
Journal of Algebraic Systems

Vol. 4, No. 1, (2016), pp 65-77

DOI: 10.22044/jas.2016.729

SIGNED ROMAN DOMINATION NUMBER AND JOIN
OF GRAPHS

A. BEHTOEI∗, E. VATANDOOST, AND F. AZIZI RAJOL ABAD

Abstract. In this work, we study the signed Roman domination
number of the join of graphs. Specially, we determine it for the
join of cycles, wheels, fans, and friendship graphs.

1. Introduction

Throughout this paper, we consider (non trivial) simple graphs,
which are finite and undirected graphs without loops or multiple edges.
Let G = (V (G), E(G)) be a simple graph of order n = |V (G)| and of
size m = |E(G)|. When x is a vertex of G, then the open neighborhood
of x in G is the set N

G
(x) = {y : xy ∈ E(G)}, and the closed neigh-

borhood of x in G is the set N
G
[x] = N

G
(x)∪{x}. The degree of vertex

x is the number of edges adjacent to x, which is denoted by degG(x)
. The minimum degree and the maximum degree of G are denoted by
δ(G) and ∆(G), respectively.

A set D ⊆ V (G) is called a dominating set of G if each vertex
outside D has at least one neighbor in D. The minimum cardinality
of a dominating set of G is the domination number of G, denoted by
γ(G). For example, the domination numbers of the n-vertex complete
graph, path, and cycle are given by γ(Kn) = 1, γ(Pn) = ⌈n

3
⌉ and

γ(Cn) = ⌈n
3
⌉, respectively [6]. Domination is a rapidly developing

area of research in graph theory, and its various applications to ad hoc
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networks, distributed computing, social networks, biological networks,
and web graphs partly explain the increased interest. The concept of
domination has existed and has been studied for a long time, and early
discussions on the topic can be found in the works of Berge [2] and Ore
[10]. At present, domination is considered to be one of the fundamental
concepts in graph theory with an extensive research activity. Garey
and Johnson [4] have shown that determining the domination number
of an arbitrary graph is an NP-complete problem. The domination
number can be defined equivalently by means of a function, which
can be considered as a characteristic function of a dominating set; see
[6]. A function f : V (G) → {0, 1} is called a dominating function
on G if, for each vertex x ∈ V (G),

∑
y∈NG[x] f(y) ≥ 1. The value

w(f) =
∑

x∈V (G) f(x) is called the weight of f . Now, the domination
number of G can be defined as

γ(G) = min{w(f) : f is a dominating function on G}.

Analogously, a signed dominating function of G is a labeling of the
vertices of G with +1 and −1 such that the closed neighborhood of each
vertex contains more +1’s than −1’s. The signed domination number
of G is the minimum value of the sum of vertex labels, taken over all
signed dominating functions of G. This concept is closely related to the
combinatorial discrepancy theory, as shown by Füredi and Mubayi in
[3]. In general, many domination parameters are defined by combining
domination with other graph theoretical properties; see [5] and [9].

Definition 1.1. [1] Let G = (V,E) be a graph. A signed Roman
dominating function (simply, a “SRDF”) on the graph G is a func-
tion f : V → {−1, 1, 2}, which satisfies the following two following
conditions:

(a) For each x ∈ V ,
∑

y∈NG[x] f(y) ≥ 1;

(b) Each vertex x for which f(x) = −1 is adjacent to at least one
vertex y for which f(y) = 2.

The value f(V ) =
∑

x∈V f(x) is called the weight of the function f ,
and is denoted by w(f). The signed Roman domination number of G,
γ

sR
(G) is the minimum weight of a SRDF on G.

