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ON COMPOSITION FACTORS OF A GROUP WITH
THE SAME PRIME GRAPH AS Ln(5)

A. MAHMOUDIFAR∗

Abstract. The prime graph of a finite group G is denoted by
Γ(G). A nonabelian simple group G is called quasirecognizable by
prime graph if, for every finite group H, where Γ(H) = Γ(G), there
exists a nonabelian composition factor of H that is isomorphic to
G. Until now, it has been proved that some finite linear simple
groups are quasirecognizable by prime graph, for instance, the lin-
ear groups Ln(2) and Ln(3) are quasirecognizable by prime graph.
In this paper, we consider the quasirecognition by prime graph of
the simple group Ln(5).

1. Introduction

Let N denote the set of natural numbers. If n ∈ N, then we denote
by π(n) the set of all prime divisors of n. Let G be a finite group.
The set π(|G|) is denoted by π(G). Also the set of element orders
of G is denoted by πe(G). The prime graph of G is a graph whose
vertex set is π(G) and the two distinct primes p and q are joined by
an edge (and we write p ∼ q), whenever G contains an element of
order pq. The prime graph of G is denoted by Γ(G). A subset of
vertices of Γ(G) is called an independent subset of Γ(G) if its vertices
are pairwise nonadjacent. The maximal size of an independent subset
of Γ(G) is denoted by t(G). For every p ∈ π(G), we denote, by t(p,G),
the maximal size of an independent subset of Γ(G), which contains p.
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In addition, we denote by ρ(G) (by ρ(p,G)) some independent sets in
Γ(G) (containing p) with maximal number of vertices.

A finite nonabelian simple group P is called quasirecognizable by
prime graph (by element orders) if every finite group G with Γ(G) =
Γ(P ) (πe(G) = πe(P )) has a unique composition factor isomorphic to
P . Also P is called recognizable by prime graph (by element orders) if
Γ(G) = Γ(P ) (πe(G) = πe(P )) implies that G ∼= P . Also we note that
quasirecognition (recognition) by prime graph implies quasirecognition
(recognition) by element orders, but the converse is not true, in general.

Hagie in [10] has determined finite groups G satisfying Γ(G) = Γ(S),
where S is a sporadic simple group. It has been proved that if q = 32n+1

(n > 0). Then the simple group 2G2(q) is recognizable by its prime
graph [12] and [32]. A group G is called a CIT group if G is of even
order and the centralizer in G of any involution is a 2-group. In [19]
finite groups with the same prime graph as a CIT simple group are
determined. Also in [20] it has been proved that if p > 11 is a prime
number and p ̸≡ 1(mod 12), then L2(p) is recognizable by prime graph.
In [13] and [17], finite groups with the same prime graph as L2(q), where
q is not prime, have been determined. In [1] and [16], finite groups with
the same prime graph as 2F 4(q), where q = 22n+1 > 2 and F4(q), where
q = 2n > 2 are determined. Also in [11], it has been proved that if p is
a prime number that is not a Mersenne or Fermat prime and p ̸= 11,
13, 19 and Γ(G) = Γ(PGL(2, p)), then G has a unique nonabelian
composition factor that is isomorphic to L2(p), and if p = 13, then
G has a unique nonabelian composition factor that is isomorphic to
L2(13) or L2(27). Then it has been proved that if p and k > 1 are
odd and q = pk is a prime power, then PGL(2, q) is recognizable by
its prime graph [2] (see also [5]). In [14], [15], and [18], finite groups
with the same prime graph as Ln(2), where n = 9, 10, 16 have been
obtained. Also for more results, see [4], [9], [21], and [24].

In this paper, as the main result, at first, we prove some theorems
that are useful for considering quasirecognition by prime graph. Also
as an application of these theorems, we show the simple group Ln(5),
where n ≥ 11 is quasirecognizable by prime graph. In [7], it has been
proved that if πe(G) = πe(L5(5)), then G ∼= L5(5) or L5(5) · 2, the
extension of L5(5) by a graph automorphism. Also in [8], it has been
proved that if πe(G) = πe(L4(5)), then G/N ∼= L4(5), where N is a
normal 5-subgroup of G. As a consequence of our result, we prove that
if πe(G) = πe(Ln(5)), where n ≥ 11, then G ∼= Ln(5) or G ∼= Ln(5) · 2,
the extension of Ln(5) by graph automorphism.

Throughout this paper, all groups are finite, and by simple groups,
we mean nonabelian simple groups. All further unexplained notations
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are standard and refer to [6]. Let m be a positive integer and p be
a prime number. Then mp denotes the p-part of m. In other words,
mp = pk if pk

∣∣m but pk+1 ̸
∣∣m.

2. Preliminary Results

Lemma 2.1. [26, Theorem 1] Let G be a finite group satisfying the
following two conditions:

(a) there exist three primes in π(G) pairwise nonadjacent in Γ(G);
i.e., t(G) ≥ 3;

(b) there exists an odd prime in π(G) nonadjacent in Γ(G) to the
prime 2; i.e. t(2, G) ≥ 2.

