Journal of Algebraic Systems

Vol. 4, No. 1, (2016), pp 15-27
DOI: 10.22044/jas.2016.725

SOME REMARKS ON GENERALIZATIONS OF MULTIPLICATIVELY-CLOSED SUBSETS

M. EBRAHIMPOUR*

Abstract

Let R be a commutative ring with an identity, and M be a unitary R-module. In this paper, the concept of multiplica-tively-closed subset of R is generalized, and some properties of the generalized subsets of M are studied. Some well-known theorems about multiplicatively-closed subsets of R are also generalized, and it is shown that some other well-known results are not valid for M.

1. Introduction

We assume throughout that all rings are commutative with $1 \neq 0$ and all modules are unital. Let R be a ring, M be an R-module, and N be a submodule of M. We know that $(N: M)=\{r \in R \mid r M \subseteq N\}$ is an ideal of R. The R-module M is multiplicative if for every submodule N of M there exists an ideal I of R such that $N=I M$. It is easy to show that $N=(N: M) M$.

Let R be a ring. The subset S of R is called a multiplicatively-closed subset if $a, b \in S$ implies $a b \in S$, where $a, b \in R$. Let P be a prime ideal of R, i.e., a proper ideal with the property that $a b \in P$ implies $a \in P$ or $b \in P$, where $a, b \in R$. A proper submodule P of M is called a prime submodule if $r \in R$ and $x \in M$ together with $r x \in P$ implies

[^0]$r \in(P: M)$ or $x \in P$. It is easy to show that if P is a prime submodule of M, then $(P: M)$ is a prime ideal of R.

In [6], Badawi has introduced the concept of 2-absorbing ideal, and has generalized this concept to n-absorbing ideal, i.e. a proper ideal P of R with the property that $a_{1} \ldots a_{n+1} \in P$ implies $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n+1}$ $\in P$, for some $i \in\{1, \ldots, n+1\}$, where $a_{1}, \ldots, a_{n+1} \in R$. In [2], Anderson and Badawi have studied n-absorbing ideals for $n \geq 2$.

In [9] and [11], an $(n-1)$-absorbing ideal P of R has been denoted by $(n-1, n)$-prime ideal. Thus a (1,2)-prime ideal is just a prime ideal. In [4], this concept has been studied with respect to non-unique factorization for principal ideals in an integral domain.

Also in [10], Ebrahimpour and Nekooei have established the concept of $(n-1, n)$-prime submodule, i.e., a proper submodule P of M with the property that $a_{1} \ldots a_{n-1} x \in P$ implies $a_{1} \ldots a_{n-1} \in(P: M)$ or $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$ for some $i \in\{1, \ldots, n-1\}$, where $a_{1}, \ldots, a_{n-1} \in$ R and $x \in M$. Note that a $(1,2)$-prime submodule is just a prime submodule.

In [5], Anderson and Smith have defined a weakly prime ideal, i.e. a proper ideal P of R with the property that $0 \neq a b \in P$ implies $a \in P$ or $b \in P$, where $a, b \in R$. The notion of a weakly prime element (i.e. an element $p \in R$ such that (p) is a weakly prime ideal) has been introduced by Galovich [14], while the subject of unique factorization rings with zero divisors has been studied. In [19], Nekooei has extended this concept to weakly prime submodule, i.e. a proper submodule P of M with the property that $0 \neq r x \in P$ implies $x \in P$ or $r \in(P: M)$, where $r \in R$ and $x \in M$.

In [9], Ebrahimpour and Nekooei have defined a proper ideal P of R to be $(n-1, n)$-weakly prime if $a_{1}, \ldots, a_{n} \in R$ together with $0 \neq$ $a_{1} \ldots a_{n} \in P$ imply $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} \in P$, for some $i \in\{1, \ldots, n\}$. In [10], it has been established that a proper submodule P of M is $(n-1, n)$-weakly prime if $0 \neq a_{1} \ldots a_{n-1} x \in P$ implies $a_{1} \ldots a_{n-1} \in(P$: $M)$ or $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$, for some $i \in\{1, \ldots, n-1\}$, where $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$. Thus a (1,2)-weakly prime submodule is just a weakly prime submodule.

In studying unique factorization domains, Bhatwadekar and Sharma [8] have defined the notion of almost prime ideals, i.e. a proper ideal P of R with the property that $a b \in P \backslash P^{2}$ implies $a \in P$ or $b \in P$, where $a, b \in R$. Thus a weakly prime ideal is almost prime, and any proper idempotent ideal is also almost prime.

In [3], Anderson and Bataineh have extended the concept of prime ideals to Φ-prime ideals, as follows: Let R be a commutative ring, and $S(R)$ be the set of ideals of R. Let $\Phi: S(R) \rightarrow S(R) \cup\{\emptyset\}$ be a function.

A proper ideal P of R is called Φ-prime if $a b \in P \backslash \Phi(P)$ implies $a \in P$ or $b \in P$, where $a, b \in R$. They defined $\Phi_{m}: S(R) \rightarrow S(R) \cup\{\emptyset\}$ with $\Phi_{m}(J)=J^{m}$ for all $J \in S(R) ;(m \geq 2)$.

In [9], Ebrahimpour and Nekooei have introduced the concept of $(n-1, n)-\Phi_{m}$-prime ideal, i.e., a proper ideal P of R with the property that $a_{1} \ldots a_{n} \in P \backslash P^{m}$ implies $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} \in P$ for some $i \in$ $\{1, \ldots, n\}$, where $a_{1}, \ldots, a_{n} \in R ;(m, n \geq 2)$.

