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ARTINIANNESS OF COMPOSED LOCAL
COHOMOLOGY MODULES

H. SAREMI∗

Abstract. Let R be a commutative Noetherian ring, and let a
and b be two ideals of R such that R/(a+ b) is Artinian. Let
M and N be two finitely generated R-modules. We prove that
Hj

b (H
t
a(M,N)) is Artinian for j = 0, 1, where t = inf{i ∈ N0 :

Hi
a(M,N) is not finitely generated}. Also, we prove that if dimSupp

(Hi
a(M,N)) ≤ 2, then H1

b (H
i
a(M,N)) is Artinian for all i. More-

over, we show that if dimN = d, then Hj
b (H

d−1
a (N)) is Artinian

for all j ≥ 1.

1. Introduction

Throughout this paper, let R be a commutative Noetherian ring
with non-zero identity, and let M and N be two finitely generated
R-modules. For an ideal a of R, let H i

a(M,N), i ∈ N0 denote the gen-
eralized local cohomology modules of two R-modules M and N with
respect to a (see [7], [14], and [3] for the definitions and basic proper-
ties). With M = R, one clearly obtains the ordinary local cohomology,
which was introduced by Grothendieck (see [6] and [4]). One of the
main problems in the study of local cohomology modules is to deter-
mine when they are Artinian. Recently, some results have been proved
about the Artinianness of local cohomology modules (see [8], [9], [13],
[15] , [5], [1], and [11]).
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Mafi and the author in [11] have proved the Artinianness of graded
composed local cohomology modules. Aghapournahr and Melkersson,
in [1], have shown that if a and b are ideals of R such that R/(a+ b)
is Artinian and dimN/aN ≤ 2, then H1

b (H
i
a(N)) is Artinian for all i.

In [2], Bahmanpour, Naghipour, and Sedghi have proved that if R is
local with maximal ideal m and N of dimension d, then H1

m(H
d−1
a (N))

is Artinian. We prove that with uniform proofs, some general results
about Artinianness of generalized local cohomology modules.

Namely, our main aim in this paper is to establish the following
theorem:

Theorem 1.1. Let a, b be ideals of R such that R/(a+ b) is Artinian.
(i) Then Hj

b (H
t
a(M,N)) is Artinian for j = 0, 1, provided that t =

inf{i ∈ N0 : H
i
a(M,N) is not finitely generated}.

(ii) If dimSupp(H i
a(M,N)) ≤ 2, then H1

b (H
i
a(M,N)) is Artinian for

all i. Moreover, H0
b (H

i
a(M,N)) is Artinian for all i if and only if

H2
b (H

i
a(M,N)) is Artinian for all i.

(iii) Hj
b (H

d−1
a (N)) is Artinian for all j ≥ 1, where dimN = d.

2. results

Theorem 2.1. Let a, b be ideals of R such that R/(a+ b) is Artinian.
Then Hj

b (H
t
a(M,N)) is Artinian for j = 0, 1 and all t ≤ inf{i ∈ N0 :

H i
a(M,N) is not finitely generated}.

Proof. Let F (.) := Γb(.) and G(.) := HomR(M,Γa(.)). We claim that
H i

b(HomR(M,Γa(E))) = 0 for all injective R-module E and all i ≥ 1.
Since Γa(E) is an injective R-module and any injective R-module de-
composes into a direct sum of indecomposable injective R-modules, we
may and do assume that Γa(E) = E(R/p), for some prime ideal p of R.

( Note that the functor H i
b(.) commutes with direct sums, and as M is

finitely generated the functor HomR(M, .) also commutes with direct
sum.) Since HomR(M,E(R/p)) ∼= HomR(M,HomRp(Rp, E(R/p))) ∼=
HomRp(Mp, E(Rp/pRp)), we deduce that HomR(M,E(R/p)) is an Ar-

tinian Rp-module. Thus H i
b(HomR(M,E(R/p))) ∼= H i

bRp
(Hom(M,E(R

/p))) = 0, as claimed. Thus since (FG)(.) = Γb+a(M, .), by [12, Theo-
rem 11.38], there is the Grothendieck’s spectral sequence

Ep,q
2 := Hp

b (H
q
a(M,N)) =⇒

p
Hp+q

a+b (M,N).