Then there is a finite nonabelian simple group S such that S ≤ G =
G/K ≤ Aut(S) for the maximal normal solvable subgroup K of G.
Furthermore, t(S) ≥ t(G) − 1, and one of the following statements
holds:

(1) S ∼= A7 or L2(q) for some odd q, and t(S) = t(2, S) = 3.
(2) For every prime p ∈ π(G) nonadjacent to 2 in Γ(G), a Sylow

p-subgroup of G is isomorphic to a Sylow p-subgroup of S. In
particular, t(2, S) ≥ t(2, G).

Lemma 2.2. [22, Lemma 1] Let G be a finite group and N ⊴ G such
that G/N is a Frobenius group with kernel F and cyclic complement
C. If (|F |, |N |) = 1 and F is not contained in NCG(N)/N , then
p|C| ∈ πe(G), for some prime divisor p of |N |.
Lemma 2.3. [28, Lemma 5] If L ∼= Ln(q) and d = (q − 1, n), then
L includes a Frobenius subgroup with kernel of order qn−1 and cyclic
complement of order (qn−1 − 1)/d.

Lemma 2.4. [33, Zsigmondy’s Theorem] Let p be a prime, and let n
be a positive integer. Then one of the following holds:

(1) there is a primitive prime p′ for pn − 1, i.e. p′
∣∣(pn − 1) but

p′ ̸
∣∣(pm − 1), for every 1 ≤ m < n,

(2) p = 2, n = 1 or 6,
(3) p is a Mersenne prime and n = 2.

If q is a natural number, r is an odd prime, and (q, r) = 1, then
by e(r, q), we denote the smallest natural number m such that qm ≡
1 (mod r). Given an odd q, put e(2, q) = 1 if q ≡ 1 (mod 4), and put
e(2, q) = 2 if q ≡ 3 (mod 4). Obviously, we can see that if r is an odd
prime such that r | (qn − 1), then e(r, q) | n.
Lemma 2.5. [29, Proposition 1.1] Let G = An be an alternating group
of degree n.
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(1) Let r, s ∈ π(G) be odd primes. Then r and s are nonadjacent
if and only if r + s > n.

(2) Let r ∈ π(G) be an odd prime. Then 2 and r are nonadjacent
if and only if r + 4 > n.

The next lemma determines the structure of the maximal tori of
finite simple groups of Lie type.

Lemma 2.6. [29, Lemma 1.2] Let G be a connected simple classical
algebraic group of adjoint type, and let G = Op′(Gσ) be the finite simple
classical group:

(1) Every maximal torus T of G = Aε
n−1(q) (ε ∈ {+,−}) has the

order

1

(n, q − ε1)(q − ε1)
(qn1 − (ε1)n1)(qn2 − (ε1)n2) . . . (qnk − (ε1)nk)

for an appropriate partition n1 + n2 + · · ·+ nk = n of n. More-
over, for every partition, there exists a torus of corresponding
order.

(2) Every maximal torus T of G, where G = Bn(q) or G = Cn(q),
has the order

1

(2, q − 1)
(qn1 − 1)(qn2 − 1)...(qnk − 1)(ql1 + 1)(ql2 + 1) . . .

(qlm + 1)

for an appropriate partition n1+n2+· · ·+nk+l1+l2+· · ·+lm =
n of n. Moreover, for every partition, there exists a torus of
corresponding order.

(3) Every maximal torus T of G = Dε
n(q) has the order

1

(4, qn − ε1)
(qn1 − 1)(qn2 − 1) . . . (qnk − 1)(ql1 + 1)(ql2 + 1) . . .

(qlm + 1)

for an appropriate partition n1+n2+· · ·+nk+l1+l2+· · ·+lm = n
of n, where m is even if ε = +, and m is odd if ε = −. More-
over, for every partition, there exists a torus of corresponding
order.

Lemma 2.7. [29, Proposition 2.1] Let G = An−1(q) be a finite simple
group of Lie type over a field of characteristic p. Let r,s be odd primes,
and r,s ∈ πe(G)\{p}. Denote k = e(r, q), l = e(s, q), and suppose that
2 ≤ k ≤ l. Then r and s are nonadjacent if and only if k + l > n and
k does not divide l.
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3. Main Results

Throughout this section, let L be a nonabelian simple group such
that t(2, L) ≥ 2, t(L) ≥ 3 and G be a finite group such that Γ(G) =
Γ(L). Thus by Lemma 2.1, there exists a nonabelian simple group S,
such that S ≤ G := G/K ≤ Aut(S), where K is the maximal normal
solvable subgroup of G. Also if L = Ln(q), then we assume that rm is
a primitive prime divisor of qm − 1. It is obvious that e(rm, q) = m if
rm is odd. In this section, we use these notations.

Theorem 3.1. Using the above-mentioned and assumptions, let ρ be
an independent subset of Γ(G) such that |ρ| ≥ (p+3)/2 for some p ∈ ρ.
If 7 ≤ p < max ρ, then S ̸∼= Am, where m ≥ 5.

