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SOME REMARKS ON GENERALIZATIONS OF
MULTIPLICATIVELY-CLOSED SUBSETS

M. EBRAHIMPOUR∗

Abstract. Let R be a commutative ring with an identity, and M
be a unitary R-module. In this paper, the concept of multiplica-
tively-closed subset of R is generalized, and some properties of the
generalized subsets of M are studied. Some well-known theorems
about multiplicatively-closed subsets of R are also generalized, and
it is shown that some other well-known results are not valid for M .

1. Introduction

We assume throughout that all rings are commutative with 1 ̸= 0
and all modules are unital. Let R be a ring, M be an R−module, and
N be a submodule ofM . We know that (N : M) = {r ∈ R|rM ⊆ N} is
an ideal of R. The R-moduleM is multiplicative if for every submodule
N of M there exists an ideal I of R such that N = IM . It is easy to
show that N = (N : M)M .

Let R be a ring. The subset S of R is called a multiplicatively-closed
subset if a, b ∈ S implies ab ∈ S, where a, b ∈ R. Let P be a prime
ideal of R, i.e., a proper ideal with the property that ab ∈ P implies
a ∈ P or b ∈ P , where a, b ∈ R. A proper submodule P of M is called
a prime submodule if r ∈ R and x ∈ M together with rx ∈ P implies
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r ∈ (P : M) or x ∈ P . It is easy to show that if P is a prime submodule
of M , then (P : M) is a prime ideal of R.

In [6], Badawi has introduced the concept of 2-absorbing ideal, and
has generalized this concept to n-absorbing ideal, i.e. a proper ideal P
ofR with the property that a1 . . . an+1∈P implies a1 . . . ai−1ai+1 . . . an+1

∈ P , for some i ∈ {1, . . . , n + 1}, where a1, . . . , an+1 ∈ R. In [2], An-
derson and Badawi have studied n-absorbing ideals for n ≥ 2.

In [9] and [11], an (n− 1)-absorbing ideal P of R has been denoted
by (n − 1, n)-prime ideal. Thus a (1, 2)-prime ideal is just a prime
ideal. In [4], this concept has been studied with respect to non-unique
factorization for principal ideals in an integral domain.

Also in [10], Ebrahimpour and Nekooei have established the con-
cept of (n − 1, n)-prime submodule, i.e., a proper submodule P of M
with the property that a1...an−1x ∈ P implies a1...an−1 ∈ (P : M) or
a1...ai−1ai+1...an−1x ∈ P for some i ∈ {1, ..., n−1}, where a1, ..., an−1∈
R and x ∈ M . Note that a (1, 2)-prime submodule is just a prime
submodule.

In [5], Anderson and Smith have defined a weakly prime ideal, i.e.
a proper ideal P of R with the property that 0 ̸= ab ∈ P implies
a ∈ P or b ∈ P , where a, b ∈ R. The notion of a weakly prime element
(i.e. an element p ∈ R such that (p) is a weakly prime ideal) has been
introduced by Galovich [14], while the subject of unique factorization
rings with zero divisors has been studied. In [19], Nekooei has extended
this concept to weakly prime submodule, i.e. a proper submodule P of
M with the property that 0 ̸= rx ∈ P implies x ∈ P or r ∈ (P : M),
where r ∈ R and x ∈ M .

In [9], Ebrahimpour and Nekooei have defined a proper ideal P of
R to be (n − 1, n)-weakly prime if a1, . . . , an ∈ R together with 0 ̸=
a1 . . . an ∈ P imply a1 . . . ai−1ai+1 . . . an ∈ P , for some i ∈ {1, . . . , n}.
In [10], it has been established that a proper submodule P of M is
(n − 1, n)-weakly prime if 0 ̸= a1...an−1x ∈ P implies a1...an−1 ∈ (P :
M) or a1...ai−1ai+1...an−1x ∈ P , for some i ∈ {1, ..., n − 1}, where
a1, ..., an−1 ∈ R and x ∈ M . Thus a (1, 2)-weakly prime submodule is
just a weakly prime submodule.

In studying unique factorization domains, Bhatwadekar and Sharma
[8] have defined the notion of almost prime ideals, i.e. a proper ideal P
of R with the property that ab ∈ P\P 2 implies a ∈ P or b ∈ P , where
a, b ∈ R. Thus a weakly prime ideal is almost prime, and any proper
idempotent ideal is also almost prime.

In [3], Anderson and Bataineh have extended the concept of prime
ideals to Φ-prime ideals, as follows: Let R be a commutative ring, and
S(R) be the set of ideals of R. Let Φ : S(R) → S(R)∪{∅} be a function.



