R is defined by

 ${}^{\mathfrak{p}}M := \operatorname{Hom}_{R_{\mathfrak{p}}}((M^{\vee})_{\mathfrak{p}}, E_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}})).$

Then $\operatorname{Cosupp}_R M$ is defined by

$$\operatorname{Cosupp}_R M := \{ \mathfrak{p} \in \operatorname{Spec} R | {}^{\mathfrak{p}} M \neq 0 \}.$$

220

iv) (See [3]) M is said to be N-critical if $\operatorname{Ndim}_R N < \operatorname{Ndim}_R M$ for all proper submodules N of M.

If $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ is an exact sequence of *R*-modules and *R*-homomorphisms, then it is easy to verify that:

$$\operatorname{mag}_{R} Y = \max\{\operatorname{mag}_{R} X, \operatorname{mag}_{R} Z\}.$$

Recall that an *R*-module *M* is said to be *Matlis reflexive* if the natural homomorphism $M \longrightarrow M^{\vee\vee}$ is an isomorphism.

Now we recall some definitions, which are required in the following statements.

We begin by recalling the definition of linearly-compact modules from [11]. Let M be a topological R-module. Then M is said to be *linearly-topologized* if M has a base \mathcal{M} consisting of sub-modules for the neighborhoods of its zero element. A Hausdorff linearly-topologized R-module M is said to be *linearly-compact* if for any family \mathcal{F} of cosets of closed submodules of M which has the finite intersection property, the intersection of all cosets in \mathcal{F} is non-empty. A Hausdorff linearly topologized R-module M is called *semi-discrete* if every submodule of M is closed. The class of semi-discrete linearly-compact modules is very large it contains many important classes of modules such as the class of Artinian modules or the class of finitely-generated modules over a complete local ring.

An *R*-module *M* is called *minimax* if it has a finitely-generated submodule *N* such that M/N is Artinian. By [21, Lemma 1.1], over a complete local ring *R*, an *R*-module *M* is minimax if and only if *M* is semi-discrete linearly-compact and if and only if *M* is Matlis reflexive. These definitions can be extended to complexes in obvious ways.

In the case (R, \mathfrak{m}) is a local ring, by [20, Lemma 2.2], we have mag $M = \dim M^{\vee}$ for any *R*-module M, where $(-)^{\vee} := \operatorname{Hom}_R(-, E(\frac{R}{\mathfrak{m}}))$. Following this idea, one could expect mag $_R X = \dim_R X^{\vee}$.

Let $X \in D(R)$. We know that $\dim_R X^{\vee} = \sup\{\dim_R H_i(X^{\vee}) - i \mid i \in \mathbb{Z}\}$ $\mathbb{Z}\} = \sup\{\dim_R H_{-i}(X)^{\vee} - i \mid i \in \mathbb{Z}\} = \sup\{\dim_R H_j(X)^{\vee} + j \mid j \in \mathbb{Z}\}.$ Therefore, we define $\max_R X$ as follows:

M. HATAMKHANI

Definition 2.2. Let R be a commutative Noetherian ring, and $X \in \mathcal{D}(R)$. We define $\operatorname{mag}_R X := \sup\{\operatorname{mag}_R H_i(X) + i \mid i \in \mathbb{Z}\}.$

Lemma 2.3. Let (R, \mathfrak{m}) be a local ring, and $X \in \mathcal{D}(R)$. Then: $mag_R X = \sup\{\dim \frac{R}{\mathfrak{p}} + \sup^{\mathfrak{p}} X \mid \mathfrak{p} \in Cosupp_R X\}.$