In [20], Zamani has extended the concept of ϕ-prime ideal to ϕ prime submodule. Let $S(M)$ be the set of all submodules of M and $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function. A proper submodule P of M is called ϕ-prime submodule if $r x \in P \backslash \phi(P)$ implies $r \in(P: M)$ or $x \in$ P, where $r \in R$ and $x \in M$. Zamani defined $\Phi_{m}: S(M) \rightarrow S(M) \cup\{\emptyset\}$ together with $\Phi_{m}(N)=(N: M)^{m-1} N$ for all $N \in S(M) ;(m \geq 2)$.

In [10], Ebrahimpour and Nekooei have introduced the concept of $(n-1, n)-\phi_{m}$-prime submodule, i.e. a proper submodule P of M with the property that $a_{1} \ldots a_{n-1} x \in P \backslash(P: M)^{m-1} P$ implies

$$
a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P
$$

for some $i \in\{1, \ldots, n-1\}$ or $a_{1} \ldots a_{n-1} \in(P: M)$, where $a_{1}, \ldots, a_{n-1} \in$ R and $x \in M$. Thus a $(1,2)-\Phi_{2}$-prime submodule is just almost prime. The (1,2)- Φ_{m}-prime submodules is called " Φ_{m}-prime"

In [12], Ebrahimpour has established the concept of $(n-1, n)$-weakly multiplicatively-closed subset of R, denoted by $(n-1, n)-\mathrm{W}$. M. closed, i.e. a subset S of R with the property that $a_{1}, \ldots, a_{n} \in R$, and

$$
a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} \in S
$$

imply $a_{1} \ldots a_{n} \in S \cup\{0\}$ for all $i \in\{1, \ldots, n\}$. Moreover, it has been said that S is an $(n-1, n)-\Phi_{m}$-multiplicatively-closed subset of R, denoted by $(n-1, n)-\phi_{m}$-M. closed if $a_{1}, \ldots, a_{n} \in R$, and

$$
a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} \in S
$$

imply $a_{1} \ldots a_{n} \in S \cup(R \backslash S)^{m}$ for all $i \in\{1, \ldots, n\} ;(n, m \geq 2)$.
Let R be a ring, M be an R-module, and S, S^{*} be non-empty subsets of R and M, respectively. In this paper, we introduce the concepts of $(n-1, n)$-multiplicatively S-closed, $(n-1, n)$-weakly multiplicatively S-closed and $(n-1, n)-\phi_{m^{-}}$multiplicatively S-closed subsets S^{*} of M, and prove some basic properties of these subsets. Also we prove the generalized version of some well-known theorems about multiplicativelyclosed subsets of R.

2. $(n-1, n)$-MULTIPLICATIVELY S-CLOSED SUBSETS

We say that a non-empty subset S of R is $(n-1, n)$-multiplicativelyclosed, denoted ($n-1, n$)-M. closed, if $a_{1}, \ldots, a_{n} \in R$, and

$$
a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} \in S
$$

for all $i \in\{1, \ldots, n\}$ implies $a_{1} \ldots a_{n} \in S,(n \geq 2)$. Also we say that an ($n-1, n$)-multiplicatively-closed subset S of R is saturated if $a_{1}, \ldots, a_{n} \in$ R together with $a_{1} \ldots a_{n} \in S$ imply $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} \in S$ for all $i \in$ $\{1, \ldots n\}$. The (1,2)-M. closed and saturated (1,2)-M. closed subsets of R are denoted by M. closed and saturated M. closed, respectively.

Let R be a ring, M be an R-module, and S, S^{*} be non-empty subsets of R and M, respectively. We say that S^{*} is $(n-1, n)$-multiplicatively S-closed, denoted by $(n-1, n)$-M. S-closed if $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in S^{*}$ for all $i \in\{1, \ldots, n-1\}$, imply $a_{1} \ldots a_{n-1} x \in S^{*}$ and $a_{1} \ldots a_{n-1} \in S$. Furthermore, we say that S^{*} is a saturated $(n-1, n)$-M. S-closed subset of M if $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_{1} \ldots a_{n-1} x \in S^{*}$ imply $a_{1} \ldots a_{n-1} \in S$ and $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in S^{*}$ for all $i \in\{1, \ldots n-1\}(n \geq 2)$. The (1, 2)-M. S-closed and saturated (1,2)-M. S-closed subsets of M are denoted by M. S-closed and saturated M. S-closed, respectively.

Proposition 2.1. Let R be a ring, M be an R-module, and P be a proper submodule of M. Then P is an $(n-1, n)$-prime submodule of M if and only if $M \backslash P$ is an $(n-1, n)$ - M. S-closed subset of M, where $S=R \backslash(P: M) ;(n \geq 2)$.

Proof. (\Rightarrow) Let $S^{*}=M \backslash P$, and P be an $(n-1, n)$-prime submodule of M. Let $a_{1}, \ldots, a_{n-1} \in R$, and $x \in M$ with $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in$ S^{*}, for all $i \in\{1, \ldots, n-1\}$, and $a_{1} \ldots a_{n-1} \in S$. Let $a_{1} \ldots a_{n-1} x \notin S^{*}$. Thus $a_{1} \ldots a_{n-1} x \in P$. Since P is $(n-1, n)$-prime, we have

$$
a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P
$$

for some $i \in\{1, \ldots, n-1\}$ or $a_{1} \ldots a_{n-1} \in(P: M)$, which are contradictions. Thus $a_{1} \ldots a_{n-1} x \in S^{*}$. Therefore, $M \backslash P$ is an $(n-1, n)$-M. S-closed subset of M.
(\Leftarrow) Let $M \backslash P$ be an $(n-1, n)$-M. S-closed subset of $M, a_{1}, \ldots, a_{n-1} \in$ R, and $x \in M$ with $a_{1} \ldots a_{n-1} x \in P$. If $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \notin P$, for all $i \in\{1, \ldots, n-1\}$, and $a_{1} \ldots a_{n-1} \notin(P: M)$, then $a_{1} \ldots a_{n-1} x \in$ $(M \backslash P)$ because S^{*} is $(n-1, n)$-multiplicatively S-closed, which is a contradiction. Thus there exists $i \in\{1, \ldots, n-1\}$ such that

$$
a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P
$$

or $a_{1} \ldots a_{n-1} \in(P: M)$. Therefore, P is an $(n-1, n)$-prime submodule of M.

