Journal of Algebraic Systems

Vol. 4, No. 2, (2017), pp 85-95
DOI: 10.22044/jas.2017.850

FINITE GROUPS WITH FIVE NON-CENTRAL CONJUGACY CLASSES

M. REZAEI* AND Z. FORUZANFAR

Abstract

Let G be a finite group and $Z(G)$ be the center of G. For a subset A of G, we define $k_{G}(A)$, the number of conjugacy classes of G that intersect A non-trivially. In this paper, we verify the structure of all finite groups G which satisfy the property $k_{G}(G-Z(G))=5$, and classify them.

1. Introduction

Let M be a normal subgroup of a finite group G. The influence of the arithmetic structure of conjugacy classes of G, like conjugacy class sizes, the number of conjugacy classes or the number of conjugacy class sizes, on the structure of G is an extensively studied question in group theory. Shi [5], Shahryari and Shahabi [4] and Riese and Shahabi [3] determined the structure of M, when M is the union of 2,3 or 4 conjugacy classes of G, respectively. Qian et al. [2] considered the opposite extreme situation that contains almost all conjugacy classes of G, and determined the structure of the whole group, when there are at most 3 conjugacy classes outside M. In particular, You et al. [7] classified all finite groups G, when there are at most 4 conjugacy classes of G outside the center of G. In this paper, we continue the work in [7] and verify the structure of finite groups G, when there are 5 conjugacy classes outside the center of G. Let $Z(G)$ be the center of G. For an element x of G, we will let $o(x)$ to denote the order of x and x^{G}

[^0]to denote the conjugacy class of x in G. For $A \subseteq G$, let $k_{G}(A)$ be the number of conjugacy classes of G that intersect A non-trivially. Recall that $K \rtimes H$ is a semidirect product of K and H with normal subgroup K. In particular, the Frobenius group with kernel K and complement H is denoted by $K \times_{f} H$. Also, the semi-dihedral group of order 2^{n} is denoted by $S D_{2^{n}}=\left\langle a, b \mid a^{2^{n-1}}=b^{2}=1, b a b=a^{2^{n-2}-1}\right\rangle$. All further unexplained notations are standard. The purpose of this paper is to classify all finite groups in which there are five non-central conjugacy classes.

Theorem 1.1. Let G be a non-abelian finite group. Then $k_{G}(G-$ $Z(G))=5$ if and only if G is isomorphic to one of the following groups:
(1) $\operatorname{PSL}(2,7)$;
(2) $S L(2,3)$;
(3) D_{16}, Q_{16} or $S D_{16}$;
(4) D_{18};
(5) $\left(\mathbb{Z}_{3}\right)^{2} \times_{f} \mathbb{Z}_{2}$;
(6) $\left(\mathbb{Z}_{3}\right)^{2} \times_{f} \mathbb{Z}_{4}$;
(7) $\left(\mathbb{Z}_{3}\right)^{2} \times_{f} Q_{8}$;
(8) $\mathbb{Z}_{4} \rtimes \mathbb{Z}_{3}$.

2. Preliminaries

In this section, we present some preliminary results that will be used in the proof of the Theorem 1.1.

Lemma 2.1. (See [1]) Let G be a finite group and $k_{G}(G)$ be the number of conjugacy classes of G. Then
(1) If $k_{G}(G)=1$, then $G \cong\{1\}$;
(2) If $k_{G}(G)=2$, then $G \cong \mathbb{Z}_{2}$;
(3) If $k_{G}(G)=3$, then G is isomorphic to \mathbb{Z}_{3} or S_{3};
(4) If $k_{G}(G)=4$, then G is isomorphic to $\mathbb{Z}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}, D_{10}$ or A_{4};
(5) If $k_{G}(G)=5$, then G is isomorphic to $\mathbb{Z}_{5}, D_{8}, Q_{8}, D_{14}, S_{4}, A_{5}$, $\mathbb{Z}_{7} \times{ }_{f} \mathbb{Z}_{3}$ or $\mathbb{Z}_{5} \times{ }_{f} \mathbb{Z}_{4}$;
(6) If $k_{G}(G)=6$, then G is isomorphic to $\mathbb{Z}_{6}, D_{12}, \mathbb{Z}_{4} \rtimes \mathbb{Z}_{3}, D_{18}$, $\left(\mathbb{Z}_{3}\right)^{2} \times_{f} \mathbb{Z}_{2},\left(\mathbb{Z}_{3}\right)^{2} \times_{f} \mathbb{Z}_{4},\left(\mathbb{Z}_{3}\right)^{2} \times_{f} Q_{8}$ or $\operatorname{PSL}(2,7)$.

Lemma 2.2. [2, Lemma 1.3] If G possesses an element x with $\left|C_{G}(x)\right|$ $=4$, then a Sylow 2-subgroup P of G is the dihedral, semi-dihedral or generalized quaternion group. In particular, $\left|P / P^{\prime}\right|=4$ and P has a cyclic subgroup of order $|P| / 2$.

Proposition 2.3. [2, Proposition 2.1] If N is a normal subgroup of a finite non-abelian group G, then $k_{G}(G-N)=1$ if and only if G is a Frobenius group with kernel N and $|N|=|G| / 2$.

Lemma 2.4. [7, Lemma 6], Let G be a finite group and K, N be two normal subgroups of G with $|K / N|=p$, where p is prime. If $\left|C_{G}(x)\right|=p$ for any $x \in K-N$, then K is a Frobenius group with kernel N.

3. The proof of Theorem 1.1.

To prove our main result, Theorem 1.1, we first state the following theorem.