This concept has been introduced by Ahangar, Henning, et al. in [1].
They have described the usefulness of this concept in various applica-
tive areas like graph labeling and “defending the Roman empire” (see
[1], [7] and [13] for more details). It is obvious that for every graph G
of order n, we have γ

sR
(G) ≤ n since assigning +1 to each vertex yields

a SRDF. In [1], Ahangar et al. have presented various lower and upper
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bounds on the signed Roman domination number of a graph in terms
of its order, size, and vertex degrees. Moreover, they have character-
ized all graphs that attain these bounds. They have also investigated
the relation between γ

sR
and some other graphical parameters, and the

signed Roman domination number of some special bipartite graphs. It
has been proved in [1] that γ

sR
(Kn) = 1 for each n ̸= 3, γ

sR
(K3) = 2,

γ
sR
(Cn) = ⌈2n

3
⌉, γ

sR
(Pn) = ⌊2n

3
⌋, and that the only n-vertex graph G

with γ
sR
(G) = n is the empty graph Kn.

Henning and Volkmann have studied the signed Roman domination
number of trees in [8]. Also the signed Roman domination number of
directed graphs has been considered in [11].

Note that each signed Roman dominating function f onG is uniquely
determined by the ordered partition (V−1, V1, V2) of V (G), where Vi =
{x ∈ V (G) : f(x) = i} for each i ∈ {−1, 1, 2}. Specially, w(f) =
2|V2|+ |V1|−|V−1|. For convenience, we usually write f = (V−1, V1, V2),
and when S ⊆ V , we denote the summation

∑
x∈S f(x) by f(S). If

w(f) = γ
sR
(G), then f is called a γsR(G)-function or an optimal SRDF

on G. Recall that the join of two graphs G1 and G2, denoted by G1∨G2,
is a graph with vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2)∪
{xy : x ∈ V (G1), y ∈ V (G2)}. For example, K1 ∨ Pn is the fan Fn,
K1 ∨ Cn is the wheel Wn, and the friendship graph Frn, n = 2m + 1,
is the graph obtained by joining K1 to m disjoint copies of K2.

In this paper, we study the signed Roman domination number of the
join of graphs. Specially, we determine the signed Roman domination
number of Cm ∨ Cn, Wn, Fn, and friendship graph Frn.

2. Wheels, Fans, and Friendship graphs

For investigating γ
sR

of the join of graphs, the following lemma is
useful and will be used frequently.

Lemma 2.1. If G is a graph with ∆(G) = |V (G)|−1, then γ
sR
(G) ≥ 1.

Proof. Let f be an optimal signed Roman dominating function on G,
and let x ∈ V (G) be a vertex of maximum degree ∆(G). Since NG(x) =
V (G) \ {x}, using the definition of a SRDF , we have

γ
sR
(G) = w(f) =

∑
v∈V (G)

f(v) = f(x) +
∑

v∈NG(x)

f(v) = f(NG[x]) ≥ 1.

□
Corollary 2.2. For each graph G, γ

sR
(G ∨ K1) ≥ 1. Specially, if

γ
sR
(G) = 0, then γ

sR
(G ∨K1) = 1.
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Proof. The first statement follows directly from Lemma 2.1. Assume
that γ

sR
(G) = 0, and let f be a γsR(G)-function of G. Define g : V (G∨

K1) → {−1, 1, 2} as g(x) = f(x) when x ∈ V (G), and g(y) = 1 when
y ∈ V (K1). Since g is a SRDF of weight 1 on G∨K1, γsR

(G∨K1) ≤ 1.
Thus γ

sR
(G ∨K1) = 1. □

Proposition 2.3. Let G and H be two graphs such that γsR(G) ≥ 0
and γsR(H) ≥ 0. Then,

γ
sR
(G ∨H) ≤ γ

sR
(G) + γ

sR
(H).

