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SOME REMARKS ON GENERALIZATIONS OF
MULTIPLICATIVELY-CLOSED SUBSETS

M. EBRAHIMPOUR*

ABSTRACT. Let R be a commutative ring with an identity, and M
be a unitary R-module. In this paper, the concept of multiplica-
tively-closed subset of R is generalized, and some properties of the
generalized subsets of M are studied. Some well-known theorems
about multiplicatively-closed subsets of R are also generalized, and
it is shown that some other well-known results are not valid for M.

1. INTRODUCTION

We assume throughout that all rings are commutative with 1 # 0
and all modules are unital. Let R be a ring, M be an R—module, and
N be a submodule of M. We know that (N : M) = {r € RlrM C N}is
an ideal of R. The R-module M is multiplicative if for every submodule
N of M there exists an ideal I of R such that N = IM. It is easy to
show that N = (N : M)M.

Let R be a ring. The subset S of R is called a multiplicatively-closed
subset if a,b € S implies ab € S, where a,b € R. Let P be a prime
ideal of R, i.e., a proper ideal with the property that ab € P implies
a € Porbe P, where a,b € R. A proper submodule P of M is called
a prime submodule if r € R and © € M together with rx € P implies
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r € (P:M)orx € P. Itis easy to show that if P is a prime submodule
of M, then (P : M) is a prime ideal of R.

In [6], Badawi has introduced the concept of 2-absorbing ideal, and
has generalized this concept to n-absorbing ideal, i.e. a proper ideal P
of R with the property that a; ...a,.1 € Pimpliesay ... a; 1G;41 ... Qpi1
€ P, for some i € {1,...,n+ 1}, where ay,...,a,,1 € R. In [2], An-
derson and Badawi have studied n-absorbing ideals for n > 2.

In [9] and [11], an (n — 1)-absorbing ideal P of R has been denoted
by (n — 1,n)-prime ideal. Thus a (1,2)-prime ideal is just a prime

ideal. In [1], this concept has been studied with respect to non-unique
factorization for principal ideals in an integral domain.
Also in [10], Ebrahimpour and Nekooei have established the con-

cept of (n — 1,n)-prime submodule, i.e., a proper submodule P of M
with the property that a...a, 1z € P implies a;...a,_1 € (P : M) or
ay...a;_1Gis1...0n_1x € P for some i € {1,...,n—1}, where ay, ...,a,_1 €
R and x € M. Note that a (1,2)-prime submodule is just a prime
submodule.

In [5], Anderson and Smith have defined a weakly prime ideal, i.e.
a proper ideal P of R with the property that 0 # ab € P implies
a € Porbe P, where a,b € R. The notion of a weakly prime element
(i.e. an element p € R such that (p) is a weakly prime ideal) has been
introduced by Galovich [11], while the subject of unique factorization
rings with zero divisors has been studied. In [19], Nekooei has extended
this concept to weakly prime submodule, i.e. a proper submodule P of
M with the property that 0 # rz € P implies x € Porr € (P : M),
where r € R and x € M.

In [9], Ebrahimpour and Nekooei have defined a proper ideal P of
R to be (n — 1,n)-weakly prime if ay,...,a, € R together with 0 #
a...a, € Pimply ay...a,-1a;41...a, € P, for some i € {1,...,n}.
In [10], it has been established that a proper submodule P of M is
(n — 1,n)-weakly prime if 0 # a;...a,_1x € P implies ay...a,_1 € (P :
M) or ajy...a; 1Gi11...an_1x € P, for some i € {1,...,n — 1}, where
ai,....a,—1 € Rand z € M. Thus a (1,2)-weakly prime submodule is
just a weakly prime submodule.

In studying unique factorization domains, Bhatwadekar and Sharma
[8] have defined the notion of almost prime ideals, i.e. a proper ideal P
of R with the property that ab € P\ P? implies a € P or b € P, where
a,b € R. Thus a weakly prime ideal is almost prime, and any proper
idempotent ideal is also almost prime.