Theorem 3.1. There is no finite non-abelian group G such that $G / Z(G)$ is abelian and $k_{G}(G-Z(G))=5$.
Proof. Let $G-Z(G)=x^{G} \cup y^{G} \cup z^{G} \cup w^{G} \cup t^{G}$. Since $k_{G / Z(G)}(G / Z(G)-$ $Z(G) / Z(G)) \leq k_{G}(G-Z(G))=5$, we have $k_{G / Z(G)}(G / Z(G)) \leq 6$. It follows from Lemma 2.1 that $G / Z(G)$ is an elementary abelian 2group of order 4 . Hence, $k_{G / Z(G)}(G / Z(G)-Z(G) / Z(G))=3$. We may assume that $x Z(G)=x^{G}, y Z(G)=y^{G}, z Z(G)=w Z(G)=t Z(G)=$ $z^{G} \cup w^{G} \cup t^{G}$. It then implies that $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=4,\left|C_{G}(z)\right|=$ $\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=12$ or $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=4,\left|C_{G}(z)\right|=\left|C_{G}(w)\right|=$ $16,\left|C_{G}(t)\right|=8$ or $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=4,\left|C_{G}(z)\right|=\left|C_{G}(w)\right|=24$, $\left|C_{G}(t)\right|=6$. In the first two cases, we have $|Z(G)|=2$ or 4 and hence $|G|=8$ or 16. It follows from Lemma 2.2 that $|Z(G)|=2$. Therefore, $|G|=8$ and G is isomorphic to D_{8} or Q_{8}, which forces $k_{G}(G-Z(G))=$ 3 , a contradiction. In the third case, we have $|Z(G)|=2$, and get the same contradiction.

By Theorem 3.1, since there is no group G with abelian central factor and $k_{G}(G-Z(G))=5$, we are ready to prove our main result, Theorem 1.1, and note that $G / Z(G)$ is not abelian.

Let $G-Z(G)=x^{G} \cup y^{G} \cup z^{G} \cup w^{G} \cup t^{G}$. We consider the following two cases:
Case 1. If G is non-solvable, then $G / Z(G)$ is non-solvable too. Since $k_{G / Z(G)}(G / Z(G)-Z(G) / Z(G)) \leq k_{G}(G-Z(G))=5$, we conclude that $k_{G / Z(G)}(G / Z(G)) \leq 6$. It follows from Lemma 2.1 that $G / Z(G)$ is isomorphic to $\operatorname{PSL}(2,7)$ or A_{5}. If $G / Z(G) \cong P S L(2,7)$, then $k_{G}(G-Z(G))=k_{G / Z(G)}(G / Z(G)-Z(G) / Z(G))=5$, and we have $k_{G}(x Z(G))=k_{G}(y Z(G))=k_{G}(z Z(G))=k_{G}(w Z(G))=k_{G}(t Z(G))=$ 1. Therefore, $\left|C_{G}(x)\right|=\left|C_{G / Z(G)}(x Z(G))\right|,\left|C_{G}(y)\right|=\left|C_{G / Z(G)}(y Z(G))\right|$, $\left|C_{G}(z)\right|=\left|C_{G / Z(G)}(z Z(G))\right|,\left|C_{G}(w)\right|=\left|C_{G / Z(G)}(w Z(G))\right|$ and $\left|C_{G}(t)\right|$ $=\left|C_{G / Z(G)}(t Z(G))\right|$. We may assume that $o(x Z(G))=3, o(y Z(G))=$
$7, o(z Z(G))=7, o(w Z(G))=2$ and $o(t Z(G))=4$. Then we have $\left|C_{G / Z(G)}(x Z(G))\right|=3,\left|C_{G / Z(G)}(y Z(G))\right|=7,\left|C_{G / Z(G)}(z Z(G))\right|=7$, $\left|C_{G / Z(G)}(w Z(G))\right|=8$ and $\left|C_{G / Z(G)}(t Z(G))\right|=4$. Hence, $\left|C_{G}(x)\right|=3$, $\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=7,\left|C_{G}(w)\right|=8$ and $\left|C_{G}(t)\right|=4$. Therefore, $|Z(G)|=1$ and $G \cong \operatorname{PSL}(2,7)$.

Now, let $G / Z(G) \cong A_{5}$. Then, $k_{G / Z(G)}(G / Z(G))=5$. Since $k_{G}(G-$ $Z(G))=5, G / Z(G)$ has three non-trivial conjugacy classes as the same as three conjugacy classes of $G-Z(G)$. Moreover, $G / Z(G)$ has one nontrivial conjugacy class, that is the union of two remaining conjugacy classes of $G-Z(G)$. Since the order of the centralizer of representative of each of three conjugacy classes of $G-Z(G)$ in G is 3,4 or 5 , we conclude that $|Z(G)|=1$. Therefore, $G \cong A_{5}$, a contradiction.
Case 2. If G is solvable, then we have $k_{G / Z(G)}(G / Z(G)) \leq 6$. It then implies that $G / Z(G)$ is isomorphic to one of the following groups: $S_{3}, D_{10}, A_{4}, Q_{8}, D_{8}, D_{14}, S_{4}, \mathbb{Z}_{7} \times_{f} \mathbb{Z}_{3}, \mathbb{Z}_{5} \times_{f} \mathbb{Z}_{4}, D_{12}, D_{18},\left(\mathbb{Z}_{3}\right)^{2} \times_{f} \mathbb{Z}_{2}$, $\left(\mathbb{Z}_{3}\right)^{2} \times_{f} \mathbb{Z}_{4},\left(\mathbb{Z}_{3}\right)^{2} \times_{f} Q_{8}$ or $\mathbb{Z}_{4} \rtimes \mathbb{Z}_{3}$. Hence, we consider the following subcases:
Subcase 2.1. Suppose that $G / Z(G) \cong S_{3}$ and $K / Z(G)$ be a Sylow 3subgroup of $G / Z(G)$. Then, $K \triangleleft G, k_{G / Z(G)}(G / Z(G))=3$ and $|G / K|=$ 2.