Since Ep,q
r is a subquotient of Ep,q

2 for all r ≥ 2, by [4, Exercises 2.1.9
and 7.1.4] and our hypotheses, we have that Ep,q

r is Artinian for all



ARTINIANNESS OF COMPOSED LOCAL COHOMOLOGY MODULES 81

r ≥ 2, p ≥ 0, and q < t. For each r ≥ 2, and p, q ≥ 0, let Zp,q
r =

Ker(Ep,q
r −→ Ep+r,q−r+1

r ) and Bp,q
r = im(Ep−r,q+r−1

r −→ Ep,q
r ). For all

r ≥ 2 and p = 0, 1, we have the exact sequences

0 −→ Bp,q
r −→ Zp,q

r −→ Ep,q
r+1 −→ 0,

and

0 −→ Zp,q
r −→ Ep,q

r −→ Bp+r,q−r+1
r −→ 0.(†)

Notice that Bp,t
r = 0 and Bp+r,t−r+1

r is Artinian for all r ≥ 2 and
p = 0, 1. Hence, we have that Zp,t

r
∼= Ep,t

r+1 (‡) for all r ≥ 2 and

p = 0, 1. Now, Ep,t
∞ is isomorphic to a subquotient of Hp+t

a+b(M,N), and

so it is Artinian for all p ≥ 0, by [8, Corollary 2.6]. Since Ep,t
∞

∼= Ep,t
r

for r sufficiently large, we have that Ep,t
r is Artinian for all p ≥ 0 and

all large r. Fix r, and suppose Ep,t
r+1 is Artinian for p = 0, 1. From

the isomorphism (‡), we have that Zp,t
r is Artinian for p = 0, 1. From

the exact sequence (†) we get that Ep,t
r is Artinian. Continuing in this

fashion, we see that Ep,t
r is Artinian for all r ≥ 2 and p = 0, 1. In

particular, Ep,t
2 = Hp

b (H
t
a(M,N)) is Artinian for p = 0, 1. □

The following corollaries immediately follow by Theorem 2.1.

Corollary 2.2. (see [11, Corollary 2.2]) Let a, b be ideals of R such that
R/(a+ b) is Artinian. Then Hj

b (H
1
a(M,N)) is Artinian for j = 0, 1.

Corollary 2.3. Let a, b be ideals of R such that R/(a+ b) is Artinian,
and let t be a non-negative integer such that grade(M/aM,N) = t.
Then Hj

b (H
t
a(M,N)) is Artinian for j = 0, 1.

Proposition 2.4. Let a, b be ideals of R such that R/(a+ b) is Ar-
tinian, and t be a non-negative integer. Let Hj

b (H
i
a(M,N)) be Artinian

for all i ̸= t and for all j. Then Hj
b (H

t
a(M,N)) is Artinian for all j.

Proof. Consider the Grothendieck spectral sequence

Ep,q
2 := Hp

b (H
q
a(M,N)) =⇒

p
Hp+q

a+b (M,N).

For each r ≥ 2, we consider the exact sequence

0 −→ Ker dp,tr −→ Ep,t
r

dp,tr−→ Ep+r,t−r+1
r . (♮)

It follows from our hypotheses that the R-module Ep+r,t−r+1
r is Ar-

tinian. Note that Ep,q
r is a subquotient of Ep,q

2 for all p, q ≥ 0. There
is an integer s such that Ep,q

∞ = Ep,q
r for all p, q and all r ≥ s. Also, for

each n ≥ 0, there is a finite filtration

0 = ϕn+1Hn ⊆ ϕnHn ⊆ . . . ⊆ ϕ1Hn ⊆ ϕ0Hn = Hn
a+b(M,N),
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such that Ep,n−p
∞