Let R be a ring, and S be a multiplicatively-closed subset of R. It is well-known that if an ideal I is maximal with respect to $I \cap S=\emptyset$, then I is a prime ideal of R [16, Theorem 2.2]. In Example 2.2, we show that a similar result does not hold for $(n-1, n)$-M. S-closed subsets of an R-module M, where S is a non-empty subset of R.
Example 2.2. Let $R=\frac{\mathbb{Z}}{16 \mathbb{Z}}, M=R$, and $N=\frac{8 \mathbb{Z}}{16 \mathbb{Z}}$ and $S^{*}=S=$ $\{\overline{1}, \overline{3}, \overline{9}, \overline{11}\}$. Then S^{*} is an M. S-closed subset of M, and N is maximal with respect to $N \cap S^{*}=\emptyset$. But N is not prime because $\overline{2} . \overline{4} \in N$ but $\overline{2} \notin(N: M)$ and $\overline{4} \notin N$.

Theorem 2.3. Let R be an Artinian ring, M be a multiplicative R module, and S^{*} be a saturated M. S-closed subset of M, where S is a non-empty subset of R. Let N be a submodule of M that is maximal with respect to $N \cap S^{*}=\emptyset$. Then N is a prime submodule of M.
Proof. We show that $(N: M) \cap S=\emptyset$. If $(N: M) \cap S \neq \emptyset$, then there exists an $s \in(N: M) \cap S$. Thus for every $x \in S^{*}$, we have $s x \in S^{*} \cap N$ which is a contradiction. Therefore, $(N: M) \cap S=\emptyset$.

Now, we show that N is maximal with $(N: M) \cap S=\emptyset$. If not, then there exists an ideal I of R such that $(N: M) \subset I$ and $I \cap S=\emptyset$. Notice that M is cyclic, by [13, Page 764]. Let $M=R m$. If $I M=$ $(N: M) M=N$, then for every $a \in I$, there exists a $b \in(N: M)$ such that $a m=b m$. Thus $(a-b) M=\{0\} \subseteq N$. Thus $(a-b) \in(N: M)$, and hence $a \in(N: M)$. Thus $I=(N: M)$, which is a contradiction. Thus $N=(N: M) N \subset I M$. Thus $S^{*} \cap I M \neq \emptyset$. Thus there exists an $r \in I$ such that $r m \in S^{*}$. Since S^{*} is saturated we have $r \in S$. Thus $r \in I \cap S$, which is a contradiction. Therefore, $(N: M)$ is maximal with $(N: M) \cap S=\emptyset$.

We show that $(N: M)_{S}$ is a maximal ideal of R_{S}. Let Q_{S} be a maximal ideal of R_{S} over $(N: M)_{S}$. Thus Q is a prime ideal of R with $Q \cap S=\emptyset$. Let $r \in(N: M)$. Thus $\frac{r}{1} \in Q_{S}$. Thus there exists an $s \in S$ such that $s r \in Q$. Since $Q \cap S=\emptyset$, we have $r \in Q$. Thus $(N: M) \subseteq Q$, and so $(N: M)=Q$, because, $Q \cap S=\emptyset$. Therefore, $(N: M)_{S}$ is a maximal ideal of R_{S}.

Since M is finitely generated and $(N: M) \cap S=\emptyset$, we have $N_{S} \neq M_{S}$. Also $(N: M)_{S} \subseteq\left(N_{S}: M_{S}\right) \neq R$. Thus $(N: M)_{S}=\left(N_{S}: M_{S}\right)$. Thus N_{S} is a prime submodule of M_{S}, by [18, Proposition 1$]$, and so N is a prime submodule of M, by [17, Proposition 2].
Theorem 2.4. Let R be a ring, M be an R-module, S be a non-empty subset of R, and S^{*} be an $(n, n+1)-M$. S-closed subset of M. If for
every $x_{1}, \ldots, x_{n} \in S^{*}$ there exists $r_{i} \in\left(R x_{i}: M\right)$, for $i=1, \ldots n$, such that $r_{1} \ldots r_{n} \in S$ and $r_{1} \ldots r_{j-1} r_{j+1} \ldots r_{n} S^{*} \subseteq S^{*}$, for all $j \in\{1, \ldots, n\}$, and N is a submodule of M with the property that $N \cap S^{*}=\emptyset$. Then there exists an $(n-1, n)$-prime submodule P of M such that $N \subseteq P$ and $P \cap S^{*}=\emptyset,(n \geq 2)$.