SOME REMARKS ON GENERALIZATIONS OF MULTIPLICATIVELY... 17

A proper ideal P of R is called Φ-prime if ab ∈ P\Φ(P ) implies a ∈ P
or b ∈ P , where a, b ∈ R. They defined Φm : S(R) → S(R) ∪ {∅} with
Φm(J) = Jm for all J ∈ S(R); (m ≥ 2).

In [9], Ebrahimpour and Nekooei have introduced the concept of
(n− 1, n)-Φm-prime ideal, i.e., a proper ideal P of R with the property
that a1 . . . an ∈ P\Pm implies a1 . . . ai−1ai+1 . . . an ∈ P for some i ∈
{1, . . . , n}, where a1, . . . , an ∈ R ;(m,n ≥ 2).

In [20], Zamani has extended the concept of ϕ-prime ideal to ϕ-
prime submodule. Let S(M) be the set of all submodules of M and
ϕ : S(M) → S(M)∪{∅} be a function. A proper submodule P of M is
called ϕ-prime submodule if rx ∈ P\ϕ(P ) implies r ∈ (P : M) or x ∈
P , where r ∈ R and x ∈ M . Zamani defined Φm : S(M) → S(M)∪{∅}
together with Φm(N) = (N : M)m−1N for all N ∈ S(M); (m ≥ 2).

In [10], Ebrahimpour and Nekooei have introduced the concept of
(n − 1, n) − ϕm-prime submodule, i.e. a proper submodule P of M
with the property that a1 . . . an−1x ∈ P\(P : M)m−1P implies

a1 . . . ai−1ai+1 . . . an−1x ∈ P,

for some i ∈ {1, . . . , n−1} or a1 . . . an−1 ∈ (P : M), where a1, . . . , an−1∈
R and x ∈ M . Thus a (1, 2)-Φ2-prime submodule is just almost prime.
The (1, 2)-Φm-prime submodules is called ”Φm-prime”

In [12], Ebrahimpour has established the concept of (n−1, n)-weakly
multiplicatively-closed subset of R, denoted by (n−1, n)-W. M. closed,
i.e. a subset S of R with the property that a1, . . . , an ∈ R, and

a1 . . . ai−1ai+1 . . . an ∈ S,

imply a1 . . . an ∈ S ∪ {0} for all i ∈ {1, . . . , n}. Moreover, it has been
said that S is an (n − 1, n)-Φm-multiplicatively-closed subset of R,
denoted by (n− 1, n)− ϕm-M. closed if a1, . . . , an ∈ R, and

a1 . . . ai−1ai+1 . . . an ∈ S,

imply a1 . . . an ∈ S ∪ (R\S)m for all i ∈ {1, . . . , n}; (n,m ≥ 2).
Let R be a ring, M be an R−module, and S, S∗ be non-empty sub-

sets of R and M , respectively. In this paper, we introduce the concepts
of (n−1, n)-multiplicatively S-closed, (n−1, n)-weakly multiplicatively
S-closed and (n−1, n)−ϕm- multiplicatively S-closed subsets S∗ of M ,
and prove some basic properties of these subsets. Also we prove the gen-
eralized version of some well-known theorems about multiplicatively-
closed subsets of R.
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2. (n− 1, n)-MULTIPLICATIVELY S-CLOSED SUBSETS

We say that a non-empty subset S of R is (n−1, n)-multiplicatively-
closed, denoted (n− 1, n)-M. closed, if a1, ..., an ∈ R, and

a1...ai−1ai+1...an ∈ S,

for all i ∈ {1, ..., n} implies a1...an ∈ S, (n ≥ 2). Also we say that an
(n−1, n)-multiplicatively-closed subset S of R is saturated if a1, ..., an ∈
R together with a1...an ∈ S imply a1...ai−1ai+1...an ∈ S for all i ∈
{1, ...n}. The (1, 2)-M. closed and saturated (1, 2)-M. closed subsets of
R are denoted by M. closed and saturated M. closed, respectively.

Let R be a ring,M be an R−module, and S, S∗ be non-empty subsets
of R and M , respectively. We say that S∗ is (n− 1, n)-multiplicatively
S-closed, denoted by (n − 1, n)-M. S-closed if a1, ..., an−1 ∈ R and
x ∈ M together with a1...ai−1ai+1...an−1x ∈ S∗ for all i ∈ {1, ..., n−1},
imply a1...an−1x ∈ S∗ and a1...an−1 ∈ S. Furthermore, we say that S∗

is a saturated (n − 1, n)-M. S-closed subset of M if a1, ..., an−1 ∈ R
and x ∈ M together with a1...an−1x ∈ S∗ imply a1...an−1 ∈ S and
a1...ai−1ai+1...an−1x ∈ S∗ for all i ∈ {1, ...n− 1} (n ≥ 2). The (1, 2)-M.
S-closed and saturated (1, 2)-M. S-closed subsets of M are denoted by
M. S-closed and saturated M. S-closed, respectively.