∼= ϕpHn/ϕp+1Hn for all 0 ≤ p ≤ n. Thus Ep,q
∞ is

Artinian for all p, q ≥ 0. Since Ep,t
s

∼= Ker dp,ts−1/ im dp−s+1,t+s−2
s−1 , it

follows that Ker dp,ts−1 is Artinian for all p ≥ 0. Hence, using the exact

sequence (♮) for r = s−1, we deduce that Ep,t
s−1 is Artinian for all p ≥ 0.

By continuing this argument repeatedly for integer s − 1, s − 2, . . . , 3
instead of s, we obtain that Ep,t

2 is Artinian for p ≥ 0. This completes
the proof. □
Definition 2.5. We denote by cd(a,M,N) the cohomological dimen-
sion of M and N with respect to a, which is sup{i ∈ N0 : H

i
a(M,N) ̸=

0}. One can easily see that cd(a,M,N) = cd(a,N) if M = R.

Corollary 2.6. Let a, b be ideals of R such that R/(a+ b) is Artinian,
and let cd(a,M,N) = 1. Then Hj

b (H
i
a(M,N)) is Artinian for all i, j.

Proof. This is clear by Proposition 2.4. □
The following result extends [1, Corollary 2.10].

Proposition 2.7. Let a, b be ideals of R such that R/(a+ b) is Ar-
tinian and let dimSupp(H i

a(M,N)) ≤ 1 for all i. Then Hj
b (H

i
a(M,N))

is Artinian for all i,j.

Proof. Consider the Grothendieck’s spectral sequence

Ep,q
2 := Hp

b (H
q
a(M,N)) =⇒

p
Hp+q

a+b (M,N).

Hence, for each n, there is a finite filtration

0 = ϕn+1Hn ⊆ ϕnHn ⊆ ... ⊆ ϕ1Hn ⊆ ϕ0Hn = Hn
a+b(M,N),

such that Ep,n−p
∞

∼= ϕpHn/ϕp+1Hn for all p = 0, 1, ..., n. Thus Ep,q
∞

is Artinian for all p, q. Since dimSupp(H i
a(M,N)) ≤ 1, we get that

Hj
b (H

i
a(M,N)) = 0 for all j ≥ 2 and all i. Hence, it is enough for

us to prove that Hj
b (H

i
a(M,N)) is Artinian for all i and j = 0, 1.

Using the exact sequence (†) as in the proof of Theorem 2.1, we obtain
E0,i

2
∼= Z0,i

2
∼= E0,i

3
∼= ... ∼= E0,i

∞ and E1,i
2

∼= Z1,i
2

∼= E1,i
3

∼= ... ∼= E1,i
∞ for

all i. Therefore, E0,i
2 and E1,i

2 are Artinian for all i, and so the result
follows. □

The following theorem extends [1, Theorem 2.11].

Theorem 2.8. Let a, b be ideals of R such that R/(a+ b) is Artinian,
and let dimSupp(H i

a(M,N)) ≤ 2. Then

(i) H1
b (H

i
a(M,N)) is Artinian for all i.

(ii) H0
b (H

i
a(M,N)) is Artinian for all i if and only if H2

b (H
i
a(M,N))

is Artinian for all i.
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Proof. (i) Since dimSupp(H i
a(M,N)) ≤ 2, by using the exact sequence

(†) as in the proof of Theorem 2.1, we obtain E1,i
2

∼= Z1,i
2

∼= E1,i
3

∼= ... ∼=
E1,i

∞ for all i. Hence, H1
b (H

i
a(M,N)) is Artinian for all i.