Proof. Put $\mu=\left\{T \leq M \mid N \subseteq T, T \cap S^{*}=\emptyset\right\}$. By Zorn's lemma, μ has a maximal element P. We show that P is an $(n-1, n)$-prime submodule of M. Let $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_{1} \ldots a_{n-1} x \in P$. Assume that $a_{1} \ldots a_{n-1} \notin(P: M)$ and $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \notin P$ for all $i \in\{1, \ldots, n-1\}$. Then $\left(P+\left(a_{1} \ldots a_{n-1}\right) M\right) \cap S^{*} \neq \emptyset$ and $(P+$ $\left.\left(a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x\right)\right) \cap S^{*} \neq \emptyset$, for all $i \in\{1, \ldots, n-1\}$. Hence, there exists $x_{1}, \ldots, x_{n} \in S^{*}$ such that $x_{i} \in P+\left(a_{1} . . a_{i-1} a_{i+1} \ldots a_{n-1} x\right)$ for all $i \in$ $\{1, \ldots, n-1\}$ and $x_{n} \in P+\left(a_{1} \ldots a_{n-1} M\right)$. By assumption, there exists an $r_{i} \in\left(R x_{i}: M\right)$ such that $r_{1} \ldots r_{n} \in S$ and $r_{1} \ldots r_{i-1} r_{i+1} \ldots r_{n} S^{*} \subseteq S^{*}$ for all $i \in\{1, \ldots, n\}$. But $r_{1} \ldots r_{n-1}\left(a_{1} \ldots a_{n-1}\right) M \subseteq P+\left(a_{1} \ldots a_{n-1} x\right) \subseteq P$. Therefore, $r_{1} \ldots r_{n} M \subseteq\left(r_{1} \ldots r_{n-1} x_{n}\right) \subseteq P+\left(r_{1} \ldots r_{n-1}\right)\left(a_{1} \ldots a_{n-1}\right) M \subseteq P$. Since S^{*} is $(n, n+1)$-M. S-closed, we have $r_{1} \ldots r_{n} S^{*} \subseteq P \cap S^{*}$, which is a contradiction. Thus P is an $(n-1, n)$-prime submodule of M.

3. $(n-1, n)$-WEAKLY MULTIPLICATIVELY S-CLOSED SUBSETS

Let R be a ring. A non-empty subset S of R is weakly multiplicativelyclosed, denoted by W. M. closed, if $a, b \in S$ implies $a b \in S \cup\{0\}$.

We say that an $(n-1, n)$-weakly multiplicatively-closed subset S of R is saturated if $a_{1}, \ldots, a_{n} \in R$ together with $a_{1} \ldots a_{n} \in S \cup\{0\}$ imply

$$
a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} \in S \cup\{0\},
$$

for all $i \in\{1, \ldots n\},(n \geq 2)$.
Remark that the (1,2)-W. M. closed and saturated (1,2)-W. M. closed subsets of R are W. M. closed and saturated W. M. closed, respectively.

Now, we generalize these concepts to modules.
Let R be a ring, M be an R-module, and S, S^{*} be non-empty subsets of R and M, respectively. We say that S^{*} is $(n-1, n)$ weakly multiplicatively S-closed, denoted by $(n-1, n)$-W. M. S-closed if $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in S^{*}$ for all $i \in\{1, \ldots, n-1\}$ and $a_{1} \ldots a_{n-1} \in S$ imply $a_{1} \ldots a_{n-1} x \in S^{*} \cup\{0\}$. Furthermore, we say that S^{*} is a saturated $(n-1, n)$-W. M. S-closed subset of M if $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_{1} \ldots a_{n-1} x \in$ $S^{*} \cup\{0\}$ imply $a_{1} \ldots a_{n-1} \in S \cup\{0\}$ and $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in S^{*} \cup\{0\}$, for all $i \in\{1, \ldots n-1\},(n \geq 2)$.

The (1,2)-W. M. S-closed and saturated (1,2)-W. M. S-closed subsets of M are denoted by W. M. S-closed and saturated W. M. S-closed, respectively.

It is clear that every $(n-1, n)$-M. S-closed subset of M is $(n-1, n)$ W. M. S-closed. But the converse is not true, in general. For example, let $M=R=\mathbf{Z}_{6}$ and $S=S^{*}=\{\overline{3}, \overline{4}\}$. Since $0=\overline{3} . \overline{4} \notin S^{*}, S^{*}$ is not M. S-closed but it is clear that S^{*} is W. M. S-closed.

Proposition 3.1. Let R be a ring, M an R-module and S be a W. M. closed subset of R. If S^{*} is a saturated W. M. S-closed subset of M, then S is a saturated W. M. closed subset of R.
Proof. Let $a, b \in R$ and $a b \in S \cup\{0\}$. Since $S^{*} \neq \emptyset$, there exists $x \in S^{*}$. Thus $a b x \in S^{*} \cup\{0\}$. Since S^{*} is saturated, we have $a \in S \cup\{0\}$ and $b x \in S^{*} \cup\{0\}$. Thus $a \in S \cup\{0\}$ and $b \in S \cup\{0\}$. Therefore, S is saturated.

It is clear that every $(n-1, n)$-W. M. closed subset S of R is an ($n-1, n$)-W. M. S-closed subset of R as an R-module. But every $(n-1, n)$-W. M. S-closed subset of R as R-module is not an $(n-1, n)$ W. M. closed subset of R as a ring in general.

Example 3.2. Let $R=M=\mathbf{Z}_{6}$ and $S=\{\overline{3}\}$ and $S^{*}=\{\overline{0}, \overline{2}\}$. It is clear that S^{*} is a W. M. S-closed subset of M. But S^{*} is not a W. M. closed subset of R. Because $\overline{2} . \overline{2}=\overline{4} \notin S^{*} \cup\{0\}$.
Theorem 3.3. Let R be a ring, and S, S^{*} be non-empty subsets of R. Then S^{*} is a saturated W. M. S-closed subset of R as R-module if and only if $S^{*} \cup\{0\}=S \cup\{0\}$, and S^{*} be a saturated W. M. closed subset of R.
Proof. (\Rightarrow) Let S^{*} be a saturated W. M. S-closed subset of R as R-module. Then S is a saturated W. M. closed, by Proposition 2.1. Moreover, for every $x \in S^{*} \backslash\{0\}$ and $a \in S \backslash\{0\}$, $x a=a x \in S^{*} \cup\{0\}$. Since S^{*} is saturated, then $x \in S$ and $a \in S^{*}$. Thus $S^{*} \cup\{0\}=S \cup\{0\}$. (\Leftarrow) This is clear.
Lemma 3.4. Let R be a ring and $\left\{q_{i}\right\}_{i \in I}$, $(n-1 . n)$-weakly prime ideals of R. Then $S=R \backslash \bigcup_{i \in I} q_{i}$ is a $(n-1, n)-W$. M. closed subset of R.
Proof. Let $a_{1}, \ldots, a_{n} \in R$ with $a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n} \in S$ for all $j \in\{1, \ldots, n\}$. Then $a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n} \notin q_{i}$ for every $i \in I$. If $a_{1} \ldots a_{n} \notin S \cup\{0\}$, then $0 \neq a_{1} \ldots a_{n} \notin S$. Thus there exists $i \in I$ such that $0 \neq a_{1} \ldots a_{n} \in q_{i}$. Since q_{i} is $(n-1, n)$-weakly prime, we have $a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n} \in q_{i}$ for some $j \in\{1, \ldots, n\}$. Therefore, $a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n} \notin S$, which is a contradiction. Thus $a_{1} \ldots a_{n} \in S \cup\{0\}$ and S is an $(n-1, n)$ - W. M. closed subset of R.