Proof. Let f1 be a γ
sR
(G)-function on G, and let f2 be a γ

sR
(H)-

function on H. Define f : V (G ∨ H) → {−1, 1, 2} as f(x) = f1(x)
when x ∈ V (G), and f(y) = f2(y) when y ∈ V (H). For each x ∈ V (G),
f(NG∨H [x]) = f(NG[x]) + w(f2) ≥ 1. Similarly, for each y ∈ V (H),
f(NG∨H [y]) = f(NH [y]) + w(f1) ≥ 1. Thus f is a SRDF on G ∨ H
and γ

sR
(G ∨H) ≤ w(f) = w(f1) + w(f2) = γ

sR
(G) + γ

sR
(H). □

For G = K2 and H = K1, we have γ
sR
(G ∨H) = γ

sR
(G) + γ

sR
(H).

Hence, this bound is attainable.
The following theorem determines the signed Roman domination

number of wheels.

Theorem 2.4. Let Wn = K1 ∨ Cn be a wheel of order n + 1. Then,
γ

sR
(W4) = 2 and γ

sR
(Wn) = 1 for each n ̸= 4.

Proof. Let V (Wn) = {v0, v1, v2, ..., vn} and E(Wn) = {v0vi : 1 ≤ i ≤
n}∪{v1v2, v2v3, ..., vn−1vn, vnv1}. Since ∆(Wn) = |V (Wn)|−1, Lemma
2.1 implies that γ

sR
(Wn) ≥ 1. For the case n = 4, it is not hard to check

by inspection that there exists no signed Roman dominating function
on W4 of weight 1, while Figure 1 (a) illustrates an SRDF on W4 of
weight 2. Hence, γ

sR
(W4) = 2. To complete the proof, it is sufficient

to provide a signed Roman dominating function of weight 1 on Wn for
each n ̸= 4. For this reason, we consider the following different cases.
Case 1. n is odd:
Define the function f : V (Wn) → {−1, 1, 2} as below. Figure 1 (b)
illustrates it for the case n = 5, where the central vertex is v0, top
one is v1, and v2 is the second vertex when the sense of traversal is
clockwise.

f(vi) =

 2 i = 0
1 i ≥ 3, i ≡ 1 (mod 2).
−1 o.w.

(2.1)

Note that f is a SRDF on Wn of weight w(f) = f(N
Wn

[v0]) = 1.
Case 2. n is even and n ≡ 0 (mod 3):
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Define the function f : V (Wn) → {−1, 1, 2}, as below. Figure 2 (a)
depicts it for the case n = 12.

f(vi) =

 1 i = 0
2 i ≥ 1, i ≡ 0 (mod 3).
−1 o.w.

(2.2)

It is straightforward to check that f is a SRDF on Wn of weight 1.
Case 3. n is even and n ≡ 1 (mod 3).
Define the function f on V (Wn), as follows. Figure 2 (b) illustrates it
for the case n = 10.

f(vi) =


2 i = 0
2 1 ≤ i ≤ n− 7, i ≡ 0 (mod 3).
1 i ∈ {n− 4, n− 1, n}
−1 o.w.

(2.3)

It is not hard to check that f is a SRDF on Wn and w(f) = 1.
Case 4. n is even and n ≡ 2 (mod 3).
Define the function f on V (Wn), as follows. Figure 2 (b) depicts it for
the case n = 8.

f(vi) =


2 i = 0
2 1 ≤ i ≤ n− 5, i ≡ 0 (mod 3).
1 i ∈ {n− 2, n}
−1 o.w.

(2.4)

It is easy to check that f is a SRDF on Wn and its weight is one.
Therefore, in each case, we provide a SRDF on Wn of weight one. This
completes the proof. □
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2
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−1

−1

1−1

1

2

(b)

Figure 1. Signed Roman domination labeling on W4

and W5.
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Figure 2. Signed Roman domination labeling of W12,
W10 and W8.
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Figure 3. Signed Roman domination labeling on F2,
F4 and F5, respectively.
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Figure 4. Signed Roman domination labeling on F12,
F10 and F8, respectively.

Structures of Fn and Wn are similar. This similarity helps us to
provide signed Roman dominating functions on Fn using what we con-
struct for Wn.
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Theorem 2.5. Let Fn = K1 ∨ Pn be a fan of order n+ 1. Then

γ
sR
(Fn) =

{
2 n ∈ {2, 4}
1 n /∈ {2, 4}.

