Journal of Algebraic Systems Vol. 4, No. 1, (2016), pp 15-27 DOI: 10.22044/jas.2016.725

SOME REMARKS ON GENERALIZATIONS OF MULTIPLICATIVELY-CLOSED SUBSETS

M. EBRAHIMPOUR*

ABSTRACT. Let R be a commutative ring with an identity, and M be a unitary R-module. In this paper, the concept of multiplicatively-closed subset of R is generalized, and some properties of the generalized subsets of M are studied. Some well-known theorems about multiplicatively-closed subsets of R are also generalized, and it is shown that some other well-known results are not valid for M.

1. INTRODUCTION

We assume throughout that all rings are commutative with $1 \neq 0$ and all modules are unital. Let R be a ring, M be an R-module, and N be a submodule of M. We know that $(N : M) = \{r \in R | rM \subseteq N\}$ is an ideal of R. The R-module M is multiplicative if for every submodule N of M there exists an ideal I of R such that N = IM. It is easy to show that N = (N : M)M.

Let R be a ring. The subset S of R is called a multiplicatively-closed subset if $a, b \in S$ implies $ab \in S$, where $a, b \in R$. Let P be a prime ideal of R, i.e., a proper ideal with the property that $ab \in P$ implies $a \in P$ or $b \in P$, where $a, b \in R$. A proper submodule P of M is called a prime submodule if $r \in R$ and $x \in M$ together with $rx \in P$ implies

MSC(2010): Primary: 13C05; Secondary:13C13.

Keywords: Multiplicative module, multiplicatively-closed subset of R, (n - 1, n)multiplicatively S-closed subset of M, (n - 1, n)-weakly multiplicatively S-closed subset of M, $(n - 1, n) - \phi_m$ -multiplicatively S-closed subset of M.

Received: 2 September 2015, Revised: 27 April 2016.

^{*}Corresponding author.

 $r \in (P:M)$ or $x \in P$. It is easy to show that if P is a prime submodule of M, then (P:M) is a prime ideal of R.

In [6], Badawi has introduced the concept of 2-absorbing ideal, and has generalized this concept to *n*-absorbing ideal, i.e. a proper ideal Pof R with the property that $a_1 \ldots a_{n+1} \in P$ implies $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n+1} \in P$, for some $i \in \{1, \ldots, n+1\}$, where $a_1, \ldots, a_{n+1} \in R$. In [2], Anderson and Badawi have studied *n*-absorbing ideals for $n \geq 2$.

In [9] and [11], an (n-1)-absorbing ideal P of R has been denoted by (n-1,n)-prime ideal. Thus a (1,2)-prime ideal is just a prime ideal. In [4], this concept has been studied with respect to non-unique factorization for principal ideals in an integral domain.

Also in [10], Ebrahimpour and Nekooei have established the concept of (n-1,n)-prime submodule, i.e., a proper submodule P of M with the property that $a_1...a_{n-1}x \in P$ implies $a_1...a_{n-1} \in (P:M)$ or $a_1...a_{i-1}a_{i+1}...a_{n-1}x \in P$ for some $i \in \{1, ..., n-1\}$, where $a_1, ..., a_{n-1} \in R$ and $x \in M$. Note that a (1, 2)-prime submodule is just a prime submodule.

In [5], Anderson and Smith have defined a weakly prime ideal, i.e. a proper ideal P of R with the property that $0 \neq ab \in P$ implies $a \in P$ or $b \in P$, where $a, b \in R$. The notion of a weakly prime element (i.e. an element $p \in R$ such that (p) is a weakly prime ideal) has been introduced by Galovich [14], while the subject of unique factorization rings with zero divisors has been studied. In [19], Nekooei has extended this concept to weakly prime submodule, i.e. a proper submodule P of M with the property that $0 \neq rx \in P$ implies $x \in P$ or $r \in (P : M)$, where $r \in R$ and $x \in M$.

In [9], Ebrahimpour and Nekooei have defined a proper ideal P of R to be (n-1,n)-weakly prime if $a_1, \ldots, a_n \in R$ together with $0 \neq a_1 \ldots a_n \in P$ imply $a_1 \ldots a_{i-1}a_{i+1} \ldots a_n \in P$, for some $i \in \{1, \ldots, n\}$. In [10], it has been established that a proper submodule P of M is (n-1,n)-weakly prime if $0 \neq a_1 \ldots a_{n-1}x \in P$ implies $a_1 \ldots a_{n-1} \in (P:M)$ or $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}x \in P$, for some $i \in \{1, \ldots, n-1\}$, where $a_1, \ldots, a_{n-1} \in R$ and $x \in M$. Thus a (1, 2)-weakly prime submodule is just a weakly prime submodule.

In studying unique factorization domains, Bhatwadekar and Sharma [8] have defined the notion of almost prime ideals, i.e. a proper ideal P of R with the property that $ab \in P \setminus P^2$ implies $a \in P$ or $b \in P$, where $a, b \in R$. Thus a weakly prime ideal is almost prime, and any proper idempotent ideal is also almost prime.

In [3], Anderson and Bataineh have extended the concept of prime ideals to Φ -prime ideals, as follows: Let R be a commutative ring, and S(R) be the set of ideals of R. Let $\Phi : S(R) \to S(R) \cup \{\emptyset\}$ be a function.

A proper ideal P of R is called Φ -prime if $ab \in P \setminus \Phi(P)$ implies $a \in P$ or $b \in P$, where $a, b \in R$. They defined $\Phi_m : S(R) \to S(R) \cup \{\emptyset\}$ with $\Phi_m(J) = J^m$ for all $J \in S(R)$; $(m \ge 2)$.