Proof. By definition, we have $\operatorname{mag}_R X = \dim_R X^{\vee}$. Now we know that $\dim_R X^{\vee} = \sup\{\dim \frac{R}{\mathfrak{p}} - \inf(X^{\vee})_{\mathfrak{p}} | \mathfrak{p} \in \operatorname{Supp}_R X^{\vee}\}$. Let $\mathfrak{p} \in \operatorname{Spec} R$. By definition, we have $\mathfrak{p}X = \operatorname{Hom}_{R_{\mathfrak{p}}}((X^{\vee})_{\mathfrak{p}}, E(\frac{R}{\mathfrak{p}}))$, and so:

$$\sup^{\mathfrak{p}} X = -\inf(X^{\vee})_{\mathfrak{p}}$$

Also, by [14, Theorem 2.7] , $Cosupp_R X = \operatorname{Supp}_R X^{\vee}$. Hence,

$$\operatorname{mag}_{R} X = \sup \{ \dim \frac{R}{\mathfrak{p}} + \sup^{\mathfrak{p}} X | \ \mathfrak{p} \in Cosupp_{R} X \}.$$

Remark 2.4. Let X and Y be complexes in $\mathcal{D}(R)$. Observe that the isomorphism $\mathbf{L}\Lambda^{\mathfrak{a}}(X) \simeq \mathbf{R} \operatorname{Hom}_{R}(\check{C}(\mathfrak{a}), X)$ immediately gives:

 $\mathbf{L}\Lambda^{\mathfrak{a}}(\mathbf{R}\operatorname{Hom}_{R}(X,Y))\simeq \mathbf{R}\operatorname{Hom}_{R}(X,\mathbf{L}\Lambda^{\mathfrak{a}}(Y))\simeq \mathbf{R}\operatorname{Hom}_{R}(\mathbf{R}\Gamma_{\mathfrak{a}}(X),Y).$

Definition 2.5. (See [6]) Let $X \in \mathcal{D}(R)$.

i) If m is an integer, $\Sigma^m X$ denotes the complex X shifted (or translated) m degrees (to the left); it is given by

$$(\Sigma^m X)_l = X_{l-m}$$
, $d_l^{\Sigma^m X} = (-1)^m d_{l-m}^X$,

for $l \in \mathbb{Z}$.

ii) If $m, n \in \mathbb{Z}$, the truncated complexes $\tau_{m\Box} X$ and $\tau_{n\Box} X$ are given by

$$\tau_{m\Box} X = 0 \longrightarrow C_m^X \xrightarrow{\hat{d}_m^X} X_{m-1} \xrightarrow{d_{m-1}^X} X_{m-2} \xrightarrow{d_{m-2}^X} \dots$$

and

$$\tau_{n\square} X = \dots \xrightarrow{d_{n+3}^X} X_{n+2} \xrightarrow{d_{n+2}^X} X_{n+1} \xrightarrow{\tilde{d}_{n+1}^X} Z_n^X \longrightarrow 0,$$

where \hat{d}_m^X and \tilde{d}_{n+1}^X are the induced maps.

Lemma 2.6. Let R be a commutative Noetherian ring, and $X \in \mathcal{D}(R)$.

- i) If $X \in \mathcal{D}_{\Box}(R)$, then $\sup \mathbf{L}\Lambda^{\mathfrak{a}}(X) \leq \sup \{\sup \mathbf{L}\Lambda^{\mathfrak{a}}(H_i(X)) + i \mid i \in \mathbb{Z}\}.$
- ii) If (R, \mathfrak{m}) is a complete local ring and $X \in \mathcal{D}_{\Box}^{Art}(R)$, then

 $\sup \mathbf{L}\Lambda^{\mathfrak{a}}(X) = \sup \{\sup \mathbf{L}\Lambda^{\mathfrak{a}}(H_i(X)) + i \mid i \in \mathbb{Z}\}.$

Proof. i) Let $s := \sup \mathbf{L}\Lambda^{\mathfrak{a}}(X)$, and assume that $s > \sup(\mathbf{L}\Lambda^{\mathfrak{a}}(H_{l}(X))) + l$ for all l. By descending induction on l, we show that, $\sup(\mathbf{L}\Lambda^{\mathfrak{a}}(\tau_{l \sqsubset}X)) = s$ for all $l \in \mathbb{Z}$. This gives the desired contradiction, since $\tau_{l \sqsubset}X \simeq 0$ for l small enough. Since $\tau_{l \sqsubset}X \simeq X$ for l large enough, the equality $\sup(\mathbf{L}\Lambda^{\mathfrak{a}}(\tau_{l \sqsubset}X)) = s$ certainly holds for large l.