Proof. Let V (Fn) = {v0, v1, v2, ..., vn} and E(Fn) = {v0vi : 1 ≤ i ≤
n} ∪ {v2v3, v3v4, ..., vn−1vn, vnv1}, i.e. Fn = Wn − v1v2. Since ∆(Fn) =
|V (Fn)| − 1, Lemma 2.1 implies that γ

sR
(Fn) ≥ 1. F2 is a complete

graph with three vertices, and hence, γ
sR
(F2) = γ

sR
(K3) = 2. For the

case n = 4 it is not hard to check by inspection that there exists no
signed Roman dominating function on F4 of weight 1. Figure 3 (a) and
(b) illustrate a SRDF of weight 2 on F2 and F4, respectively. Thus for
n ∈ {2, 4}, we have γ

sR
(Fn) = 2.

To complete the proof, it is sufficient to provide a signed Roman
dominating function of weight 1 on Fn for each n /∈ {2, 4}. Regarding to
the different possible cases for n, as mentioned in the proof of Theorem
2.4, consider the functions that are defined in the equations 2.1, 2.2,
2.3, and 2.4. For instance, an optimal SRDF on F5 is depicted in
Figure 3 (c), where the top vertex is v0, and its below lef one is v1.
Also optimal SRDF’s on F12, F10, and F8 are illustrated in Figure 4
(a), (b), and (c), respectively (where the central vertex is v0, and the
top one is v1). □

Theorem 2.6. Let m ≥ 2 be an integer and n = 2m + 1. Then
the signed Roman domination number of the Friendship graph Frn =
K1 ∨ (mK2) is given by γ

sR
(Frn) = 2.

Proof. Let V (Frn) = {x} ∪ {yi, zi : 1 ≤ i ≤ m} and E(Frn) =
{xyi, xzi : 1 ≤ i ≤ m} ∪ {yizi : 1 ≤ i ≤ m}. Since ∆(Frn) =
|V (Frn)| − 1, Lemma 2.1 implies that γ

sR
(Frn) ≥ 1. Consider the

function g defined from V (Frn) to the set {−1, 1, 2}, as follows.

g(v) =

 2 v = x
1 v ∈ {y1, y2, ..., ym}
−1 v ∈ {z1, z2, ..., zm}.

Since g is a SRDF on Frn, we get γ
sR
(Frn) ≤ 2. Now, let f =

(V−1, V1, V2) be an optimal signed Roman dominating function on Frn.
If V−1 = ∅, then w(f) ≥ n ≥ 5, which is a contradiction. Hence,
|V−1| ≥ 1, and this implies that |V2| ≥ 1. If f(yi) = f(zi) = −1
for some i, then f(NFrn [yi]) ≤ 0, which is a contradiction. Thus for
each i ∈ {1, 2, ...,m}, we have |V−1∩{yi, zi}| ≤ 1, and this implies that
|V−1| ≤ m+1. If |V−1| = m+1, then x ∈ V−1 and |V−1∩{yi, zi}| = 1 for
each i ∈ {1, 2, ...,m}. Hence, f(NFrn [y1]) = f(y1) + f(z1) + f(x) ≤ 0,
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which is a contradiction. Therefore, |V−1| ≤ m, and

γ
sR
(Frn) = w(f) = 2|V2|+ |V1|− |V−1| ≥ 2×1+m×1+m× (−1) = 2,

which completes the proof. □

3. Join of cycles

Since ∆(Cm ∨ Cn) = max{m + 2, n + 2}, the maximum degree of
Cm ∨ Cn is m+ n− 1 if and only if 3 ∈ {m,n}. Hence, for m ≥ 4 and
n ≥ 4, the graph Cm ∨ Cn has no vertex of degree |V (Cm ∨ Cn)| − 1.