Proof. Let t = max ρ and S ∼= Am for some m ∈ N. Since ρ is an
independent subset of Γ(G) and |ρ| ≥ (p+ 3)/2 ≥ (7 + 3)/2 > 3, thus
by Lemma 2.1, at most, one element of ρ may not belong to the subset
ρ′ := ρ ∩ π(S), i.e. |ρ| − 1 ≤ |ρ′| ≤ |ρ|. We claim that p ∈ ρ′. For this
purpose, we consider the following cases. If t ∈ ρ′ ⊆ π(S), then every
prime less than t is contained in π(S) since S ∼= Am and π(S) = π(m!).
But by our hypothesis, p < t. Thus p ∈ π(S) ∩ ρ = ρ′. If t ̸∈ ρ′, then
ρ′ contains every element of ρ \ {t} since, at most, one element of ρ is
not contained in ρ′. Again, we have p ∈ ρ′ since p ∈ ρ \ {t}. Therefore,
in each case p ∈ ρ′ and so ρ′ is an independent subset of Γ(S) that
contains p.

Now we show that 2 ̸∈ ρ′. If 2 ∈ ρ′, then by Lemma 2.5, for each
r ∈ ρ′\{2}, we have m−3 ≤ r ≤ m. On the other hand, |ρ′|−1 ≥ |ρ|−
2 ≥ (p−1)/2 ≥ 3, and so there exist at least 3 prime numbers between
m − 3 and m, which implies that m = 5, and this is a contradiction,
since p ∈ ρ′ and p ≥ 7.

Therefore, 2 ̸∈ ρ′ and ρ′ is an independent subset of Γ(S), which
contains p. Since, for each r ∈ ρ′\{p}, r ̸∼ p in Γ(S), using Lemma 2.5,
we conclude that if r ∈ ρ′, then m− p + 1 ≤ r ≤ m. Thus there exist
at least (p − 1)/2 odd prime numbers between p numbers m − p +
1, m − p + 2, . . . , m. Since p ≥ 7, an easy calculation shows that
this is impossible. Therefore, S is not isomorphic to any alternating
group. □

Theorem 3.2. Let p be an odd prime number and L = Ln(p), where
n ≥ 11. If S is a simple group of Lie type over GF(pα), where α ≥ 1,
then S ∼= L.

Proof. Our main tools to prove this theorem are the following facts:
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(a) By Lemma 2.1, ρ(2, G) ⊆ π(S). Therefore, {rn−1, rn} ∩ π(S) ̸=
∅. Also, by Table 8 in [29] and Lemma 2.1, we have:

t(S) ≥ t(G)− 1 = [(n+ 1)/2]− 1 ≥ 5.

(b) Since n ≥ 11, by Table 8 in [29], {rn−3, rn−2, rn−1, rn} is an
independent subset of Γ(G). Also by Lemma 2.1, at most
one element of this set may not belong to π(S). Therefore,
|{rn−3, rn−2, rn−1, rn} ∩ π(S)| ≥ 3.

(c) Since t(S) ≥ 5, by Table 9 in [29], S ̸∼= 3D4(p
α). Thus the order

of the finite simple group S is of the form:

|S| = px(px1 − 1)(px2 − 1) · · · (pxk − 1)(py1 + 1)(py2 + 1)

· · · (pyl + 1)/d

where xi,yj ∈ N, x1 < x2 < · · · < xk, y1 < y2 < · · · < yl
and x, d are natural numbers. Let t = max{xk, 2yl}. We know
that {rn−1, rn} ∩ π(S) ̸= ∅. According to the order of S, and
using Lemma 2.4, it follows that n − 1 ≤ t ≤ n. Moreover, if
rn ∈ π(S), then t = n, and if rn ̸∈ π(S), then rn−1 ∈ π(S), and
so t = n− 1.

(d) By Table 6 in [29], we know that if n is odd, then rn ∈ ρ(2, G) ⊆
π(S). Let t = max{xk, 2yl}. Then by (c), t = n − 1 or t = n.
As an application of this result, we prove that if t is even, then
t = n. If t is even and t = n−1, then n is odd, and so rn ∈ π(S),
by the above discussion, which implies that t = n, by (c), and
this is a contradiction.

Now, using the classification of finite simple groups, we consider each
possibility for S such that t(S) ≥ 5 and t(2, S) ≥ 2.
Case1. Let S ∼= 2Am−1(p

α). Since t(S) ≥ 5, by Table 8 in [29], we
have t(S) = [(m+ 1)/2] and m ≥ 9.

If m is an odd number, then 2αm ≤ n, by Lemma 2.4. On the
other hand, by (a), [(m+ 1)/2] = t(S) ≥ t(G)− 1 = [(n+ 1)/2]− 1 ≥
[(2αm + 1)/2] − 1, which shows that 4 > (2α − 1)m. But this is
impossible since α ≥ 1 and m ≥ 9.