Lemma 3.5. Let R be a ring, M be an R-module, and $\left\{P_{j}\right\}_{j \in J}$ be $(n-1, n)$-weakly prime submodules of M such that $\left(P_{j}: M\right)=q_{j}$ for all $j \in J$. Then $S^{*}=M \backslash \bigcup_{j \in J} P_{j}$ is an $(n-1, n)$-W. M. S-closed subset of M, where $S=R \backslash \bigcup_{j \in J} q_{j},(n \geq 2)$.

Proof. Let $S^{*}=M \backslash \cup_{j \in J} P_{j}, P_{j}$ be an $(n-1, n)$-weakly prime submodule of M for all $j \in J, a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in S^{*}$ for all $i \in\{1, \ldots, n-1\}$ and $a_{1} \ldots a_{n-1} \in S$. Let $a_{1} \ldots a_{n-1} x \notin S^{*} \cup\{0\}$. Thus $0 \neq a_{1} \ldots a_{n-1} x \in P_{j}$ for some $j \in J$. Since P_{j} is $(n-1, n)$-weakly prime, we have $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in$ P_{j} for some $i \in\{1, \ldots, n-1\}$ or $a_{1} \ldots a_{n-1} \in q_{j}$, which are contradictions. Thus $a_{1} \ldots a_{n-1} x \in S^{*} \cup\{0\}$. Therefore, $M \backslash \cup_{j \in_{J}} P_{j}$ is an ($n-1, n$)-W. M. S-closed subset of M.

Lemma 3.6. Let R be a ring, M be an R-module, and P be a proper submodule of M.Then, P is an $(n-1, n)$-weakly prime submodule of M if and only if $M \backslash P$ is an $(n-1, n)-W$. M. S-closed subset of M, where $S=R \backslash(P: M) ;(n \geq 2)$.

Proof. (\Rightarrow) Let P be an $(n-1, n)$-weakly prime submodule of M. We have $M \backslash P$ is an $(n-1, n)$-W. M. S-closed subset of M, by Lemma 3.5.
(\Leftarrow) Let $M \backslash P$ be an $(n-1, n)$-W. M. S-closed subset of M and $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_{1} \ldots a_{n-1} x \in P \backslash\{0\}$. If

$$
a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \notin P
$$

for all $i \in\{1, \ldots, n-1\}$ and $a_{1} \ldots a_{n-1} \notin(P: M)$, then $a_{1} \ldots a_{n-1} x \in$ $(M \backslash P) \cup\{0\}$ because S^{*} is $(n-1, n)$-weakly multiplicatively S-closed, which is a contradiction. So there exists $i \in\{1, \ldots, n-1\}$ such that $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$ or $a_{1} \ldots a_{n-1} \in(P: M)$. Therefore, P is an ($n-1, n$)-weakly prime submodule of M.

Let R be a ring, M be an R-module, and $Z(M)=\{r \in R \mid \exists 0 \neq$ $m \in M ; r m=0\}$. Let $S=R \backslash Z(M)$, and S^{*} be the set of torsion-free elements of M. If $S^{*} \neq \emptyset$, then S^{*} is a W. M. S-closed subset of M. Now, we show that S^{*} is not saturated.

Example 3.7. Let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and $\left\{p_{n} \mid n \in \mathbb{N}\right\}$ be the set of all prime numbers. Let $E\left(p_{n}\right)=\left\{a \in \frac{\mathbb{Q}}{\mathbb{Z}} \left\lvert\, a=\frac{r}{p_{n}^{t}}+\mathbb{Z}\right. ; r \in \mathbb{Z}, t \in \mathbb{N}_{0}\right\}$. Then $E\left(p_{n}\right)$ is a non-zero submodule of $\frac{\mathbb{Q}}{\mathbb{Z}}$ as \mathbb{Z}-module for all $n \in \mathbb{N}$.

Set $M=\prod_{n \in \mathbb{N}} E\left(p_{n}\right)$. It is clear that M is a \mathbb{Z}-module. Let $\alpha=\left(\alpha_{n}\right)_{n \in \mathbb{Z}} \in M$ be such that $\alpha_{n}=\frac{r_{n}}{p_{n}^{t_{n}}}+\mathbb{Z} \neq 0$, for infinite n.

We claim that α is a torsion-free element of M, because if there exists $m \in \mathbb{Z}$ with $m \alpha=0$, then $m\left(\frac{r_{n}}{p_{n}^{t_{n}}}+\mathbb{Z}\right)=\mathbb{Z}$ and so $p_{n}^{t_{n}} \mid m r_{n}$. Since
the greatest common divisor of p_{n} and r_{n} is 1 , we have $p_{n} \mid m$ for all $n \in \mathbb{Z}$. Thus $m=0$. Therefore, α and so $p_{k} \alpha$ are torsion-free for all $k \in \mathbb{Z}$. Thus $p_{k} \alpha \in S^{*} \cup\{0\}$. If $\beta=\left(\beta_{n}\right)_{n \in \mathbb{Z}}$, and $\beta_{n}=0$, for $n \neq k$ and $\beta_{k}=\frac{1}{p^{k}}+\mathbb{Z}$, then $p_{k} \beta=0$. Therefore, $p_{k} \notin S \cup\{0\}$.