In [3], Anderson and Bataineh have extended the concept of prime
ideals to ®-prime ideals, as follows: Let R be a commutative ring, and
S(R) be the set of ideals of R. Let @ : S(R) — S(R)U{0} be a function.
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A proper ideal P of R is called ®-prime if ab € P\®(P) implies a € P
or b € P, where a,b € R. They defined ®,, : S(R) — S(R) U {0} with
®,,(J) = J" for all J € S(R); (m > 2).

In [9], Ebrahimpour and Nekooei have introduced the concept of
(n—1,n)-®,,-prime ideal, i.e., a proper ideal P of R with the property
that a;...a, € P\P™ implies a;...a; 10,41 ...a, € P for some i €
{1,...,n}, where ay,...,a, € R ;(m,n > 2).

In [20], Zamani has extended the concept of ¢-prime ideal to ¢-
prime submodule. Let S(M) be the set of all submodules of M and
¢:S(M)— S(M)U{0} be a function. A proper submodule P of M is
called ¢-prime submodule if rz € P\¢(P) implies r € (P : M) or = €
P, wherer € Rand x € M. Zamani defined ®,,, : S(M) — S(M)U{0}
together with ®,,(N) = (N : M)™ !N for all N € S(M); (m > 2).

In [10], Ebrahimpour and Nekooei have introduced the concept of
(n — 1,n) — ¢p-prime submodule, i.e. a proper submodule P of M
with the property that a; ...a, 1z € P\(P : M)™ ' P implies

ai...Q;—1Qi41 ...0p1T € P,

forsomei € {1,...,n—1}oray...a,—1 € (P: M), whereay,...,a, 1€
R and x € M. Thus a (1, 2)-Po-prime submodule is just almost prime.
The (1,2)-®,,-prime submodules is called ” ®,,-prime”

In [12], Ebrahimpour has established the concept of (n—1, n)-weakly
multiplicatively-closed subset of R, denoted by (n—1,n)-W. M. closed,
i.e. a subset S of R with the property that ay,...,a, € R, and

aj...0;—1Q;iq1 ...0p € S,

imply a; ...a, € SU{0} for all i € {1,...,n}. Moreover, it has been
said that S is an (n — 1,n)-®,,-multiplicatively-closed subset of R,
denoted by (n — 1,n) — ¢,,-M. closed if aq,...,a, € R, and

ap...A;—1Qj41 ... 0p S S,

imply @y ...a, € SU(R\S)™ for all i € {1,...,n}; (n,m > 2).

Let R be a ring, M be an R—module, and S, S* be non-empty sub-
sets of R and M, respectively. In this paper, we introduce the concepts
of (n—1, n)-multiplicatively S-closed, (n—1, n)-weakly multiplicatively
S-closed and (n—1,n) — ¢,,,- multiplicatively S-closed subsets S* of M,
and prove some basic properties of these subsets. Also we prove the gen-
eralized version of some well-known theorems about multiplicatively-
closed subsets of R.
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2. (n—1,n)-MULTIPLICATIVELY S-CLOSED SUBSETS

We say that a non-empty subset S of R is (n— 1, n)-multiplicatively-
closed, denoted (n — 1,n)-M. closed, if a4, ...,a, € R, and

ay...Q;—1Qij41...0p € S,

for all i € {1,...,n} implies a;...a, € S, (n > 2). Also we say that an
(n—1, n)-multiplicatively-closed subset S of R is saturated if aq, ..., a,, €
R together with ay...a, € S imply ay...a;_1a;11...a, € S for all ¢ €
{1,..n}. The (1,2)-M. closed and saturated (1,2)-M. closed subsets of
R are denoted by M. closed and saturated M. closed, respectively.

