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FINITE GROUPS WITH FIVE NON-CENTRAL
CONJUGACY CLASSES

M. REZAEI∗ AND Z. FORUZANFAR

Abstract. Let G be a finite group and Z(G) be the center of G.
For a subset A of G, we define kG(A), the number of conjugacy
classes of G that intersect A non-trivially. In this paper, we ver-
ify the structure of all finite groups G which satisfy the property
kG(G− Z(G)) = 5, and classify them.

1. Introduction

Let M be a normal subgroup of a finite group G. The influence of
the arithmetic structure of conjugacy classes of G, like conjugacy class
sizes, the number of conjugacy classes or the number of conjugacy class
sizes, on the structure of G is an extensively studied question in group
theory. Shi [5], Shahryari and Shahabi [4] and Riese and Shahabi [3]
determined the structure of M , when M is the union of 2, 3 or 4
conjugacy classes of G, respectively. Qian et al. [2] considered the
opposite extreme situation that contains almost all conjugacy classes
of G, and determined the structure of the whole group, when there
are at most 3 conjugacy classes outside M . In particular, You et al.
[7] classified all finite groups G, when there are at most 4 conjugacy
classes of G outside the center of G. In this paper, we continue the
work in [7] and verify the structure of finite groups G, when there are 5
conjugacy classes outside the center of G. Let Z(G) be the center of G.
For an element x of G, we will let o(x) to denote the order of x and xG
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to denote the conjugacy class of x in G. For A ⊆ G, let kG(A) be the
number of conjugacy classes of G that intersect A non-trivially. Recall
that K⋊H is a semidirect product of K and H with normal subgroup
K. In particular, the Frobenius group with kernel K and complement
H is denoted by K ×f H. Also, the semi-dihedral group of order 2n is

denoted by SD2n = ⟨a, b | a2n−1
= b2 = 1, bab = a2

n−2−1⟩. All further
unexplained notations are standard. The purpose of this paper is to
classify all finite groups in which there are five non-central conjugacy
classes.

Theorem 1.1. Let G be a non-abelian finite group. Then kG(G −
Z(G)) = 5 if and only if G is isomorphic to one of the following groups:

(1) PSL(2, 7);
(2) SL(2, 3);
(3) D16, Q16 or SD16;
(4) D18;
(5) (Z3)

2 ×f Z2;
(6) (Z3)

2 ×f Z4;
(7) (Z3)

2 ×f Q8;
(8) Z4 ⋊ Z3.

2. Preliminaries

In this section, we present some preliminary results that will be used
in the proof of the Theorem 1.1.

Lemma 2.1. (See [1]) Let G be a finite group and kG(G) be the number
of conjugacy classes of G. Then

(1) If kG(G) = 1, then G ∼= {1};
(2) If kG(G) = 2, then G ∼= Z2;
(3) If kG(G) = 3, then G is isomorphic to Z3 or S3;
(4) If kG(G) = 4, then G is isomorphic to Z4,Z2 × Z2, D10 or A4;
(5) If kG(G) = 5, then G is isomorphic to Z5, D8, Q8, D14, S4, A5,

Z7 ×f Z3 or Z5 ×f Z4;
(6) If kG(G) = 6, then G is isomorphic to Z6, D12,Z4 ⋊ Z3, D18,

(Z3)
2 ×f Z2, (Z3)

2 ×f Z4, (Z3)
2 ×f Q8 or PSL(2, 7).

Lemma 2.2. [2, Lemma 1.3] If G possesses an element x with |CG(x)|
= 4, then a Sylow 2-subgroup P of G is the dihedral, semi-dihedral or
generalized quaternion group. In particular, |P/P ′ | = 4 and P has a
cyclic subgroup of order |P |/2.
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Proposition 2.3. [2, Proposition 2.1] If N is a normal subgroup of a
finite non-abelian group G, then kG(G − N) = 1 if and only if G is a
Frobenius group with kernel N and |N | = |G|/2.
Lemma 2.4. [7, Lemma 6], Let G be a finite group and K, N be
two normal subgroups of G with |K/N | = p, where p is prime. If
|CG(x)| = p for any x ∈ K − N , then K is a Frobenius group with
kernel N .