In [9], Ebrahimpour and Nekooei have introduced the concept of (n-1, n)- Φ_m -prime ideal, i.e., a proper ideal P of R with the property that $a_1 \ldots a_n \in P \setminus P^m$ implies $a_1 \ldots a_{i-1}a_{i+1} \ldots a_n \in P$ for some $i \in \{1, \ldots, n\}$, where $a_1, \ldots, a_n \in R$; $(m, n \geq 2)$.

In [20], Zamani has extended the concept of ϕ -prime ideal to ϕ prime submodule. Let S(M) be the set of all submodules of M and $\phi: S(M) \to S(M) \cup \{\emptyset\}$ be a function. A proper submodule P of M is called ϕ -prime submodule if $rx \in P \setminus \phi(P)$ implies $r \in (P:M)$ or $x \in$ P, where $r \in R$ and $x \in M$. Zamani defined $\Phi_m: S(M) \to S(M) \cup \{\emptyset\}$ together with $\Phi_m(N) = (N:M)^{m-1}N$ for all $N \in S(M)$; $(m \geq 2)$.

In [10], Ebrahimpour and Nekooei have introduced the concept of $(n-1,n) - \phi_m$ -prime submodule, i.e. a proper submodule P of M with the property that $a_1 \ldots a_{n-1} x \in P \setminus (P:M)^{m-1} P$ implies

$$a_1 \dots a_{i-1} a_{i+1} \dots a_{n-1} x \in P,$$

for some $i \in \{1, \ldots, n-1\}$ or $a_1 \ldots a_{n-1} \in (P:M)$, where $a_1, \ldots, a_{n-1} \in R$ and $x \in M$. Thus a (1, 2)- Φ_2 -prime submodule is just almost prime. The (1, 2)- Φ_m -prime submodules is called " Φ_m -prime"

In [12], Ebrahimpour has established the concept of (n-1, n)-weakly multiplicatively-closed subset of R, denoted by (n-1, n)-W. M. closed, i.e. a subset S of R with the property that $a_1, \ldots, a_n \in R$, and

$$a_1 \dots a_{i-1} a_{i+1} \dots a_n \in S,$$

imply $a_1 \ldots a_n \in S \cup \{0\}$ for all $i \in \{1, \ldots, n\}$. Moreover, it has been said that S is an (n - 1, n)- Φ_m -multiplicatively-closed subset of R, denoted by $(n - 1, n) - \phi_m$ -M. closed if $a_1, \ldots, a_n \in R$, and

$$a_1 \dots a_{i-1} a_{i+1} \dots a_n \in S,$$

imply $a_1 \ldots a_n \in S \cup (R \setminus S)^m$ for all $i \in \{1, \ldots, n\}$; $(n, m \ge 2)$.

Let R be a ring, M be an R-module, and S, S^* be non-empty subsets of R and M, respectively. In this paper, we introduce the concepts of (n-1, n)-multiplicatively S-closed, (n-1, n)-weakly multiplicatively S-closed and $(n-1, n) - \phi_m$ - multiplicatively S-closed subsets S^* of M, and prove some basic properties of these subsets. Also we prove the generalized version of some well-known theorems about multiplicativelyclosed subsets of R.

2. (n-1,n)-MULTIPLICATIVELY S-CLOSED SUBSETS

We say that a non-empty subset S of R is (n-1, n)-multiplicativelyclosed, denoted (n-1, n)-M. closed, if $a_1, \ldots, a_n \in R$, and

$$a_1 \dots a_{i-1} a_{i+1} \dots a_n \in S,$$

for all $i \in \{1, ..., n\}$ implies $a_1...a_n \in S$, $(n \ge 2)$. Also we say that an (n-1, n)-multiplicatively-closed subset S of R is saturated if $a_1, ..., a_n \in R$ together with $a_1...a_n \in S$ imply $a_1...a_{i-1}a_{i+1}...a_n \in S$ for all $i \in \{1, ...n\}$. The (1, 2)-M. closed and saturated (1, 2)-M. closed subsets of R are denoted by M. closed and saturated M. closed, respectively.

Let R be a ring, M be an R-module, and S, S^{*} be non-empty subsets of R and M, respectively. We say that S^{*} is (n-1, n)-multiplicatively S-closed, denoted by (n-1, n)-M. S-closed if $a_1, ..., a_{n-1} \in R$ and $x \in M$ together with $a_1...a_{i-1}a_{i+1}...a_{n-1}x \in S^*$ for all $i \in \{1, ..., n-1\}$, imply $a_1...a_{n-1}x \in S^*$ and $a_1...a_{n-1} \in S$. Furthermore, we say that S^{*} is a saturated (n-1, n)-M. S-closed subset of M if $a_1, ..., a_{n-1} \in R$ and $x \in M$ together with $a_1...a_{n-1}x \in S^*$ imply $a_1...a_{n-1} \in S$ and $a_1...a_{i-1}a_{i+1}...a_{n-1}x \in S^*$ for all $i \in \{1, ..., n-1\}$ $(n \ge 2)$. The (1, 2)-M. S-closed and saturated (1, 2)-M. S-closed subsets of M are denoted by M. S-closed and saturated M. S-closed, respectively.