Theorem 3.8. Let R be a ring, M be a torsion-free R-module, and P be a weakly prime submodule of M. Let $S^{*}=M \backslash P$ and $S=R \backslash(P$: $M)$. Also let N be a submodule of M together with $N \cap S^{*}=\emptyset$. Then
(i) $(N: M) \cap S=\emptyset$.
(ii) If N is maximal with respect to $N \cap S^{*}=\emptyset$, then $N=\{m \in$ $M \mid s m \in N ; \exists s \in S\}$.

Proof. (i) Let $(N: M) \cap S \neq \emptyset$. Thus there exists $s \in(N: M) \cap S$. Let $x \in S^{*}$. We have $s x \in S^{*} \cap N$ or $s x=0$, which are contradictions, Because $\operatorname{ann}(x)=0$ and $0 \notin S, S^{*}$.
(ii) Set $T=\{m \in M \mid s m \in N ; \exists s \in S\}$, and assume that $N \subset T$. Thus $T \cap S^{*} \neq \emptyset$, and so there exists $x \in S^{*}$ such that $s x \in N$ for some $s \in S$. Since S^{*} is W. M. S-closed, we have $s x \in S^{*} \cup\{0\}$. Thus $s x \in N \cap S^{*}$ or $s x=0$, which are contradictions, because ann $(x)=0$ and $0 \notin S, S^{*}$.

Unlike the case of rings, we show that for a W. M. S-closed subset S^{*} of an R-module M and a submodule N of M that is maximal with respect to $N \cap S^{*}=\emptyset$, it is not necessary that N be weakly prime in general, where S is a non-empty subset of R.

Example 3.9. Let $R=\frac{\mathbb{Z}}{16 \mathbb{Z}}, M=R, N=\frac{8 \mathbb{Z}}{16 \mathbb{Z}}$, and $S^{*}=S=\{\overline{1}, \overline{4}\}$. Then S^{*} is a W. M. S-closed subset of M, and N is maximal with respect to $N \cap S^{*}=\emptyset$. But N is not weakly prime, because $0 \neq \overline{2} . \overline{4} \in N$ but $\overline{2}, \overline{4} \notin N$.

4. $(n-1, n)-\phi_{m^{-}}$MULTIPLICATIVELY S-CLOSED SUBSETS

We say that an $(n-1, n)-\phi_{m}$-multiplicatively-closed subset S of R is saturated if $a_{1}, \ldots, a_{n} \in R$ together with $a_{1} \ldots a_{n} \in S \cup(R \backslash S)^{m}$ implying $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} \in S \cup(R \backslash S)^{m}$ for all $i \in\{1, \ldots n\}$. For $n=2,(1,2)-\phi_{m}$-multiplicatively-closed and saturated $(1,2)-\phi_{m^{-}}$ multiplicatively-closed subsets of R are denoted by ϕ_{m}-multiplicativelyclosed and saturated ϕ_{m}-multiplicatively-closed, respectively; $(n, m \geq$ $2)$.

Let R be a ring, M be an R-module, and S, S^{*} be non-empty subsets of R and M, respectively. We say that S^{*} is $(n-1, n)-\phi_{m^{-}}$ multiplicatively S-closed, denoted by $(n-1, n)-\phi_{m}$-M. S-closed, if $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in S^{*}$, for all $i \in\{1, \ldots, n-1\}$ and $a_{1} \ldots a_{n-1} \in S$ imply $a_{1} \ldots a_{n-1} x \in S^{*} \cup$ $(R \backslash S)^{m-1}\left(M \backslash S^{*}\right)$. Furthermore, we say that S^{*} is a saturated $(n-1, n)-\phi_{m}$-M. S-closed subset of M if $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_{1} \ldots a_{n-1} x \in S^{*} \cup(R \backslash S)^{m-1}\left(M \backslash S^{*}\right)$ imply $a_{1} \ldots a_{n-1} \in$ $S \cup(R \backslash S)^{m}$ and $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in S^{*} \cup(R \backslash S)^{m-1}\left(M \backslash S^{*}\right)$, for all $i \in\{1, \ldots n-1\},(n, m \geq 2)$. For $n=2,(1,2)-\phi_{m}-\mathrm{M}$. S-closed and saturated $(1,2)-\phi_{m}-\mathrm{M}$. S-closed subsets of M are denoted by ϕ_{m}-M. S-closed and saturated ϕ_{m}-M. S-closed, respectively.

It is clear that every $(n-1, n)$-W. M. S-closed subset of M is $(n-$ $1 . n)-\phi_{m}$-M. S-closed. But the converse is not true, in general.

Example 4.1. Let $M=R=\mathbb{Z}_{6}$ and $S=S^{*}=\{\overline{0}, \overline{2}\}$. Since $\overline{2} . \overline{2} \notin$ $S^{*} \cup\{0\}, S^{*}$ is not a W. M. S-closed subset of M. But $S S^{*} \subseteq S^{*} \cup$ $(R \backslash S)^{m-1}\left(M \backslash S^{*}\right)$. So S^{*} is ϕ_{m}-M. S-closed subset of $M,(m \geq 2)$.

Proposition 4.2. Let R be a ring, M an R-module and S, S^{*} nonempty subsets of R and M, respectively. If S^{*} be an $(n-1, n)-W$. M. S-closed subset of M, then it is $(n-1, n)-\phi_{m}-M$. S-closed, $(n, m \geq 2)$.