Proposition 2.1. Let R be a ring, M be an R−module, and P be a
proper submodule of M . Then P is an (n − 1, n)-prime submodule of
M if and only if M \P is an (n−1, n)-M. S-closed subset of M , where
S = R \ (P : M); (n ≥ 2).

Proof. (⇒) Let S∗ = M \ P , and P be an (n− 1, n)-prime submodule
of M . Let a1, . . . , an−1 ∈ R, and x ∈ M with a1 . . . ai−1ai+1 . . . an−1x ∈
S∗, for all i ∈ {1, . . . , n− 1}, and a1...an−1 ∈ S. Let a1 . . . an−1x ̸∈ S∗.
Thus a1...an−1x ∈ P . Since P is (n− 1, n)-prime, we have

a1 . . . ai−1ai+1 . . . an−1x ∈ P,

for some i ∈ {1, . . . , n − 1} or a1...an−1 ∈ (P : M), which are contra-
dictions. Thus a1 . . . an−1x ∈ S∗. Therefore, M \ P is an (n− 1, n)-M.
S-closed subset of M .

(⇐) LetM\P be an (n−1, n)-M. S-closed subset ofM , a1, . . . , an−1 ∈
R, and x ∈ M with a1 . . . an−1x ∈ P . If a1 . . . ai−1ai+1 . . . an−1x ̸∈ P ,
for all i ∈ {1, . . . , n− 1}, and a1...an−1 ̸∈ (P : M), then a1 . . . an−1x ∈
(M \ P ) because S∗ is (n − 1, n)-multiplicatively S-closed, which is a
contradiction. Thus there exists i ∈ {1, . . . , n− 1} such that

a1 . . . ai−1ai+1 . . . an−1x ∈ P
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or a1...an−1 ∈ (P : M). Therefore, P is an (n− 1, n)-prime submodule
of M . □

Let R be a ring, and S be a multiplicatively-closed subset of R. It is
well-known that if an ideal I is maximal with respect to I∩S = ∅, then
I is a prime ideal of R [16, Theorem 2.2]. In Example 2.2, we show
that a similar result does not hold for (n− 1, n)-M. S-closed subsets of
an R−module M , where S is a non-empty subset of R.

Example 2.2. Let R = Z
16Z , M = R, and N = 8Z

16Z and S∗ = S =

{1, 3, 9, 11}. Then S∗ is an M. S-closed subset of M , and N is maximal
with respect to N ∩ S∗ = ∅. But N is not prime because 2.4 ∈ N but
2 ̸∈ (N : M) and 4 ̸∈ N .

Theorem 2.3. Let R be an Artinian ring, M be a multiplicative R−
module, and S∗ be a saturated M. S-closed subset of M , where S is a
non-empty subset of R. Let N be a submodule of M that is maximal
with respect to N ∩ S∗ = ∅. Then N is a prime submodule of M .

Proof. We show that (N : M) ∩ S = ∅. If (N : M) ∩ S ̸= ∅, then there
exists an s ∈ (N : M)∩S. Thus for every x ∈ S∗, we have sx ∈ S∗∩N
which is a contradiction. Therefore, (N : M) ∩ S = ∅.

Now, we show that N is maximal with (N : M) ∩ S = ∅. If not,
then there exists an ideal I of R such that (N : M) ⊂ I and I ∩S = ∅.
Notice that M is cyclic, by [13, Page 764]. Let M = Rm. If IM =
(N : M)M = N , then for every a ∈ I, there exists a b ∈ (N : M) such
that am = bm. Thus (a − b)M = {0} ⊆ N . Thus (a − b) ∈ (N : M),
and hence a ∈ (N : M). Thus I = (N : M), which is a contradiction.
Thus N = (N : M)N ⊂ IM . Thus S∗ ∩ IM ̸= ∅. Thus there exists an
r ∈ I such that rm ∈ S∗. Since S∗ is saturated we have r ∈ S. Thus
r ∈ I ∩ S, which is a contradiction. Therefore, (N : M) is maximal
with (N : M) ∩ S = ∅.

We show that (N : M)S is a maximal ideal of RS. Let QS be a
maximal ideal of RS over (N : M)S. Thus Q is a prime ideal of R
with Q ∩ S = ∅. Let r ∈ (N : M). Thus r

1
∈ QS. Thus there exists

an s ∈ S such that sr ∈ Q. Since Q ∩ S = ∅, we have r ∈ Q. Thus
(N : M) ⊆ Q, and so (N : M) = Q, because, Q ∩ S = ∅. Therefore,
(N : M)S is a maximal ideal of RS.