Theorem 3.1. If n ≥ 3 is an integer, then γ
sR
(C3 ∨ Cn) = 1.

Proof. Let V (C3) = {x1, x2, x3} and V (Cn) = {y1, y2, ..., yn}, each one
arranged consecutively on a circle, and consider the following cases.
Case 1. n ≡ 0 (mod 3):
Define f : V (C3 ∨Cn) → {−1, 1, 2} as f(x1) = f(x2) = 1, f(x3) = −1,
f(yj) = 2 when i ≡ 1 (mod 3), and f(yj) = −1 otherwise. Note that
f(V (C3)) = 1 and f(V (Cn)) = 0.
Case 2. n ≡ 1 (mod 3):
Define f as f(x1) = f(x2) = 2, f(x3) = 1, f(y1) = f(y2) = · · · =
f(yn−4

3

) = 2, and f(yj) = −1 for each j > n−4
3
. Note that f(V (C3)) =

5, f(V (Cn)) = −4 and f(N
C3∨Cn

[yj]) ≥ −3 + 5 ≥ 1 for each j.
Case 3. n ≡ 2 (mod 3):
Define f as f(x1) = f(x2) = f(x3) = 2, f(y1) = f(y2) = · · · =
f(yn−5

3

) = 2, and f(yj) = −1 for each j > n−5
3
. Note that f(V (C3)) =

6, f(V (Cn)) = −5, and f(N
C3∨Cn

[yj]) ≥ −3 + 6 ≥ 1 for each j.
In each case, it is easy to check that f is a SRDF (of weight 1) on

C3 ∨ Cn. Now Lemma 2.1 completes the proof. □

The following theorem considers the general case.

Proposition 3.2. For each pair of positive integers m ≥ 3 and n ≥ 3,
we have 1 ≤ γ

sR
(Cm ∨ Cn) ≤ 4.

Proof. Assume that V (Cm) = {x1, x2, ..., xm} and V (Cn) = {y1, y2, ...,
yn}, which are arranged consecutively on a circle, respectively. Without
loss of generality, assume that m is odd and n is even (other cases
are similar). Define the two functions fo : V (Cm) → {−1, 1, 2} and
fe : V (Cn) → {−1, 1, 2} as

fo(xi)=

 2 i = 1
−1 i ∈ {2, 4, ...,m− 1}
1 i ∈ {3, 5, ...,m},

fe(yj)=

 2 j ∈ {1, 3}
−1 j ∈ {2, 4, ..., n}
1 j ∈ {5, 7, ..., n− 1}.
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Now, define f : V (Cm∨Cn) → {−1, 1, 2} as f(v) = fo(xi) when v = xi,
and f(v) = fe(yj) when v = yj. Note that f(x1) = f(y1) = 2, and each
vertex in Cm∨Cn is adjacent to x1 or y1. Also, f(V (Cm)) = f(V (Cn)) =
2, and for each i, j, we have fo(NCm [xi]) ≥ −1 and fe(NCn [yj]) ≥ −1.
Hence, for i = 1, 2, ...,m, we have

f(NCm∨Cn [xi]) = fo(NCm [xi]) + fe(V (Cn)) ≥ −1 + 2 = 1,

and for j = 1, 2, ...n, we have

f(NCm∨Cn [yj]) = fe(NCn [yj]) + fo(V (Cm)) ≥ −1 + 2 = 1.

Thus, f is a SRDF on Cm ∨ Cn and w(f) = fo(Cm) + fe(Cn) = 4, the
upper bound follows.

In order to obtain the lower bound, let g be an optimal SRDF on
Cm ∨ Cn. If g(V (Cm)) ≥ 1 and g(V (Cn)) ≥ 1, then the result follows.
Assume that g(V (Cn)) = α ≤ 0. Since g is a SRDF, for each x ∈
V (Cm), we have g(NCm∨Cn [x]) ≥ 1. Using the fact g(NCm∨Cn [x]) =
g(NCm [x]) + g(V (Cn)), we see that g(NCm [x]) ≥ 1− α. Hence,

g(V (Cm))=
∑

x∈V (Cm)

g(x)=
1

3

∑
x∈V (Cm)

g(NCm [x]) ≥
1

3

∑
x∈V (Cm)

(1− α)≥m

3
(1− α).