(ii) For each i, consider the exact sequence

0 −→ Ker d0,i2 −→ E0,i
2

d0,i2−→ E2,i−1
2 −→ coker d0,i2 −→ 0.

by using the exact sequence (†) as in the proof of Theorem 2.1,Ker d0,i2
∼=

E0,i
3

∼= ... ∼= E0,i
∞ for all i and also cokerd0,i2 = E2,i−1

2 /im d0,i2 . Since
E2,i−1

2 /im d0,i2
∼= Ker d2,i−1

2 /im d0,i2
∼= E2,i−1

3
∼= ... ∼= E2,i−1

∞ , it follows
that cokerd0,i2

∼= E2,i−1
∞ . Hence, Ker d0,i2 and cokerd0,i2 are Artinian, and

so the results follow. □
The following corollary is a generalization of [2, Theorem 2.7], and

immediately follows by Theorem 2.8.

Corollary 2.9. Let a, b be ideals of R such that R/(a+ b) is Artinian.
If dimR/a ≤ 2, then H1

b (H
i
a(N)) is Artinian for all i.

The following theorem is a generalization of [2, Theorem 2.8].

Theorem 2.10. Let a, b be ideals of R such that R/(a+ b) is Artinian.
Then H i

b(H
d−1
a (N)) is Artinian for all i ≥ 1, where dimN = d.

Proof. By the Grothendieck’s spectral sequence, for all p,q, we have

Ep,q
2 := Hp

b (H
q
a(N)) =⇒

p
Hp+q

a+b (N).

By [10, Theorem 2.3], dimSupp(Hd−1
a (N)) ≤ 1, and soH i

b(H
d−1
a (N)) =

0 for all i ≥ 2. Hence, it is enough to prove that H1
b (H

d−1
a (N)) is

Artinian. There is a finite filtration

0 = ϕd+1Hd ⊆ ϕdHd ⊆ ... ⊆ ϕ1Hd ⊆ ϕ0Hd = Hd
a+b(N),

such that Ep,d−p
∞

∼= ϕpHd/ϕp+1Hd for all p = 0, 1, ..., d. Hence, Ep,q
∞ is

Artinian for all p, q. For each r ≥ 2, consider the exact sequence

0 −→ Ker d1,d−1
r −→ E1,d−1

r
d1,d−1
r−→ E1+r,d−r

r .

Since E1+r,d−r
2 = 0 and E1+r,d−r

r is subquotient of E1+r,d−r
2 , it follows

that E1,d−1
r

∼= Ker d1,d−1
r for all r. Since im d1−r,d+r−2

r = 0 for all r ≥
2, we get that E1,d−1

r+1
∼= Ker d1,d−1

r for all r ≥ 2. Hence, E1,d−1
2

∼=
Ker d1,d−1

2
∼= E1,d−1

3
∼= ... ∼= E1,d−1

∞ , and so H1
b (H

d−1
a (N)) is Artinian, as

required. □
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ترکیبی موضعی کوهمولوژی مدول های بودن آرتینی

صارمی هیرو
ایران سنندج، سنندج، واحد آزاد دانشگاه ریاضی گروه

R/(a+ b) بطوری که R ایده آل دو b ،a کنید فرض و نوتری جابجایی حلقه یک R کنید فرض
،j = ٠, ١ برای می کنیم ثابت باشند. متناهی تولید با مدول -R دو N ،M کنید فرض باشد. آرتینی

آن در که است، آرتینی Hj
b (H

t
a(M,N))

.t = inf{i ∈ N٠ : H
i
a(M,N) is not finitely generated}

H١
b (H

i
a(M,N)) ،i هر برای آن گاه ،dimSupp(H i

a(M,N)) ≤ ٢ اگر می کنیم ثابت همچنین
Hj

b (H
d−١
a (N)) ،١ ≤ j هر برای آن گاه ،dimN = d اگر که می دهیم نشان براین، علاوه است. آرتینی

است. آرتینی

آرتینی. مدول های تعمیم یافته، کوهمولوژی مدول های موضعی، کوهمولوژی مدول های کلیدی: کلمات

٧
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