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STRONGLY DUO AND CO-MULTIPLICATION
MODULES

S. SAFAEEYAN∗

Abstract. Let R be a commutative ring. An R-module M is
called co-multiplication, provided that for each submodule N of
M , there exists an ideal I of R such that N = (0 :M I). In this
paper, we show that co-multiplication modules are a generaliza-
tion of strongly duo modules. Uniserial modules of finite length,
and hence, valuation Artinian rings are some distinguished classes
of co-multiplication modules. In addition, if R is a Noetherian
quasi-injective ring, then R is strongly duo if and only if R is
co-multiplication. We also show that J-semisimple strongly duo
rings are precisely semisimple rings. Moreover, if R is a perfect
ring, then uniserial R-modules are co-multiplication of finite length
modules. Finally, we show that Abelian co-multiplication groups
are all reduced, and co-multiplication Z-modules (Abelian groups)
are characterized as well.

1. Introduction

Throughout this paper, all rings are commutative with identity, and
all modules are unitary. Let M be an R-module. For each subset X of
M , set annR(X) = {r ∈ R| Xr = 0}. The submodule N of M is called
fully invariant, provided that for each f ∈ End(MR), f(N) ⊆ N . A
ring R is said to be right duo if right ideals of R are two-sided. It is
easy to check that R is a right duo ring if and only if Rej(R,R/I) = I
for every right ideal I of R. In [14], the authors have studied the dual of
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this concept, i.e. Tr(I, R) = I for all right ideal I of R. Generalizing to
modules, we call an R-module M strongly duo if Tr(N,M) = N for all
submodule, N of M . Clearly, every strongly duo module MR is a duo
module (i.e. all submodules of MR are fully invariant). Therefore, the
concept of right strongly duo rings is the dual of duo rings and, simul-
taneously, its generalization. In [14, Theorem 2.1], it has been shown
that a right R-module M is right strongly duo if and only if for each
m,n ∈ M , annr(m) ⊆ annr(n) implies that n ∈ mR. This observation
persuade us to investigate right R-modules M such that for every two
submodules N and K of M , annr(N) ⊆ annr(K) implies that K ⊆ N .
We show that over a commutative ring R, R-modules with aforemen-
tioned property are precisely co-multiplication R-modules (Theorem
2.3). Co-multiplication modules and some of their properties have
been investigated in [2], [3], and [4]. An R-module M is called mul-
tiplication, provided that for every submodule N of M , there exists
an ideal I of R such that N = MI; see [6]. Duo modules and multi-
plication modules have been investigated by several authors. Some of
their recent works (not all) are cited in the references. Multiplication
modules are duo but the converse is not true. In [6], [7], [8], and [9],
conditions have been found, under which duo modules are multiplica-
tion modules. Inasmuch as co-multiplication modules are strongly duo
(Corollary 2.4(1)). In this paper, we will find some conditions, under
which strongly duo modules are co-multiplication. In Section 2, we
investigate co-multiplication modules, and show that uniserial mod-
ules of finite length, and hence, uniserial Artinian rings are classes of
co-multiplication modules. Theorem 2.10 shows that J-semisimple co-
multiplication rings are precisely semisimple rings. In Section 3, some
important properties of co-multiplication modules are studied.

Recall that an R-module M is said to be quasi-injective (PQ-injec-
tive) if, for any (cyclic) submodule N of M , any f ∈ HomR(N,M)
can be extended to an endomorphism of M . A nonzero R-module M
is called prime, provided that for each nonzero submodule N of M ,
annR(N) = annR(M) (see[16, Lemma 3.54]). Let M be an R-module.
An ideal P of R is called an associated prime of M if there exists
a prime submodule N ⊆ M such that P = ann(N). The set of all
associated primes of M is denoted by Ass(M).

Any unexplained terminology and all the basic results on rings and
modules that are used in the sequel can be found in [1], [5], [15], and
[16].
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2. Main results

Let M be an R-module. For each ideal I of R and each submodule
N of M , define (N :M I) = {m ∈ M | ma ∈ N for each a ∈ I} and
annM(I) = {m ∈ M | ma = 0 for each a ∈ I}. It is clear that (N :M I)
and annM(I) are two submodules of M .

Definition 2.1. An R-module M is called co-multiplication, provided
that for each submodule N of M , there exists an ideal I of R such that
N = (0 :M I) = annM(I).

It is clear that M is a co-multiplication R-module if and only if for
each submodule N of M , N = (0 :M annR(N)).

