Journal of Algebraic Systems

Vol. 4, No. 1, (2016), pp 65-77
DOI: 10.22044/jas.2016.729

SIGNED ROMAN DOMINATION NUMBER AND JOIN OF GRAPHS

A. BEHTOEI*, E. VATANDOOST, AND F. AZIZI RAJOL ABAD

Abstract

In this work, we study the signed Roman domination number of the join of graphs. Specially, we determine it for the join of cycles, wheels, fans, and friendship graphs.

1. Introduction

Throughout this paper, we consider (non trivial) simple graphs, which are finite and undirected graphs without loops or multiple edges. Let $G=(V(G), E(G))$ be a simple graph of order $n=|V(G)|$ and of size $m=|E(G)|$. When x is a vertex of G, then the open neighborhood of x in G is the set $N_{G}(x)=\{y: x y \in E(G)\}$, and the closed neighborhood of x in G is the set $N_{G}[x]=N_{G}(x) \cup\{x\}$. The degree of vertex x is the number of edges adjacent to x, which is denoted by $\operatorname{deg}_{G}(x)$. The minimum degree and the maximum degree of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively.

A set $D \subseteq V(G)$ is called a dominating set of G if each vertex outside D has at least one neighbor in D. The minimum cardinality of a dominating set of G is the domination number of G, denoted by $\gamma(G)$. For example, the domination numbers of the n-vertex complete graph, path, and cycle are given by $\gamma\left(K_{n}\right)=1, \gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$ and $\gamma\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$, respectively [6]. Domination is a rapidly developing area of research in graph theory, and its various applications to ad hoc

[^0]networks, distributed computing, social networks, biological networks, and web graphs partly explain the increased interest. The concept of domination has existed and has been studied for a long time, and early discussions on the topic can be found in the works of Berge [2] and Ore [10]. At present, domination is considered to be one of the fundamental concepts in graph theory with an extensive research activity. Garey and Johnson [4] have shown that determining the domination number of an arbitrary graph is an NP-complete problem. The domination number can be defined equivalently by means of a function, which can be considered as a characteristic function of a dominating set; see [6]. A function $f: V(G) \rightarrow\{0,1\}$ is called a dominating function on G if, for each vertex $x \in V(G), \sum_{y \in N_{G}[x]} f(y) \geq 1$. The value $w(f)=\sum_{x \in V(G)} f(x)$ is called the weight of f. Now, the domination number of G can be defined as
$$
\gamma(G)=\min \{w(f): f \text { is a dominating function on } G\} .
$$

Analogously, a signed dominating function of G is a labeling of the vertices of G with +1 and -1 such that the closed neighborhood of each vertex contains more +1 's than -1 's. The signed domination number of G is the minimum value of the sum of vertex labels, taken over all signed dominating functions of G. This concept is closely related to the combinatorial discrepancy theory, as shown by Füredi and Mubayi in [3]. In general, many domination parameters are defined by combining domination with other graph theoretical properties; see [5] and [9].

Definition 1.1. [1] Let $G=(V, E)$ be a graph. A signed Roman dominating function (simply, a "SRDF") on the graph G is a function $f: V \rightarrow\{-1,1,2\}$, which satisfies the following two following conditions:
(a) For each $x \in V, \sum_{y \in N_{G}[x]} f(y) \geq 1$;
(b) Each vertex x for which $f(x)=-1$ is adjacent to at least one vertex y for which $f(y)=2$.
The value $f(V)=\sum_{x \in V} f(x)$ is called the weight of the function f, and is denoted by $w(f)$. The signed Roman domination number of G, $\gamma_{s R}(G)$ is the minimum weight of a SRDF on G.

This concept has been introduced by Ahangar, Henning, et al. in [1]. They have described the usefulness of this concept in various applicative areas like graph labeling and "defending the Roman empire" (see [1], [7] and [13] for more details). It is obvious that for every graph G of order n, we have $\gamma_{s R}(G) \leq n$ since assigning +1 to each vertex yields a SRDF. In [1], Ahangar et al. have presented various lower and upper
bounds on the signed Roman domination number of a graph in terms of its order, size, and vertex degrees. Moreover, they have characterized all graphs that attain these bounds. They have also investigated the relation between $\gamma_{s R}$ and some other graphical parameters, and the signed Roman domination number of some special bipartite graphs. It has been proved in [1] that $\gamma_{s R}\left(K_{n}\right)=1$ for each $n \neq 3, \gamma_{s R}\left(K_{3}\right)=2$, $\gamma_{s R}\left(C_{n}\right)=\left\lceil\frac{2 n}{3}\right\rceil, \gamma_{s R}\left(P_{n}\right)=\left\lfloor\frac{2 n}{3}\right\rfloor$, and that the only n-vertex graph G with $\gamma_{s R}(G)=n$ is the empty graph \bar{K}_{n}.

Henning and Volkmann have studied the signed Roman domination number of trees in [8]. Also the signed Roman domination number of directed graphs has been considered in [11].

Note that each signed Roman dominating function f on G is uniquely determined by the ordered partition $\left(V_{-1}, V_{1}, V_{2}\right)$ of $V(G)$, where $V_{i}=$ $\{x \in V(G): f(x)=i\}$ for each $i \in\{-1,1,2\}$. Specially, $w(f)=$ $2\left|V_{2}\right|+\left|V_{1}\right|-\left|V_{-1}\right|$. For convenience, we usually write $f=\left(V_{-1}, V_{1}, V_{2}\right)$, and when $S \subseteq V$, we denote the summation $\sum_{x \in S} f(x)$ by $f(S)$. If $w(f)=\gamma_{s R}(G)$, then f is called a $\gamma_{s R}(G)$-function or an optimal SRDF on G. Recall that the join of two graphs G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$, is a graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup$ $\left\{x y: x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$. For example, $K_{1} \vee P_{n}$ is the fan F_{n}, $K_{1} \vee C_{n}$ is the wheel W_{n}, and the friendship graph $F r_{n}, n=2 m+1$, is the graph obtained by joining K_{1} to m disjoint copies of K_{2}.