3. The proof of Theorem 1.1.

To prove our main result, Theorem 1.1, we first state the following
theorem.

Theorem 3.1.There is no finite non-abelian group G such that G/Z(G)
is abelian and kG(G− Z(G)) = 5.

Proof. Let G−Z(G) = xG∪yG∪zG∪wG∪tG. Since kG/Z(G)(G/Z(G)−
Z(G)/Z(G)) ≤ kG(G − Z(G)) = 5, we have kG/Z(G)(G/Z(G)) ≤ 6.
It follows from Lemma 2.1 that G/Z(G) is an elementary abelian 2-
group of order 4. Hence, kG/Z(G)(G/Z(G)−Z(G)/Z(G)) = 3. We may
assume that xZ(G) = xG, yZ(G) = yG, zZ(G) = wZ(G) = tZ(G) =
zG ∪ wG ∪ tG. It then implies that |CG(x)| = |CG(y)| = 4, |CG(z)| =
|CG(w)| = |CG(t)| = 12 or |CG(x)| = |CG(y)| = 4, |CG(z)| = |CG(w)| =
16, |CG(t)| = 8 or |CG(x)| = |CG(y)| = 4, |CG(z)| = |CG(w)| = 24,
|CG(t)| = 6. In the first two cases, we have |Z(G)| = 2 or 4 and hence
|G| = 8 or 16. It follows from Lemma 2.2 that |Z(G)| = 2. Therefore,
|G| = 8 and G is isomorphic to D8 or Q8, which forces kG(G−Z(G)) =
3, a contradiction. In the third case, we have |Z(G)| = 2, and get the
same contradiction. □

By Theorem 3.1, since there is no group G with abelian central factor
and kG(G−Z(G)) = 5, we are ready to prove our main result, Theorem
1.1, and note that G/Z(G) is not abelian.

Let G− Z(G) = xG ∪ yG ∪ zG ∪ wG ∪ tG. We consider the following
two cases:
Case 1. If G is non-solvable, then G/Z(G) is non-solvable too. Since
kG/Z(G)(G/Z(G) − Z(G)/Z(G)) ≤ kG(G − Z(G)) = 5, we conclude
that kG/Z(G)(G/Z(G)) ≤ 6. It follows from Lemma 2.1 that G/Z(G)
is isomorphic to PSL(2, 7) or A5. If G/Z(G) ∼= PSL(2, 7), then
kG(G − Z(G)) = kG/Z(G)(G/Z(G) − Z(G)/Z(G)) = 5, and we have
kG(xZ(G)) = kG(yZ(G)) = kG(zZ(G)) = kG(wZ(G)) = kG(tZ(G)) =
1. Therefore, |CG(x)| = |CG/Z(G)(xZ(G))|, |CG(y)| = |CG/Z(G)(yZ(G))|,
|CG(z)| = |CG/Z(G)(zZ(G))|, |CG(w)| = |CG/Z(G)(wZ(G))| and |CG(t)|
= |CG/Z(G)(tZ(G))|. We may assume that o(xZ(G)) = 3, o(yZ(G)) =
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7, o(zZ(G)) = 7, o(wZ(G)) = 2 and o(tZ(G)) = 4. Then we have
|CG/Z(G)(xZ(G))| = 3, |CG/Z(G)(yZ(G))| = 7, |CG/Z(G)(zZ(G))| = 7,
|CG/Z(G)(wZ(G))| = 8 and |CG/Z(G)(tZ(G))| = 4. Hence, |CG(x)| = 3,
|CG(y)| = |CG(z)| = 7, |CG(w)| = 8 and |CG(t)| = 4. Therefore,
|Z(G)| = 1 and G ∼= PSL(2, 7).