Thus

γ
sR
(Cm ∨ Cn) = w(g) = g(V (Cm)) + g(V (Cn))

≥ m

3
(1− α) + α =

m

3
+ (

m

3
− 1)(−α) ≥ 1.

A similar argument holds for the situation g(V (Cm)) ≤ 0. This com-
pletes the proof. □

After some required lemmas and in Corollary 3.6, we will see that
the exact and sharp value for the upper bound of γ

sR
(Cm ∨ Cn) is 3.

Lemma 3.3. Let m ≥ 13 and n ≥ 13 be two integers. If f is an
optimal SRDF on Cm ∨ Cn, then f(V (Cm)) > 0 and f(V (Cn)) > 0.
Specially, γ

sR
(Cm ∨ Cn) ≥ 2.

Proof. Suppose, to the contrary, that f is an optimal SRDF on Cm∨Cn

and f(V (Cn)) = α ≤ 0. Since f is a SRDF, for each x ∈ V (Cm), we
have f(NCm∨Cn [x]) ≥ 1, which implies that f(NCm [x]) ≥ |α|+1. Hence,

f(V (Cm)) =
1

3

∑
x∈V (Cm)

f(NCm [x]) ≥
1

3

∑
x∈V (Cm)

(|α|+ 1) ≥ 1

3
m(|α|+ 1).
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Therefore,

γ
sR
(Cm ∨ Cn) = f(V (Cm)) + f(V (Cn))

≥ m

3
(|α|+ 1) + α ≥ 13

3
(−α + 1) + α > 4.

This contradicts Proposition 3.2. Thus, f(V (Cn)) ≥ 1. Similarly, we
can prove that f(V (Cm)) ≥ 1. □

Lemma 3.4. Let n ≥ 13 be an integer such that n ̸≡ 2 (mod 3). If
f : V (Cn) → {−1, 1, 2} is a function for which f(V (Cn)) = 1, then
there exists y ∈ V (Cn) such that f(NCn [y]) < 0.

Proof. Since 1 = f(V (Cn)) = 1
3

∑
x∈V (Cn)

f(NCn [x]), the summation∑
x∈V (Cn)

f(NCn [x]) is equal to 3. Assume, to the contrary, thatf(NCn [y])

≥ 0 for each y ∈ V (Cn). Thus, one of the following cases should be
happen.

i) There exists y ∈ V (Cn) such that f(NCn [y])= 3 and f(NCn [y
′])=

0 for each y′ ̸= y.
ii) There exist y, y′ ∈ V (Cn) such that f(NCn [y]) = 2, f(NCn [y

′]) =
1 and f(NCn [y

′′]) = 0 for each y′′ /∈ {y, y′}.
iii) There exist y, y′, y′′ ∈ V (Cn) such that f(NCn [y]) = f(NCn [y

′]) =
f(NCn [y

′′]) = 1 and f(NCn [ȳ]) = 0 for each ȳ /∈ {y, y′, y′′}.
Claim. There exists no vertex with label 1.
In order to prove this claim, suppose (to the contrary) that f(yj) = 1
for some yj ∈ V (Cn) = {y1, y2, ..., yn}. We consider the following
possibilities for the labels of the neighbours of yj.

1) f(yj−1) = 1 and f(yj+1) = 1:
This implies that f(NCn [yj]) = 3 and f(NCn [yj−1]) ≥ 1, which
contradicts the above three possible cases (i), (ii), and (iii).

2) f(yj−1) = 2 and f(yj+1) = 2:
This implies that f(NCn [yj]) = 5, which is a contradiction.