If $k_{G}(G-K)=1$, then it follows from Proposition 2.3 that G is a Frobenius group with kernel K and $|G / K|=2$. Therefore $|Z(G)|=1$ and hence $G \cong S_{3}$, a contradiction.

If $k_{G}(G-K)=2$, then we may assume that $G-K=x^{G} \cup y^{G}$ and $K-Z(G)=z^{G} \cup w^{G} \cup t^{G}$. It then implies that $\left|x^{G}\right|+\left|y^{G}\right|=|G-K|=$ $|G| / 2$ and $\left|z^{G}\right|+\left|w^{G}\right|+\left|t^{G}\right|=|K-Z(G)|=|G| / 3$. Thus, we have either $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=4,\left|C_{G}(z)\right|=\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=9$ or $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=4,\left|C_{G}(z)\right|=6,\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=12$. In the first case, we have $|Z(G)|=1$ and so $G \cong S_{3}$, a contradiction. In the second case, we have $|Z(G)|=2$. Therefore, $|G|=12$, and by [6], we get a contradiction.

If $k_{G}(G-K)=3$ or $k_{G}(G-K)=4$, then by a similar argument, we get a contradiction.
Subcase 2.2. Suppose that $G / Z(G) \cong D_{10}$ and $K / Z(G)$ be a Sylow 5subgroup of $G / Z(G)$. Then, $K \triangleleft G, k_{G / Z(G)}(G / Z(G))=4$ and $|G / K|=$ 2.

If $k_{G}(G-K)=1$, then it follows from Proposition 2.3 that G is a Frobenius group with kernel K and $|G / K|=2$. Therefore $|Z(G)|=1$ and $G \cong D_{10}$, a contradiction.

If $k_{G}(G-K)=2$, then we may assume that $G-K=x^{G} \cup y^{G}$ and $K-Z(G)=z^{G} \cup w^{G} \cup t^{G}$. So we have $\left|x^{G}\right|+\left|y^{G}\right|=|G-K|=|G| / 2$ and $\left|z^{G}\right|+\left|w^{G}\right|+\left|t^{G}\right|=|K-Z(G)|=2|G| / 5$. Hence $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=4$.

Since $|K / Z(G)|=5$, we have $\left|C_{G}(z)\right|=5$ and $\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=10$. Therefore, $|Z(G)|=1$ and $G \cong D_{10}$, a contradiction.

If $k_{G}(G-K)=3$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G}$ and $K-Z(G)=w^{G} \cup t^{G}$. So, we have $\left|x^{G}\right|+\left|y^{G}\right|+\left|Z^{G}\right|=|G-K|=|G| / 2$ and $\left|w^{G}\right|+\left|t^{G}\right|=|K-Z(G)|=2|G| / 5$. Therefore, $\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=$ 5 and by Lemma 2.4, K is a Frobenius group with kernel $Z(G)$, a contradiction.

If $k_{G}(G-K)=4$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G} \cup w^{G}$ and $K-Z(G)=t^{G}$. Therefore, we have $\left|C_{G}(t)\right|=5 / 2$, a contradiction. Subcase 2.3. Suppose that $G / Z(G) \cong A_{4}$. Then, $k_{G / Z(G)}(G / Z(G))=$ 4. Let $K / Z(G)$ be a Sylow 2-subgroup of $G / Z(G)$. We conclude that $K \triangleleft G,|G / K|=3$ and $k_{G / Z(G)}(G / Z(G)-K / Z(G))=2$. Hence, $k_{G}(G-K) \geq 2$.

If $k_{G}(G-K)=2$, then we may assume that $G-K=x^{G} \cup y^{G}$ and $K-Z(G)=z^{G} \cup w^{G} \cup t^{G}$. So, we have $\left|x^{G}\right|+\left|y^{G}\right|=|G-K|=2|G| / 3$ and $\left|z^{G}\right|+\left|w^{G}\right|+\left|t^{G}\right|=|K-Z(G)|=|G| / 4$. It then implies that $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=3$ and by Lemma 2.4, G is a Frobenius group with kernel K. Therefore, $|Z(G)|=1$ and $G \cong A_{4}$, a contradiction.

If $k_{G}(G-K)=3$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G}$ and $K-Z(G)=w^{G} \cup t^{G}$. So we have $\left|x^{G}\right|+\left|y^{G}\right|+\left|Z^{G}\right|=\mid G-$ $K|=2| G \mid / 3$ and $\left|w^{G}\right|+\left|t^{G}\right|=|K-Z(G)|=|G| / 4$. Hence we have either $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=6,\left|C_{G}(z)\right|=3,\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=8$ or $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=6,\left|C_{G}(z)\right|=3,\left|C_{G}(w)\right|=6,\left|C_{G}(t)\right|=12$. In the first case, we have $|Z(G)|=1$ and so $G \cong A_{4}$, a contradiction. In the second case, we have $|Z(G)|=3$. Therefore, $|G|=36$ and by [6], we get a contradiction.