Now, let G/Z(G) ∼= A5. Then, kG/Z(G)(G/Z(G)) = 5. Since kG(G−
Z(G)) = 5, G/Z(G) has three non-trivial conjugacy classes as the same
as three conjugacy classes ofG−Z(G). Moreover, G/Z(G) has one non-
trivial conjugacy class, that is the union of two remaining conjugacy
classes of G−Z(G). Since the order of the centralizer of representative
of each of three conjugacy classes of G − Z(G) in G is 3, 4 or 5, we
conclude that |Z(G)| = 1. Therefore, G ∼= A5, a contradiction.
Case 2. If G is solvable, then we have kG/Z(G)(G/Z(G)) ≤ 6. It
then implies that G/Z(G) is isomorphic to one of the following groups:
S3, D10, A4, Q8, D8, D14, S4,Z7 ×f Z3,Z5 ×f Z4, D12, D18, (Z3)

2 ×f Z2,
(Z3)

2 ×f Z4, (Z3)
2 ×f Q8 or Z4 ⋊ Z3. Hence, we consider the following

subcases:
Subcase 2.1. Suppose that G/Z(G) ∼= S3 and K/Z(G) be a Sylow 3-
subgroup ofG/Z(G). Then,K◁G, kG/Z(G)(G/Z(G)) = 3 and |G/K| =
2.

If kG(G −K) = 1, then it follows from Proposition 2.3 that G is a
Frobenius group with kernel K and |G/K| = 2. Therefore |Z(G)| = 1
and hence G ∼= S3, a contradiction.

If kG(G−K) = 2, then we may assume that G−K = xG ∪ yG and
K−Z(G) = zG∪ wG∪ tG. It then implies that |xG|+ |yG| = |G−K| =
|G|/2 and |zG| + |wG| + |tG| = |K − Z(G)| = |G|/3. Thus, we have
either |CG(x)| = |CG(y)| = 4, |CG(z)| = |CG(w)| = |CG(t)| = 9 or
|CG(x)| = |CG(y)| = 4, |CG(z)| = 6, |CG(w)| = |CG(t)| = 12. In the
first case, we have |Z(G)| = 1 and so G ∼= S3, a contradiction. In the
second case, we have |Z(G)| = 2. Therefore, |G| = 12, and by [6], we
get a contradiction.

If kG(G − K) = 3 or kG(G − K) = 4, then by a similar argument,
we get a contradiction.
Subcase 2.2. Suppose that G/Z(G) ∼= D10 and K/Z(G) be a Sylow 5-
subgroup ofG/Z(G). Then,K◁G, kG/Z(G)(G/Z(G)) = 4 and |G/K| =
2.

If kG(G −K) = 1, then it follows from Proposition 2.3 that G is a
Frobenius group with kernel K and |G/K| = 2. Therefore |Z(G)| = 1
and G ∼= D10, a contradiction.

If kG(G−K) = 2, then we may assume that G−K = xG ∪ yG and
K−Z(G) = zG∪wG∪ tG. So we have |xG|+|yG| = |G−K| = |G|/2 and
|zG|+|wG|+|tG| = |K−Z(G)| = 2|G|/5. Hence |CG(x)| = |CG(y)| = 4.
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Since |K/Z(G)| = 5, we have |CG(z)| = 5 and |CG(w)| = |CG(t)| = 10.
Therefore, |Z(G)| = 1 and G ∼= D10, a contradiction.

If kG(G−K) = 3, then we may assume that G−K = xG∪yG∪zG and
K−Z(G) = wG∪ tG. So, we have |xG|+ |yG|+ |ZG| = |G−K| = |G|/2
and |wG|+|tG| = |K−Z(G)| = 2|G|/5. Therefore, |CG(w)| = |CG(t)| =
5 and by Lemma 2.4, K is a Frobenius group with kernel Z(G), a
contradiction.