In this paper, we study the signed Roman domination number of the join of graphs. Specially, we determine the signed Roman domination number of $C_{m} \vee C_{n}, W_{n}, F_{n}$, and friendship graph $F r_{n}$.

2. Wheels, Fans, and Friendship graphs

For investigating $\gamma_{s R}$ of the join of graphs, the following lemma is useful and will be used frequently.

Lemma 2.1. If G is a graph with $\Delta(G)=|V(G)|-1$, then $\gamma_{s R}(G) \geq 1$.
Proof. Let f be an optimal signed Roman dominating function on G, and let $x \in V(G)$ be a vertex of maximum degree $\Delta(G)$. Since $N_{G}(x)=$ $V(G) \backslash\{x\}$, using the definition of a $S R D F$, we have

$$
\gamma_{s R}(G)=w(f)=\sum_{v \in V(G)} f(v)=f(x)+\sum_{v \in N_{G}(x)} f(v)=f\left(N_{G}[x]\right) \geq 1
$$

Corollary 2.2. For each graph G, $\gamma_{s R}\left(G \vee K_{1}\right) \geq 1$. Specially, if $\gamma_{s R}(G)=0$, then $\gamma_{s R}\left(G \vee K_{1}\right)=1$.

Proof. The first statement follows directly from Lemma 2.1. Assume that $\gamma_{s R}(G)=0$, and let f be a $\gamma_{s R}(G)$-function of G. Define $g: V(G \vee$ $\left.K_{1}\right) \rightarrow\{-1,1,2\}$ as $g(x)=f(x)$ when $x \in V(G)$, and $g(y)=1$ when $y \in V\left(K_{1}\right)$. Since g is a SRDF of weight 1 on $G \vee K_{1}, \gamma_{s R}\left(G \vee K_{1}\right) \leq 1$. Thus $\gamma_{s R}\left(G \vee K_{1}\right)=1$.

Proposition 2.3. Let G and H be two graphs such that $\gamma_{s R}(G) \geq 0$ and $\gamma_{s R}(H) \geq 0$. Then,

$$
\gamma_{s R}(G \vee H) \leq \gamma_{s R}(G)+\gamma_{s R}(H)
$$

Proof. Let f_{1} be a $\gamma_{s R}(G)$-function on G, and let f_{2} be a $\gamma_{s R}(H)$ function on H. Define $f: V(G \vee H) \rightarrow\{-1,1,2\}$ as $f(x)=f_{1}(x)$ when $x \in V(G)$, and $f(y)=f_{2}(y)$ when $y \in V(H)$. For each $x \in V(G)$, $f\left(N_{G \vee H}[x]\right)=f\left(N_{G}[x]\right)+w\left(f_{2}\right) \geq 1$. Similarly, for each $y \in V(H)$, $f\left(N_{G \vee H}[y]\right)=f\left(N_{H}[y]\right)+w\left(f_{1}\right) \geq 1$. Thus f is a $S R D F$ on $G \vee H$ and $\gamma_{s R}(G \vee H) \leq w(f)=w\left(f_{1}\right)+w\left(f_{2}\right)=\gamma_{s R}(G)+\gamma_{s R}(H)$.

For $G=K_{2}$ and $H=K_{1}$, we have $\gamma_{s R}(G \vee H)=\gamma_{s R}(G)+\gamma_{s R}(H)$. Hence, this bound is attainable.

The following theorem determines the signed Roman domination number of wheels.

Theorem 2.4. Let $W_{n}=K_{1} \vee C_{n}$ be a wheel of order $n+1$. Then, $\gamma_{s R}\left(W_{4}\right)=2$ and $\gamma_{s R}\left(W_{n}\right)=1$ for each $n \neq 4$.
Proof. Let $V\left(W_{n}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(W_{n}\right)=\left\{v_{0} v_{i}: 1 \leq i \leq\right.$ $n\} \cup\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}, v_{n} v_{1}\right\}$. Since $\Delta\left(W_{n}\right)=\left|V\left(W_{n}\right)\right|-1$, Lemma 2.1 implies that $\gamma_{s R}\left(W_{n}\right) \geq 1$. For the case $n=4$, it is not hard to check by inspection that there exists no signed Roman dominating function on W_{4} of weight 1, while Figure 1 (a) illustrates an $S R D F$ on W_{4} of weight 2. Hence, $\gamma_{s R}\left(W_{4}\right)=2$. To complete the proof, it is sufficient to provide a signed Roman dominating function of weight 1 on W_{n} for each $n \neq 4$. For this reason, we consider the following different cases.
Case 1. n is odd:
Define the function $f: V\left(W_{n}\right) \rightarrow\{-1,1,2\}$ as below. Figure 1 (b) illustrates it for the case $n=5$, where the central vertex is v_{0}, top one is v_{1}, and v_{2} is the second vertex when the sense of traversal is clockwise.

$$
f\left(v_{i}\right)= \begin{cases}2 & i=0 \tag{2.1}\\ 1 & i \geq 3, i \equiv 1(\bmod 2) \\ -1 & o . w\end{cases}
$$