Let R be aring, M be an R—module, and S, S* be non-empty subsets
of R and M, respectively. We say that S* is (n — 1, n)-multiplicatively
S-closed, denoted by (n — 1,n)-M. S-closed if aq,...,a,_1 € R and
x € M together with ay...a;_1G;11...an_1x € S* foralli € {1,...,n—1},
imply ay...a,_1z € §* and a;...a,_1 € S. Furthermore, we say that S*
is a saturated (n — 1,n)-M. S-closed subset of M if aq,...,a,_1 € R
and x € M together with a;...a,_1x € S* imply a;...a,_; € S and
a1...0;—10;41...0n 1 € S* for all i € {1,..n—1} (n > 2). The (1,2)-M.
S-closed and saturated (1,2)-M. S-closed subsets of M are denoted by
M. S-closed and saturated M. S-closed, respectively.

Proposition 2.1. Let R be a ring, M be an R—module, and P be a
proper submodule of M. Then P is an (n — 1,n)-prime submodule of
M if and only if M\ P is an (n—1,n)-M. S-closed subset of M, where
S=R\(P:M); (n>2).

Proof. (=) Let S* = M \ P, and P be an (n — 1, n)-prime submodule
of M. Let ay,...,a,1 € R,and x € M with ay...a;_1a;41...a,17 €
S* forallie{l,...,n—1}, and ay...a, 1 € S. Let ay...a, 1z & S*.
Thus a;...a,_1x € P. Since P is (n — 1,n)-prime, we have

at...a; 1041 ...0p 1T € P,

for some ¢ € {1,...,n — 1} or ay...a,—1 € (P : M), which are contra-
dictions. Thus a; ...a,_1x € S*. Therefore, M \ P is an (n — 1,n)-M.
S-closed subset of M.

(<) Let M\ P be an (n—1,n)-M. S-closed subset of M, ay,...,a,_1 €
R, and x € M with ai...Qn_1T € P.If ay...a;—1Giq ... 1% ¢ P,
foralli € {1,...,n— 1}, and ay...a,_1 € (P : M), then a; ...a, 1z €
(M \ P) because S* is (n — 1,n)-multiplicatively S-closed, which is a
contradiction. Thus there exists i € {1,...,n — 1} such that

aj...Q;_10i11...Ap_1T € P
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or aj...a,—1 € (P : M). Therefore, P is an (n — 1, n)-prime submodule
of M. OJ

Let R be a ring, and S be a multiplicatively-closed subset of R. It is
well-known that if an ideal I is maximal with respect to /NS = (), then
I is a prime ideal of R [16, Theorem 2.2]. In Example 2.2, we show
that a similar result does not hold for (n —1,n)-M. S-closed subsets of
an R—module M, where S is a non-empty subset of R.

Example 2.2. Let R = 16%, M = R, and N = % and S* = § =
{1,3,9,11}. Then S* is an M. S-closed subset of M, and N is maximal
with respect to N NS* = (). But N is not prime because 2.4 € N but

2¢(N:M)and 4 ¢ N.

Theorem 2.3. Let R be an Artinian ring, M be a multiplicative R—
module, and S* be a saturated M. S-closed subset of M, where S is a
non-empty subset of R. Let N be a submodule of M that is maximal
with respect to N N S* = 0. Then N is a prime submodule of M.

Proof. We show that (N : M)NS =0. If (N : M)N.S # 0, then there
exists an s € (N : M)NS. Thus for every x € S*, we have sx € S*NN
which is a contradiction. Therefore, (N : M) NS = 0.

Now, we show that N is maximal with (N : M) NS = (. If not,
then there exists an ideal I of R such that (N : M) C I and INS = 0.
Notice that M is cyclic, by [13, Page 764]. Let M = Rm. If IM =
(N : M)M = N, then for every a € I, there exists a b € (N : M) such
that am = bm. Thus (a —b)M = {0} C N. Thus (a —b) € (N : M),
and hence a € (N : M). Thus [ = (N : M), which is a contradiction.
Thus N = (N : M)N C IM. Thus S* N IM # (). Thus there exists an
r € I such that rm € S*. Since S* is saturated we have r € S. Thus
r € I'NS, which is a contradiction. Therefore, (N : M) is maximal
with (N : M)NS =10.