SinceM is finitely generated and (N : M)∩S = ∅, we haveNS ̸= MS.
Also (N : M)S ⊆ (NS : MS) ̸= R. Thus (N : M)S = (NS : MS). Thus
NS is a prime submodule of MS, by [18, Proposition 1 ], and so N is a
prime submodule of M , by [17, Proposition 2]. □
Theorem 2.4. Let R be a ring, M be an R−module, S be a non-empty
subset of R, and S∗ be an (n, n + 1)-M. S-closed subset of M . If for
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every x1, ..., xn ∈ S∗ there exists ri ∈ (Rxi : M), for i = 1, ...n, such
that r1...rn ∈ S and r1...rj−1rj+1...rnS

∗ ⊆ S∗, for all j ∈ {1, ..., n}, and
N is a submodule of M with the property that N ∩ S∗ = ∅. Then there
exists an (n − 1, n)-prime submodule P of M such that N ⊆ P and
P ∩ S∗ = ∅, (n ≥ 2).

Proof. Put µ = {T ≤ M |N ⊆ T, T ∩S∗ = ∅}. By Zorn’s lemma, µ has
a maximal element P . We show that P is an (n−1, n)-prime submodule
of M . Let a1, ..., an−1 ∈ R and x ∈ M together with a1...an−1x ∈ P .
Assume that a1...an−1 ̸∈ (P : M) and a1...ai−1ai+1...an−1x ̸∈ P for
all i ∈ {1, ..., n − 1}. Then (P + (a1...an−1)M) ∩ S∗ ̸= ∅ and (P +
(a1...ai−1ai+1...an−1x)) ∩ S∗ ̸= ∅, for all i ∈ {1, ..., n− 1}. Hence, there
exists x1, ..., xn ∈ S∗ such that xi ∈ P +(a1..ai−1ai+1...an−1x) for all i ∈
{1, ..., n− 1} and xn ∈ P + (a1...an−1M). By assumption, there exists
an ri ∈ (Rxi : M) such that r1...rn ∈ S and r1...ri−1ri+1...rnS

∗ ⊆ S∗

for all i ∈ {1, ..., n}. But r1...rn−1(a1...an−1)M ⊆ P +(a1...an−1x) ⊆ P .
Therefore, r1...rnM ⊆ (r1...rn−1xn) ⊆ P +(r1...rn−1)(a1...an−1)M ⊆ P .
Since S∗ is (n, n + 1)-M. S-closed, we have r1...rnS

∗ ⊆ P ∩ S∗, which
is a contradiction. Thus P is an (n− 1, n)-prime submodule of M . □

3. (n− 1, n)-WEAKLY MULTIPLICATIVELY S-CLOSED
SUBSETS

LetR be a ring. A non-empty subset S ofR is weakly multiplicatively-
closed, denoted by W. M. closed, if a, b ∈ S implies ab ∈ S ∪ {0}.

We say that an (n− 1, n)-weakly multiplicatively-closed subset S of
R is saturated if a1, ..., an ∈ R together with a1...an ∈ S ∪ {0} imply

a1...ai−1ai+1...an ∈ S ∪ {0},
for all i ∈ {1, ...n}, (n ≥ 2).

Remark that the (1, 2)-W. M. closed and saturated (1, 2)-W. M.
closed subsets of R are W. M. closed and saturated W. M. closed,
respectively.

Now, we generalize these concepts to modules.
Let R be a ring, M be an R−module, and S, S∗ be non-empty

subsets of R and M , respectively. We say that S∗ is (n − 1, n)-
weakly multiplicatively S-closed, denoted by (n−1, n)-W. M. S-closed
if a1, ..., an−1 ∈ R and x ∈ M together with a1...ai−1ai+1...an−1x ∈ S∗

for all i ∈ {1, ..., n− 1} and a1...an−1 ∈ S imply a1...an−1x ∈ S∗ ∪ {0}.
Furthermore, we say that S∗ is a saturated (n − 1, n)-W. M. S-closed
subset of M if a1, ..., an−1 ∈ R and x ∈ M together with a1...an−1x ∈
S∗∪{0} imply a1...an−1 ∈ S ∪{0} and a1...ai−1ai+1...an−1x ∈ S∗∪{0},
for all i ∈ {1, ...n− 1}, (n ≥ 2).
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The (1, 2)-W. M. S-closed and saturated (1, 2)-W. M. S-closed sub-
sets ofM are denoted by W. M. S-closed and saturated W. M. S-closed,
respectively.

It is clear that every (n− 1, n)-M.S-closed subset of M is (n− 1, n)-
W. M. S-closed. But the converse is not true, in general. For example,
let M = R = Z6 and S = S∗ = {3, 4}. Since 0 = 3.4 ̸∈ S∗, S∗ is not
M. S-closed but it is clear that S∗ is W. M. S-closed.

Proposition 3.1. Let R be a ring, M an R−module and S be a W.
M. closed subset of R. If S∗ is a saturated W. M. S-closed subset of
M , then S is a saturated W. M. closed subset of R.