Proof. Let $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_{1 \ldots} \ldots a_{n-1} \in S$ and

$$
a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in S^{*}
$$

for all $i \in\{1, \ldots, n-1\}$. Since S^{*} is $(n-1, n)$-W. M. S-closed, we have $a_{1} \ldots a_{n-1} x \in S^{*} \cup\{0\}$.

If $a_{1} \ldots a_{n-1} x \in S^{*}$, then we are done. Now assume that $a_{1} \ldots a_{n-1} x=$ 0 . If $0 \in S^{*}$, then we are done. Thus we assume that $0 \notin S^{*}$. Thus $0 \in M \backslash S^{*}$. So $a_{1} \ldots a_{n-1} x \in(R \backslash S)^{m-1}\left(M \backslash S^{*}\right)$. Therefore, S^{*} is $(n-1, n)-\phi_{m}$-M. S-closed.

Lemma 4.3. Let R be a ring and $\left\{q_{i}\right\}_{i \in I},(n-1 . n)-\phi_{m}$-prime ideals of R. Then $S=R \backslash \bigcup_{i \in I} q_{i}$ is $a(n-1, n)-\phi_{m}-M$. closed subset of R.

Proof. Let $a_{1}, \ldots, a_{n} \in R$ together with $a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n} \in S$, for all $j \in\{1, \ldots, n\}$. If $a_{1} \ldots a_{n} \notin S \cup(R \backslash S)^{m}$, then $a_{1} \ldots a_{n} \in\left(\cup q_{i}\right) \backslash\left(\cup q_{i}\right)^{m}$. Thus there exists $i \in I$ such that $a_{1} \ldots a_{n} \in q_{i} \backslash q_{i}^{m}$. Since q_{i} is $(n-$ $1, n)-\phi_{m^{-}}$prime, we have $a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n} \in q_{i}$, for some $j \in\{1, \ldots, n\}$. Therefore, $a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n} \notin S$, a contradiction. Thus $a_{1} \ldots a_{n} \in S \cup$ $(R \backslash S)^{m}$ and S is an $(n-1, n)-\phi_{m}$-M. closed subset of R.

Proposition 4.4. Let R be a ring, M a multiplicative R-module and P a ϕ_{m}-prime submodule of M. If $S^{*}=M \backslash P$ is a saturated $\phi_{m}-M$.
S-closed subset of M, then S is a saturated $\phi_{m}-M$. closed subset of R, where $S=R \backslash(P: M)$.

Proof. We have $P=(P: M) M$, and $(P: M)$ is a ϕ_{m}-prime ideal of R, by [10, Lemma 4.3.(i)]. Thus S is a ϕ_{m}-M. closed subset of R, by Lemma 4.3. Let $a, b \in R$ and $a b \in S \cup(R \backslash S)^{m}$. Since $S^{*} \neq \emptyset$, there exists $x \in S^{*}$.

We show that $a b x \in S^{*} \cup(R \backslash S)^{m-1}\left(M \backslash S^{*}\right)$. Let $a b \in S$. Since S^{*} is ϕ_{m}-M. S-closed, we have $a b x \in S^{*} \cup(R \backslash S)^{m-1}\left(M \backslash S^{*}\right)$. Now, let $a b \in(R \backslash S)^{m}=(P: M)^{m}$. Thus $a b x \in(P: M)^{m-1}((P: M) M)=$ $(P: M)^{m-1} P$. Thus $a b x \in(R \backslash S)^{m-1}\left(M \backslash S^{*}\right)$.

Since S^{*} is saturated, we have $a \in S \cup(R \backslash S)^{m}$ and $b x \in S^{*} \cup(R \backslash$ $S)^{m-1}\left(M \backslash S^{*}\right)$. Thus $a \in S \cup(R \backslash S)^{m}$ and $b \in S \cup(R \backslash S)^{m}$. Therefore, S is saturated.

Lemma 4.5. Let R be a ring, M an R-module and $\left\{P_{j}\right\}_{j \in J}$, $(n-$ $1, n)-\phi_{m}$-prime submodules of M such that $\left(P_{j}: M\right)=q_{j}$ for all $j \in J$. Then $S^{*}=M \backslash \bigcup_{j \in J} P_{j}$ is an $(n-1, n)-\phi_{m}-M$. S-closed subset of M, where $S=R \backslash \bigcup_{j \in J} q_{j}$, $(n, m \geq 2)$.
Proof. Let $S^{*}=M \backslash \cup_{j \in J} P_{j}$ and P_{j} be an $(n-1, n)-\phi_{m}$-prime submodule of M for all $j \in J$ and $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in S^{*}$ for all $i \in\{1, \ldots, n-1\}$ and $a_{1} \ldots a_{n-1} \in S$. Let $a_{1} \ldots a_{n-1} x \notin S^{*} \cup(R \backslash S)^{m-1}\left(M \backslash S^{*}\right)$. Thus $a_{1} \ldots a_{n-1} x \in P_{j} \backslash q_{j}^{m-1} P_{j}$ for some $j \in J$. Since P_{j} is $(n-1, n)-\phi_{m^{-}}$ prime we have $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P_{j}$ for some $i \in\{1, \ldots, n-1\}$ or $a_{1} \ldots a_{n-1} \in q_{j}$, which are contradictions. Thus $a_{1} \ldots a_{n-1} x \in S^{*} \cup$ $(R \backslash S)^{m-1}(M \backslash P)$. Therefore, $M \backslash \cup_{j \in_{J}} P_{j}$ is an $(n-1, n)-\phi_{m}$ - M . S-closed subset of M.