If $k_{G}(G-K)=4$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G} \cup w^{G}$ and $K-Z(G)=t^{G}$. Hence, we have $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=$ $\left|C_{G}(w)\right|=6,\left|C_{G}(t)\right|=4$ or $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=9$, $\left|C_{G}(w)\right|=3,\left|C_{G}(t)\right|=4$ or $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=12,\left|C_{G}(z)\right|=6$, $\left|C_{G}(w)\right|=3,\left|C_{G}(t)\right|=4$. In the first case, we have $|Z(G)|=2$ and so $G \cong S L(2,3)$. For the other two cases, $|Z(G)|=1$, a contradiction.
Subcase 2.4. Suppose that $G / Z(G) \cong Q_{8}$. In this case $k_{G / Z(G)}(G / Z($ $G))=5$. If $|Z(G)|=1$, then $G \cong Q_{8}$, which forces $k_{G}(G-Z(G))=3$, a contradiction. Now suppose that $|Z(G)|>1$. Let $K / Z(G)$ be a cyclic subgroup of $G / Z(G)$ of order 4 . Then, we have $K \triangleleft G$, $k_{G / Z(G)}(G / Z(G)-K / Z(G))=2$ and $k_{G / Z(G)}(K / Z(G)-Z(G) / Z(G))=$ 3. It follows that $k_{G}(G-K)=2$ and $k_{G}(K-Z(G))=3$. We may assume that $G-K=x^{G} \cup y^{G}$ and $K-Z(G)=z^{G} \cup w^{G} \cup t^{G}$. It then implies that either $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=4,\left|C_{G}(z)\right|=\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=$ 8 or $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=4,\left|C_{G}(z)\right|=\left|C_{G}(w)\right|=16,\left|C_{G}(t)\right|=4$. In the both cases, we have $|Z(G)|=2$ or 4 and so $|G|=16$ or 32 . Now,

Lemma 2.2 implies that $|Z(G)|=2$ and $|G|=16$. Therefore, G is isomorphic to D_{16}, Q_{16} or $S D_{16}$.
Subcase 2.5. Suppose that $G / Z(G) \cong D_{8}$. Using the same argument as in Subcase 2.4, we conclude that G is isomorphic to D_{16}, Q_{16} or $S D_{16}$.
Subcase 2.6. Suppose that $G / Z(G) \cong D_{14}$ and $K / Z(G)$ be a Sylow 7 -subgroup of $G / Z(G)$. Then, $K \triangleleft G, k_{G / Z(G)}(G / Z(G))=5$ and $|G / K|=2$.

If $k_{G}(G-K)=1$, then it follows from Proposition 2.3 that G is a Frobenius group with kernel K and $|G / K|=2$. Hence, $|Z(G)|=1$ and $G \cong D_{14}$, a contradiction.

If $k_{G}(G-K)=2$, then we may assume that $G-K=x^{G} \cup y^{G}$ and $K-Z(G)=z^{G} \cup w^{G} \cup t^{G}$. So, we have $\left|x^{G}\right|+\left|y^{G}\right|=|G-K|=|G| / 2$ and $\left|z^{G}\right|+\left|w^{G}\right|+\left|t^{G}\right|=|K-Z(G)|=3|G| / 7$. Therefore, $\left|C_{G}(z)\right|=$ $\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=7$ and by Lemma 2.4, we have K is a Frobenius group with kernel $Z(G)$, a contradiction.

If $k_{G}(G-K)=3$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G}$ and $K-Z(G)=w^{G} \cup t^{G}$. So, we have $\frac{1}{\left|C_{G}(w)\right|}+\frac{1}{\left|C_{G}(t)\right|}=\frac{3}{7}$. Suppose that $\left|C_{G}(w)\right|=7 a$ and $\left|C_{G}(t)\right|=7 b$, for some integers a and b. Then, $\frac{1}{a}+\frac{1}{b}=3$, which has no solution, a contradiction.

If $k_{G}(G-K)=4$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G} \cup w^{G}$ and $K-Z(G)=t^{G}$. Therefore, we have $\left|C_{G}(t)\right|=\frac{7}{3}$, a contradiction. Subcase 2.7. Suppose that $G / Z(G) \cong S_{4}$. Then, $k_{G / Z(G)}(G / Z(G))=$ 5. Since $k_{G}(G-Z(G))=5, G / Z(G)$ has three non-trivial conjugacy classes as the same as three conjugacy classes of $G-Z(G)$. Also $G / Z(G)$ has one non-trivial conjugacy class that is the union of two remaining conjugacy classes of $G-Z(G)$. Since the order of the centralizer of representative of each of four non-trivial conjugacy classes of $G / Z(G)$ is 3,4 or 8 , we have the following two cases:
(1) The order of the centralizer of representative of one of five noncentral conjugacy classes of G is 3 . In this case, using a similar argument mentioned before, we conclude that $|Z(G)|=1$. Therefore, $G \cong S_{4}$, a contradiction.
(2) The order of the centralizer of representative of none of five noncentral conjugacy classes of G is 3 . So, G has three non-central conjugacy classes, in which the orders of the centralizers of representatives of them are 4,4 and 8 . Thus, we have $\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{a}+\frac{1}{b}+\frac{1}{24}=1$, where a and b are the orders of the centralizers of representatives of two other conjugacy classes. This equality holds if $a=b=6$ or $a=4$, $b=12$. In the first case, we get $|Z(G)|=2$. Therefore, $|G|=48$ and by [6], we have a contradiction. In the second case, $|Z(G)|=2$ or 4 .

Therefore, $|G|=48$ or 96 and by [6], we have a contradiction.
Subcase 2.8. Assume that $G / Z(G) \cong \mathbb{Z}_{7} \times_{f} \mathbb{Z}_{3}$. In this case $k_{G / Z(G)}($ $G / Z(G))=5$. If $|Z(G)|=1$, then $G \cong \mathbb{Z}_{7} \times{ }_{f} \mathbb{Z}_{3}$, a contradiction. Now, suppose that $|Z(G)|>1$. Let $K / Z(G)$ be a Sylow 7 -subgroup of $G / Z(G)$. Then we have $K \triangleleft G$ and $|G / K|=3$.

If $k_{G}(G-K)=1$, then it follows from Proposition 2.3 that G is a Frobenius group with kernel K. Hence, $|Z(G)|=1$, a contradiction.