In the inductive step, note that the exact triple,

$$(\Sigma^l H_l(X), \tau_{l\square} X, \tau_{l-1\square} X)$$

(see [6, Corollary 1.43]) induces an exact sequence:

from which the desired assertion, $\sup(\mathbf{L}\Lambda^{\mathfrak{a}}(\tau_{l-1\square}X)) = s$, follows from the inductive assumption,

 $\sup(\mathbf{L}\Lambda^{\mathfrak{a}}(\tau_{l\sqsubset}X)) = s$, and the assumption $\sup(\mathbf{L}\Lambda^{\mathfrak{a}}(H_{l}(X))) < s - l$ made earlier.

ii) As $X \in \mathcal{D}_{\Box}^{Art}(R)$, it follows that $X^{\vee\vee} \simeq X$ in $\mathcal{D}(R)$. Hence, we have:

$$\begin{split} \sup \mathbf{L}\Lambda^{\mathfrak{a}}(X) &= \sup \mathbf{L}\Lambda^{\mathfrak{a}}(X^{\vee\vee}) \\ &= \sup \mathbf{L}\Lambda^{\mathfrak{a}}(\mathbf{R}\operatorname{Hom}_{R}(X^{\vee}, E(\frac{R}{\mathfrak{m}}))) \\ &\stackrel{(a)}{=} \sup (\mathbf{R}\operatorname{Hom}_{R}(X^{\vee}, \mathbf{L}\Lambda^{\mathfrak{a}}(E(\frac{R}{\mathfrak{m}})))) \\ &\stackrel{(b)}{=} \sup \{\sup \mathbf{R}\operatorname{Hom}_{R}(H_{i}(X^{\vee}), \mathbf{L}\Lambda^{\mathfrak{a}}(E(\frac{R}{\mathfrak{m}}))) - i \mid i \in \mathbb{Z}\} \\ &\stackrel{(c)}{=} \sup \{\sup \mathbf{L}\Lambda^{\mathfrak{a}}(\mathbf{R}\operatorname{Hom}_{R}(H_{i}(X^{\vee}), E(\frac{R}{\mathfrak{m}}))) - i \mid i \in \mathbb{Z}\} \\ &= \sup \{\sup \mathbf{L}\Lambda^{\mathfrak{a}}(H_{i}(X^{\vee})^{\vee}) - i \mid i \in \mathbb{Z}\} \\ &= \sup \{\sup \mathbf{L}\Lambda^{\mathfrak{a}}((H_{-i}(X))^{\vee\vee}) - i \mid i \in \mathbb{Z}\} \\ &\stackrel{(d)}{=} \sup \{\sup \mathbf{L}\Lambda^{\mathfrak{a}}(H_{j}(X)) + j \mid j \in \mathbb{Z}\} \end{split}$$

The equalities (a) and (c) follow by Remark 2.4, and since $X^{\vee} \in \mathcal{D}_{\Box}^{f}(R)$, (b) follows from [6, Lemma 16.26]. Since $X \in \mathcal{D}_{\Box}^{Art}(R)$, the equality (d) holds.

Now we recall the following definition of Zoschinger:

Definition 2.7. Let M be an R-module. Then Coass(M) has a finite final subset, when the set of minimal elements of Coass(M) is finite, or equivalently, there exists a finite subset, $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$ of Coass(M) such that $\bigcap Coass(M) = \bigcap_{i=1}^n \mathfrak{p}_i$.

Theorem 2.8. Let \mathfrak{a} be an ideal of R, and $X \in \mathcal{D}_{\Box}(R)$. Assume that for all $i \in \mathbb{Z}$, either:

- i) $\operatorname{Coass}_R H_i(X) = \mathcal{A}tt_R H_i(X),$
- ii) $H_i(X)$ is N-critical,
- iii) $H_i(X)$ is finitely-generated or Matlis reflexive,
- iv) $H_i(X)$ is linearly-compact,
- v) R is complete local and $H_i(X)$ has finitely many minimal coassociated prime ideals; or:
- vi) R is complete local with the maximal ideal \mathfrak{m} , and $\mathfrak{m}^n H_i(X)$ is minimax for some integer $n \ge 0$.