Note that f is a $S R D F$ on W_{n} of weight $w(f)=f\left(N_{W_{n}}\left[v_{0}\right]\right)=1$.
Case 2. n is even and $n \equiv 0(\bmod 3)$:

Define the function $f: V\left(W_{n}\right) \rightarrow\{-1,1,2\}$, as below. Figure 2 (a) depicts it for the case $n=12$.

$$
f\left(v_{i}\right)= \begin{cases}1 & i=0 \tag{2.2}\\ 2 & i \geq 1, i \equiv 0(\bmod 3) \\ -1 & \text { o.w. }\end{cases}
$$

It is straightforward to check that f is a $S R D F$ on W_{n} of weight 1.
Case 3. n is even and $n \equiv 1(\bmod 3)$.
Define the function f on $V\left(W_{n}\right)$, as follows. Figure $2(\mathrm{~b})$ illustrates it for the case $n=10$.

$$
f\left(v_{i}\right)= \begin{cases}2 & i=0 \tag{2.3}\\ 2 & 1 \leq i \leq n-7, i \equiv 0(\bmod 3) \\ 1 & i \in\{n-4, n-1, n\} \\ -1 & \text { o.w. }\end{cases}
$$

It is not hard to check that f is a $S R D F$ on W_{n} and $w(f)=1$.
Case 4. n is even and $n \equiv 2(\bmod 3)$.
Define the function f on $V\left(W_{n}\right)$, as follows. Figure 2 (b) depicts it for the case $n=8$.

$$
f\left(v_{i}\right)= \begin{cases}2 & i=0 \tag{2.4}\\ 2 & 1 \leq i \leq n-5, i \equiv 0(\bmod 3) \\ 1 & i \in\{n-2, n\} \\ -1 & \text { o.w. }\end{cases}
$$

It is easy to check that f is a $S R D F$ on W_{n} and its weight is one. Therefore, in each case, we provide a SRDF on W_{n} of weight one. This completes the proof.

(a)

(b)

Figure 1. Signed Roman domination labeling on W_{4} and W_{5}.

Figure 2. Signed Roman domination labeling of W_{12}, W_{10} and W_{8}.

(a)

(b)

(c)

Figure 3. Signed Roman domination labeling on F_{2}, F_{4} and F_{5}, respectively.

(a)

(b)

(c)

Figure 4. Signed Roman domination labeling on F_{12}, F_{10} and F_{8}, respectively.
Structures of F_{n} and W_{n} are similar. This similarity helps us to provide signed Roman dominating functions on F_{n} using what we construct for W_{n}.

Theorem 2.5. Let $F_{n}=K_{1} \vee P_{n}$ be a fan of order $n+1$. Then

$$
\gamma_{s R}\left(F_{n}\right)=\left\{\begin{array}{cc}
2 & n \in\{2,4\} \\
1 & n \notin\{2,4\} .
\end{array}\right.
$$

Proof. Let $V\left(F_{n}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(F_{n}\right)=\left\{v_{0} v_{i}: 1 \leq i \leq\right.$ $n\} \cup\left\{v_{2} v_{3}, v_{3} v_{4}, \ldots, v_{n-1} v_{n}, v_{n} v_{1}\right\}$, i.e. $F_{n}=W_{n}-v_{1} v_{2}$. Since $\Delta\left(F_{n}\right)=$ $\left|V\left(F_{n}\right)\right|-1$, Lemma 2.1 implies that $\gamma_{s R}\left(F_{n}\right) \geq 1 . F_{2}$ is a complete graph with three vertices, and hence, $\gamma_{s R}\left(F_{2}\right)=\gamma_{s R}\left(K_{3}\right)=2$. For the case $n=4$ it is not hard to check by inspection that there exists no signed Roman dominating function on F_{4} of weight 1. Figure 3 (a) and (b) illustrate a $S R D F$ of weight 2 on F_{2} and F_{4}, respectively. Thus for $n \in\{2,4\}$, we have $\gamma_{s R}\left(F_{n}\right)=2$.

To complete the proof, it is sufficient to provide a signed Roman dominating function of weight 1 on F_{n} for each $n \notin\{2,4\}$. Regarding to the different possible cases for n, as mentioned in the proof of Theorem 2.4, consider the functions that are defined in the equations 2.1, 2.2, 2.3, and 2.4. For instance, an optimal SRDF on F_{5} is depicted in Figure 3 (c), where the top vertex is v_{0}, and its below lef one is v_{1}. Also optimal SRDF's on F_{12}, F_{10}, and F_{8} are illustrated in Figure 4 (a), (b), and (c), respectively (where the central vertex is v_{0}, and the top one is v_{1}).

Theorem 2.6. Let $m \geq 2$ be an integer and $n=2 m+1$. Then the signed Roman domination number of the Friendship graph Fr $_{n}=$ $K_{1} \vee\left(m K_{2}\right)$ is given by $\gamma_{s R}\left(F r_{n}\right)=2$.