Proposition 2.1. Let R be a ring, M be an R-module, and P be a proper submodule of M. Then P is an (n-1,n)-prime submodule of M if and only if $M \setminus P$ is an (n-1,n)-M. S-closed subset of M, where $S = R \setminus (P : M); (n \ge 2).$

Proof. (\Rightarrow) Let $S^* = M \setminus P$, and P be an (n-1, n)-prime submodule of M. Let $a_1, \ldots, a_{n-1} \in R$, and $x \in M$ with $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}x \in$ S^* , for all $i \in \{1, \ldots, n-1\}$, and $a_1 \ldots a_{n-1} \in S$. Let $a_1 \ldots a_{n-1}x \notin S^*$. Thus $a_1 \ldots a_{n-1}x \in P$. Since P is (n-1, n)-prime, we have

 $a_1 \dots a_{i-1} a_{i+1} \dots a_{n-1} x \in P,$

for some $i \in \{1, \ldots, n-1\}$ or $a_1 \ldots a_{n-1} \in (P : M)$, which are contradictions. Thus $a_1 \ldots a_{n-1}x \in S^*$. Therefore, $M \setminus P$ is an (n-1, n)-M. S-closed subset of M.

 (\Leftarrow) Let $M \setminus P$ be an (n-1, n)-M. S-closed subset of $M, a_1, \ldots, a_{n-1} \in R$, and $x \in M$ with $a_1 \ldots a_{n-1} x \in P$. If $a_1 \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \notin P$, for all $i \in \{1, \ldots, n-1\}$, and $a_1 \ldots a_{n-1} \notin (P : M)$, then $a_1 \ldots a_{n-1} x \in (M \setminus P)$ because S^* is (n-1, n)-multiplicatively S-closed, which is a contradiction. Thus there exists $i \in \{1, \ldots, n-1\}$ such that

$$a_1 \dots a_{i-1} a_{i+1} \dots a_{n-1} x \in P$$

or $a_1...a_{n-1} \in (P:M)$. Therefore, P is an (n-1,n)-prime submodule of M.

Let R be a ring, and S be a multiplicatively-closed subset of R. It is well-known that if an ideal I is maximal with respect to $I \cap S = \emptyset$, then I is a prime ideal of R [16, Theorem 2.2]. In Example 2.2, we show that a similar result does not hold for (n-1, n)-M. S-closed subsets of an R-module M, where S is a non-empty subset of R.

Example 2.2. Let $R = \frac{\mathbb{Z}}{16\mathbb{Z}}$, M = R, and $N = \frac{8\mathbb{Z}}{16\mathbb{Z}}$ and $S^* = S = \{\overline{1}, \overline{3}, \overline{9}, \overline{11}\}$. Then S^* is an M. S-closed subset of M, and N is maximal with respect to $N \cap S^* = \emptyset$. But N is not prime because $\overline{2}, \overline{4} \in N$ but $\overline{2} \notin (N : M)$ and $\overline{4} \notin N$.

Theorem 2.3. Let R be an Artinian ring, M be a multiplicative R-module, and S^* be a saturated M. S-closed subset of M, where S is a non-empty subset of R. Let N be a submodule of M that is maximal with respect to $N \cap S^* = \emptyset$. Then N is a prime submodule of M.

Proof. We show that $(N:M) \cap S = \emptyset$. If $(N:M) \cap S \neq \emptyset$, then there exists an $s \in (N:M) \cap S$. Thus for every $x \in S^*$, we have $sx \in S^* \cap N$ which is a contradiction. Therefore, $(N:M) \cap S = \emptyset$.

Now, we show that N is maximal with $(N : M) \cap S = \emptyset$. If not, then there exists an ideal I of R such that $(N : M) \subset I$ and $I \cap S = \emptyset$. Notice that M is cyclic, by [13, Page 764]. Let M = Rm. If IM = (N : M)M = N, then for every $a \in I$, there exists a $b \in (N : M)$ such that am = bm. Thus $(a - b)M = \{0\} \subseteq N$. Thus $(a - b) \in (N : M)$, and hence $a \in (N : M)$. Thus I = (N : M), which is a contradiction. Thus $N = (N : M)N \subset IM$. Thus $S^* \cap IM \neq \emptyset$. Thus there exists an $r \in I$ such that $rm \in S^*$. Since S^* is saturated we have $r \in S$. Thus $r \in I \cap S$, which is a contradiction. Therefore, (N : M) is maximal with $(N : M) \cap S = \emptyset$.

We show that $(N : M)_S$ is a maximal ideal of R_S . Let Q_S be a maximal ideal of R_S over $(N : M)_S$. Thus Q is a prime ideal of R with $Q \cap S = \emptyset$. Let $r \in (N : M)$. Thus $\frac{r}{1} \in Q_S$. Thus there exists an $s \in S$ such that $sr \in Q$. Since $Q \cap S = \emptyset$, we have $r \in Q$. Thus $(N : M) \subseteq Q$, and so (N : M) = Q, because, $Q \cap S = \emptyset$. Therefore, $(N : M)_S$ is a maximal ideal of R_S .

Since M is finitely generated and $(N:M)\cap S = \emptyset$, we have $N_S \neq M_S$. Also $(N:M)_S \subseteq (N_S:M_S) \neq R$. Thus $(N:M)_S = (N_S:M_S)$. Thus N_S is a prime submodule of M_S , by [18, Proposition 1], and so N is a prime submodule of M, by [17, Proposition 2].

Theorem 2.4. Let R be a ring, M be an R-module, S be a non-empty subset of R, and S^{*} be an (n, n + 1)-M. S-closed subset of M. If for

every $x_1, ..., x_n \in S^*$ there exists $r_i \in (Rx_i : M)$, for i = 1, ...n, such that $r_1...r_n \in S$ and $r_1...r_{j-1}r_{j+1}...r_nS^* \subseteq S^*$, for all $j \in \{1, ..., n\}$, and N is a submodule of M with the property that $N \cap S^* = \emptyset$. Then there exists an (n - 1, n)-prime submodule P of M such that $N \subseteq P$ and $P \cap S^* = \emptyset$, $(n \ge 2)$.