Then $\sup(\mathbf{L}\Lambda^{\mathfrak{a}}(X) \leq mag_R X$ and equality holds if R is complete local with the maximal ideal \mathfrak{a} and $X \in \mathcal{D}_{\Box}^{Art}(R)$.

Proof. From Lemma 2.6 i), we have:

 $\sup \mathbf{L}\Lambda^{\mathfrak{a}}(X) \leq \sup \{\sup \mathbf{L}\Lambda^{\mathfrak{a}}(H_i(X)) + i \mid i \in \mathbb{Z}\}.$

On the other hand, by [10, Theorem 2.8], in each of these cases, sup $\mathbf{L}\Lambda^{\mathfrak{a}}(H_i(X)) \leq \max_R H_i(X)$ for all $i \in \mathbb{Z}$. Now the result follows by the definition of $\max_R X$.

Now let (R, \mathfrak{m}) be a complete local ring. From [5, Theorem 4.8, 4.10], for each Artinian module M, $\operatorname{Ndim}_R M = \max\{i \mid H_i^{\mathfrak{m}}(M) \neq 0\}$. Hence, the last part follows from Lemma 2.6 ii) and [20, Theorem 2.10].

224

Corollary 2.9. Let (R, \mathfrak{m}) be a complete local ring, and $X \in \mathcal{D}_{\Box}^{Art}(R)$. Then $mag_R X \leq Gfd_R X$.

Proof. From [13, Theorem 2.5], $\sup(\mathbf{L}\Lambda^{\mathfrak{a}}(X)) \leq \operatorname{Gfd}_R X$ for any ideal \mathfrak{a} of R. Now, the result follows by Theorem 2.8.

Definition 2.10. (See [6])

i) Let $X \in \mathcal{D}_{\square}(R)$, and $Y \in \mathcal{D}_{\square}(R)$. The module:

 $H_{-i}(\mathbf{R}\operatorname{Hom}_R(X,Y))$

is often denoted by $\operatorname{Ext}_{R}^{i}(X, Y)$, and called the i-th hyper Ext module of the complexes X and Y.

ii) Let $X, Y \in \mathcal{D}_{\square}(R)$. The module: $H_i(X \otimes_R^{\mathbf{L}} Y)$ is sometimes denoted by $\operatorname{Tor}_i^R(X, Y)$, and called the i-th hyper *Tor* module of the complexes X and Y.

Assume that M and N are two R-modules, and X and Y are two complexes. The following result is deduced from Theorem 2.8.

Corollary 2.11. Assume that M is a linearly-compact R-module, N an R-module, and $X, Y \in \mathcal{D}(R)$.

- i) If $\mathbf{R} \operatorname{Hom}_R(N, M) \in \mathcal{D}_{\Box}(R)$, then $H_i^{\mathfrak{a}}(\mathbf{R} \operatorname{Hom}_R(N, M)) = 0$ for all $i > mag(\mathbf{R} \operatorname{Hom}_R(N, M))$.
- ii) If N is finitely-generated, and $N \otimes_R^{\mathbf{L}} M \in \mathcal{D}_{\Box}(R)$, then:

$$H_i^{\mathfrak{a}}(N \otimes_R^{\mathbf{L}} M) = 0$$

for all $i > mag(N \otimes_{R}^{\mathbf{L}} M)$.

Proof. By [4, Lemma 2.5 and 2.6], the *R*-modules $\operatorname{Ext}_{R}^{i}(N, M)$ and $\operatorname{Tor}_{i}^{R}(N, M)$ are linearly-compact for all non-negative integers i. Hence, the result follows by Theorem 2.8.

Acknowledgments

The author would like to thank the referee for his/her careful reading and many helpful suggestions on this paper.