Proof. Let $V\left(F r_{n}\right)=\{x\} \cup\left\{y_{i}, z_{i}: 1 \leq i \leq m\right\}$ and $E\left(F r_{n}\right)=$ $\left\{x y_{i}, x z_{i}: 1 \leq i \leq m\right\} \cup\left\{y_{i} z_{i}: 1 \leq i \leq m\right\}$. Since $\Delta\left(F r_{n}\right)=$ $\left|V\left(F r_{n}\right)\right|-1$, Lemma 2.1 implies that $\gamma_{s R}\left(F r_{n}\right) \geq 1$. Consider the function g defined from $V\left(F r_{n}\right)$ to the set $\{-1,1,2\}$, as follows.

$$
g(v)= \begin{cases}2 & v=x \\ 1 & v \in\left\{y_{1}, y_{2}, \ldots, y_{m}\right\} \\ -1 & v \in\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}\end{cases}
$$

Since g is a $S R D F$ on $F r_{n}$, we get $\gamma_{s R}\left(F r_{n}\right) \leq 2$. Now, let $f=$ (V_{-1}, V_{1}, V_{2}) be an optimal signed Roman dominating function on $F r_{n}$. If $V_{-1}=\emptyset$, then $w(f) \geq n \geq 5$, which is a contradiction. Hence, $\left|V_{-1}\right| \geq 1$, and this implies that $\left|V_{2}\right| \geq 1$. If $f\left(y_{i}\right)=f\left(z_{i}\right)=-1$ for some i, then $f\left(N_{F r_{n}}\left[y_{i}\right]\right) \leq 0$, which is a contradiction. Thus for each $i \in\{1,2, \ldots, m\}$, we have $\left|V_{-1} \cap\left\{y_{i}, z_{i}\right\}\right| \leq 1$, and this implies that $\left|V_{-1}\right| \leq m+1$. If $\left|V_{-1}\right|=m+1$, then $x \in V_{-1}$ and $\left|V_{-1} \cap\left\{y_{i}, z_{i}\right\}\right|=1$ for each $i \in\{1,2, \ldots, m\}$. Hence, $f\left(N_{F r_{n}}\left[y_{1}\right]\right)=f\left(y_{1}\right)+f\left(z_{1}\right)+f(x) \leq 0$,
which is a contradiction. Therefore, $\left|V_{-1}\right| \leq m$, and
$\gamma_{s R}\left(F r_{n}\right)=w(f)=2\left|V_{2}\right|+\left|V_{1}\right|-\left|V_{-1}\right| \geq 2 \times 1+m \times 1+m \times(-1)=2$,
which completes the proof.

3. Join of cycles

Since $\Delta\left(C_{m} \vee C_{n}\right)=\max \{m+2, n+2\}$, the maximum degree of $C_{m} \vee C_{n}$ is $m+n-1$ if and only if $3 \in\{m, n\}$. Hence, for $m \geq 4$ and $n \geq 4$, the graph $C_{m} \vee C_{n}$ has no vertex of degree $\left|V\left(C_{m} \vee C_{n}\right)\right|-1$.

Theorem 3.1. If $n \geq 3$ is an integer, then $\gamma_{s R}\left(C_{3} \vee C_{n}\right)=1$.
Proof. Let $V\left(C_{3}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $V\left(C_{n}\right)=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, each one arranged consecutively on a circle, and consider the following cases.
Case 1. $n \equiv 0(\bmod 3)$:
Define $f: V\left(C_{3} \vee C_{n}\right) \rightarrow\{-1,1,2\}$ as $f\left(x_{1}\right)=f\left(x_{2}\right)=1, f\left(x_{3}\right)=-1$, $f\left(y_{j}\right)=2$ when $i \equiv 1(\bmod 3)$, and $f\left(y_{j}\right)=-1$ otherwise. Note that $f\left(V\left(C_{3}\right)\right)=1$ and $f\left(V\left(C_{n}\right)\right)=0$.
Case 2. $n \equiv 1(\bmod 3)$:
Define f as $f\left(x_{1}\right)=f\left(x_{2}\right)=2, f\left(x_{3}\right)=1, f\left(y_{1}\right)=f\left(y_{2}\right)=\cdots=$ $f\left(y_{\frac{n-4}{3}}\right)=2$, and $f\left(y_{j}\right)=-1$ for each $j>\frac{n-4}{3}$. Note that $f\left(V\left(C_{3}\right)\right)=$ $5, f\left(V\left(C_{n}\right)\right)=-4$ and $f\left(N_{C_{3} \vee C_{n}}\left[y_{j}\right]\right) \geq-3+5 \geq 1$ for each j.
Case 3. $n \equiv 2(\bmod 3)$:
Define f as $f\left(x_{1}\right)=f\left(x_{2}\right)=f\left(x_{3}\right)=2, f\left(y_{1}\right)=f\left(y_{2}\right)=\cdots=$ $f\left(y_{\frac{n-5}{3}}\right)=2$, and $f\left(y_{j}\right)=-1$ for each $j>\frac{n-5}{3}$. Note that $f\left(V\left(C_{3}\right)\right)=$ $6, f\left(V\left(C_{n}\right)\right)=-5$, and $f\left(N_{C_{3} \vee C_{n}}\left[y_{j}\right]\right) \geq-3+6 \geq 1$ for each j.

In each case, it is easy to check that f is a SRDF (of weight 1) on $C_{3} \vee C_{n}$. Now Lemma 2.1 completes the proof.

The following theorem considers the general case.
Proposition 3.2. For each pair of positive integers $m \geq 3$ and $n \geq 3$, we have $1 \leq \gamma_{s R}\left(C_{m} \vee C_{n}\right) \leq 4$.