Proof. Put $\mu = \{T \leq M | N \subseteq T, T \cap S^* = \emptyset\}$. By Zorn's lemma, μ has a maximal element *P*. We show that *P* is an (n-1, n)-prime submodule of *M*. Let $a_1, ..., a_{n-1} \in R$ and $x \in M$ together with $a_1...a_{n-1}x \in P$. Assume that $a_1...a_{n-1} \notin (P : M)$ and $a_1...a_{i-1}a_{i+1}...a_{n-1}x \notin P$ for all $i \in \{1, ..., n-1\}$. Then $(P + (a_1...a_{n-1})M) \cap S^* \neq \emptyset$ and $(P + (a_1...a_{i-1}a_{i+1}...a_{n-1}x)) \cap S^* \neq \emptyset$, for all $i \in \{1, ..., n-1\}$. Hence, there exists $x_1, ..., x_n \in S^*$ such that $x_i \in P + (a_1...a_{i-1}a_{i+1}...a_{n-1}x)$ for all $i \in$ $\{1, ..., n-1\}$ and $x_n \in P + (a_1...a_{n-1}M)$. By assumption, there exists an $r_i \in (Rx_i : M)$ such that $r_1...r_n \in S$ and $r_1...r_{i-1}r_{i+1}...r_nS^* \subseteq S^*$ for all $i \in \{1, ..., n\}$. But $r_1...r_{n-1}(a_1...a_{n-1})M \subseteq P + (a_1...a_{n-1}x)M \subseteq P$. Therefore, $r_1...r_nM \subseteq (r_1...r_{n-1}x_n) \subseteq P + (r_1...r_nS^* \subseteq P \cap S^*$, which is a contradiction. Thus *P* is an (n-1, n)-prime submodule of *M*. □

3. (n-1,n)-WEAKLY MULTIPLICATIVELY S-CLOSED SUBSETS

Let R be a ring. A non-empty subset S of R is weakly multiplicativelyclosed, denoted by W. M. closed, if $a, b \in S$ implies $ab \in S \cup \{0\}$.

We say that an (n-1, n)-weakly multiplicatively-closed subset S of R is saturated if $a_1, ..., a_n \in R$ together with $a_1...a_n \in S \cup \{0\}$ imply

$$a_1...a_{i-1}a_{i+1}...a_n \in S \cup \{0\},\$$

for all $i \in \{1, ..., n\}, (n \ge 2)$.

Remark that the (1,2)-W. M. closed and saturated (1,2)-W. M. closed subsets of R are W. M. closed and saturated W. M. closed, respectively.

Now, we generalize these concepts to modules.

Let R be a ring, M be an R-module, and S, S^* be non-empty subsets of R and M, respectively. We say that S^* is (n - 1, n)weakly multiplicatively S-closed, denoted by (n - 1, n)-W. M. S-closed if $a_1, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_1 \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in S^*$ for all $i \in \{1, \ldots, n - 1\}$ and $a_1 \ldots a_{n-1} \in S$ imply $a_1 \ldots a_{n-1} x \in S^* \cup \{0\}$. Furthermore, we say that S^* is a saturated (n - 1, n)-W. M. S-closed subset of M if $a_1, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_1 \ldots a_{n-1} x \in$ $S^* \cup \{0\}$ imply $a_1 \ldots a_{n-1} \in S \cup \{0\}$ and $a_1 \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in S^* \cup \{0\}$, for all $i \in \{1, \ldots, n - 1\}, (n \geq 2)$. The (1, 2)-W. M. S-closed and saturated (1, 2)-W. M. S-closed subsets of M are denoted by W. M. S-closed and saturated W. M. S-closed, respectively.

It is clear that every (n-1, n)-M.S-closed subset of M is (n-1, n)-W. M. S-closed. But the converse is not true, in general. For example, let $M = R = \mathbb{Z}_6$ and $S = S^* = \{\overline{3}, \overline{4}\}$. Since $0 = \overline{3}.\overline{4} \notin S^*$, S^* is not M. S-closed but it is clear that S^* is W. M. S-closed.

Proposition 3.1. Let R be a ring, M an R-module and S be a W. M. closed subset of R. If S^* is a saturated W. M. S-closed subset of M, then S is a saturated W. M. closed subset of R.

Proof. Let $a, b \in R$ and $ab \in S \cup \{0\}$. Since $S^* \neq \emptyset$, there exists $x \in S^*$. Thus $abx \in S^* \cup \{0\}$. Since S^* is saturated, we have $a \in S \cup \{0\}$ and $bx \in S^* \cup \{0\}$. Thus $a \in S \cup \{0\}$ and $b \in S \cup \{0\}$. Therefore, S is saturated.

It is clear that every (n-1, n)-W. M. closed subset S of R is an (n-1, n)-W. M. S-closed subset of R as an R-module. But every (n-1, n)-W. M. S-closed subset of R as R-module is not an (n-1, n)-W. M. closed subset of R as a ring in general.

Example 3.2. Let $R = M = \mathbb{Z}_6$ and $S = \{\overline{3}\}$ and $S^* = \{\overline{0}, \overline{2}\}$. It is clear that S^* is a W. M. S-closed subset of M. But S^* is not a W. M. closed subset of R. Because $\overline{2}.\overline{2} = \overline{4} \notin S^* \cup \{0\}$.