Therefore, m is an even number. Then the order of 2Am−1(p
α) and

(c) imply that t = max{2α(m − 1), αm} = 2α(m − 1), and so by (d),
2α(m − 1) = n. Now, by (a), [(m + 1)/2] = t(S) ≥ t(G) − 1 = [(n +
1)/2]−1 = [(2α(m−1)+1)/2]−1, which shows that (m−1)(2α−1) < 5.
But this is impossible, since m ≥ 9 and α ≥ 1. Therefore, S is not
isomorphic to 2Am−1(p

α).
Case2. Let S ∼= Bm(p

α) or Cm(p
α). Since t(S) ≥ 5, by Table 8 in [29],

we have t(S) = [(3m + 5)/4] and m ≥ 5. Also by (c) and the orders
of Bm(p

α) and Cm(p
α), we have t = 2αm ≤ n. Since 2αm is even by
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(d), 2αm = n. By (b), π(S) consists of a primitive prime divisor of
pn−1 − 1 = p2αm−1 − 1 or pn−3 − 1 = p2αm−3 − 1. But the orders of
Bm(p

α) and Cm(p
α) show that this is impossible. Therefore, S is not

isomorphic to Bm(p
α) and Cm(p

α).
Case3. Let S ∼= Dm(p

α) or 2Dm(p
α). Since t(S) ≥ 5, by Table 8 in

[29], t(S) ≤ (3m + 4)/4 and m ≥ 6. By (c) and the orders of Dm(p
α)

and 2Dm(p
α), 2α(m − 1) ≤ n. Now, by (a), (3m + 4)/4 ≥ t(S) ≥

t(G) − 1 = [(n + 1)/2] − 1 ≥ [(2α(m − 1) + 1)/2] − 1, which implies
that (4α− 3)(m− 1) < 13. Since m ≥ 6, we conclude that α = 1, and
so S ∼= Dm(p) or

2Dm(p).
Now, using (c) and the orders of Dm(p) and

2Dm(p), we have 2(m−
1) ≤ n or 2m ≤ n, respectively. Also since 2(m− 1) and 2m are even,
by (d), n = 2(m − 1) or n = 2m. On the other hand, by (b), π(S)
consists of a primitive prime divisor of pn−1 − 1 or pn−3 − 1. But by
the orders of Dm(p) and

2Dm(p), we get a contradiction, since m ≥ 6.
Therefore, S is not isomorphic to Dm(p

α) and 2Dm(p
α).

Case4. Let S ∼= F4(p
α), E7(p

α) or E8(p
α). In this case, the order of S

is of the form:

|S| = px(p2x1 − 1)(p2x2 − 1) · · · (p2xk − 1)/d

where x1 < x2 < · · · < xk, and x and d are natural numbers. Thus by
(d), 2xk = n, and so by (b), π(S) consists of primitive prime divisors of
pn−1 − 1 or pn−3 − 1. But the order of S shows that this is impossible.
Case5. Let S ∼= E6(q), where q = pα. Thus

|S| =
q36(q12 − 1)(q9 − 1)(q8 − 1)(q6 − 1)(q5 − 1)(q2 − 1)/(3, q − 1).

In this case, by Table 4 in [30], t(S) = 5, and so by (a), n ∈ {11, 12}.
Also (c) and the order of S show that 12α ≤ n, and so α = 1 and
n = 12. Now, by (b), π(S) consists of primitive prime divisors of
pn−1 − 1 = p11 − 1 or pn−2 − 1 = p10 − 1, which is impossible.
Case6. Let S ∼= 2E6(p

α) or 2G2(3
2α+1), where α ≥ 1. The order of

S and (c) show that n ≥ 18. But by Table 9 in [29] and (a), we have
5 = t(S) ≥ t(G)− 1 ≥ [(18 + 1)/2]− 1 = 8, which is a contradiction.
Case7. Let S ∼= Lm(p

α). The order of S and (c) show that n − 1 ≤
αm ≤ n. Since t(S) ≥ 5, by Table 8 in [29], we have t(S) = [(m+1)/2]
and m ≥ 9. Now, the relation [(m + 1)/2] = t(S) ≥ t(G) − 1 =
[(n+1)/2]−1 ≥ [(αm+1)/2]−1 implies thatm(α−1) < 4. Sincem ≥ 9,
we conclude that α = 1, and so S ∼= Lm(p), where n− 1 ≤ m ≤ n.

If m = n− 1, then by (c), rn ̸∈ π(S), and so rn ∈ π(G/S) or π(K).
Since π(G/S) ⊆ π(Out(S)) and |Out(S)| = |Out(Lm(p))| = 2(m, p −
1) = 2(n− 1, p− 1), so rn ̸∈ π(G/S) and rn ∈ π(K). By Lemma 2.3, S



44 MAHMOUDIFAR

contains a Frobenius subgroup of the form pn−2 : (pn−2−1)/(n−1, p−1).
By Table 4 in [29], rn ̸∼ p in Γ(G). Thus by Lemma 2.2, rn ∼ rn−2,
in Γ(G), which by (b), this is a contradiction. Therefore, m = n and
S ∼= Ln(p). □

Theorem 3.3. With the notations and assumptions at the beginning
of this section, we have:

(a) If S is a simple group of Lie type over GF(rβ), where r ∈ π(G),
then t(r,G) ≤ 6. In particular, if L = Ln(q), where n ≥ 13,
then S is not isomorphic to any simple group of Lie type over
GF(rβ), where e(r, q) ≥ 7.