If $k_{G}(G-K)=2$, then we may assume that $G-K=x^{G} \cup y^{G}$ and $K-Z(G)=z^{G} \cup w^{G} \cup t^{G}$. So we have $\frac{1}{\left|C_{G}(x)\right|}+\frac{1}{\left|C_{G}(y)\right|}=\frac{2}{3}$. Let $\left|C_{G}(x)\right|=3 a$ and $\left|C_{G}(y)\right|=3 b$, for some integers a and b. Then $\frac{1}{a}+\frac{1}{b}=2$ and so $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=3$. Now, by Lemma 2.4, G is a Frobenius group with kernel K. Hence, $|Z(G)|=1$, a contradiction.

If $k_{G}(G-K)=3$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G}$ and $K-Z(G)=w^{G} \cup t^{G}$. So, we have $\frac{1}{\left|C_{G}(w)\right|}+\frac{1}{\left|C_{G}(t)\right|}=\frac{2}{7}$. Let $\left|C_{G}(w)\right|=7 a$ and $\left|C_{G}(t)\right|=7 b$, for some integers a and b. Then $\frac{1}{a}+\frac{1}{b}=2$ and so $\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=7$. Now, by Lemma 2.4, K is a Frobenius group with kernel $Z(G)$, a contradiction.

If $k_{G}(G-K)=4$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G} \cup w^{G}$ and $K-Z(G)=t^{G}$. Then, we have $\left|C_{G}(t)\right|=7 / 2$, a contradiction.
Subcase 2.9. Suppose that $G / Z(G) \cong \mathbb{Z}_{5} \times{ }_{f} \mathbb{Z}_{4}$. In this case $k_{G / Z(G)}($ $G / Z(G))=5$. If $|Z(G)|=1$, then $G \cong \mathbb{Z}_{5} \times_{f} \mathbb{Z}_{4}$, a contradiction. Now, suppose that $|Z(G)|>1$ and $K / Z(G)$ be a Sylow 5 -subgroup of $G / Z(G)$. Then, we have $K \triangleleft G$ and $|G / K|=4$.

If $k_{G}(G-K)=1$, then it follows from Proposition 2.3 that G is a Frobenius group with kernel K. Hence $|Z(G)|=1$, a contradiction.

If $k_{G}(G-K)=2$, then we may assume that $G-K=x^{G} \cup y^{G}$ and $K-Z(G)=z^{G} \cup w^{G} \cup t^{G}$. It then implies that $\frac{1}{\left|C_{G}(x)\right|}+\frac{1}{\left|C_{G}(y)\right|}=\frac{3}{4}$ and $\frac{1}{\left|C_{G}(z)\right|}+\frac{1}{\left|C_{G}(w)\right|}+\frac{1}{\left|C_{G}(t)\right|}=\frac{1}{5}$. Thus, either $\left|C_{G}(x)\right|=2,\left|C_{G}(y)\right|=$ $4,\left|C_{G}(z)\right|=\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=15$ or $\left|C_{G}(x)\right|=2,\left|C_{G}(y)\right|=4$, $\left|C_{G}(z)\right|=\left|C_{G}(w)\right|=20,\left|C_{G}(t)\right|=10$. In the first case, we have $|Z(G)|=1$, a contradiction. In the second case, $|Z(G)|=2$. Therefore, $|G|=40$ and by [6], we get a contradiction.

If $k_{G}(G-K)=3$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G}$ and $K-Z(G)=w^{G} \cup t^{G}$. So, we have $\frac{1}{\left|C_{G}(x)\right|}+\frac{1}{\left|C_{G}(y)\right|}+\frac{1}{\left|C_{G}(z)\right|}=\frac{3}{4}$ and $\frac{1}{\left|C_{G}(w)\right|}+\frac{1}{\left|C_{G}(t)\right|}=\frac{1}{5}$. Then we conclude that either $\left|C_{G}(x)\right|=$ $\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=4,\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=10$ or $\left|C_{G}(x)\right|=2$, $\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=8,\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=10$. In the both cases, $|Z(G)|=2$ and so $|G|=40$, which is not possible.

If $k_{G}(G-K)=4$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G} \cup w^{G}$ and $K-Z(G)=t^{G}$. Therefore, $\left|C_{G}(t)\right|=5$ and by Lemma 2.4, K is
a Frobenius group with kernel $Z(G)$, a contradiction.
Subcase 2.10. Suppose that $G / Z(G) \cong D_{12}$. In this case $k_{G / Z(G)}($ $G / Z(G))=6$. If $|Z(G)|=1$, then $G \cong D_{12}$, a contradiction. Now, suppose that $|Z(G)|>1$ and $K / Z(G)$ be a Sylow 3-subgroup of $G / Z(G)$. Then, we have $K \triangleleft G$ and $|G / K|=4$.

If $k_{G}(G-K)=1$, then it follows from Proposition 2.3 that G is a Frobenius group with kernel K. Hence, $|Z(G)|=1$, a contradiction.

If $k_{G}(G-K)=2$, then we may assume that $G-K=x^{G} \cup y^{G}$ and $K-Z(G)=z^{G} \cup w^{G} \cup t^{G}$. So, we have $\frac{1}{\left|C_{G}(x)\right|}+\frac{1}{\left|C_{G}(y)\right|}=\frac{3}{4}$ and $\frac{1}{\left|C_{G}(t)\right|}+\frac{1}{\left|C_{G}(w)\right|}+\frac{1}{\left|C_{G}(t)\right|}=\frac{1}{6}$. Then, we conclude that either $\left|C_{G}(x)\right|=$ $2,\left|C_{G}(y)\right|=4,\left|C_{G}(z)\right|=\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=18$ or $\left|C_{G}(x)\right|=2$, $\left|C_{G}(y)\right|=4,\left|C_{G}(z)\right|=\left|C_{G}(w)\right|=24,\left|C_{G}(t)\right|=12$. In the both cases, $|Z(G)|=2$ and $|G|=24$, which is not possible.