The following Lemma is well-known.

Lemma 2.2. Let M be an R-module and N be a submodule of M .
Then

annR(annM(annR(N))) = annR(N).

The following result shows that co-multiplication modules are a gen-
eralization of strongly duo modules.

Theorem 2.3. Let M be an R-module. The following assertions are
equivalent.

(1) M is a co-multiplication module;
(2) For any two submodules N and K of M , annR(N) ⊆ annR(K)

implies that K ⊆ N ;
(3) For each submodule N of M , and each m ∈ M , annR(N) ⊆

annR(m) implies that m ∈ N .

Proof. (1 ⇒ 2). Let N and K be two submodules of M such that
annR(N) ⊆ annR(K). Then (0 :M annR(K)) ⊆ (0 :M annR(N)). Since
M is a co-multiplication R-module, K = (0 :M annR(K)) ⊆ (0 :M
annR(N)) = N .
(2 ⇒ 1). Assume that N is a submodule of M . By Lemma 2.2,

annR(annM(annR(N))) = annR(N).

Therefore, annR(N) ⊆ annR(annM(annR(N))), and by assumption,

annM(annR(N)) = (0 :M annR(N)) ⊆ N.

Hence, the equality holds.
(1 ⇒ 3). Since R is a commutative ring, for each m ∈ M , annR(mR) =
annR(m). Hence, by (1), the verification is immediate.
(3 ⇒ 2). Assume that N and K are submodules of M such that
annR(N) ⊆ annR(K). For each x ∈ K, annR(K) ⊆ annR(x). Thus
by hypotheses, for each x ∈ K, we have x ∈ N . □
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Corollary 2.4. Let M be a co-multiplication R-module. The following
statements hold.

(1) M is a strongly duo R-module. In particular, M is a PQ-
injective duo module;

(2) M is a prime R-module if and only if M is a simple R-module;
(3) P ∈ Ass(M) if and only if P = annR(m) is a maximal ideal of

R for some m ∈ M .

Proof. (1). Let m,m′ ∈ M such that annR(m) ⊆ annR(m
′). By Theo-

rem 2.3, m′ ∈ mR. Therefore, by [14, Theorem 2.1], MR is a strongly
duo module. Now, by [14, Theorem 3.5] and the fact that our rings are
commutative, M is a PQ-injective duo module.
(2). The verification is immediate.
(3). Let P ∈ Ass(M). There exists a prime submodule N of M such
that P = annR(N). Since N is a prime co-multiplication module, by
part (2), N is a simple R-module. Hence, P = annR(N) is a maximal
ideal of R. Conversely, assume that m ∈ M such that P = annR(m)
is a maximal ideal of R. Thus mR is simple, and hence, a prime R-
module. □
Corollary 2.5. Let R be a ring. The following hold.

(1) If R is Noetherian, then each co-multiplication R-module is Ar-
tinian.

(2) If R is an Artinian ring, then each co-multiplication R-module
is of finite length.

Proof. (1). Let M be a co-multiplication R-module and

N1 ⊇ N2 ⊇ · · ·
be a descending chain of submodules of M . Then

annR(N1) ⊆ annR(N2) ⊆ · · ·
is an ascending chain of ideals of R. Since R is a Noetherian ring, there
exists k ∈ N such that, for each n ≥ k, annR(Nk) = annR(Nn). Since
M is a co-multiplication R-module, by Theorem 2.3, for each n ≥ k,
Nk = Nn.
(2). Let M be a co-multiplication R-module. Since Artinian rings are
Noetherian, R is Noetherian. Now, by part (1), any co-multiplication
R-module is Artinian, and hence, MR is Artinian. Now, by Hopkins-
Levitzki Theorem [16, Theorem 4.15], we have over Artinian rings,
Noetherian modules are precisely Artinian modules. □

In the following, our main concern is the class of conditions under
which strongly duo modules are co-multiplication.



STRONGLY DUO AND CO-MULTIPLICATION MODULES 57

Lemma 2.6. Let M be a strongly duo R-module. Then S = End(MR)
is a commutative ring.

Proof. Assume that f ∈ End(MR) and m ∈ M . Since annR(m) ⊆
annR(f(m)), f(m) ∈ mR, and hence, f(m) = mr for some r ∈ R.
Then for every m ∈ M and g, f ∈ End(MR), there exist r, s ∈ R such
that f(m) = mr and g(m) = ms. Therefore, fg(m) = mrs = msr =
gf(m). □
Theorem 2.7. Let M be a quasi-injective strongly duo R-module with
endomorphism ring S. Then for every finitely generated S-submodule
K of M , we have K = annMannS(K).