We show that (N : M)g is a maximal ideal of Rgs. Let Qg be a
maximal ideal of Rg over (N : M)g. Thus @ is a prime ideal of R
with QNS = 0. Let r € (N : M). Thus { € Qg. Thus there exists
an s € S such that sr € Q. Since QNS = 0, we have r € Q. Thus
(N:M)CQ,and so (N : M) =@, because, QN S = ). Therefore,
(N : M)g is a maximal ideal of Rg.

Since M is finitely generated and (N : M)NS = (), we have Ng # Mg.
Also (N . M)S g (NS : MS) 7é R. Thus (N . M)S = (NS : MS) Thus
Ng is a prime submodule of Mg, by [1&, Proposition 1 ], and so N is a
prime submodule of M, by [17, Proposition 2]. O

Theorem 2.4. Let R be a ring, M be an R—module, S be a non-empty
subset of R, and S* be an (n,n + 1)-M. S-closed subset of M. If for



20 EBRAHIMPOUR

every Ty, ..., T, € S* there exists r; € (Rx; : M), fori =1,...n, such
that ry..m, € S and ry..rj_17j11..7, 8 CS*, forall j € {1,...,n}, and
N is a submodule of M with the property that N N S* = 0. Then there
exists an (n — 1,n)-prime submodule P of M such that N C P and
PNS* =0, (n>2).

Proof. Put u={T < M|N C T,TNS* =0}. By Zorn’s lemma, p has
a maximal element P. We show that P is an (n—1, n)-prime submodule
of M. Let ay,...,a,_1 € R and x € M together with a;...a,_1x € P.
Assume that a;...a,_1 € (P : M) and ay...a;_1G;11...ap,_1x & P for
all i € {1,...,n —1}. Then (P + (aj...an_1)M) N S* # () and (P +
(ay...a;1ai41...an_12)) N S* £ (), for all i € {1,...,n — 1}. Hence, there
exists 1, ..., t, € S* such that x; € P+ (a;y..a;_1a;41...a,_1x) for all 7 €
{1,..,n—1} and z, € P + (a;...a,—1 M). By assumption, there exists
an r; € (Rx; : M) such that ri...r,, € S and ry..ri_17riq...7,S* C S*
foralli € {1,...,n}. But r1...7,_1(ay...ap_1)M C P+ (a;...a,_1x) C P.
Therefore, 1.7, M C (r1..7p_12,) € P+ (r1...7p-1)(a1...an—1)M C P.
Since S* is (n,n + 1)-M. S-closed, we have ry...r,S* C P N .S* which
is a contradiction. Thus P is an (n — 1, n)-prime submodule of M. O

3. (n—1,n)-WEAKLY MULTIPLICATIVELY S-CLOSED
SUBSETS

Let R be aring. A non-empty subset S of R is weakly multiplicatively-
closed, denoted by W. M. closed, if a,b € S implies ab € S U {0}.

We say that an (n — 1, n)-weakly multiplicatively-closed subset S of
R is saturated if a4, ..., a,, € R together with a;...a, € S U{0} imply

ay...A;—1A541-..Ap eSu {0},

for all i € {1,...n}, (n > 2).

Remark that the (1,2)-W. M. closed and saturated (1,2)-W. M.
closed subsets of R are W. M. closed and saturated W. M. closed,
respectively.

Now, we generalize these concepts to modules.

Let R be a ring, M be an R—module, and S,S* be non-empty
subsets of R and M, respectively. We say that S* is (n — 1,n)-
weakly multiplicatively S-closed, denoted by (n—1,n)-W. M. S-closed
if ai,...,a,_1 € R and x € M together with ay...a;_1a;.1...a,_17 € S*
for all i € {1,...,n — 1} and ay...a,_; € S imply a;...a,,_12 € S* U {0}.
Furthermore, we say that S* is a saturated (n — 1,n)-W. M. S-closed
subset of M if ay,...,a,_1 € R and x € M together with a;...a, 1z €
S*U{0} imply ay...a,_; € SU{0} and ay...a;_1G;11...an_17 € S*U{0},
foralli € {1,..n—1}, (n > 2).
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The (1,2)-W. M. S-closed and saturated (1,2)-W. M. S-closed sub-
sets of M are denoted by W. M. S-closed and saturated W. M. S-closed,
respectively.