Theorem 3.3. Let R be a ring, and S, S^* be non-empty subsets of R. Then S^* is a saturated W. M. S-closed subset of R as R-module if and only if $S^* \cup \{0\} = S \cup \{0\}$, and S^* be a saturated W. M. closed subset of R.

Proof. (⇒) Let S^* be a saturated W. M. S-closed subset of R as R-module. Then S is a saturated W. M. closed, by Proposition 2.1. Moreover, for every $x \in S^* \setminus \{0\}$ and $a \in S \setminus \{0\}$, $xa = ax \in S^* \cup \{0\}$. Since S^* is saturated, then $x \in S$ and $a \in S^*$. Thus $S^* \cup \{0\} = S \cup \{0\}$. (⇐) This is clear.

Lemma 3.4. Let R be a ring and $\{q_i\}_{i \in I}$, (n-1.n)-weakly prime ideals of R. Then $S = R \setminus \bigcup_{i \in I} q_i$ is a (n-1,n)-W. M. closed subset of R.

Proof. Let $a_1, ..., a_n \in R$ with $a_1...a_{j-1}a_{j+1}...a_n \in S$ for all $j \in \{1, ..., n\}$. Then $a_1...a_{j-1}a_{j+1}...a_n \notin q_i$ for every $i \in I$. If $a_1...a_n \notin S \cup \{0\}$, then $0 \neq a_1...a_n \notin S$. Thus there exists $i \in I$ such that $0 \neq a_1...a_n \in q_i$. Since q_i is (n-1, n)-weakly prime, we have $a_1...a_{j-1}a_{j+1}...a_n \in q_i$ for some $j \in \{1, ..., n\}$. Therefore, $a_1...a_{j-1}a_{j+1}...a_n \notin S$, which is a contradiction. Thus $a_1...a_n \in S \cup \{0\}$ and S is an (n-1, n)-W. M. closed subset of R.

Lemma 3.5. Let R be a ring, M be an R-module, and $\{P_j\}_{j\in J}$ be (n-1,n)-weakly prime submodules of M such that $(P_j:M) = q_j$ for all $j \in J$. Then $S^* = M \setminus \bigcup_{j\in J} P_j$ is an (n-1,n)-W. M. S-closed subset of M, where $S = R \setminus \bigcup_{j\in J} q_j$, $(n \ge 2)$.

Proof. Let $S^* = M \setminus \bigcup_{j \in J} P_j$, P_j be an (n-1, n)-weakly prime submodule of M for all $j \in J$, $a_1, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}x \in S^*$ for all $i \in \{1, \ldots, n-1\}$ and $a_1 \ldots a_{n-1} \in S$. Let $a_1 \ldots a_{n-1}x \notin S^* \cup \{0\}$. Thus $0 \neq a_1 \ldots a_{n-1}x \in P_j$ for some $j \in J$. Since P_j is (n-1, n)-weakly prime, we have $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}x \in P_j$ for some $i \in \{1, \ldots, n-1\}$ or $a_1 \ldots a_{n-1} \in q_j$, which are contradictions. Thus $a_1 \ldots a_{n-1}x \in S^* \cup \{0\}$. Therefore, $M \setminus \bigcup_{j \in J} P_j$ is an (n-1, n)-W. M. S-closed subset of M.

Lemma 3.6. Let R be a ring, M be an R-module, and P be a proper submodule of M. Then, P is an (n - 1, n)-weakly prime submodule of M if and only if $M \setminus P$ is an (n - 1, n)-W. M. S-closed subset of M, where $S = R \setminus (P : M)$; $(n \ge 2)$.

Proof. (\Rightarrow) Let *P* be an (n-1, n)-weakly prime submodule of *M*. We have $M \setminus P$ is an (n-1, n)-W. M. *S*-closed subset of *M*, by Lemma 3.5.

 (\Leftarrow) Let $M \setminus P$ be an (n-1, n)-W. M. S-closed subset of M and $a_1, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_1 \ldots a_{n-1} x \in P \setminus \{0\}$. If

$$a_1 \dots a_{i-1} a_{i+1} \dots a_{n-1} x \notin P,$$

for all $i \in \{1, \ldots, n-1\}$ and $a_1 \ldots a_{n-1} \notin (P:M)$, then $a_1 \ldots a_{n-1}x \in (M \setminus P) \cup \{0\}$ because S^* is (n-1, n)-weakly multiplicatively S-closed, which is a contradiction. So there exists $i \in \{1, \ldots, n-1\}$ such that $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}x \in P$ or $a_1 \ldots a_{n-1} \in (P:M)$. Therefore, P is an (n-1, n)-weakly prime submodule of M.

Let R be a ring, M be an R-module, and $Z(M) = \{r \in R | \exists 0 \neq m \in M; rm = 0\}$. Let $S = R \setminus Z(M)$, and S^* be the set of torsion-free elements of M. If $S^* \neq \emptyset$, then S^* is a W. M. S-closed subset of M. Now, we show that S^* is not saturated.

Example 3.7. Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and $\{p_n | n \in \mathbb{N}\}$ be the set of all prime numbers. Let $E(p_n) = \{a \in \frac{\mathbb{Q}}{\mathbb{Z}} | a = \frac{r}{p_n^t} + \mathbb{Z}; r \in \mathbb{Z}, t \in \mathbb{N}_0\}$. Then $E(p_n)$ is a non-zero submodule of $\frac{\mathbb{Q}}{\mathbb{Z}}$ as \mathbb{Z} -module for all $n \in \mathbb{N}$.