Proof. First, we show that for each x ∈ M , annMannS(Sx) = Sx. It
is clear that Sx ⊆ annMannS(Sx). Assume that y ∈ annMannS(Sx).
Define the map f : xR −→ M by f(xr) = yr. If for some r ∈ R,
xr = 0, then gr ∈ annS(Sx), and hence, gr(y) = yr = 0, which is
implies that f is an R-homomorphism. By [14, Theorem 3.5], M is a
PQ-injective module, and hence, there exists f ∈ End(MR) such that
f |xR = f . Therefore, y = f(x) = f(x) ∈ Sx. Now, suppose that
K = Sx1 + Sx2. Obviously,

Sx1 + Sx2 ⊆ annMannS(Sx1 + Sx2) = annM(annS(Sx1)∩ annS(Sx2)).

Suppose that y ∈ annMannS(Sx1 + Sx2). Define the map

ϕ : annS(Sx2)x1 → M

by ϕ(f(x1)) = f(y) for each f ∈ annS(Sx2). For each f ∈ annS(Sx2)
and r ∈ R, we have

f(x1)r = f(x1r) = fgr(x1) = grf(x1) ∈ annS(Sx2)(x1).

Therefore, annS(Sx2)x1 is an R-submodule of M . For each r ∈ R
and f ∈ annS(Sx2), ϕ(f(x1)r) = ϕ(grf(x1)) = grf(y) = f(y)r =
ϕ(f(x1))r. Hence, ϕ is an R-homomorphism. Since M is a quasi-
injective module, there exists ϕ ∈ End(MR) such that ϕ|annS(Sx2)x1 = ϕ.

By Lemma 2.6, S is a commutative ring, and hence, annS(Sx2)(ϕ(x1)−
y) = 0. Then ϕ(x1)− y ∈ annMannS(Sx2) = Sx2. Therefore, for some
g ∈ S, ϕ(x1)− y = g(x2), and hence, y ∈ Sx1 + Sx2. □
Corollary 2.8. Let M be a quasi-injective Noetherian strongly duo
R-module with endomorphism ring S. Then M is a co-multiplication
S-module.

Proof. First, we show that every S-submodule of M is finitely gener-
ated. Let K be a S-submodule of M . For each k ∈ K and r ∈ R,
we have kr = gr(k) ∈ SK = K. Thus K is an R-submodule of M ,
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and hence, K is finitely generated as an R-submodule. Assume that
K = x1R+x2R+ · · ·+xnR. It is clear that K = Sx1+Sx2+ · · ·+Sxn.
Therefore, every S-submodule K of M is finitely generated, and hence,
by Theorem 2.7, K = annMannS(K) = (0 :M annS(K)). □
Corollary 2.9. Let R be a quasi-injective Noetherian ring. Then R is
a co-multiplication ring if and only if R is a strongly duo ring.

Proof. Since R ∼= End(RR), by Corollary 2.4(1)and Corollary 2.8, the
proof is clear. □

Let R be a ring. The Jacobson radical of R is denoted by J(R). A
ring R is said to be J-semisimple if, J(R) = 0. The next result shows
that for J-semisimple strongly duo rings are co-multiplication.

Theorem 2.10. Let R be a ring, the following statements are equiva-
lent.

(1) R is a J-semisimple co-multiplication ring;
(2) R is a J-semisimple strongly duo ring;
(3) R is a semisimple ring.

Proof. (1 ⇒ 2). It is clear by Corollary 2.4(1).
(2 ⇒ 3). Assume that J = J(R). By assumption, T =

∩∞
k=1 J

k = 0.
Therefore, by [11, Theorem 5.4], R is a Notherian ring. Then R is a
Notherian strongly duo ring, and hence, by [14, Proposition 4.6], R is
an Artinian ring. Now, by [15, Theorem 4.14], R is a semisimple ring.
(3 ⇒ 1). Let I be an ideal of R. There exists an idempotent e ∈ R
such that I = eR. Therefore, we have annR(eR) = (1 − e)R and
annR((1− e)R) = eR. Hence,

annR(annR(I)) = annR((1− e)R) = eR = I,

as desired. □
An R-module M is called uniserial if its submodules are linearly,

ordered by inclusion. If RR is uniserial, we call R right uniserial. Note
that right uniserial rings are, in particular, local rings. Commutative
uniserial rings are also known as valuation rings.