Proposition 4.6. Let R be a ring, M an R-module and P a proper submodule of M. Then P is an $(n-1, n)-\phi_{m^{-}}$prime submodule of M if and only if $M \backslash P$ is an $(n-1, n)-\phi_{m}-M$. S-closed subset of M, where $S=R \backslash(P: M) ;(n, m \geq 2)$.

Proof. (\Rightarrow) Let $S^{*}=M \backslash P$ and P be an $(n-1, n)-\phi_{m}$-prime submodule of M. Then $M \backslash P$ is an $(n-1, n)-\phi_{m}$-M. S-closed subset of M, by Lemma 3.5.
(\Leftarrow) Let $M \backslash P$ be an $(n-1, n)-\phi_{m}-\mathrm{M} . S$-closed subset of M and $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_{1} \ldots a_{n-1} x \in P \backslash(P$: $M)^{m-1} P$. If $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \notin P$, for all $i \in\{1, \ldots, n-1\}$ and $a_{1} \ldots a_{n-1} \notin(P: M)$, then $a_{1} \ldots a_{n-1} x \in(M \backslash P) \cup(P: M)^{m-1} P$ because S^{*} is $(n-1, n)-\phi_{m}$-M. S-closed, which is a contradiction. Thus there exists an $i \in\{1, \ldots, n-1\}$ such that $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$
or $a_{1} \ldots a_{n-1} \in(P: M)$. Therefore, P is an $(n-1, n)-\phi_{m}$-prime submodule of M.

Let R be a ring, M an R-module and S, S^{*} non-empty subsets of R and M, respectively. In Example 3.7, we show that if S^{*} is a ϕ_{m}-M. S-closed subset of M and N is a submodule of M that is maximal with respect to $N \cap S^{*}=\emptyset$, then it is not necessary that N be a ϕ_{m}-prime submodule of $M,(m \geq 2)$.

Example 4.7. Let R, M, N, S and S^{*} be as Example 3.9. Then S^{*} is a ϕ_{m}-M. S-closed subset of M and N is maximal with respect to $N \cap S^{*}=\emptyset$. But N is not ϕ_{m}-prime, because $\overline{2} . \overline{4} \in N \backslash(N: M)^{m-1} N$ but $\overline{2} \notin(N: M)$ and $\overline{4} \notin N,(m \geq 2)$.

References

1. A. G. Agargün, D. D. Anderson and S. Valdes-Leon, Unique factorization rings with zero divisors, Comm. Algebra 27 (1999), 1967-1974.
2. D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), 1646-1672.
3. D. D. Anderson and M. Bataineh, Generalization of prime ideals, Comm. Algebra 36 (2008), 686-696.
4. D. F. Anderson and S. T. Chapman, How far is an element from being prime?, J. Algebra Appl. 9 (2010), 779-789.
5. D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), 831-840.
6. A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), 417-429.
7. A. Badawi, A. Yousefian Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. 39 (2013), 441-452.
8. S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra 33 (2005), 43-49.
9. M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra 40 (2012), 1268-1279.
10. M. Ebrahimpour and R. Nekooei, On generalizations of prime submodules, Bull. Iran. Math. Soc. 39(5) (2013), 919-939
11. M. Ebrahimpour, On generalizations of prime ideals (II), Comm. Algebra 42 (2014), 3861-3875.
12. M. Ebrahimpour, On generalisations of almost prime and weakly prime ideals, Bull. Iran. Math. Soc. 40(2) (2014), 531-540.
13. Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16(4) (1988), 755-779.
14. S. Galovich, Unique factorization rings with zero divisors, Math. Mag. 51 (1978), 276-283.
15. J. Hukaba, Commutative rings with zero divisors, New York, Basil: Marcel Dekker, 1988.
16. T. W. Hungerford, Algebra, Holt, Rinehart and Winston, New York, 1974.
17. C. P. Lu, Prime submodules of modules, Comment. Math. Univ. Sancti Paul 33(1) (1984), 61-69.
18. C. P. Lu, Spectra of modules, Comm. Algebra 23(10) (1995), 3741-3752.
19. R. Nekooei, Weakly prime submodules, Far East J. Appl. Math. 39(2) (2010), 185-192.
20. N. Zamani, ϕ-prime submodules, Glasgow Math. J. Trust (2009), 1-7.

M. Ebrahimpour

Department of Mathematics, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, P.O.Box 518, Rafsanjan, Iran.
Email: m.ebrahimpour@vru.ac.ir

SOME REMARKS ON GENERALIZATIONS OF MULTIPLICATIVELY-CLOSED SUBSETS

M. EBRAHIMPOUR

چند نكته در تعميمهايى از زیر مجموعههاى بسته ضربى
دانشكده رياضى، دانشگاه ولى عصريه ابراهجر) ، رفسنجان، ايران

فرض كنيد R حلقهاى جابجايى و يكدار و M يى R -مدول يكانى باشد. در اين مقاله ما مفهوم
 داده شده را مطالعه مىكنيم. در بين نتايج زيادى كه در در اين مقاله آمده مى توان
 مىدهيم كه برخى ديگر از قضاياى معروف درباي زيرمجموعهها براى مدول M برقرار نيستند.

$$
\begin{aligned}
& \text { كلمات كليدى: مدولهاى ضربى، زيرمجموعههاى بسته ضربى، زير مجموعههاى S - } \\
& \text { (} n-1, n \text { - }
\end{aligned}
$$

[^0]: MSC(2010): Primary: 13C05; Secondary:13C13.
 Keywords: Multiplicative module, multiplicatively-closed subset of $R,(n-1, n)$ multiplicatively S-closed subset of $M,(n-1, n)$-weakly multiplicatively S-closed subset of $M,(n-1, n)-\phi_{m}$-multiplicatively S-closed subset of M.
 Received: 2 September 2015, Revised: 27 April 2016.
 *Corresponding author.