Set $M = \prod_{n \in \mathbb{N}} E(p_n)$. It is clear that M is a \mathbb{Z} -module. Let $\alpha = (\alpha_n)_{n \in \mathbb{Z}} \in M$ be such that $\alpha_n = \frac{r_n}{p_n^{t_n}} + \mathbb{Z} \neq 0$, for infinite n.

We claim that α is a torsion-free element of M, because if there exists $m \in \mathbb{Z}$ with $m\alpha = 0$, then $m(\frac{r_n}{p_n^{t_n}} + \mathbb{Z}) = \mathbb{Z}$ and so $p_n^{t_n} | mr_n$. Since

the greatest common divisor of p_n and r_n is 1, we have $p_n|m$ for all $n \in \mathbb{Z}$. Thus m = 0. Therefore, α and so $p_k \alpha$ are torsion-free for all $k \in \mathbb{Z}$. Thus $p_k \alpha \in S^* \cup \{0\}$. If $\beta = (\beta_n)_{n \in \mathbb{Z}}$, and $\beta_n = 0$, for $n \neq k$ and $\beta_k = \frac{1}{n^k} + \mathbb{Z}$, then $p_k \beta = 0$. Therefore, $p_k \notin S \cup \{0\}$.

Theorem 3.8. Let R be a ring, M be a torsion-free R-module, and P be a weakly prime submodule of M. Let $S^* = M \setminus P$ and $S = R \setminus (P : M)$. Also let N be a submodule of M together with $N \cap S^* = \emptyset$. Then (i) $(N : M) \cap S = \emptyset$.

(ii) If N is maximal with respect to $N \cap S^* = \emptyset$, then $N = \{m \in M | sm \in N; \exists s \in S\}$.

Proof. (i) Let $(N : M) \cap S \neq \emptyset$. Thus there exists $s \in (N : M) \cap S$. Let $x \in S^*$. We have $sx \in S^* \cap N$ or sx = 0, which are contradictions, Because ann(x) = 0 and $0 \notin S, S^*$.

(ii) Set $T = \{m \in M | sm \in N; \exists s \in S\}$, and assume that $N \subset T$. Thus $T \cap S^* \neq \emptyset$, and so there exists $x \in S^*$ such that $sx \in N$ for some $s \in S$. Since S^* is W. M. S-closed, we have $sx \in S^* \cup \{0\}$. Thus $sx \in N \cap S^*$ or sx = 0, which are contradictions, because ann(x) = 0and $0 \notin S, S^*$.

Unlike the case of rings, we show that for a W. M. S-closed subset S^* of an R-module M and a submodule N of M that is maximal with respect to $N \cap S^* = \emptyset$, it is not necessary that N be weakly prime in general, where S is a non-empty subset of R.

Example 3.9. Let $R = \frac{\mathbb{Z}}{16\mathbb{Z}}$, M = R, $N = \frac{8\mathbb{Z}}{16\mathbb{Z}}$, and $S^* = S = \{\overline{1}, \overline{4}\}$. Then S^* is a W. M. S-closed subset of M, and N is maximal with respect to $N \cap S^* = \emptyset$. But N is not weakly prime, because $0 \neq \overline{2}.\overline{4} \in N$ but $\overline{2}, \overline{4} \notin N$.

4. $(n-1,n) - \phi_m$ - MULTIPLICATIVELY S-CLOSED SUBSETS

We say that an $(n-1,n) - \phi_m$ -multiplicatively-closed subset S of R is saturated if $a_1, ..., a_n \in R$ together with $a_1...a_n \in S \cup (R \setminus S)^m$ implying $a_1...a_{i-1}a_{i+1}...a_n \in S \cup (R \setminus S)^m$ for all $i \in \{1,...n\}$. For $n = 2, (1,2) - \phi_m$ -multiplicatively-closed and saturated $(1,2) - \phi_m$ multiplicatively-closed subsets of R are denoted by ϕ_m -multiplicativelyclosed and saturated ϕ_m -multiplicatively-closed, respectively; $(n,m \ge 2)$.

Let R be a ring, M be an R-module, and S, S^* be non-empty subsets of R and M, respectively. We say that S^* is $(n-1,n) - \phi_m$ -multiplicatively S-closed, denoted by $(n-1,n) - \phi_m$ -M. S-closed, if $a_1, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}x \in S^*$, for all $i \in \{1, \ldots, n-1\}$ and $a_1 \ldots a_{n-1} \in S$ imply $a_1 \ldots a_{n-1}x \in S^* \cup (R \setminus S)^{m-1}(M \setminus S^*)$. Furthermore, we say that S^* is a saturated $(n-1,n) - \phi_m$ -M. S-closed subset of M if $a_1, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_1 \ldots a_{n-1}x \in S^* \cup (R \setminus S)^{m-1}(M \setminus S^*)$ imply $a_1 \ldots a_{n-1} \in S \cup (R \setminus S)^m$ and $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}x \in S^* \cup (R \setminus S)^{m-1}(M \setminus S^*)$ for all $i \in \{1, \ldots, n-1\}$, $(n, m \ge 2)$. For $n = 2, (1, 2) - \phi_m$ -M. S-closed and saturated $(1, 2) - \phi_m$ -M. S-closed, subsets of M are denoted by ϕ_m -M. S-closed and saturated ϕ_m -M. S-closed, respectively.

It is clear that every (n-1, n)-W. M. S-closed subset of M is $(n-1.n) - \phi_m$ -M. S-closed. But the converse is not true, in general.