Proposition 2.11. Uniserial modules of finite length are co-multipli-
cation. In particular, uniserial Artinian rings are co-multiplication.

Proof. Let M be a uniserial R-module of finite length and N a sub-
module of M . Since M is a Noetherian R-module, N is finitely gen-
erated, and hence, N = n1R + n2R + · · · + nkR, where ni ∈ M
and k ∈ N. Since M is a uniserial R-module, N = niR for some
1 ≤ i ≤ k. For each m ∈ M , annR(N) ⊆ annR(m) implies that
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annR(N) = annR(ni) ⊆ annR(m). Since M is a uniserial Artinian
module, M is a strongly duo module, [14, Proposition 2.5]. Hence,
annR(ni) ⊆ annR(m) implies that m ∈ niR = N . Thus, by Theorem
2.2, M is a co-multiplication module. Let R be a uniserial Artinian
ring. By [15, Theorem 4.15], RR is a uniserial module of finite length.
Thus, RR is co-multiplication. □

Lemma 2.12. Every uniserial module with ascending chain condition
on its cyclic submodules is Noetherian.

Proof. Let M be an R-module with ascending chain condition on its
cyclic submodules. We show that any submodule of M is cyclic. Let
N be a non-cyclic submodule of M and 0 ̸= n1 ∈ N . There exists
0 ̸= n2 ∈ N \ n1R. Since MR is a uniserial module and n2R ̸⊆ n1R,
n1R ⊂ n2R. Again, there exists 0 ̸= n3 ∈ N \ n2R. Since MR is a
uniserial module and n3R ̸⊆ n2R, n2R ⊂ n3R. Repeat this argument
to obtain the proper ascending chain n1R ⊂ n2R ⊂ . . . ⊂ nkR ⊆ · · ·
of cyclic submodules. It is a contradiction. □

Remark 2.13. It is a surprising result of D. Jonah (see [13]) that a
ring is left perfect if and only if every right R-module has ascending
chain condition on its cyclic submodules. As a direct consequence of D.
Jonah’s Theorem, we have, if R is a left perfect ring and M ∈ Mod−R,
the following are equivalent:

(1) MR is a Noetherian module;
(2) MR is an Artinian module;
(3) MR has a finite length.

In regard to Lemma 2.12 and D. Jonah’s Theorem, we have the
following Theorem.

Theorem 2.14. Let R be a perfect ring, and M be a uniserial R-
module. The following hold:

(1) M is an R-module of finite length.
(2) M is a co-multiplication R-module.

Proof. (1). Since R is a perfect ring, by D. Jonah’s Theorem, MR

satisfies in ascending chain condition on its cyclic submodules. By
Lemma 2.12, MR is Noetherian, and hence, has a finite length.
(2). By part (1), MR is a uniserial module of finite length. Therefore,
by Proposition 2.11, M is a co-multiplication R-module. □
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3. Some properties of co-multiplication modules

In this section, some of the interesting properties of co-multiplication
modules are investigated. First, we show that in a co-multiplication
R-module, every two isomorphic submodules are equal.

Proposition 3.1. Let M be a co-multiplication R-module, K and L
be submodules of M , and f ∈ HomR(K,L). The following statements
hold:

(1) If f is a monomorphism, then K ⊆ L.
(2) If f is an epimorphism, then L ⊆ K.
(3) If f is an isomorphism, then K = L.

Proof. (1). Assume that f is a monomorphism. For each x ∈ K,
annR(x) = annR(f(x)). Thus by Corollary 2.4(1), x ∈ f(x)R ⊆ Im f .
Hence, K ⊆ L.
(2). Let f be an epimorphism. For each y ∈ L, there exists an element
x ∈ K such that f(x) = y. On the other hand, annR(x) ⊆ annR(y).
Therefore, by Corollary 2.4(1), y = f(x) ∈ xR ⊆ K.
(3) By part (1) and (2), it is clear. □

AnR-moduleM is called compressible, provided that for each nonzero
submodule N of M , there exists a monomorphism f ∈ HomR(M,N).
Now, we introduce some properties of co-multiplication modules.

Corollary 3.2. Let R be a ring.

(1) Co-multiplication R-modules are co-hopfian.
(2) Compressible co-multiplication modules are precisely simple mod-

ules.
(3) Let M be a co-multiplication and X be an arbitrary R-module.