3) f(yj−1) = 2 and f(yj+1) = 1:
Hence, f(NCn [yj]) = 4, which is a contradiction.

4) f(yj−1) = 2 and f(yj+1) = −1:
This implies that f(NCn [yj]) = 2 and f(NCn [yj−1]) ≥ 2, which
is a contradiction.

5) f(yj−1) = −1 and f(yj+1) = −1:
Thus f(NCn [yj]) = −1, which is a contradiction.

6) f(yj−1) = 1 and f(yj+1) = −1:
Since f(NCn [yj+1]) ≥ 0, f(yj+2) ∈ {1, 2}. Since f(NCn [yj]) =
1, f(NCn [yj−1]) ≥ 1 and f(NCn [yj+1]) ≥ 1, we should have
f(NCn [yj+1]) = 1 and f(yj+2) = 1. Therefore, f(NCn [yj′ ]) = 0
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for each j′ /∈ {j − 1, j, j + 1}, and specially, f(NCn [yj+2]) = 0,
which is impossible.

This completes the proof of the claim. Therefore, the label of each
vertex in Cn is −1 or 2. Let t be the number of vertices whose label
is 2. If n = 3k, then 1 = f(V (Cn)) = 2t + (3k − t)(−1) = 3(t − k),
which is a contradiction (3 is not a divisor of 1). If n = 3k + 1,
then 1 = 2t + (3k + 1 − t)(−1). Hence, 2 = 3(t − k), which is a
contradiction. □
Theorem 3.5. Let m ≥ 13 and n ≥ 13 be two integers. Then we have

γ
sR
(Cm ∨ Cn) =

{
2 m ≡ 2 (mod 3), n ≡ 2 (mod 3)
3 o.w.

Proof. At first, assume that m ≡ 2 (mod 3) and n ≡ 2 (mod 3).
Define the function f from V (Cm)∪V (Cn) = {x1, ..., xm}∪ {y1, ..., yn}
to {−1, 1, 2}, as follows.

f(xi) =

{
2 i ≡ 1 (mod 3)
−1 o.w.

, f(yj) =

{
2 j ≡ 1 (mod 3)
−1 o.w.

Hence, f(V (Cm)) = f(V (Cn)) = 1, f(NCm [xm]) = f(NCn [yn]) = 3,
and for each 1 ≤ i < m and each 1 ≤ j < n, we have f(NCm [xi]) =
f(NCn [yj]) = 0. Thus f is a SRDF of weight 2. Therefore, Lemma 3.3
completes the proof (in this case).

Now, assume that m ≡ 2 (mod 3) and n ̸≡ 2 (mod 3).
Define the function g on V (Cm) = {x1, ..., xm} as g(xi) = 2 when
i ≡ 1 (mod 3), and g(xi) = −1, otherwise. Thus g(NCm [xm]) = 3,
g(NCm [xi]) = 0 for each i ̸= m, and g(V (Cm)) = 1. When n ≡ 0
(mod 3) (or n ≡ 1 (mod 3)), define the function h1 (or h2) on V (Cn) =
{y1, ..., yn} as follows

h1(yj) =

 1 j = n
2 j ≡ 1 (mod 3)
−1 o.w.

, h2(yj) =

{
2 j ≡ 1 (mod 3)
−1 o.w.

Note that h1(V (Cn)) = 2 and h1(NCn [yj]) ≥ 0 for each j (similarly,
h2(V (Cn)) = 2 and h2(NCn [yj]) ≥ 0 for each j). Now, g using h1 (or h2)
induces a labelling on V (Cm∨Cn), which is a SRDF of weight 1+2=3.
Hence, γ