Example 4.1. Let $M = R = \mathbb{Z}_6$ and $S = S^* = \{\overline{0}, \overline{2}\}$. Since $\overline{2}, \overline{2} \notin S^* \cup \{0\}, S^*$ is not a W. M. S-closed subset of M. But $SS^* \subseteq S^* \cup (R \setminus S)^{m-1}(M \setminus S^*)$. So S^* is ϕ_m -M. S-closed subset of $M, (m \ge 2)$.

Proposition 4.2. Let R be a ring, M an R-module and S, S^{*} nonempty subsets of R and M, respectively. If S^{*} be an (n-1,n)-W. M. S-closed subset of M, then it is $(n-1,n)-\phi_m$ -M. S-closed, $(n,m \ge 2)$.

Proof. Let $a_1, ..., a_{n-1} \in R$ and $x \in M$ together with $a_1 ... a_{n-1} \in S$ and

 $a_1 \dots a_{i-1} a_{i+1} \dots a_{n-1} x \in S^*,$

for all $i \in \{1, ..., n-1\}$. Since S^* is (n-1, n)-W. M. S-closed, we have $a_1...a_{n-1}x \in S^* \cup \{0\}$.

If $a_1...a_{n-1}x \in S^*$, then we are done. Now assume that $a_1...a_{n-1}x = 0$. If $0 \in S^*$, then we are done. Thus we assume that $0 \notin S^*$. Thus $0 \in M \setminus S^*$. So $a_1...a_{n-1}x \in (R \setminus S)^{m-1}(M \setminus S^*)$. Therefore, S^* is $(n-1,n) - \phi_m$ -M. S-closed.

Lemma 4.3. Let R be a ring and $\{q_i\}_{i \in I}$, $(n-1.n) - \phi_m$ -prime ideals of R. Then $S = R \setminus \bigcup_{i \in I} q_i$ is a $(n-1,n) - \phi_m$ -M. closed subset of R.

Proof. Let $a_1, ..., a_n \in R$ together with $a_1...a_{j-1}a_{j+1}...a_n \in S$, for all $j \in \{1, ..., n\}$. If $a_1...a_n \notin S \cup (R \setminus S)^m$, then $a_1...a_n \in (\cup q_i) \setminus (\cup q_i)^m$. Thus there exists $i \in I$ such that $a_1...a_n \in q_i \setminus q_i^m$. Since q_i is $(n - 1, n) - \phi_m$ -prime, we have $a_1...a_{j-1}a_{j+1}...a_n \in q_i$, for some $j \in \{1, ..., n\}$. Therefore, $a_1...a_{j-1}a_{j+1}...a_n \notin S$, a contradiction. Thus $a_1...a_n \in S \cup (R \setminus S)^m$ and S is an $(n - 1, n) - \phi_m$ -M. closed subset of R.

Proposition 4.4. Let R be a ring, M a multiplicative R-module and P a ϕ_m -prime submodule of M. If $S^* = M \setminus P$ is a saturated ϕ_m -M.

S-closed subset of M, then S is a saturated ϕ_m -M. closed subset of R, where $S = R \setminus (P : M)$.

Proof. We have P = (P : M)M, and (P : M) is a ϕ_m -prime ideal of R, by [10, Lemma 4.3.(i)]. Thus S is a ϕ_m -M. closed subset of R, by Lemma 4.3. Let $a, b \in R$ and $ab \in S \cup (R \setminus S)^m$. Since $S^* \neq \emptyset$, there exists $x \in S^*$.

We show that $abx \in S^* \cup (R \setminus S)^{m-1}(M \setminus S^*)$. Let $ab \in S$. Since S^* is ϕ_m -M. S-closed, we have $abx \in S^* \cup (R \setminus S)^{m-1}(M \setminus S^*)$. Now, let $ab \in (R \setminus S)^m = (P : M)^m$. Thus $abx \in (P : M)^{m-1}((P : M)M) = (P : M)^{m-1}P$. Thus $abx \in (R \setminus S)^{m-1}(M \setminus S^*)$.

Since S^* is saturated, we have $a \in S \cup (R \setminus S)^m$ and $bx \in S^* \cup (R \setminus S)^{m-1}(M \setminus S^*)$. Thus $a \in S \cup (R \setminus S)^m$ and $b \in S \cup (R \setminus S)^m$. Therefore, S is saturated.

Lemma 4.5. Let R be a ring, M an R-module and $\{P_j\}_{j\in J}$, $(n - 1, n) - \phi_m$ -prime submodules of M such that $(P_j : M) = q_j$ for all $j \in J$. Then $S^* = M \setminus \bigcup_{j\in J} P_j$ is an $(n-1, n) - \phi_m$ -M. S-closed subset of M, where $S = R \setminus \bigcup_{j\in J} q_j$, $(n, m \ge 2)$.

Proof. Let $S^* = M \setminus \bigcup_{j \in J} P_j$ and P_j be an $(n-1,n) - \phi_m$ -prime submodule of M for all $j \in J$ and $a_1, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}x \in S^*$ for all $i \in \{1, \ldots, n-1\}$ and $a_1 \ldots a_{n-1} \in S$. Let $a_1 \ldots a_{n-1}x \notin S^* \cup (R \setminus S)^{m-1}(M \setminus S^*)$. Thus $a_1 \ldots a_{n-1}x \in P_j \setminus q_j^{m-1}P_j$ for some $j \in J$. Since P_j is $(n-1,n) - \phi_m$ prime we have $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}x \in P_j$ for some $i \in \{1, \ldots, n-1\}$ or $a_1 \ldots a_{n-1} \in q_j$, which are contradictions. Thus $a_1 \ldots a_{n-1}x \in S^* \cup$ $(R \setminus S)^{m-1}(M \setminus P)$. Therefore, $M \setminus \bigcup_{j \in J} P_j$ is an $(n-1,n) - \phi_m$ -M. S-closed subset of M.