If $k_{G}(G-K)=3$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G}$ and $K-Z(G)=w^{G} \cup t^{G}$. So, we have $\frac{1}{\left|C_{G}(x)\right|}+\frac{1}{\left|C_{G}(y)\right|}+\frac{1}{\left|C_{G}(z)\right|}=$ $\frac{3}{4}$ and $\frac{1}{\left|C_{G}(w)\right|}+\frac{1}{\left|C_{G}(t)\right|}=\frac{1}{6}$. It then implies that either $\left|C_{G}(x)\right|=$ $\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=4,\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=12$ or $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=$ $8,\left|C_{G}(z)\right|=2,\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=12$. In the first case, we have $|Z(G)|=2$ or 4 and so $|G|=24$ or 48 , which is not possible. In the second case, $|Z(G)|=2$ and hence $|G|=24$, a contradiction.

If $k_{G}(G-K)=4$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G} \cup w^{G}$ and $K-Z(G)=t^{G}$. Thus, we have $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=6$, $\left|C_{G}(w)\right|=4,\left|C_{G}(t)\right|=6$ or $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=12$, $\left|C_{G}(w)\right|=2,\left|C_{G}(t)\right|=6$ or $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=8,\left|C_{G}(z)\right|=$ $\left|C_{G}(w)\right|=4,\left|C_{G}(t)\right|=6$. In each case, $|Z(G)|=2$ and so $|G|=24$, which is not possible.
Subcase 2.11. Suppose that $G / Z(G) \cong D_{18}$. In this case $k_{G / Z(G)}(G /$ $Z(G))=6$. If $|Z(G)|=1$, then $G \cong D_{18}$. Now, suppose that $|Z(G)|>1$ and $K / Z(G)$ be a Sylow 3-subgroup of $G / Z(G)$. Then, we have $K \triangleleft G$ and $|G / K|=2$.

If $k_{G}(G-K)=1$, then it follows from Proposition 2.3 that G is a Frobenius group with kernel K. Hence, $|Z(G)|=1$, a contradiction.

If $k_{G}(G-K)=2$, then we may assume that $G-K=x^{G} \cup y^{G}$ and $K-Z(G)=z^{G} \cup w^{G} \cup t^{G}$. So, we have $\frac{1}{\left|C_{G}(x)\right|}+\frac{1}{\left|C_{G}(y)\right|}=\frac{1}{2}$ and $\frac{1}{\left|C_{G}(z)\right|}+\frac{1}{\left|C_{G}(w)\right|}+\frac{1}{\left|C_{G}(t)\right|}=\frac{4}{9}$. It then implies that $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=4$, $\left|C_{G}(z)\right|=9$ and $\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=6$. Therefore, $|Z(G)|=1$, a contradiction.

If $k_{G}(G-K)=3$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G}$ and $K-Z(G)=w^{G} \cup t^{G}$. So, we have $\frac{1}{\left|C_{G}(x)\right|}+\frac{1}{\left|C_{G}(y)\right|}+\frac{1}{\left|C_{G}(z)\right|}=\frac{1}{2}$ and $\frac{1}{\left|C_{G}(w)\right|}+\frac{1}{\left|C_{G}(t)\right|}=\frac{4}{9}$. Hence, we have either $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=$
$\left|C_{G}(z)\right|=6,\left|C_{G}(w)\right|=9,\left|C_{G}(t)\right|=3$ or $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=8$, $\left|C_{G}(z)\right|=4,\left|C_{G}(w)\right|=9,\left|C_{G}(t)\right|=3$. In the first case, we have $|Z(G)|=3$. Therefore, $|G|=54$ and by [6], we get a contradiction. In the second case, $|Z(G)|=1$, a contradiction.

If $k_{G}(G-K)=4$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G} \cup w^{G}$ and $K-Z(G)=t^{G}$. Therefore, $\left|C_{G}(t)\right|=\frac{9}{4}$, a contradiction.
Subcase 2.12. Suppose that $G / Z(G) \cong\left(\mathbb{Z}_{3}\right)^{2} \times_{f} \mathbb{Z}_{2}$. In this case $k_{G / Z(G)}(G / Z(G))=6$. If $|Z(G)|=1$, then $G \cong\left(\mathbb{Z}_{3}\right)^{2} \times_{f} \mathbb{Z}_{2}$. Now, suppose that $|Z(G)|>1$ and $K / Z(G)$ be a Sylow 3-subgroup of $G / Z(G)$. Then, we have $K \triangleleft G$ and $|G / K|=2$.

If $k_{G}(G-K)=1$, then it follows from Proposition 2.3 that G is a Frobenius group with kernel K. Hence, $|Z(G)|=1$, a contradiction.

If $k_{G}(G-K)=2$, then we may assume that $G-K=x^{G} \cup y^{G}$ and $K-Z(G)=z^{G} \cup w^{G} \cup t^{G}$. So, we have $\frac{1}{\left|C_{G}(x)\right|}+\frac{1}{\left|C_{G}(y)\right|}=\frac{1}{2}$ and $\frac{1}{\left|C_{G}(z)\right|}+\frac{1}{\left|C_{G}(w)\right|}+\frac{1}{\left|C_{G}(t)\right|}=\frac{4}{9}$. Thus $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=4,\left|C_{G}(z)\right|=9$, $\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=6$. Therefore $|Z(G)|=1$, a contradiction.