It is clear that every (n — 1,n)-M.S-closed subset of M is (n —1,n)-
W. M. S-closed. But the converse is not true, in general. For example,
let M = R = Zg and S = S* = {3,4}. Since 0 = 3.4 ¢ S*, S* is not
M. S-closed but it is clear that S* is W. M. S-closed.

Proposition 3.1. Let R be a ring, M an R—module and S be a W.
M. closed subset of R. If S* is a saturated W. M. S-closed subset of
M, then S is a saturated W. M. closed subset of R.

Proof. Let a,b € R and ab € SU{0}. Since S* # (), there exists x € S*.
Thus abxr € S* U {0}. Since S* is saturated, we have a € S U {0} and
bxr € S*U{0}. Thus a € SU {0} and b € S U {0}. Therefore, S is
saturated. OJ

It is clear that every (n — 1,n)-W. M. closed subset S of R is an
(n — 1,n)-W. M. S-closed subset of R as an R—module. But every
(n—1,n)-W. M. S-closed subset of R as R—module is not an (n—1,n)-
W. M. closed subset of R as a ring in general.

Example 3.2. Let R = M = Zg and S = {3} and S* = {0,2}. It is
clear that S* is a W. M. S-closed subset of M. But S* is not a W. M.
closed subset of R. Because 2.2 =4 ¢ S* U {0}.

Theorem 3.3. Let R be a ring, and S, S* be non-empty subsets of R.
Then S* is a saturated W. M. S-closed subset of R as R—module if
and only if S* U {0} = SU{0}, and S* be a saturated W. M. closed
subset of R.

Proof. (=) Let S* be a saturated W. M. S-closed subset of R as
R—module. Then S is a saturated W. M. closed, by Proposition 2.1.
Moreover, for every z € S*\ {0} and a € S\ {0}, za = ax € S* U {0}.
Since S* is saturated, then x € S and a € S*. Thus S*U{0} = SU{0}.

(<) This is clear. O

Lemma 3.4. Let R be a ring and {q; }icr, (n—1.n)-weakly prime ideals
of R. Then S = R\ U;c; ¢ s a (n—1,n)-W. M. closed subset of R.

Proof. Let ay, ...,a, € Rwithay...a;_1a;41...a, € Sforall j € {1,...,n}.
Then ay...aj_1aj41...a,, € q; for every i € I. If ay...a, ¢ S U {0}, then
0 # ay...a, € S. Thus there exists ¢ € I such that 0 # ay...a, € ¢;.
Since ¢; is (n — 1,n)-weakly prime, we have a;...a;_1a;41...a, € g; for
some j € {1,...,n}. Therefore, ay...a;_1a;4+1...a,, ¢ S, which is a con-
tradiction. Thus a;...a,, € SU{0} and S is an (n —1,n)- W. M. closed
subset of R. ]
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Lemma 3.5. Let R be a ring, M be an R—module, and {P;};c; be
(n — 1,n)-weakly prime submodules of M such that (P; : M) = q; for
all j € J. Then S* = M\ U;c; P is an (n — 1,n)-W. M. S-closed
subset of M, where S = R\ U,c; ¢, (n > 2).

Proof. Let S* = M \ Uje;P;, P; be an (n — 1,n)-weakly prime sub-
module of M for all j € J, ay,...,a,_1 € R and x € M together with
aj...a;_ 141 ... ap1x € S*foralli € {1,...,n—1} and ay...a,_1 € S.
Let ay ...a,—12 ¢ S*U{0}. Thus 0 # ay...a,_12 € P; for some j € J.
Since P; is (n — 1,n)-weakly prime, we have ay ... a;—10;41 ... 017 €

P; for some i € {1,...,n — 1} or ay...a,—1 € g, which are contra-
dictions. Thus a...a,—1x € S* U {0}. Therefore, M \ Ujc,P; is an
(n — 1,n)-W. M. S-closed subset of M. O

Lemma 3.6. Let R be a ring, M be an R—module, and P be a proper
submodule of M.Then, P is an (n — 1,n)-weakly prime submodule of
M if and only if M\ P is an (n — 1,n)-W. M. S-closed subset of M,
where S =R\ (P: M); (n > 2).