(b) Let L = Ln(p
α) and S be a classical simple group of Lie type

over GF(rβ). If there exists r′ ∈ π(S) and e(r′, r) = 2k, then
e(r′, pα) ≤ 4k + 6.

(c) If t(G) ≥ 14, then S is not isomorphic to any exceptional simple
group of Lie type. In particular, if L = Ln(q), r ∈ π(L) and
e(r, q) ≥ 27, then S is not isomorphic to any exceptional simple
group of Lie type.

Proof. a) To the contrary, suppose that S is a simple group of Lie
type over GF(rβ), where β ≥ 1 and t(r,G) ≥ 7. Then there exists an
independent subset ρ of π(G) such that r ∈ ρ and |ρ| ≥ 7. If ρ′ :=
ρ ∩ π(S), then, by Lemma 2.1, |ρ′| ≥ 6. Therefore, t(r, S) ≥ |ρ′| ≥ 6.
But Tables 4 and 5 in [29] show that for such simple groups, t(r, S) ≤ 5,
which is a contradiction. Therefore, t(r,G) ≤ 6.

For the second part of this result, let L = Ln(q), where n ≥ 13 and
t = e(r, q) ≥ 7. Let t ≥ (n+3)/2. Then, by Table 8 in [29], we get that
the subset ρ0 := {r[n/2]+1, r[n/2]+2, . . . , rt(= r), . . . , rn−1, rn} is an inde-
pendent subset of Γ(G) including r such that |ρ0| = n − [n/2]. Since
n ≥ 13, by Lemma 2.7, we conclude that t(r,G) ≥ |ρ0| ≥ 7, which is
a contradiction since t(r,G) ≤ 6. Now, let t < (n + 3)/2. Then, by
Lemma 2.7, we get that ρ(r, L) ⊆ {r, rn−t+1, rn−t+2, . . . , rn−1, rn}. On
the other hand, Lemma 2.7 shows that r is adjacent to exactly one
element in rn−t+1, rn−t+2, . . . , rn−1, rn, and these numbers are mutually
nonadjacent by Lemma 2.7 and also by Table 8 in [29]. Therefore,
t(r, L) ≥ 7, and so t(r,G) ≥ 7, since Γ(G) = Γ(L), and this is impossi-
ble by the above discussion.

b) To the contrary, suppose that e(r′, pα) ≥ 4k + 7. Therefore, n ≥
4k+7. Thus t(G) = [(n+1)/2] ≥ [(4k+7+1)/2] = 2k+4. Therefore,
by Table 8 in [29], the subset ρ = {rn−2k−3, rn−2k−2, . . . , rn−1, rn} is
an independent subset of Γ(G). Also, by Lemma 2.7, at most, one
element of ρ is adjacent to r′. Thus, by Lemma 2.1, π(S) ∩ ρ has, at
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least, 2k + 2 elements of π(S), which are nonadjacent to r′ in Γ(S).
Therefore, t(r′, S) ≥ 2k + 3.

We claim that if e(r′, r) = 2k. Then t(r′, S) ≤ 2k + 2, which is
impossible. By the assumption, e(r′, r) = 2k, then e(r′, rβ)

∣∣2k.
Let S ∼= Lm(r

β) or S ∼= Um(r
β) and the prime numbers r′i satisfy the

equation e(r′i, r
β) = i, where m−2k+1 ≤ i ≤ m. Then, by Lemma 2.6,

r′ may be nonadjacent to r, and, at most, the prime numbers r′i. There-
fore, in this case, t(r′, S) ≤ 2k + 2, which is a contradiction.

Now, let S ∼= Bm(r
β), Cm(r

β), Dm(r
β) or 2Dm(r

β) and the prime
numbers r′i satisfy the equation e(r′i, r

β) = i or 2i, where m− k + 1 ≤
i ≤ m. Then by Lemma 2.6, r′ may be nonadjacent to r and at most
the prime numbers r′i. Therefore in each case we have t(r′, S) ≤ 2k+2,
which is a contradiction.

c) If t(G) ≥ 14, then there exists an independent subset ρ of Γ(G),
such that |ρ| ≥ 14. Thus if ρ′ := π(S) ∩ ρ, then, by Lemma 2.1, |ρ′| ≥
13. Thus t(S) ≥ |ρ′| ≥ 13, and, by Table 9 in [29], S is not isomorphic
to any exceptional simple group of Lie type. In particular, if L = Ln(q)
and e(r, q) ≥ 27, then t(G) = [(n+ 1)/2] ≥ [(27 + 1)/2] = 14. □

4. Applications in quasirecognition by prime graph of
Ln(5)

Now, by the results proved in the earlier section, we consider quasirec-
ognition of finite simple group Ln(5), where n ≥ 11. Throughout this
section, we assume that ri is a primitive prime divisor of 5i − 1, where
i ≥ 3.