If $k_{G}(G-K)=3$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G}$ and $K-Z(G)=w^{G} \cup t^{G}$. So we have $\frac{1}{\left|C_{G}(x)\right|}+\frac{1}{\left|C_{G}(y)\right|}+\frac{1}{\left|C_{G}(z)\right|}=\frac{1}{2}$ and $\frac{1}{\left|C_{G}(w)\right|}+\frac{1}{\left|C_{G}(t)\right|}=\frac{4}{9}$. It then implies that either $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=$ $\left|C_{G}(z)\right|=6,\left|C_{G}(w)\right|=9,\left|C_{G}(t)\right|=3$ or $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=8$, $\left|C_{G}(z)\right|=4,\left|C_{G}(w)\right|=9,\left|C_{G}(t)\right|=3$. In the first case, we have $|Z(G)|=3$ and so $|G|=54$, which is not possible. In the second case, $|Z(G)|=1$, a contradiction.
If $k_{G}(G-K)=4$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G} \cup w^{G}$ and $K-Z(G)=t^{G}$. Therefore, $\left|C_{G}(t)\right|=\frac{9}{4}$, a contradiction.
Subcase 2.13. Suppose that $G / Z(G) \cong\left(\mathbb{Z}_{3}\right)^{2} \times_{f} \mathbb{Z}_{4}$. In this case $k_{G / Z(G)}(G / Z(G))=6$. If $|Z(G)|=1$, then $G \cong\left(\mathbb{Z}_{3}\right)^{2} \times_{f} \mathbb{Z}_{4}$. Now, suppose that $|Z(G)|>1$ and $K / Z(G)$ be a Sylow 3 -subgroup of $G / Z(G)$. Then, we have $K \triangleleft G$ and $|G / K|=4$.

If $k_{G}(G-K)=1$, then it follows from Proposition 2.3 that G is a Frobenius group with kernel K. Hence, $|Z(G)|=1$, a contradiction.

If $k_{G}(G-K)=2$, then we may assume that $G-K=x^{G} \cup y^{G}$ and $K-Z(G)=z^{G} \cup w^{G} \cup t^{G}$. So, we have $\frac{1}{\left|C_{G}(x)\right|}+\frac{1}{\left|C_{G}(y)\right|}=\frac{3}{4}$ and $\frac{1}{\left|C_{G}(z)\right|}+\frac{1}{\left|C_{G}(w)\right|}+\frac{1}{\left|C_{G}(t)\right|}=\frac{2}{9}$. Thus, we conclude that $\left|C_{G}(x)\right|=2$, $\left|C_{G}(y)\right|=4,\left|C_{G}(z)\right|=9,\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=18$. Therefore, $|Z(G)|=$ 1 , a contradiction.

If $k_{G}(G-K)=3$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G}$ and $K-Z(G)=w^{G} \cup t^{G}$. So, we have $\frac{1}{\left|C_{G}(x)\right|}+\frac{1}{\left|C_{G}(y)\right|}+\frac{1}{\left|C_{G}(z)\right|}=$ $\frac{3}{4}$ and $\frac{1}{\left|C_{G}(w)\right|}+\frac{1}{\left|C_{G}(t)\right|}=\frac{2}{9}$. It then implies that either $\left|C_{G}(x)\right|=$ $\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=4,\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=9$ or $\left|C_{G}(x)\right|=2$,
$\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=8,\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=9$. In the both cases, $|Z(G)|=1$, a contradiction.

If $k_{G}(G-K)=4$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G} \cup w^{G}$ and $K-Z(G)=t^{G}$. Therefore, $\left|C_{G}(t)\right|=\frac{9}{2}$, a contradiction.
Subcase 2.14. Suppose that $G / Z(G) \cong\left(\mathbb{Z}_{3}\right)^{2} \times_{f} Q_{8}$. In this case $k_{G / Z(G)}(G / Z(G))=6$. If $|Z(G)|=1$, then $G \cong\left(\mathbb{Z}_{3}\right)^{2} \times_{f} Q_{8}$. Now suppose that $|Z(G)|>1$ and $K / Z(G)$ be a Sylow 3-subgroup of $G / Z(G)$. Then, we have $K \triangleleft G$ and $|G / K|=8$.

If $k_{G}(G-K)=1$, then it follows from Proposition 2.3 that G is a Frobenius group with kernel K. Hence, $|Z(G)|=1$, a contradiction.

If $k_{G}(G-K)=2$, then we may assume that $G-K=x^{G} \cup y^{G}$ and $K-Z(G)=z^{G} \cup w^{G} \cup t^{G}$. So, we have $\frac{1}{\left|C_{G}(x)\right|}+\frac{1}{\left|C_{G}(y)\right|}=\frac{7}{8}$, which has no integer solution, a contradiction.

If $k_{G}(G-K)=3$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G}$ and $K-Z(G)=w^{G} \cup t^{G}$. So, we have $\frac{1}{\left|C_{G}(x)\right|}+\frac{1}{\left|C_{G}(y)\right|}+\frac{1}{\left|C_{G}(z)\right|}=\frac{7}{8}$ and $\frac{1}{\left|C_{G}(w)\right|}+\frac{1}{\left|C_{G}(t)\right|}=\frac{1}{9}$. It then implies that $\left|C_{G}(x)\right|=8,\left|C_{G}(y)\right|=2$, $\left|C_{G}(z)\right|=4,\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=18$. Therefore, $|Z(G)|=2$ and $|G|=144$. Hence, by [6], we get a contradiction.

If $k_{G}(G-K)=4$, then we may assume that $G-K=x^{G} \cup$ $y^{G} \cup z^{G} \cup w^{G}$ and $K-Z(G)=t^{G}$. Then, we conclude that either $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=8,\left|C_{G}(w)\right|=2,\left|C_{G}(t)\right|=9$ or $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=4,\left|C_{G}(w)\right|=8,\left|C_{G}(t)\right|=9$. In the both cases, $|Z(G)|=1$, a contradiction.
Subcase 2.15. Suppose that $G / Z(G) \cong \mathbb{Z}_{4} \rtimes \mathbb{Z}_{3}$. In this case $k_{G / Z(G)}$ $(G / Z(G))=6$. If $|Z(G)|=1$, then $G \cong \mathbb{Z}_{4} \rtimes \mathbb{Z}_{3}$. Now, suppose that $|Z(G)|>1$ and $K / Z(G)$ be a Sylow 2-subgroup of $G / Z(G)$. Then we have $K \triangleleft G$ and $|G / K|=3$.