Proof. (=) Let P be an (n — 1,n)-weakly prime submodule of M. We
have M \ P is an (n — 1,n)-W. M. S-closed subset of M, by Lemma
3.D.

(<) Let M\P be an (n — 1,n)-W. M. S-closed subset of M and
ai,...,a,—1 € Rand z € M together with a; ...a, 12 € P\ {0}. If

ai...a;—10i41 -.-0p 1T € P,

foralli e {1,...,n— 1} and ay...a,_1 & (P : M), then ay ...a, 1z €
(M \ P)U{0} because S* is (n — 1, n)-weakly multiplicatively S-closed,

which is a contradiction. So there exists ¢ € {1,...,n — 1} such that
aj...Qa;—10;41 ... 0p12 € P or ay...an_1 € (P: M). Therefore, P is an
(n — 1,n)-weakly prime submodule of M. O

Let R be a ring, M be an R—module, and Z(M) = {r € R|30 #
m € M;rm = 0}. Let S = R\ Z(M), and S* be the set of torsion-free
elements of M. If S* # (), then S* is a W. M. S-closed subset of M.
Now, we show that S* is not saturated.

Example 3.7. Let Ng = NU {0} and {p,|n € N} be the set of all
prime numbers. Let E(p,) = {a € Z|a = o +Zir € Z,t € No}. Then

E(py,) is a non-zero submodule of % as Z—module for all n € N.

Set M = ][],y E(pn). It is clear that M is a Z—module. Let
a = (ap)nez € M be such that «,, = I:t—*; + Z # 0, for infinite n.

We claim that « is a torsion-free element of M , because if there
exists m € Z with ma = 0, then m(l% +7Z) = Z and so pir|mr,. Since

n
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the greatest common divisor of p, and r, is 1, we have p,|m for all
n € Z. Thus m = 0 . Therefore, o and so pr« are torsion-free for all
k € Z. Thus pra € S*U{0}. If B = (Bpn)nez, and B, = 0, for n # k
and B, = # + Z, then pi8 = 0. Therefore, pp ¢ S U{0}.

Theorem 3.8. Let R be a ring, M be a torsion-free R—module, and P
be a weakly prime submodule of M. Let S* = M \ P and S =R\ (P :
M). Also let N be a submodule of M together with N N S* = (). Then
(i) (N:M)nS=40.
(11) If N is mazimal with respect to N N S* = (), then N = {m €
M|sm € N;3s € S}.

Proof. (i) Let (N : M) NS # (. Thus there exists s € (N : M)N S.
Let x € S*. We have sz € S* N N or sx = 0, which are contradictions,
Because ann(z) =0 and 0 ¢ S, S*.

(ii) Set T'= {m € M|sm € N;3s € S}, and assume that N C 7.
Thus TN S* # (), and so there exists x € S* such that sz € N for
some s € S. Since S* is W. M. S-closed, we have sz € S* U {0}. Thus
st € NN S* or sz =0, which are contradictions, because ann(x) = 0
and 0 ¢ S, 5™ O

Unlike the case of rings, we show that for a W. M. S-closed subset

S* of an R—module M and a submodule N of M that is maximal with
respect to N N S* = (), it is not necessary that N be weakly prime in
general, where S is a non-empty subset of R.
Example 3.9. Let R = 16%, M =R, N = 186—22, and S* = S = {1,4}.
Then S* is a W. M. S-closed subset of M, and N is maximal with
respect to NNS* = (). But N is not weakly prime, because 0 # 2.4 € N
but 2,4 ¢ N.