If there exists a monomorphism f ∈ HomR(X ⊕ X,M), then
X = 0.

(4) For each nonzero R-module M , M⊕M is not a co-multiplication
R-module.

Proof. (1). Let f ∈ End(MR) be a monomorphism. Therefore, M ∼=
Im f . By Proposition 3.1, M = Im f , and hence, f is an isomorphism.
(2). Simple modules are compressible and co-multiplication. Conversely,
assume that M is a compressible co-multiplication module, and N
be a nonzero submodule of M . There exists a monomorphism f ∈
HomR(M,N). By Proposition 3.1, M ⊆ N , and hence, M = N .
(3). It is clear that f(X ⊕ 0) ∼= f(0 ⊕ X). Then by Proposition 3.1,
f(X ⊕ 0) = f(0 ⊕ X). Since f is a monomorphism, X ⊕ 0 = 0 ⊕ X,
and hence, X = 0.
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(4). It is clear by part 3 because HomR(M ⊕ M,M ⊕ M) contains
identity map. □

Proposition 3.3. Let R be a ring. The following hold:

(1) If M is a nonzero free co-multiplication R-module, then M ∼= R.
(2) Let M be a co-multiplication R-module, X be a faithful R-

module, and f be a monomorphism in HomR(X,M). Then f
is an isomorphism.

Proof. (1). Since M is a free R-module, M ∼=
∑

X R for some in-
dex set X. If |X| ≥ 2, then there exists a monomorphism f ∈
HomR(R⊕R,M). Since MR is a co-multiplication module, by Corol-
lary 3.2(3), R = 0. It is a contradiction. Thus |X| = 1, and hence,
M ∼= R.
(2). We know that Im f is a submodule of M . Since M is a co-
multiplication R-module, there exists an ideal I of R such that Im f =
(0 :M I). Therefore, f(XI) = f(X)I = 0. Since f is a monomor-
phism, XI = 0, and hence, I = 0 since X is a faithful R-module. Thus
Im f = (0 :M 0) = M . □

Corollary 3.4. Let M be a co-multiplication R-module. The following
hold:

(1) If M has a non-zero free submodule, then M ∼= R.
(2) If M is non-zero, then R ⊕ M is not a co-multiplication R-

module.

Proof. (1). Let N be a non-zero free R-submodule of M . There exists a
monomorphism f ∈ HomR(R,N) ⊆ HomR(R,M). Since R is a faithful
R-module, by Proposition 3.3(2), M ∼= R.
(2). To the contrary, assume that R ⊕ M is a co-multiplication R-
module. By part (1), R ⊕M ∼= R ∼= R ⊕ 0. By Proposition 3.1, since
R⊕M is a co-multiplication module, R⊕M = R⊕ 0. Hence, M = 0,
a contradiction. □

Corollary 3.2 implies that semisimple R-modules are not generally
co-multiplication. In the following, we characterize an important class
of semisimple modules which are co-multiplications. LetM be a semisi-
mple R-module and S be a simple submodule ofM . The sum of all sim-
ple submodules of M that are isomorphic to S is called a homogeneous
component of M .

Proposition 3.5. Let M be a finitely generated semisimple R-module.
Then M is a co-multiplication module if and only if homogeneous com-
ponents of M are simple.
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Proof. If M is a co-multiplication R-module, then, by Proposition
3.1(3), isomorphic submodules are equal. Hence, homogeneous com-
ponents of M are simple. Conversely, assume that {Si}ni=1 is a family
of simple submodules of M such that M = ⊕n

i=1Si, and K,N are
submodules of M such that annR(N) ⊆ annR(K). There exist fi-
nite subsets F1 and F2 of {1, 2, · · · , n} such that N = ⊕j∈F1Sj and
K = ⊕t∈F2St. Therefore, annR(N) =

∩
j∈F1

annR(Sj) and annR(K) =∩
t∈F2

annR(St). Thus annR(N) ⊆ annR(K) implies that for each
t ∈ F2,

∩
j∈F1

annR(Sj) ⊆ annR(St). Since annR(St) is a maximal ideal

of R, there exists a jt ∈ F1 such that annR(Sjt) ⊆ annR(St). Inasmuch
as annR(Sjt) is a maximal ideal of R. Then annR(Sjt) = annR(St),
and hence, Sjt

∼= St. Since homogeneous components of M are simple,
Sjt = St. Hence, K = ⊕t∈F2St = ⊕t∈F2Sjt ⊆ ⊕j∈F1Sj = N . Now, by
Theorem 2.3, the proof is complete. □

It is suitable to answer this question that ” When is an Abelian group
co-multiplication as a Z-module?” Proposition 3.3 and Corollary 3.4,
answer this question in some special cases. In the following, we study
this subject.