Proof. Let a, b ∈ R and ab ∈ S∪{0}. Since S∗ ̸= ∅, there exists x ∈ S∗.
Thus abx ∈ S∗ ∪ {0}. Since S∗ is saturated, we have a ∈ S ∪ {0} and
bx ∈ S∗ ∪ {0}. Thus a ∈ S ∪ {0} and b ∈ S ∪ {0}. Therefore, S is
saturated. □

It is clear that every (n − 1, n)-W. M. closed subset S of R is an
(n − 1, n)-W. M. S-closed subset of R as an R−module. But every
(n−1, n)-W. M. S-closed subset of R as R−module is not an (n−1, n)-
W. M. closed subset of R as a ring in general.

Example 3.2. Let R = M = Z6 and S = {3} and S∗ = {0, 2}. It is
clear that S∗ is a W. M. S-closed subset of M . But S∗ is not a W. M.
closed subset of R. Because 2.2 = 4 ̸∈ S∗ ∪ {0}.
Theorem 3.3. Let R be a ring, and S, S∗ be non-empty subsets of R.
Then S∗ is a saturated W. M. S-closed subset of R as R−module if
and only if S∗ ∪ {0} = S ∪ {0}, and S∗ be a saturated W. M. closed
subset of R.

Proof. (⇒) Let S∗ be a saturated W. M. S-closed subset of R as
R−module. Then S is a saturated W. M. closed, by Proposition 2.1.
Moreover, for every x ∈ S∗ \ {0} and a ∈ S \ {0}, xa = ax ∈ S∗ ∪ {0}.
Since S∗ is saturated, then x ∈ S and a ∈ S∗. Thus S∗∪{0} = S∪{0}.

(⇐) This is clear. □
Lemma 3.4. Let R be a ring and {qi}i∈I , (n−1.n)-weakly prime ideals
of R. Then S = R \

∪
i∈I qi is a (n− 1, n)-W. M. closed subset of R.

Proof. Let a1, ..., an ∈ R with a1...aj−1aj+1...an ∈ S for all j ∈ {1, ..., n}.
Then a1...aj−1aj+1...an ̸∈ qi for every i ∈ I. If a1...an ̸∈ S ∪ {0}, then
0 ̸= a1...an ̸∈ S. Thus there exists i ∈ I such that 0 ̸= a1...an ∈ qi.
Since qi is (n − 1, n)-weakly prime, we have a1...aj−1aj+1...an ∈ qi for
some j ∈ {1, ..., n}. Therefore, a1...aj−1aj+1...an ̸∈ S, which is a con-
tradiction. Thus a1...an ∈ S ∪{0} and S is an (n− 1, n)- W. M. closed
subset of R. □
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Lemma 3.5. Let R be a ring, M be an R−module, and {Pj}j∈J be
(n − 1, n)-weakly prime submodules of M such that (Pj : M) = qj for
all j ∈ J . Then S∗ = M \

∪
j∈J Pj is an (n − 1, n)-W. M. S-closed

subset of M , where S = R \
∪

j∈J qj, (n ≥ 2).

Proof. Let S∗ = M \ ∪j∈JPj, Pj be an (n − 1, n)-weakly prime sub-
module of M for all j ∈ J , a1, . . . , an−1 ∈ R and x ∈ M together with
a1 . . . ai−1ai+1 . . . an−1x ∈ S∗ for all i ∈ {1, . . . , n−1} and a1...an−1 ∈ S.
Let a1 . . . an−1x ̸∈ S∗ ∪ {0}. Thus 0 ̸= a1...an−1x ∈ Pj for some j ∈ J .
Since Pj is (n− 1, n)-weakly prime, we have a1 . . . ai−1ai+1 . . . an−1x ∈
Pj for some i ∈ {1, . . . , n − 1} or a1...an−1 ∈ qj, which are contra-
dictions. Thus a1 . . . an−1x ∈ S∗ ∪ {0}. Therefore, M \ ∪j∈J

Pj is an
(n− 1, n)-W. M. S-closed subset of M . □
Lemma 3.6. Let R be a ring, M be an R−module, and P be a proper
submodule of M .Then, P is an (n − 1, n)-weakly prime submodule of
M if and only if M \ P is an (n − 1, n)-W. M. S-closed subset of M ,
where S = R \ (P : M); (n ≥ 2).

Proof. (⇒) Let P be an (n− 1, n)-weakly prime submodule of M . We
have M \ P is an (n − 1, n)-W. M. S-closed subset of M , by Lemma
3.5.