Proof. Assume that $V\left(C_{m}\right)=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $V\left(C_{n}\right)=\left\{y_{1}, y_{2}, \ldots\right.$, $\left.y_{n}\right\}$, which are arranged consecutively on a circle, respectively. Without loss of generality, assume that m is odd and n is even (other cases are similar). Define the two functions $f_{o}: V\left(C_{m}\right) \rightarrow\{-1,1,2\}$ and $f_{e}: V\left(C_{n}\right) \rightarrow\{-1,1,2\}$ as
$f_{o}\left(x_{i}\right)=\left\{\begin{array}{rl}2 & i=1 \\ -1 & i \in\{2,4, \ldots, m-1\} \\ 1 & i \in\{3,5, \ldots, m\},\end{array} \quad f_{e}\left(y_{j}\right)=\left\{\begin{array}{rl}2 & j \in\{1,3\} \\ -1 & j \in\{2,4, \ldots, n\} \\ 1 & j \in\{5,7, \ldots, n-1\} .\end{array}\right.\right.$

Now, define $f: V\left(C_{m} \vee C_{n}\right) \rightarrow\{-1,1,2\}$ as $f(v)=f_{o}\left(x_{i}\right)$ when $v=x_{i}$, and $f(v)=f_{e}\left(y_{j}\right)$ when $v=y_{j}$. Note that $f\left(x_{1}\right)=f\left(y_{1}\right)=2$, and each vertex in $C_{m} \vee C_{n}$ is adjacent to x_{1} or y_{1}. Also, $f\left(V\left(C_{m}\right)\right)=f\left(V\left(C_{n}\right)\right)=$ 2 , and for each i, j, we have $f_{o}\left(N_{C_{m}}\left[x_{i}\right]\right) \geq-1$ and $f_{e}\left(N_{C_{n}}\left[y_{j}\right]\right) \geq-1$. Hence, for $i=1,2, \ldots, m$, we have

$$
f\left(N_{C_{m} \vee C_{n}}\left[x_{i}\right]\right)=f_{o}\left(N_{C_{m}}\left[x_{i}\right]\right)+f_{e}\left(V\left(C_{n}\right)\right) \geq-1+2=1,
$$

and for $j=1,2, \ldots n$, we have

$$
f\left(N_{C_{m} \vee C_{n}}\left[y_{j}\right]\right)=f_{e}\left(N_{C_{n}}\left[y_{j}\right]\right)+f_{o}\left(V\left(C_{m}\right)\right) \geq-1+2=1 .
$$

Thus, f is a SRDF on $C_{m} \vee C_{n}$ and $w(f)=f_{o}\left(C_{m}\right)+f_{e}\left(C_{n}\right)=4$, the upper bound follows.

In order to obtain the lower bound, let g be an optimal SRDF on $C_{m} \vee C_{n}$. If $g\left(V\left(C_{m}\right)\right) \geq 1$ and $g\left(V\left(C_{n}\right)\right) \geq 1$, then the result follows. Assume that $g\left(V\left(C_{n}\right)\right)=\alpha \leq 0$. Since g is a SRDF, for each $x \in$ $V\left(C_{m}\right)$, we have $g\left(N_{C_{m} \vee C_{n}}[x]\right) \geq 1$. Using the fact $g\left(N_{C_{m} \vee C_{n}}[x]\right)=$ $g\left(N_{C_{m}}[x]\right)+g\left(V\left(C_{n}\right)\right)$, we see that $g\left(N_{C_{m}}[x]\right) \geq 1-\alpha$. Hence,
$g\left(V\left(C_{m}\right)\right)=\sum_{x \in V\left(C_{m}\right)} g(x)=\frac{1}{3} \sum_{x \in V\left(C_{m}\right)} g\left(N_{C_{m}}[x]\right) \geq \frac{1}{3} \sum_{x \in V\left(C_{m}\right)}(1-\alpha) \geq \frac{m}{3}(1-\alpha)$.
Thus

$$
\begin{aligned}
\gamma_{s R}\left(C_{m} \vee C_{n}\right)=w(g) & =g\left(V\left(C_{m}\right)\right)+g\left(V\left(C_{n}\right)\right) \\
& \geq \frac{m}{3}(1-\alpha)+\alpha=\frac{m}{3}+\left(\frac{m}{3}-1\right)(-\alpha) \geq 1
\end{aligned}
$$

A similar argument holds for the situation $g\left(V\left(C_{m}\right)\right) \leq 0$. This completes the proof.

After some required lemmas and in Corollary 3.6, we will see that the exact and sharp value for the upper bound of $\gamma_{s R}\left(C_{m} \vee C_{n}\right)$ is 3 .

Lemma 3.3. Let $m \geq 13$ and $n \geq 13$ be two integers. If f is an optimal SRDF on $C_{m} \vee C_{n}$, then $f\left(V\left(C_{m}\right)\right)>0$ and $f\left(V\left(C_{n}\right)\right)>0$. Specially, $\gamma_{s R}\left(C_{m} \vee C_{n}\right) \geq 2$.

Proof. Suppose, to the contrary, that f is an optimal SRDF on $C_{m} \vee C_{n}$ and $f\left(V\left(C_{n}\right)\right)=\alpha \leq 0$. Since f is a SRDF, for each $x \in V\left(C_{m}\right)$, we have $f\left(N_{C_{m} \vee C_{n}}[x]\right) \geq 1$, which implies that $f\left(N_{C_{m}}[x]\right) \geq|\alpha|+1$. Hence,
$f\left(V\left(C_{m}\right)\right)=\frac{1}{3} \sum_{x \in V\left(C_{m}\right)} f\left(N_{C_{m}}[x]\right) \geq \frac{1}{3} \sum_{x \in V\left(C_{m}\right)}(|\alpha|+1) \geq \frac{1}{3} m(|\alpha|+1)$.