M. HATAMKHANI

References

- L. Alonso Tarrío, A. Jeremías López and J. Lipman, Local homology and cohomology on schemes, Annales scientifiques de École normale suprieure. 30(1) 1997, 1–39.
- L. W. Christensen, Gorenstein dimensions, Vol 1747 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 3(4) 2000.
- L. Chambless, N-Dimension and N-critical modules. Application to Artinian modules, *Communications in Algebra*. 8(16) (1980), 1561–1592.
- N. T. Cuong and T. T. Nam, A local homology theory for linearly-compact modules, *Journal of Algebra*. **319**(11) (2008), 4712–4737.
- N. T. Cuong and T. T. Nam, The I-adic completion and local homology for Artinian modules, *Mathematical Proceedings of the Cambridge Philosophical Society.* **131**(1) (2001), 61–72.
- H-B. Foxby, Hyperhomological algebra & commutative rings, Notes in preparation, 1998.
- H-B. Foxby, A homological theory of complexes of modules, Preprint Series no. 19 a & 19 b, Department of Mathematics, University of Copenhagen, 1981.
- A. Frankild, Vanishing of local homology, *Mathematische Zeitschrift.* 244(3) (2003), 615–630.
- J. P. C. Greenlees and J. P. May, Derived functors of *I*-adic completion and local homology, *Journal of Algebra*. 149(2) (1992), 438–453.
- M. Hatamkhani and K. Divaani-Aazar, On the vanishing of local homology modules, *Glasgow Mathematical Journal.* 55(2) (2013), 457–404.
- I. G. MacDonald, Duality over complete local rings, *Topology*. 1(3) (1962), 213–235.
- E. Matlis, The Koszul complex and duality, Comm. Algebra. 1(2) (1974), 87– 144.
- F. Mohammadi Aghjeh Mashhad and K. Divaani-Aazar, Local homology and Gorenstein flat modules, *Journal of Algebra and Its Applications*. 11(2), (2012).
- A. S. Richardson, Co-localization, co-support and local homology, *Journal of Mathematics*. 36(5) (2006), 1679–1703.
- 15. R. N. Roberts, Krull dimension for Artinian modules over quasi local commutative rings, *The Quarterly Journal of Mathematics.* **26**(1) (1975), 269–273.
- R. Sazeedeh, Gorenstein injective modules and local cohomology, *Proceedings* of the American Mathematical Society. **132**(10) (2004), 2885–2891.

- P. Schenzel, Proregular sequences, local cohomology, and completion, *Mathematica scandinavica*. 92(2) (2003), 161–180.
- A-M. Simon, Adic-completion and some dual homological results, *Publicacions Matemtiques.* 36(2, (1992), 0965–979.
- A-M. Simon, Some homological properties of complete modules, Mathematical Proceedings of the Cambridge Philosophical Society. 108(2) (1990), 231–246.
- S. Yassemi, Magnitude of modules, Communications in Algebra. 23(11) (1995), 3993–4008.
- H. Zöschinger, Starke Kotorsionsmoduln, Arch. Math. (Basel), 81(2) (2003), 126–141.

M. Hatamkhani

Department of Mathematics, Faculty of Science, Arak University,

Arak, 38156-8-8349, Iran.

Email: m-hatamkhani@araku.ac.ir

Journal of Algebraic Systems

ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES

M. HATAMKHANI

صفر شدن مدولهای همولوژی موضعی مشتقشده

مرضیه حاتم خانی اراک-خیابان شهید بهشتی-دانشگاه اراک-دانشکده علوم-گروه ریاضی-کدپستی ۳۸۱۵۶۸۳۸۴۹

فرض کنید R یک حلقه جابجایی نوتری و a ایدهآلی از R و D(R) نشان دهنده کاتگوری مشتق شده از R مدولها باشد. ما حدس میزنیم برای هر همبافت بطور همولوژیکی کراندار X، بزرگی همبافت R، کران بالایی برای سوپریموم فانکتور مشتق شده چپ نسبت به ایدهآل a روی X باشد و در چند حالت مختلف آن را ثابت میکنیم.

كلمات كليدي: كوهمولوژي موضعي، مدولهاي همولوژي موضعي، بزرگي مدول، بعد نوتري.