(⇐) Let M\P be an (n − 1, n)-W. M. S-closed subset of M and
a1, . . . , an−1 ∈ R and x ∈ M together with a1 . . . an−1x ∈ P \ {0}. If

a1 . . . ai−1ai+1 . . . an−1x ̸∈ P,

for all i ∈ {1, . . . , n − 1} and a1...an−1 ̸∈ (P : M), then a1 . . . an−1x ∈
(M \P )∪{0} because S∗ is (n−1, n)-weakly multiplicatively S-closed,
which is a contradiction. So there exists i ∈ {1, . . . , n − 1} such that
a1 . . . ai−1ai+1 . . . an−1x ∈ P or a1...an−1 ∈ (P : M). Therefore, P is an
(n− 1, n)-weakly prime submodule of M . □

Let R be a ring, M be an R−module, and Z(M) = {r ∈ R|∃0 ̸=
m ∈ M ; rm = 0}. Let S = R \Z(M), and S∗ be the set of torsion-free
elements of M . If S∗ ̸= ∅, then S∗ is a W. M. S-closed subset of M .
Now, we show that S∗ is not saturated.

Example 3.7. Let N0 = N ∪ {0} and {pn|n ∈ N} be the set of all
prime numbers. Let E(pn) = {a ∈ Q

Z |a = r
ptn

+ Z; r ∈ Z, t ∈ N0}. Then
E(pn) is a non-zero submodule of Q

Z as Z−module for all n ∈ N.
Set M =

∏
n∈NE(pn). It is clear that M is a Z−module. Let

α = (αn)n∈Z ∈ M be such that αn = rn
ptnn

+ Z ̸= 0, for infinite n.

We claim that α is a torsion-free element of M , because if there
exists m ∈ Z with mα = 0, then m( rn

ptnn
+Z) = Z and so ptnn |mrn. Since
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the greatest common divisor of pn and rn is 1, we have pn|m for all
n ∈ Z. Thus m = 0 . Therefore, α and so pkα are torsion-free for all
k ∈ Z. Thus pkα ∈ S∗ ∪ {0}. If β = (βn)n∈Z, and βn = 0, for n ̸= k
and βk =

1
pk

+ Z, then pkβ = 0. Therefore, pk ̸∈ S ∪ {0}.

Theorem 3.8. Let R be a ring, M be a torsion-free R−module, and P
be a weakly prime submodule of M . Let S∗ = M \ P and S = R \ (P :
M). Also let N be a submodule of M together with N ∩ S∗ = ∅. Then

(i) (N : M) ∩ S = ∅.
(ii) If N is maximal with respect to N ∩ S∗ = ∅, then N = {m ∈

M |sm ∈ N ; ∃s ∈ S}.

Proof. (i) Let (N : M) ∩ S ̸= ∅. Thus there exists s ∈ (N : M) ∩ S.
Let x ∈ S∗. We have sx ∈ S∗ ∩N or sx = 0, which are contradictions,
Because ann(x) = 0 and 0 ̸∈ S, S∗.

(ii) Set T = {m ∈ M |sm ∈ N ; ∃s ∈ S}, and assume that N ⊂ T .
Thus T ∩ S∗ ̸= ∅, and so there exists x ∈ S∗ such that sx ∈ N for
some s ∈ S. Since S∗ is W. M. S-closed, we have sx ∈ S∗ ∪ {0}. Thus
sx ∈ N ∩ S∗ or sx = 0, which are contradictions, because ann(x) = 0
and 0 ̸∈ S, S∗. □

Unlike the case of rings, we show that for a W. M. S-closed subset
S∗ of an R−module M and a submodule N of M that is maximal with
respect to N ∩ S∗ = ∅, it is not necessary that N be weakly prime in
general, where S is a non-empty subset of R.

Example 3.9. Let R = Z
16Z , M = R, N = 8Z

16Z , and S∗ = S = {1, 4}.
Then S∗ is a W. M. S-closed subset of M , and N is maximal with
respect to N∩S∗ = ∅. But N is not weakly prime, because 0 ̸= 2.4 ∈ N
but 2, 4 ̸∈ N .

4. (n− 1, n)− ϕm- MULTIPLICATIVELY S-CLOSED
SUBSETS

We say that an (n − 1, n) − ϕm-multiplicatively-closed subset S of
R is saturated if a1, ..., an ∈ R together with a1...an ∈ S ∪ (R \ S)m