Therefore,

$$
\begin{aligned}
\gamma_{s R}\left(C_{m} \vee C_{n}\right) & =f\left(V\left(C_{m}\right)\right)+f\left(V\left(C_{n}\right)\right) \\
& \geq \frac{m}{3}(|\alpha|+1)+\alpha \geq \frac{13}{3}(-\alpha+1)+\alpha>4 .
\end{aligned}
$$

This contradicts Proposition 3.2. Thus, $f\left(V\left(C_{n}\right)\right) \geq 1$. Similarly, we can prove that $f\left(V\left(C_{m}\right)\right) \geq 1$.

Lemma 3.4. Let $n \geq 13$ be an integer such that $n \not \equiv 2(\bmod 3)$. If $f: V\left(C_{n}\right) \rightarrow\{-1,1,2\}$ is a function for which $f\left(V\left(C_{n}\right)\right)=1$, then there exists $y \in V\left(C_{n}\right)$ such that $f\left(N_{C_{n}}[y]\right)<0$.

Proof. Since $1=f\left(V\left(C_{n}\right)\right)=\frac{1}{3} \sum_{x \in V\left(C_{n}\right)} f\left(N_{C_{n}}[x]\right)$, the summation $\sum_{x \in V\left(C_{n}\right)} f\left(N_{C_{n}}[x]\right)$ is equal to 3 . Assume, to the contrary, that $f\left(N_{C_{n}}[y]\right)$ ≥ 0 for each $y \in V\left(C_{n}\right)$. Thus, one of the following cases should be happen.
i) There exists $y \in V\left(C_{n}\right)$ such that $f\left(N_{C_{n}}[y]\right)=3$ and $f\left(N_{C_{n}}\left[y^{\prime}\right]\right)=$ 0 for each $y^{\prime} \neq y$.
ii) There exist $y, y^{\prime} \in V\left(C_{n}\right)$ such that $f\left(N_{C_{n}}[y]\right)=2, f\left(N_{C_{n}}\left[y^{\prime}\right]\right)=$ 1 and $f\left(N_{C_{n}}\left[y^{\prime \prime}\right]\right)=0$ for each $y^{\prime \prime} \notin\left\{y, y^{\prime}\right\}$.
iii) There exist $y, y^{\prime}, y^{\prime \prime} \in V\left(C_{n}\right)$ such that $f\left(N_{C_{n}}[y]\right)=f\left(N_{C_{n}}\left[y^{\prime}\right]\right)=$ $f\left(N_{C_{n}}\left[y^{\prime \prime}\right]\right)=1$ and $f\left(N_{C_{n}}[\bar{y}]\right)=0$ for each $\bar{y} \notin\left\{y, y^{\prime}, y^{\prime \prime}\right\}$.
Claim. There exists no vertex with label 1.
In order to prove this claim, suppose (to the contrary) that $f\left(y_{j}\right)=1$ for some $y_{j} \in V\left(C_{n}\right)=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. We consider the following possibilities for the labels of the neighbours of y_{j}.

1) $f\left(y_{j-1}\right)=1$ and $f\left(y_{j+1}\right)=1$:

This implies that $f\left(N_{C_{n}}\left[y_{j}\right]\right)=3$ and $f\left(N_{C_{n}}\left[y_{j-1}\right]\right) \geq 1$, which contradicts the above three possible cases (i), (ii), and (iii).
2) $f\left(y_{j-1}\right)=2$ and $f\left(y_{j+1}\right)=2$:

This implies that $f\left(N_{C_{n}}\left[y_{j}\right]\right)=5$, which is a contradiction.
3) $f\left(y_{j-1}\right)=2$ and $f\left(y_{j+1}\right)=1$:

Hence, $f\left(N_{C_{n}}\left[y_{j}\right]\right)=4$, which is a contradiction.
4) $f\left(y_{j-1}\right)=2$ and $f\left(y_{j+1}\right)=-1$:

This implies that $f\left(N_{C_{n}}\left[y_{j}\right]\right)=2$ and $f\left(N_{C_{n}}\left[y_{j-1}\right]\right) \geq 2$, which is a contradiction.
5) $f\left(y_{j-1}\right)=-1$ and $f\left(y_{j+1}\right)=-1$:

Thus $f\left(N_{C_{n}}\left[y_{j}\right]\right)=-1$, which is a contradiction.
6) $f\left(y_{j-1}\right)=1$ and $f\left(y_{j+1}\right)=-1$:

Since $f\left(N_{C_{n}}\left[y_{j+1}\right]\right) \geq 0, f\left(y_{j+2}\right) \in\{1,2\}$. Since $f\left(N_{C_{n}}\left[y_{j}\right]\right)=$ $1, f\left(N_{C_{n}}\left[y_{j-1}\right]\right) \geq 1$ and $f\left(N_{C_{n}}\left[y_{j+1}\right]\right) \geq 1$, we should have $f\left(N_{C_{n}}\left[y_{j+1}\right]\right)=1$ and $f\left(y_{j+2}\right)=1$. Therefore, $f\left(N_{C_{n}}\left[y_{j^{\prime}}\right]\right)=0$
for each $j^{\prime} \notin\{j-1, j, j+1\}$, and specially, $f\left(N_{C_{n}}\left[y_{j+2}\right]\right)=0$, which is impossible.
This completes the proof of the claim. Therefore, the label of each vertex in C_{n} is -1 or 2 . Let t be the number of vertices whose label is 2 . If $n=3 k$, then $1=f\left(V\left(C_{n}\right)\right)=2 t+(3 k-t)(-1)=3(t-k)$, which is a contradiction (3 is not a divisor of 1). If $n=3 k+1$, then $1=2 t+(3 k+1-t)(-1)$. Hence, $2=3(t-k)$, which is a contradiction.