4. (n—1,n) — ¢,,- MULTIPLICATIVELY S-CLOSED
SUBSETS

We say that an (n — 1,n) — ¢,,-multiplicatively-closed subset S of
R is saturated if ay,...,a, € R together with a;...a, € SU (R\ S)™
implying a;...a;_1G;41...a, € S U (R\ S)™ for all i € {1,..n}. For
n =2, (1,2) — ¢,,-multiplicatively-closed and saturated (1,2) — ¢,,-
multiplicatively-closed subsets of R are denoted by ¢,,-multiplicatively-
closed and saturated ¢,,-multiplicatively-closed, respectively; (n,m >
2).
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Let R be a ring, M be an R—module, and S, S* be non-empty sub-
sets of R and M, respectively. We say that S* is (n — 1,n) — ¢p,-
multiplicatively S-closed, denoted by (n — 1,n) — ¢,,-M. S-closed, if
ai,...,a,_1 € R and x € M together with a;...a;_1a;41...a,_1x € S*,
for all i € {1,....,n — 1} and a;...a,_1; € S imply a;...a,_12 € S* U
(R\ S)™ (M \ S*). Furthermore, we say that S* is a saturated
(n—1,n) — ¢,-M. S-closed subset of M if ay,...,a,1 € Rand x € M
together with a;...a,—1z € S*U (R\ S)™ (M \ S*) imply a;...ap,_1 €
SU(R\S)™ and ay...a;_1ai11...ap_17 € S* U (R\ S)" 1M \ S*), for
alli € {1,..n—1}, (n,m > 2). Forn =2, (1,2) — ¢,-M. S-closed and
saturated (1,2) — ¢,,-M. S-closed subsets of M are denoted by ¢,,-M.
S-closed and saturated ¢,,-M. S-closed, respectively.

It is clear that every (n — 1,n)-W. M. S-closed subset of M is (n —
1.n) — ¢p-M. S-closed. But the converse is not true, in general.

Example 4.1. Let M = R = Zg and S = S* = {0,2}. Since 2.2 ¢
S* U {0}, S* is not a W. M. S-closed subset of M. But SS* C S* U
(R\ S)™ (M \ S*). So S* is ¢,,-M. S-closed subset of M, (m > 2).

Proposition 4.2. Let R be a ring, M an R-module and S,S* non-
empty subsets of R and M, respectively. If S* be an (n —1,n)-W. M.
S-closed subset of M, then it is (n—1,n)— ¢,,-M. S-closed, (n,m > 2).

Proof. Let aq,...,a,_1 € R and x € M together with a;...a,_1 € S and
aq....A;—10;41...0pn 1T € S*,

forall ¢ € {1,...,n —1}. Since S* is (n —1,n)-W. M. S-closed, we have
ai...ap_1T € S* U {0}

If ay...a,,_1x € S*, then we are done. Now assume that a;...a,,_1x =
0. If 0 € S*, then we are done. Thus we assume that 0 ¢ S*. Thus
0€e M\ S* Soaj.a, 1z € (R\S)" M\ S*) . Therefore, S* is
(n—1,n) — ¢,-M. S-closed. O

Lemma 4.3. Let R be a ring and {¢; }icr, (n — 1.n) — ¢ -prime ideals
of R. Then S = R\ U;c; ¢ is a (n—1,n) — ¢p,-M. closed subset of R.

Proof. Let ay,...,a, € R together with a;...a;_1aj41...a,, € S, for all
jed{l,..,n}. fay..a, € SU(R\ S)™, then a;...a, € (Ug;) \ (Ug)™.
Thus there exists ¢ € I such that ay...a, € ¢ \ ¢". Since ¢; is (n —
1,n)—¢y,- prime, we have a;...a;_1a;41...a, € ¢;, forsome j € {1,...,n}.
Therefore, a;...aj_1a;41...a,, € S, a contradiction. Thus a;...a,, € SU
(R\S)™ and Sis an (n — 1,n) — ¢,,,-M. closed subset of R. O

Proposition 4.4. Let R be a ring, M a multiplicative R—module and
P a ¢p-prime submodule of M . If S* = M \ P is a saturated ¢,,-M.
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S-closed subset of M, then S is a saturated ¢,,-M. closed subset of R,
where S = R\ (P : M).