implying a1...ai−1ai+1...an ∈ S ∪ (R \ S)m for all i ∈ {1, ...n}. For
n = 2, (1, 2) − ϕm-multiplicatively-closed and saturated (1, 2) − ϕm-
multiplicatively-closed subsets of R are denoted by ϕm-multiplicatively-
closed and saturated ϕm-multiplicatively-closed, respectively; (n,m ≥
2).
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Let R be a ring, M be an R−module, and S, S∗ be non-empty sub-
sets of R and M , respectively. We say that S∗ is (n − 1, n) − ϕm-
multiplicatively S-closed, denoted by (n − 1, n) − ϕm-M. S-closed, if
a1, ..., an−1 ∈ R and x ∈ M together with a1...ai−1ai+1...an−1x ∈ S∗,
for all i ∈ {1, ..., n − 1} and a1...an−1 ∈ S imply a1...an−1x ∈ S∗ ∪
(R \ S)m−1(M \ S∗). Furthermore, we say that S∗ is a saturated
(n− 1, n)− ϕm-M. S-closed subset of M if a1, ..., an−1 ∈ R and x ∈ M
together with a1...an−1x ∈ S∗ ∪ (R \ S)m−1(M \ S∗) imply a1...an−1 ∈
S ∪ (R \ S)m and a1...ai−1ai+1...an−1x ∈ S∗ ∪ (R \ S)m−1(M \ S∗), for
all i ∈ {1, ...n− 1}, (n,m ≥ 2). For n = 2, (1, 2)−ϕm-M. S-closed and
saturated (1, 2)− ϕm-M. S-closed subsets of M are denoted by ϕm-M.
S-closed and saturated ϕm-M. S-closed, respectively.

It is clear that every (n− 1, n)-W. M. S-closed subset of M is (n−
1.n)− ϕm-M. S-closed. But the converse is not true, in general.

Example 4.1. Let M = R = Z6 and S = S∗ = {0, 2}. Since 2.2 ̸∈
S∗ ∪ {0}, S∗ is not a W. M. S-closed subset of M . But SS∗ ⊆ S∗ ∪
(R \ S)m−1(M \ S∗). So S∗ is ϕm-M. S-closed subset of M , (m ≥ 2).

Proposition 4.2. Let R be a ring, M an R-module and S, S∗ non-
empty subsets of R and M , respectively. If S∗ be an (n− 1, n)-W. M.
S-closed subset of M , then it is (n−1, n)−ϕm-M. S-closed, (n,m ≥ 2).

Proof. Let a1, ..., an−1 ∈ R and x ∈ M together with a1...an−1 ∈ S and

a1....ai−1ai+1...an−1x ∈ S∗,

for all i ∈ {1, ..., n− 1}. Since S∗ is (n− 1, n)-W. M. S-closed, we have
a1...an−1x ∈ S∗ ∪ {0}.

If a1...an−1x ∈ S∗, then we are done. Now assume that a1...an−1x =
0. If 0 ∈ S∗, then we are done. Thus we assume that 0 ̸∈ S∗. Thus
0 ∈ M \ S∗. So a1...an−1x ∈ (R \ S)m−1(M \ S∗) . Therefore, S∗ is
(n− 1, n)− ϕm-M. S-closed. □
Lemma 4.3. Let R be a ring and {qi}i∈I , (n− 1.n)− ϕm-prime ideals
of R. Then S = R \

∪
i∈I qi is a (n− 1, n)− ϕm-M. closed subset of R.

Proof. Let a1, ..., an ∈ R together with a1...aj−1aj+1...an ∈ S, for all
j ∈ {1, ..., n}. If a1...an ̸∈ S ∪ (R \ S)m, then a1...an ∈ (∪qi) \ (∪qi)m.
Thus there exists i ∈ I such that a1...an ∈ qi \ qmi . Since qi is (n −
1, n)−ϕm- prime, we have a1...aj−1aj+1...an ∈ qi, for some j ∈ {1, ..., n}.
Therefore, a1...aj−1aj+1...an ̸∈ S, a contradiction. Thus a1...an ∈ S ∪
(R \ S)m and S is an (n− 1, n)− ϕm-M. closed subset of R. □
Proposition 4.4. Let R be a ring, M a multiplicative R−module and
P a ϕm-prime submodule of M . If S∗ = M \ P is a saturated ϕm-M.
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S-closed subset of M , then S is a saturated ϕm-M. closed subset of R,
where S = R \ (P : M).

Proof. We have P = (P : M)M , and (P : M) is a ϕm-prime ideal of
R, by [10, Lemma 4.3.(i)]. Thus S is a ϕm-M. closed subset of R, by
Lemma 4.3 . Let a, b ∈ R and ab ∈ S ∪ (R \ S)m. Since S∗ ̸= ∅, there
exists x ∈ S∗.

We show that abx ∈ S∗ ∪ (R \ S)m−1(M \ S∗). Let ab ∈ S. Since S∗

is ϕm-M. S-closed, we have abx ∈ S∗ ∪ (R \ S)m−1(M \ S∗). Now, let
ab ∈ (R \ S)m = (P : M)m. Thus abx ∈ (P : M)m−1((P : M)M) =
(P : M)m−1P . Thus abx ∈ (R \ S)m−1(M \ S∗).

Since S∗ is saturated, we have a ∈ S ∪ (R \ S)m and bx ∈ S∗ ∪ (R \
S)m−1(M \S∗). Thus a ∈ S∪(R\S)m and b ∈ S∪(R\S)m. Therefore,
S is saturated. □
Lemma 4.5. Let R be a ring, M an R−module and {Pj}j∈J , (n −
1, n) − ϕm-prime submodules of M such that (Pj : M) = qj for all
j ∈ J . Then S∗ = M \

∪
j∈J Pj is an (n−1, n)−ϕm-M. S-closed subset

of M , where S = R \
∪

j∈J qj, (n,m ≥ 2).