Theorem 4.1. Let G be a finite group such that Γ(G) = Γ(Ln(5)),
where n ≥ 11. Then Ln(5) ≤ G/K ≤ Aut(Ln(5)), where K is a
normal {2, 3, 5}-subgroup of G. In particular, the finite simple group
Ln(5), where n ≥ 11, is quasirecognizable by prime graph.

Proof. By Table 4 in [29], {5, rn, rn−1} is an independent subset of
Γ(G). Also, by Table 6 in [29], rn or rn−1 is nonadjacent to 2 in Γ(G).
Thus, by Lemma 2.1, there exists a nonabelian simple group S, such
that S ≤ G := G/K ≤ Aut(S), where K is the maximal normal
solvable subgroup of G. Now, we show that S can not be isomorphic
to any simple group, except Ln(5). By classification theorem, S may
be isomorphic to an alternating group, a sporadic simple group or a
simple group of Lie type.
Step 1. Since e(7, 5) = 6, there exist 5 elements of the independent
subset {rn−5, rn−4, . . . , rn} of Γ(G), which are nonadjacent to 7 in Γ(G).
Thus there exists an independent subset ρ of Γ(G) such that 7 ∈ ρ,
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|ρ| > 5 = (7 + 3)/2, and, obviously, max ρ ̸= 7. Now, by Theorem 3.1,
we conclude that S is not isomorphic to any alternating simple group.
Step 2. Let S be isomorphic to a sporadic simple group. The orders
of the sporadic simple groups show that all prime divisors of |S| are
less than 100. Thus rn < 100 or rn−1 < 100, since rn

∣∣|S| or rn−1

∣∣|S|.
Also, by Table 2 in [29], 11 ≥ t(S) ≥ t(G)− 1 = [(n+ 1)/2]− 1, which
shows that 11 ≤ n ≤ 24. But by an easy calculation, we see that if
11 ≤ n ≤ 24, then there exist some primitive prime rn−1 and rn greater
than 100, which is a contradiction.
Step 3. Let S be a simple group of Lie type over GF(rβ), where β ≥ 1
and ρ := {2, 3, 5, 7, 11, 13, 31, 71}.

3.1. Let r ̸∈ ρ. Since ρ contains all prime numbers x ∈ π(G) such
that e(x, 5) ≤ 6, it follows that e(r, 5) ≥ 7. Since n ≥ 11, Theo-
rem 3.3(a) implies that 11 ≤ n ≤ 12. Then L = L11(5) or L = L12(5),
and so π(G) ⊆ ρ ∪ {19, 313, 521, 601, 829, 19531, 12207031}.

Now, by the orders of simple groups of Lie type over GF(rβ) and
Tables 8 and 9 in [29], we conclude that if t(S) ≥ 5, then |S| is divisible
by r2 − 1 and r3 − 1. But if r ∈ {19, 313, 521, 601,
829, 19531, 12207031}. Then π((r2 − 1)(r3 − 1)) ̸⊆ π(G), which is a
contradiction.

3.2. Let r ∈ ρ.
• Let r ∈ ρ \ {2, 3, 5}. Since t(S) ≥ t(G)− 1 ≥ 5, by Tables 8 and 9

in [29] and the order of S, we conclude that (r6− 1)
∣∣|S|. If r = 7, then

e(43, 7) = 6 and e(43, 5) = 42. Now, using Theorem 3.3(b) and (c), we
get a contradiction. Similarly, since e(37, 11) = 6 and e(37, 5) = 36;
e(61, 13) = 3 and e(61, 5) = 30; e(331, 31) = 3 and e(331, 5) = 165;
e(5113, 71) = 3 and e(5113, 5) = 1704, by Theorem 3.3(b) and (c), we
get a contradiction.

• Let r = 3.
If S is isomorphic to an exceptional simple group of Lie type with

t(S) ≥ 5, except 2G2(3
2m+1), then the order of S shows that (312 −

1)
∣∣|S|. But 73 ∈ π(312 − 1) ⊆ π(S) ⊆ π(G) and e(73, 5) = 72, which,

by Theorem 3.3(c), is a contradiction.
Let S ∼= 2G2(3

2m+1), wherem ≥ 1. Then, by Table 9 in [29], t(S) = 5
and t(G) = 6. Since 6 = t(G) = [(n+ 1)/2], we conclude that Γ(G) =
Γ(L11(5)) or Γ(G) = Γ(L12(5)). Thus, by Table 6 in [29], 12207031 =
r11 ∈ ρ(2, G) ⊆ π(S). Also we have |S| = 33(2m+1)(33(2m+1)+1)(32m+1−
1). Since e(12207031, 3) = 2 · 5 · 71 · 521, the order of S shows that
5
∣∣(2m + 1), and so π(35 + 1) ⊆ π(S). Since 61 ∈ π(35 + 1) and
e(61, 5) = 30 ≤ n ≤ 12, we get a contradiction.
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Let S be isomorphic to a classical simple group over GF(3β), where
β ≥ 1. Since t(S) ≥ t(G) − 1 ≥ 5, the order of S and Table 8 in
[29] show that (38 − 1)