sR
(Cm ∨Cn) ≤ 3. Let f be an optimal SRDF on Cm ∨Cn. By

Lemma 3.3, f(V (Cm)) ≥ 1 and f(V (Cn)) ≥ 1. If f(V (Cn)) ≥ 2, then
we are done. Else f(V (Cn)) = 1 and Lemma 3.4 imply that there ex-
ists y ∈ V (Cn) such that f(NCn [y]) ≤ −1. Since f(NCm∨Cn [y]) ≥ 1, we
should have f(V (Cm)) ≥ 2. Thus w(f) = f(V (Cm)) + f(V (Cn)) ≥ 3,
which completes the proof (for this case).
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Finally, assume that m ̸≡ 2 (mod 3) and n ̸≡ 2 (mod 3).
Let f be an optimal SRDF on Cm ∨ Cn. By Lemma 3.3, f(V (Cm))
≥ 1 and f(V (Cn)) ≥ 1. Lemma 3.4 implies that the case f(V (Cm)) =
f(V (Cn)) = 1 is impossible. Thus γ

sR
(Cm ∨ Cn) ≥ 3. Using h1 or h2,

as defined in the previous paragraph, we obtain a labeling on V (Cn)
with total weight 2. For the case m ≡ 0 (mod 3) (or m ≡ 1 (mod 3)),
define the function g1 (or g2) on V (Cm), as follows.

g1(xi) =

 1 i ∈ {m− 2,m− 1}
2 i ̸= m− 2, i ≡ 1 (mod 3),

−1 o.w.

g2(xi) =

 1 i = m
2 i ̸= m, i ≡ 1 (mod 3).

−1 o.w.

Note that gk(V (Cm)) = 1, and for each 1 ≤ i ≤ m, we have gk(NCm(xi))
≥ −1, k ∈ {1, 2}. Now, regarding the possible cases for m and n, and
using one of the two functions g1, g2 and one of the two functions h1, h2,
we obtain a labelling on V (Cm) ∪ V (Cn), which induces a SRDF of
weight 3 on Cm ∨ Cn. □

By considering the proof of Theorem 3.5, we see that the condition
m,n ≥ 13 is used just for providing a suitable lower bound for γ

sR
(Cm∨

Cn) in different cases of m and n (in module 3). Throughout the proof
and in each case, a SRDF of weight 2 or 3 is constructed for Cm ∨ Cn

(without considering the condition m,n ≥ 13), which implies that the
value of γ

sR
(Cm ∨ Cn) is at most three in that case.

Corollary 3.6. For each pair of integers m ≥ 3 and n ≥ 3, we have
γ

sR
(Cm ∨ Cn) ≤ 3.

Also by studying the small cases, we see that the conditionm,n ≥ 13
is redundant in Theorem 3.5 for the lower bounds, and we suggest the
following conjecture:

Conjecture 1. For each pair of integers m ≥ 4 and n ≥ 4 we have

γ
sR
(Cm ∨ Cn) =

{
2 m ≡ 2 (mod 3), n ≡ 2 (mod 3)
3 o.w.
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گراف�ها الحاق و علامت�دار رومی احاطه�گر عدد

رجل�آباد عزیزی فضه دوست، وطن ابراهیم بهتوئی، علی
قزوین - (ره) خمینی امام المللی بین دانشگاه پایه، علوم دانشکده ریاضی، گروه

مشخص یکتا طور به احاطه�گر تابع نام به تابع یک با می�توان را گراف یک در احاطه�گر مجموعه هر
عدد آن اساس بر که است معمولی احاطه�گر تابع از تعمیمی واقع در علامت�دار رومی احاطه�گر تابع کرد.
گراف�ها الحاق علامت�دار رومی احاطه�گر عدد مقاله این در می�گردد. تعریف علامت�دار رومی احاطه�گر
گراف بادبزن، گراف چرخ، گراف برای را پارامتر این دقیق مقدار ویژه به می�دهیم. قرار بررسی مورد را

می�نمائیم. مشخص دورها الحاق و دوستی

دوستی. گراف چرخ، الحاق، علامت�دار، رومی احاطه�گر عدد احاطه�گری، کلیدی: کلمات
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