Proof. Let S∗ = M \ ∪j∈JPj and Pj be an (n − 1, n)− ϕm-prime sub-
module of M for all j ∈ J and a1, . . . , an−1 ∈ R and x ∈ M to-
gether with a1 . . . ai−1ai+1 . . . an−1x ∈ S∗ for all i ∈ {1, . . . , n− 1} and
a1...an−1 ∈ S. Let a1 . . . an−1x ̸∈ S∗ ∪ (R \ S)m−1(M \ S∗). Thus
a1...an−1x ∈ Pj \ qm−1

j Pj for some j ∈ J . Since Pj is (n − 1, n) − ϕm-
prime we have a1 . . . ai−1ai+1 . . . an−1x ∈ Pj for some i ∈ {1, . . . , n− 1}
or a1...an−1 ∈ qj, which are contradictions. Thus a1 . . . an−1x ∈ S∗ ∪
(R \ S)m−1(M \ P ). Therefore, M \ ∪j∈J

Pj is an (n − 1, n) − ϕm-M.
S-closed subset of M . □
Proposition 4.6. Let R be a ring, M an R−module and P a proper
submodule of M . Then P is an (n − 1, n) − ϕm- prime submodule of
M if and only if M \P is an (n− 1, n)−ϕm-M. S-closed subset of M ,
where S = R \ (P : M); (n,m ≥ 2).

Proof. (⇒) Let S∗ = M \ P and P be an (n − 1, n) − ϕm-prime sub-
module of M . Then M \P is an (n− 1, n)− ϕm-M. S-closed subset of
M , by Lemma 3.5.

(⇐) Let M\P be an (n − 1, n) − ϕm-M. S-closed subset of M and
a1, . . . , an−1 ∈ R and x ∈ M together with a1 . . . an−1x ∈ P \ (P :
M)m−1P . If a1 . . . ai−1ai+1 . . . an−1x ̸∈ P , for all i ∈ {1, . . . , n − 1}
and a1...an−1 ̸∈ (P : M), then a1 . . . an−1x ∈ (M \ P ) ∪ (P : M)m−1P
because S∗ is (n−1, n)−ϕm-M. S-closed, which is a contradiction. Thus
there exists an i ∈ {1, . . . , n−1} such that a1 . . . ai−1ai+1 . . . an−1x ∈ P
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or a1...an−1 ∈ (P : M). Therefore, P is an (n − 1, n) − ϕm-prime
submodule of M . □

Let R be a ring, M an R−module and S, S∗ non-empty subsets of
R and M , respectively. In Example 3.7, we show that if S∗ is a ϕm-M.
S-closed subset of M and N is a submodule of M that is maximal with
respect to N ∩ S∗ = ∅, then it is not necessary that N be a ϕm-prime
submodule of M , (m ≥ 2).

Example 4.7. Let R,M,N, S and S∗ be as Example 3.9. Then S∗

is a ϕm-M. S-closed subset of M and N is maximal with respect to
N ∩ S∗ = ∅. But N is not ϕm-prime, because 2.4 ∈ N \ (N : M)m−1N
but 2 ̸∈ (N : M) and 4 ̸∈ N , (m ≥ 2).
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ضربی بسته زیر�مجموعه�های از تعمیم�هایی در نکته چند

پور ابراهیم مهدیه
ایران رفسنجان، ، عصر(عج) ولی دانشگاه ریاضی، دانشکده

مفهوم ما مقاله این در باشد. یکانی R-مدول یک M و یکدار و جابجایی حلقه�ای R کنید فرض
تعمیم زیرمجموعه�های این خواص از برخی و داده تعمیم M مدول به را R ضربی بسته زیرمجموعه�های
از برخی تعمیم به توان می آمده مقاله این در که زیادی نتایج بین در می�کنیم. مطالعه را شده داده
نشان همچنین کرد. Mاشاره مدول به R حلقه در ضربی بسته زیرمجموعه�های مورد در معروف قضایای
این تعمیم در R حلقه در ضربی بسته زیرمجموعه�های درباره معروف قضایای از دیگر برخی که می�دهیم

نیستند. برقرار M مدول برای زیرمجموعه�ها

S−بسته مجموعه�های زیر ضربی، بسته زیرمجموعه�های ضربی، مدول�های کلیدی: کلمات
زیر ،M از ضعیف −n)-ضربی ١, n) S−بسته مجموعه�های زیر ،M از −n)-ضربی ١, n)

.M از −ϕm-(n−ضربی ١, n) S−بسته مجموعه�های

٢
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