∣∣|S|. Since 41 ∈ π(38 − 1) ⊆ π(S) ⊆ π(G) and
n ≥ e(41, 5) = 20, we have t(S) ≥ t(G)−1 ≥ [(n+1)/2]−1 ≥ 9. Now,
since t(S) ≥ 9, by the order of S and Table 8 in [29], (310− 1)

∣∣|S|. But
61 ∈ π(310 − 1) ⊆ π(S) ⊆ π(G) and e(61, 3) = 10 and e(61, 5) = 30,
which, by Theorem 3.3(b), is a contradiction. Therefore, S is not
isomorphic to any simple group of Lie type over GF(3β).

• Let r = 2. If S is isomorphic to an exceptional simple group of Lie
type with t(S) ≥ 5, except 2E6(2

β) and 2F 4(2
2β+1), then the order of

S shows that (29 − 1)
∣∣|S|. Since 73 ∈ π(29 − 1) and e(73, 5) = 72, by

Theorem 3.3(c), we get a contradiction.
Let S ∼= 2E6(2

β). Then, by Table 9 in [29], t(S) = 5, and so t(G) = 6,
which implies that 11 ≤ n ≤ 12. If β is even, then the order of 2E6(2

β)
shows that 241 ∈ π(224 − 1) ⊆ π(S) ⊆ π(G). Thus n ≥ e(241, 5) = 40,
which is impossible since 11 ≤ n ≤ 12.

Therefore, β is odd. Since 11 ≤ n ≤ 12, by Table 8 in [29],
{r8, r9, r10} is an independent subset of Γ(G). Then by Lemma 2.1,
313 = r8 ∈ π(S) or 829 = r9 ∈ π(S). On the other hand, |S| =
236β(212β − 1)(29β +1)(28β − 1)(26β − 1)(25β +1)(22β − 1)/(3, 2β +1). If
829 ∈ π(S), since e(829, 2) = 22 · 32 · 23, then the order of S shows
that 23

∣∣β. Therefore, 47 ∈ π(22·23 − 1) ⊆ π(S) ⊆ π(G), and so
n ≥ e(47, 5) = 46, which is a contradiction since 11 ≤ n ≤ 12. If
313 ∈ π(S), since e(313, 2) = 22 · 3 · 13, then by the order of S, 13

∣∣β.
Therefore, 8191 ∈ π(226 − 1) ⊆ π(S), and so n ≥ e(8191, 5) = 1365,
which is impossible since 11 ≤ n ≤ 12.

Similarly, if S ∼= 2F 4(2
2β+1), then we can show that 2β+1 is divisible

by 13 or 23, and we get a contradiction. Therefore, S is not isomorphic
to any exceptional simple group of Lie type.

Now, let S be a classical simple group of Lie type over GF(2β), where
β ≥ 1. Since t(S) ≥ t(G)−1 ≥ 5, by the order of S and Table 8 in [29],
we conclude that, (28−1)

∣∣|S|. Since 17 ∈ π(28−1) ⊆ π(S) ⊆ π(G) and
e(17, 5) = 16, we have t(S) ≥ t(G)−1 = [(n+1)/2]−1 ≥ [(16+1)/2]−
1 = 7. Now, since t(S) ≥ 8, by the order of these groups and Table 8 in
[29], we have 8191 ∈ π(213−1) ⊆ π(S) or 43 ∈ π(214−1) ⊆ π(S). Then
e(8191, 2) = 13 and e(8191, 5) = 1365, e(43, 2) = 14, and e(43, 5) = 42,
which, by Theorem 3.3(b), is a contradiction. Therefore, S is not
isomorphic to any simple group of Lie type over GF(2β).

By the classification of finite simple groups, we see that S can only
be isomorphic to a simple group of Lie type over GF(5β). Therefore,
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by Theorem 3.2, we conclude that S ∼= Ln(5).
Step 4. Finally, in this step, we will prove that K is a {2, 3, 5}-group.

Up to now, we show that if G is a finite group such that Γ(G) =
Γ(Ln(5)), where n ≥ 11. Then there exists a normal subgroup of G,
say H, such that Ln(5) ∼= H/K ≤ G := G/K ≤ Aut(Ln(5)), where K
is the maximal normal solvable subgroup of G. First, we claim that
either K = 1 or CG(K) ≤ K.