Theorem 3.5. Let $m \geq 13$ and $n \geq 13$ be two integers. Then we have

$$
\gamma_{s R}\left(C_{m} \vee C_{n}\right)= \begin{cases}2 & m \equiv 2(\bmod 3), n \equiv 2(\bmod 3) \\ 3 & \text { o.w. }\end{cases}
$$

Proof. At first, assume that $m \equiv 2(\bmod 3)$ and $n \equiv 2(\bmod 3)$.
Define the function f from $V\left(C_{m}\right) \cup V\left(C_{n}\right)=\left\{x_{1}, \ldots, x_{m}\right\} \cup\left\{y_{1}, \ldots, y_{n}\right\}$ to $\{-1,1,2\}$, as follows.
$f\left(x_{i}\right)=\left\{\begin{array}{ll}2 & i \equiv 1(\bmod 3) \\ -1 & \text { o.w. }\end{array} \quad, \quad f\left(y_{j}\right)= \begin{cases}2 & j \equiv 1(\bmod 3) \\ -1 & \text { o.w. }\end{cases}\right.$
Hence, $f\left(V\left(C_{m}\right)\right)=f\left(V\left(C_{n}\right)\right)=1, f\left(N_{C_{m}}\left[x_{m}\right]\right)=f\left(N_{C_{n}}\left[y_{n}\right]\right)=3$, and for each $1 \leq i<m$ and each $1 \leq j<n$, we have $f\left(N_{C_{m}}\left[x_{i}\right]\right)=$ $f\left(N_{C_{n}}\left[y_{j}\right]\right)=0$. Thus f is a SRDF of weight 2. Therefore, Lemma 3.3 completes the proof (in this case).

Now, assume that $m \equiv 2(\bmod 3)$ and $n \not \equiv 2(\bmod 3)$.
Define the function g on $V\left(C_{m}\right)=\left\{x_{1}, \ldots, x_{m}\right\}$ as $g\left(x_{i}\right)=2$ when $i \equiv 1(\bmod 3)$, and $g\left(x_{i}\right)=-1$, otherwise. Thus $g\left(N_{C_{m}}\left[x_{m}\right]\right)=3$, $g\left(N_{C_{m}}\left[x_{i}\right]\right)=0$ for each $i \neq m$, and $g\left(V\left(C_{m}\right)\right)=1$. When $n \equiv 0$ $(\bmod 3)($ or $n \equiv 1(\bmod 3))$, define the function $h_{1}\left(\right.$ or $\left.h_{2}\right)$ on $V\left(C_{n}\right)=$ $\left\{y_{1}, \ldots, y_{n}\right\}$ as follows
$h_{1}\left(y_{j}\right)=\left\{\begin{array}{ll}1 & j=n \\ 2 & j \equiv 1 \\ -1 & \text { o.w. }\end{array} \quad(\bmod 3), \quad h_{2}\left(y_{j}\right)=\left\{\begin{array}{lll}2 & j \equiv 1 \\ -1 & \text { o.w. }\end{array} \quad(\bmod 3)\right.\right.$
Note that $h_{1}\left(V\left(C_{n}\right)\right)=2$ and $h_{1}\left(N_{C_{n}}\left[y_{j}\right]\right) \geq 0$ for each j (similarly, $h_{2}\left(V\left(C_{n}\right)\right)=2$ and $h_{2}\left(N_{C_{n}}\left[y_{j}\right]\right) \geq 0$ for each j). Now, g using h_{1} (or h_{2}) induces a labelling on $V\left(C_{m} \vee C_{n}\right)$, which is a SRDF of weight $1+2=3$. Hence, $\gamma_{s R}\left(C_{m} \vee C_{n}\right) \leq 3$. Let f be an optimal SRDF on $C_{m} \vee C_{n}$. By Lemma 3.3, $f\left(V\left(C_{m}\right)\right) \geq 1$ and $f\left(V\left(C_{n}\right)\right) \geq 1$. If $f\left(V\left(C_{n}\right)\right) \geq 2$, then we are done. Else $f\left(V\left(C_{n}\right)\right)=1$ and Lemma 3.4 imply that there exists $y \in V\left(C_{n}\right)$ such that $f\left(N_{C_{n}}[y]\right) \leq-1$. Since $f\left(N_{C_{m} \vee C_{n}}[y]\right) \geq 1$, we should have $f\left(V\left(C_{m}\right)\right) \geq 2$. Thus $w(f)=f\left(V\left(C_{m}\right)\right)+f\left(V\left(C_{n}\right)\right) \geq 3$, which completes the proof (for this case).

Finally, assume that $m \not \equiv 2(\bmod 3)$ and $n \not \equiv 2(\bmod 3)$.
Let f be an optimal SRDF on $C_{m} \vee C_{n}$. By Lemma 3.3, $f\left(V\left(C_{m}\right)\right)$ ≥ 1 and $f\left(V\left(C_{n}\right)\right) \geq 1$. Lemma 3.4 implies that the case $f\left(V\left(C_{m}\right)\right)=$ $f\left(V\left(C_{n}\right)\right)=1$ is impossible. Thus $\gamma_{s R}\left(C_{m} \vee C_{n}\right) \geq 3$. Using h_{1} or h_{2}, as defined in the previous paragraph, we obtain a labeling on $V\left(C_{n}\right)$ with total weight 2 . For the case $m \equiv 0(\bmod 3)($ or $m \equiv 1(\bmod 3))$, define the function g_{1} (or g_{2}) on $V\left(C_{m}\right)$, as follows.