Proof. We have P = (P : M)M, and (P : M) is a ¢p,-prime ideal of
R, by [10, Lemma 4.3.(i)]. Thus S is a ¢,,-M. closed subset of R, by
Lemma 4.3 . Let a,b € R and ab € SU(R\ S)™. Since S* # (), there
exists x € S™.

We show that abx € S*U (R\ S)™ 1(M \ S*). Let ab € S. Since S*
is ¢,,-M. S-closed, we have abx € S* U (R\ S)™ }(M \ S*). Now, let
ab € (R\ S)™ = (P : M)™. Thus abx € (P : M)™ (P : M)M) =
(P: M)™'P. Thus abz € (R\ S)™ (M \ S*).

Since S* is saturated, we have a € SU (R \ S)™ and bz € S* U (R \
S)ym=1(M\ S*). Thus a € SU(R\S)™ and b € SU(R\ S)™. Therefore,
S is saturated. O

Lemma 4.5. Let R be a ring, M an R—module and {P;};cs, (n —
1,n) — ¢m-prime submodules of M such that (P; : M) = q; for all
j €J. Then S* = M\U,;c; P is an (n—1,n) — ¢,,-M. S-closed subset
of M, where S = R\Ujej%‘; (n,m > 2).

Proof. Let S* = M \ Uje;P; and P; be an (n — 1,n) — ¢,,-prime sub-
module of M for all j € J and a4,...,a,1 € R and z € M to-
gether with a1 ...a; 10,41 ...a, 12z € S*for alli € {1,...,n— 1} and
ay...an1 € S. Let a;...a, 1z & S*U(R\ S)™ (M \ S*). Thus
aj...an1z € Pj\ q;”_le for some j € J. Since Pj is (n — 1,n) — ¢p-
prime we have a; ...a;_10;41 ... a1z € P; for some i € {1,...,n—1}
or @p...an—1 € ¢;, which are contradictions. Thus a;...a,—12 € S* U
(R\ S)™ (M \ P). Therefore, M \ Ujc,P; is an (n — 1,n) — ¢,-M.
S-closed subset of M. O

Proposition 4.6. Let R be a ring, M an R—module and P a proper
submodule of M. Then P is an (n — 1,n) — ¢~ prime submodule of
M if and only if M\ P is an (n—1,n) — ¢n,,-M. S-closed subset of M,
where S = R\ (P : M); (n,m > 2).

Proof. (=) Let S* = M \ P and P be an (n — 1,n) — ¢,,-prime sub-
module of M. Then M \ P is an (n —1,n) — ¢,,-M. S-closed subset of
M, by Lemma 3.5.

(<) Let M\P be an (n — 1,n) — ¢,,-M. S-closed subset of M and
a,...,a,—1 € R and x € M together with ay...a,_12 € P\ (P :
MY P, Ifay...a; 1001 ...ap 1w & P, for all i € {1,...,n — 1}
and a;...a, 1 € (P: M), then a;...a, 1z € (M\ P)U(P: M)™"'P
because S* is (n—1, n)—¢,,-M. S-closed, which is a contradiction. Thus
there exists an ¢ € {1,...,n—1} such that a; ...a; 1a;41...a,_12x € P
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or aj...an—1 € (P : M). Therefore, P is an (n — 1,n) — ¢p,-prime
submodule of M. O

Let R be a ring, M an R—module and S, S* non-empty subsets of
R and M, respectively. In Example 3.7, we show that if S* is a ¢,,-M.
S-closed subset of M and N is a submodule of M that is maximal with
respect to N N S* = (), then it is not necessary that N be a ¢,,-prime
submodule of M, (m > 2).

Example 4.7. Let R,M,N,S and S* be as Example 3.9. Then S*
is a ¢,,-M. S-closed subset of M and N is maximal with respect to
NN S*={. But N is not ¢,,-prime, because 2.4 € N \ (N : M)"" 1N
but 2 ¢ (N: M) and 4 ¢ N, (m > 2).
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