Since H/K is a simple group, H/K ∩ CG(K)K/K is equal to a
trivial group or is equal to H/K. If H/K ∩CG(K)K/K = H/K, then
H ≤ CG(K)K, and so for all r ∈ π(H) \π(K), we have r ∈ π(CG(K)).
Thus if r ∈ π(H/K) = π(Ln(5)) and r′ ∈ π(K), then r′ ∼ r in Γ(G).
But by Table 4 in [29] and Lemma 2.6, if r′ is any prime number in
π(Ln(5)), then r′ ̸∼ rn or r′ ̸∼ rn−1 in Γ(Ln(5)), which implies that
K = 1.

Therefore, H/K ∩ CG(K)K/K is a trivial group. If CG(K)K/K is
not a trivial group, then the product (H/K)(CG(K)K/K) is a direct
product in G/K. Thus if r ∈ π(H/K) = π(Ln(5)) = π(G) and r′ ∈
π(CG(K)K/K), then r′ ∼ r in Γ(G). Again, we get that r′ ∼ rn
or r′ ∼ rn−1. Thus similar to the previous paragraph, we get that
CG(K)K/K is a trivial group. Therefore, by the previous argument,
we deduce that either K = 1 or CG(K) ≤ K, which satisfies the above
claim.

Let t ∈ π(K). In this part, we use some familiar results about the
solvable groups (for example see [26]). We know that we may assume
that Ot(K) ̸= K since K is solvable. Then K/Ot(K) is a nontrivial

t-group. Put K̂ = K/Ot(K) and Ĝ = G/Ot(K) since Ot(K) is a
characteristic subgroup of K and K ⊴ G. If the Frattini subgroup

of K̂ is denoted by Φ(K̂), then K̂/Φ(K̂) is an elementary abelian t-

group, and we have G/K ∼= Ĝ/K̂ ∼= (Ĝ/Φ(K̂))/(K̂/Φ(K̂)). Therefore,
without loss of generality, we can assume that K is an elementary
abelian t-group.

Now, we show that K is a {2, 3, 5}-group. For proving this result, let
t ∈ π(K). We know that Ln−1(5) is isomorphic to a subgroup of Ln(5).
Now, by Lemma 2.3, Ln(5) consists of some Frobenius subgroups of
the form 5n−1 : (5n−1− 1)/(n, 4) and 5n−2 : (5n−2− 1)/(n− 1, 4). Since
CG(K)K/K is a trivial group, if t ̸= 5, then Lemma 2.2 implies that
t ∼ rn−1 or t ∼ rn−2 in Γ(G). But Lemma 2.6, implies that e(t, 5) ≤ 2,
and so t

∣∣(52 − 1). Therefore, K is a {2, 3, 5}-group. □

Corollary 4.2. If G is a finite group such that Γ(G) = Γ(Ln(5)) (or
πe(G) = πe(Ln(5))) and |G| = |Ln(5)|, where n ≥ 11, then G ∼= Ln(5).
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Proof. By Theorem 4.1, Ln(5) ≤ G/K ≤ Aut(Ln(5)), where K is a
normal {2, 3, 5}-subgroup of G. Since |G| = |Ln(5)|, we have |K| = 1.
Therefore, G ∼= Ln(5). □

There is a conjecture due to W. Shi and H. Bi [25], which states
that if G is a finite group and M a finite simple group, then G ∼= M
if and only if |G| = |M | and πe(G) = πe(M). We mention that this
conjecture has been proved. However, Corollary 4.3 is a new proof of
the conjecture of Shi and Bi for the simple group Ln(5), where n ≥ 11.

Remark 4.3. In [8], it has been proved that if πe(G) = πe(L4(5)). Then
G/N ∼= L4(5). Now, using Theorem 1 in [31], it follows that N = 1.
Therefore, L4(5) is recognizable by element orders.
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ON COMPOSITION FACTORS OF A GROUP WITH
THE SAME PRIME GRAPH AS Ln(5)

A. MAHMOUDIFAR

Ln(5) با یکسان اول گراف با گروهی ترکیبی سری های پیرامون

فر محمودی علی
شمال تهران واحد اسلامی آزاد دانشگاه علوم دانشکده

شناسایی شبه را G متناهی ساده گروه می دهند. نمایش Γ(G) نماد با را G متناهی گروه اول گراف
ترکیبی سری یک دارای Γ(H) = Γ(G) که H متناهی گروه هر هرگاه می نامیم اول گراف توسط پذیر
اول گراف توسط متناهی خطی ساده گروه های از برخی که است شده ثابت کنون تا باشد. G با یکریخت
توسط شبه شناسایی پذیر Ln(٣) و Ln(٢) خطی گروه های نمونه برای می باشند، شبه شناسایی پذیر خود
Ln(۵) خطی ساده گروه های بودن شناسایی پذیر شبه بررسی به مقاله این در می باشند. خود خطی گراف

می پردازیم.

عنصر. مرتبه اول، گراف تصویری، خاص خطی گروه کلیدی: کلمات

۴


	1. Introduction
	2. Preliminary Results
	3. Main Results
	4. Applications in quasirecognition by prime graph of Ln(5) 
	References