An Abelian group D is called divisible, provided that for each x ∈ D
and each positive number n, there exists y ∈ D such that ny = x (i.e.
nD = D). An Abelian group is called reduced if it has no non-zero
divisible subgroup. By [10, Theorem 21.3], every Abelian group M is
the direct sum of divisible group D and reduced group C, M = D⊕C.

Lemma 3.6. Co-multiplication Abelian groups are reduced.

Proof. Let M be an Abelian group. Then M = D ⊕ C, where D is
a divisible, and C is a reduced subgroups of M . Since M is a co-
multiplication Z-module, there exists a positive integer n such that
D = (0 :M nZ). Therefore, (nZ)D = nD = 0. On the other hand,
nD = D since D is a divisible group. Hence, D = 0. □
Proposition 3.7. (1) For any positive integer n ≥ 2, Zn is a co-

multiplication Z-module.
(2) If M is a finitely generated Abelian group with rank M ≥ 1,

then M is not a co-multiplication Z-module.
(3) If M is a finite non-cyclic Abelian group, then M is not a co-

multiplication Z-module.

Proof. (1). Assume that K be a Z-submodule of Zn. There exist k, a ∈
Z such that n = ka and K =< k >= kZ. It is clear that annZ(K) =
aZ. Hence,

(0 :Zn annZ(K)) = (0 :Zn aZ) = kZ = K.
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(2). By [10, Theorem 15.5], there exist integers n1, n2, · · · , nk such
that

M ∼= Zn1 ⊕ Zn2 ⊕ · · ·Znk
⊕ Z⊕ Z⊕ · · · ⊕ Z︸ ︷︷ ︸

k−times

.

Since k ≥ 1, by Corollary 3.4, M can not be a co-multiplication Z-
module since Z is not clearly a co-multiplication Z-module.
(3). By [12, Theorem 2.6], there exist integers n1, n2, · · · , nt such that
M ∼= Zn1 ⊕ Zn2 ⊕ · · ·⊕Znt , where t ≥ 2 and n1|n2| · · · |nt. If M is
a co-multiplication Z-module, then for N = (0) ⊕ (0) ⊕ · · · ⊕ Znt , we
have annZ(N) = ntZ and N = (0 :M ntZ). On the other hand, since
n1|n2| · · · |nt,

(0 :M ntZ) = Zn1 ⊕ Zn2 ⊕ · · ·⊕Znt ,

which is a contradiction. □
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STRONGLY DUO AND CO-MULTIPLICATION
MODULES

S. SAFAEEYAN

هم-ضربی و دئو قویا مدول�های

صفاییان سعید
یاسوج دانشگاه

زیر هر برای هر�گاه نامند، هم-ضربی را M R-مدول باشد. تعویض�پذیر حلقه یک R کنید فرض
خواهیم نشان مقاله این در .N = (٠ :M I) طوری�که به باشد موجود R از I ایدآل ،M از N مدول
طول دارای که تک�رشته�ای مدول�های هستند. دئو قویا مدول�های از تعمیمی هم-ضربی مدول�های که، داد
می�دهیم، نشان هستند. هم-ضربی مدول�های از مهمی مثال�های آرتینی ارزه حلقه�های و هستند متناهی
حلقه یک R اگر تنها و اگر است دئو قویا حلقه یک R آنگاه باشد، شبه�تزریقی آرتینی حلقه یک R اگر
هستند. نیم�ساده حلقه�های دقیقا دئو قویا J-نیم�ساده حلقه�های می�دهیم، نشان همچنین باشد. هم-ضربی
هم-ضربی R-مدول�هایی تک�رشته�ای، R-مدول�های تمام آن�گاه باشد، تام حلقه یک R اگر آن، بر علاوه
هستند. یافته کاهش هم-ضربی، Z-مدول�های داد، خواهیم نشان پایان در هستند. متناهی طول با و

می�شوند. مشخص هم-ضربی آبلی گروه�های آن بر علاوه

آبلی. گروه�های هم-ضربی، مدول�های دئو، قویا مدول�های کلیدی: کلمات

۵
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