If $k_{G}(G-K)=1$, then it follows from Proposition 2.3 that G is a Frobenius group with kernel K. Hence, $|Z(G)|=1$, a contradiction.

If $k_{G}(G-K)=2$, then we may assume that $G-K=x^{G} \cup y^{G}$ and $K-Z(G)=z^{G} \cup w^{G} \cup t^{G}$. So, we have $\frac{1}{\left|C_{G}(x)\right|}+\frac{1}{\left|C_{G}(y)\right|}=\frac{2}{3}$ and $\frac{1}{\left|C_{G}(z)\right|}+\frac{1}{\left|C_{G}(w)\right|}+\frac{1}{\left|C_{G}(t)\right|}=\frac{1}{4}$. Thus, we conclude that either $\left|C_{G}(x)\right|=$ $\left|C_{G}(y)\right|=3,\left|C_{G}(z)\right|=\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=12$ or $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=$ $3,\left|C_{G}(z)\right|=8,\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=16$. In the first case, we have $|Z(G)|=3$ and so $|G|=36$, which is not possible. In the second case, $|Z(G)|=1$, a contradiction.

If $k_{G}(G-K)=3$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G}$ and $K-Z(G)=w^{G} \cup t^{G}$. So, we have $\frac{1}{\left|C_{G}(x)\right|}+\frac{1}{\left|C_{G}(y)\right|}+\frac{1}{\left|C_{G}(z)\right|}=\frac{2}{3}$ and $\frac{1}{\left|C_{G}(w)\right|}+\frac{1}{\left|C_{G}(t)\right|}=\frac{1}{4}$. It then implies that either $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=$ $6,\left|C_{G}(z)\right|=3,\left|C_{G}(w)\right|=\left|C_{G}(t)\right|=8$ or $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=6$,
$\left|C_{G}(z)\right|=3,\left|C_{G}(w)\right|=6,\left|C_{G}(t)\right|=12$. In the first case, we have $|Z(G)|=1$, a contradiction. In the second case, $|Z(G)|=3$ and hence $|G|=36$, which is not possible.

If $k_{G}(G-K)=4$, then we may assume that $G-K=x^{G} \cup y^{G} \cup z^{G} \cup w^{G}$ and $K-Z(G)=t^{G}$. So, we have $\frac{1}{\left|C_{G}(x)\right|}+\frac{1}{\left|C_{G}(y)\right|}+\frac{1}{\left|C_{G}(z)\right|}+\frac{1}{\left|C_{G}(w)\right|}=\frac{2}{3}$ and $\frac{1}{\left|C_{G}(t)\right|}=\frac{1}{4}$. Thus, $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=\left|C_{G}(w)\right|=$ $6,\left|C_{G}(t)\right|=4$ or $\left|C_{G}(x)\right|=3,\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=\left|C_{G}(w)\right|=9$, $\left|C_{G}(t)\right|=4$ or $\left|C_{G}(x)\right|=3,\left|C_{G}(y)\right|=6,\left|C_{G}(z)\right|=\left|C_{G}(w)\right|=12$, $\left|C_{G}(t)\right|=4$. In the first case, we have $|Z(G)|=2$ and so $|G|=24$. Therefore, $G \cong S L(2,3)$. In the other two cases, we have $|Z(G)|=1$, a contradiction.

Now the proof of Theorem 1.1 is complete.

References

1. A. V. Lopez and J. V. Lopez, Classification of finite groups according to the number of conjugacy classes, Israel J. Math. 51(4) (1985), 305-338.
2. G. Qian, W. Shi and X. You, Conjugacy classes outside a normal subgroup, Comm. Algebra 32(12) (2004), 4809-4820.
3. U. Riese and M. A. Shahabi, Subgroups which are the union of four conjugacy classes, Comm. Algebra 29(2) (2001), 695-701.
4. M. Shahryari and M. A. Shahabi, Subgroups which are the union of three conjugacy classes, J. Algebra 207 (1998), 326-332.
5. W. J. Shi, A class of special minimal normal subgroups, J. Southwest Teachers College 9(3) (1984), 9-13.
6. The GAP Group, Gap-Groups, Algorithms, and programming, version 4.4, http:// www.gap-system.org, 2005.
7. X. You, Z. Liu and W. Zhu, Finite groups in which there are at most four noncentral conjugacy classes, International Conference on Multimedia Technology (ICMT) (2011), 26-28.

Mehdi Rezaei

Department of Mathematics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran.
Email:mehdrezaei@gmail.com, m_rezaei@bzte.ac.ir
Zeinab Foruzanfar
Buein Zahra Technical University, Buein Zahra, Qazvin, Iran.
Email: zforouzanfar@gmail.com

Journal of Algebraic Systems

FINITE GROUPS WITH FIVE NON-CENTRAL CONJUGACY CLASSES

M. REZAEI AND Z. FORUZANFAR

گروههاى متناهى با پنج كلاس تزويج نامركزى
مركز آموزش عالى فنىى و و مهندسى فروزيوئين زهرا فرائى

فرض كنيد G يك گروه متناهى باشد و $Z(G)$ مركز G باشد. براى يك زيرمجموعه A از A از

 بررسى كرده و آنها را ردمبندى مىكنيم.

كلمات كليدى: گروه متناهى، گروه فروبنيوس، كلاس تزويج.

[^0]: MSC(2010): Primary: 20E45; Secondary: 20D20
 Keywords: Finite group, Frobenius group, Conjugacy class.
 Received: 20 April 2015, Accepted: 16 September 2016.
 *Corresponding author .