$$
\begin{aligned}
g_{1}\left(x_{i}\right) & =\left\{\begin{array}{rl}
1 & i \in\{m-2, m-1\} \\
2 & i \neq m-2, i \equiv 1(\bmod 3) \\
-1 & \text { o.w. }
\end{array}\right. \\
g_{2}\left(x_{i}\right) & =\left\{\begin{array}{cl}
1 & i=m \\
2 & i \neq m, i \equiv 1(\bmod 3) . \\
-1 & \text { o.w. }
\end{array}\right.
\end{aligned}
$$

Note that $g_{k}\left(V\left(C_{m}\right)\right)=1$, and for each $1 \leq i \leq m$, we have $g_{k}\left(N_{C_{m}}\left(x_{i}\right)\right)$ $\geq-1, k \in\{1,2\}$. Now, regarding the possible cases for m and n, and using one of the two functions g_{1}, g_{2} and one of the two functions h_{1}, h_{2}, we obtain a labelling on $V\left(C_{m}\right) \cup V\left(C_{n}\right)$, which induces a SRDF of weight 3 on $C_{m} \vee C_{n}$.

By considering the proof of Theorem 3.5, we see that the condition $m, n \geq 13$ is used just for providing a suitable lower bound for $\gamma_{s R}\left(C_{m} \vee\right.$ C_{n}) in different cases of m and n (in module 3). Throughout the proof and in each case, a SRDF of weight 2 or 3 is constructed for $C_{m} \vee C_{n}$ (without considering the condition $m, n \geq 13$), which implies that the value of $\gamma_{s R}\left(C_{m} \vee C_{n}\right)$ is at most three in that case.
Corollary 3.6. For each pair of integers $m \geq 3$ and $n \geq 3$, we have $\gamma_{s R}\left(C_{m} \vee C_{n}\right) \leq 3$.

Also by studying the small cases, we see that the condition $m, n \geq 13$ is redundant in Theorem 3.5 for the lower bounds, and we suggest the following conjecture:

Conjecture 1. For each pair of integers $m \geq 4$ and $n \geq 4$ we have

$$
\gamma_{s R}\left(C_{m} \vee C_{n}\right)= \begin{cases}2 & m \equiv 2(\bmod 3), n \equiv 2(\bmod 3) \\ 3 & \text { o.w. }\end{cases}
$$

Acknowledgments

We would like to express our deepest gratitudes to the referees for their invaluable comments and suggestions, which improve the quality of this paper.

References

1. H. A. Ahangar, M. A. Henning, Y. Zhao, C. Löwenstein, V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014) 241-255.
2. C. Berge, Graphs and hypergraphs, North Holland, Amsterdam, 1973.
3. Z. Füredi and D. Mubayi, Signed domination in regular graphs and setsystems, J. Combin. Theory Ser. B 76 (1999) 223-239.
4. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the theory of NP-completeness, W.H. Freeman, San Francisco 1979.
5. W. Goddard, M. A. Henning, Restricted domination parameters in graphs, J. Comb. Optim. 13 (2007) 353-363.
6. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs, Advanced Topics, Marcel Dekker, New York, 1998.
7. M. A. Henning, S. T. Hedetniemi, Defending the Roman empire - a new strategy, Discrete Math. 266 (2003), 239-251.
8. M. A. Henning, L. Volkmann, Signed Roman k-domination in trees, Discrete Applied Mathematics 186 (2015), 98-105.
9. M. A. Henning, Graphs with large paired-domination number, J. Comb. Optim. 13 (2007) 61-78.
10. O. Ore, Theory of graphs, Vol. 38. Providence: Amer. Math. Soc. Colloq. Publ. 1962.
11. S. M. Sheikholeslami, L. Volkmann, Signed Roman domination in digraphs, J. Comb. Optim. 30 (2015) 456-467.
12. S. M. Sheikholeslami, L. Volkmann, The signed Roman domatic number of a graph, Ann. Math. Inform. 40 (2012) 105-112.
13. I. Stewart, Defend the Roman Empire, Sci. Amer. 281 (1999) 136-139.

Ali Behtoei

Department of Mathematics, Imam Khomeini International University, P.O.Box 34149-16818, Qazvin, Iran.
Email: a.behtoei@sci.ikiu.ac.ir

Ebrahim Vatandoost

Department of Mathematics, Imam Khomeini International University, P.O.Box 34149-16818, Qazvin, Iran.
Email: e-vatandoost@ikiu.ac.ir

Fezzeh Azizi Rajol Abad

Department of Mathematics, Imam Khomeini International University, P.O.Box 34149-16818, Qazvin, Iran.
Email: vf.azizi66@gmail.com

SIGNED ROMAN DOMINATION NUMBER AND JOIN OF GRAPHS

A. BEHTOEI, E. VATANDOOST AND, F. AZIZI RAJOL ABAD

عدد احاطهگر رومى علامتدار و الحاق گرافها
على بهتوئى، ابراهيم وطن دوست، فضه عزيزى رجل آباد
گروه رياضى، دانشكده علوم پايه، دانشگاه بين المللى امام خمينى (ره) - قزوين
هر مجموعه احاطهگر در يك گراف را مىتوان با يك تابع به نام تابع احاطهگر به طور يكتا مشخص

 دوستى و الحاق دورها مشخص مىنمائيم.

كلمات كليدى: احاطهگرى، عدد احاطهگر رومى علامتدار، الحاق، چرخ، گراف دوستى.

[^0]: MSC(2010): Primary: 05C69; Secondary: 05C78.
 Keywords: Domination, Signed Roman domination, Join, Cycle, Wheel, Fan, Friendship. Received: 21 February 2016, Revised: 23 June 2016.
 *Corresponding author.