Proposition 4.6. Let R be a ring, M an R-module and P a proper submodule of M. Then P is an $(n-1,n) - \phi_m$ - prime submodule of M if and only if $M \setminus P$ is an $(n-1,n) - \phi_m$ -M. S-closed subset of M, where $S = R \setminus (P:M)$; $(n, m \ge 2)$.

Proof. (\Rightarrow) Let $S^* = M \setminus P$ and P be an $(n - 1, n) - \phi_m$ -prime submodule of M. Then $M \setminus P$ is an $(n - 1, n) - \phi_m$ -M. S-closed subset of M, by Lemma 3.5.

(\Leftarrow) Let $M \setminus P$ be an $(n-1,n) - \phi_m$ -M. S-closed subset of M and $a_1, \ldots, a_{n-1} \in R$ and $x \in M$ together with $a_1 \ldots a_{n-1} x \in P \setminus \{P : M\}^{m-1}P$. If $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}x \notin P$, for all $i \in \{1, \ldots, n-1\}$ and $a_1 \ldots a_{n-1} \notin (P : M)$, then $a_1 \ldots a_{n-1}x \in (M \setminus P) \cup (P : M)^{m-1}P$ because S^* is $(n-1, n) - \phi_m$ -M. S-closed, which is a contradiction. Thus there exists an $i \in \{1, \ldots, n-1\}$ such that $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}x \in P$

or $a_1...a_{n-1} \in (P : M)$. Therefore, P is an $(n-1,n) - \phi_m$ -prime submodule of M.

Let R be a ring, M an R-module and S, S^* non-empty subsets of R and M, respectively. In Example 3.7, we show that if S^* is a ϕ_m -M. S-closed subset of M and N is a submodule of M that is maximal with respect to $N \cap S^* = \emptyset$, then it is not necessary that N be a ϕ_m -prime submodule of M, $(m \ge 2)$.

Example 4.7. Let R, M, N, S and S^* be as Example 3.9. Then S^* is a ϕ_m -M. S-closed subset of M and N is maximal with respect to $N \cap S^* = \emptyset$. But N is not ϕ_m -prime, because $\overline{2}.\overline{4} \in N \setminus (N:M)^{m-1}N$ but $\overline{2} \notin (N:M)$ and $\overline{4} \notin N$, $(m \ge 2)$.

References

- A. G. Ağargün, D. D. Anderson and S. Valdes-Leon, Unique factorization rings with zero divisors, Comm. Algebra 27 (1999), 1967–1974.
- D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), 1646–1672.
- D. D. Anderson and M. Bataineh, Generalization of prime ideals, *Comm. Algebra* 36 (2008), 686–696.
- D. F. Anderson and S. T. Chapman, How far is an element from being prime?, J. Algebra Appl. 9 (2010), 779–789.
- D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), 831–840.
- A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), 417–429.
- A. Badawi, A. Yousefian Darani, On weakly 2-absorbing ideals of commutative rings, *Houston J. Math.* 39 (2013), 441–452.
- S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, *Comm. Algebra* 33 (2005), 43–49.
- M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra 40 (2012), 1268–1279.
- M. Ebrahimpour and R. Nekooei, On generalizations of prime submodules, Bull. Iran. Math. Soc. 39(5) (2013), 919–939
- M. Ebrahimpour, On generalizations of prime ideals (II), Comm. Algebra 42 (2014), 3861–3875.
- M. Ebrahimpour, On generalisations of almost prime and weakly prime ideals, Bull. Iran. Math. Soc. 40(2) (2014), 531–540.
- Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16(4) (1988), 755–779.
- S. Galovich, Unique factorization rings with zero divisors, Math. Mag. 51 (1978), 276–283.
- J. Hukaba, Commutative rings with zero divisors, New York, Basil: Marcel Dekker, 1988.
- 16. T. W. Hungerford, Algebra, Holt, Rinehart and Winston, New York, 1974.

- C. P. Lu, Prime submodules of modules, Comment. Math. Univ. Sancti Paul 33(1) (1984), 61–69.
- 18. C. P. Lu, Spectra of modules, Comm. Algebra 23(10) (1995), 3741-3752.
- R. Nekooei, Weakly prime submodules, *Far East J. Appl. Math.* **39(2)** (2010), 185–192.
- 20. N. Zamani, ϕ -prime submodules, Glasgow Math. J. Trust (2009), 1–7.

M. Ebrahimpour

Department of Mathematics, Faculty of Sciences, Vali-e-Asr University of Rafsanjan , P.O.Box 518, Rafsanjan, Iran.

Email: m.ebrahimpour@vru.ac.ir

Journal of Algebraic Systems

SOME REMARKS ON GENERALIZATIONS OF MULTIPLICATIVELY-CLOSED SUBSETS

M. EBRAHIMPOUR

چند نکته در تعمیمهایی از زیرمجموعههای بسته ضربی

مهدیه ابراهیم پور دانشکده ریاضی، دانشگاه ولی عصر(عج) ، رفسنجان، ایران

کلمات کلیدی: مدول
های ضربی، زیرمجموعه مای بسته ضربی، زیر مجموعه مجموعه مجموعه مجموعه مای S-بسته (M، زیر مجموعه مربی از M.