If kG(G−K) = 4, then we may assume thatG−K = xG∪yG∪zG∪wG

and K−Z(G) = tG. Therefore, we have |CG(t)| = 5/2, a contradiction.
Subcase 2.3. Suppose that G/Z(G) ∼= A4. Then, kG/Z(G)(G/Z(G)) =
4. Let K/Z(G) be a Sylow 2-subgroup of G/Z(G). We conclude that
K ◁ G, |G/K| = 3 and kG/Z(G)(G/Z(G) − K/Z(G)) = 2. Hence,
kG(G−K) ≥ 2.

If kG(G−K) = 2, then we may assume that G−K = xG ∪ yG and
K−Z(G) = zG∪wG∪ tG. So, we have |xG|+ |yG| = |G−K| = 2|G|/3
and |zG| + |wG| + |tG| = |K − Z(G)| = |G|/4. It then implies that
|CG(x)| = |CG(y)| = 3 and by Lemma 2.4, G is a Frobenius group with
kernel K. Therefore, |Z(G)| = 1 and G ∼= A4, a contradiction.

If kG(G−K) = 3, then we may assume that G−K = xG ∪ yG ∪ zG

and K − Z(G) = wG ∪ tG. So we have |xG| + |yG| + |ZG| = |G −
K| = 2|G|/3 and |wG| + |tG| = |K − Z(G)| = |G|/4. Hence we have
either |CG(x)| = |CG(y)| = 6, |CG(z)| = 3, |CG(w)| = |CG(t)| = 8 or
|CG(x)| = |CG(y)| = 6, |CG(z)| = 3, |CG(w)| = 6, |CG(t)| = 12. In the
first case, we have |Z(G)| = 1 and so G ∼= A4, a contradiction. In the
second case, we have |Z(G)| = 3. Therefore, |G| = 36 and by [6], we
get a contradiction.

If kG(G−K) = 4, then we may assume thatG−K = xG∪yG∪zG∪wG

and K − Z(G) = tG. Hence, we have |CG(x)| = |CG(y)| = |CG(z)| =
|CG(w)| = 6, |CG(t)| = 4 or |CG(x)| = |CG(y)| = |CG(z)| = 9,
|CG(w)| = 3, |CG(t)| = 4 or |CG(x)| = |CG(y)| = 12, |CG(z)| = 6,
|CG(w)| = 3, |CG(t)| = 4. In the first case, we have |Z(G)| = 2 and so
G ∼= SL(2, 3). For the other two cases, |Z(G)| = 1, a contradiction.
Subcase 2.4. Suppose that G/Z(G) ∼= Q8. In this case kG/Z(G)(G/Z(
G)) = 5. If |Z(G)| = 1, then G ∼= Q8, which forces kG(G−Z(G)) = 3,
a contradiction. Now suppose that |Z(G)| > 1. Let K/Z(G) be
a cyclic subgroup of G/Z(G) of order 4. Then, we have K ◁ G,
kG/Z(G)(G/Z(G)−K/Z(G)) = 2 and kG/Z(G)(K/Z(G)−Z(G)/Z(G)) =
3. It follows that kG(G − K) = 2 and kG(K − Z(G)) = 3. We may
assume that G−K = xG∪ yG andK−Z(G) = zG∪wG∪ tG. It then im-
plies that either |CG(x)| = |CG(y)| = 4, |CG(z)| = |CG(w)| = |CG(t)| =
8 or |CG(x)| = |CG(y)| = 4, |CG(z)| = |CG(w)| = 16, |CG(t)| = 4. In
the both cases, we have |Z(G)| = 2 or 4 and so |G| = 16 or 32. Now,
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Lemma 2.2 implies that |Z(G)| = 2 and |G| = 16. Therefore, G is
isomorphic to D16, Q16 or SD16 .
Subcase 2.5. Suppose that G/Z(G) ∼= D8. Using the same argument
as in Subcase 2.4, we conclude that G is isomorphic to D16, Q16 or
SD16.
Subcase 2.6. Suppose that G/Z(G) ∼= D14 and K/Z(G) be a Sy-
low 7-subgroup of G/Z(G). Then, K ◁ G, kG/Z(G)(G/Z(G)) = 5 and
|G/K| = 2.

If kG(G −K) = 1, then it follows from Proposition 2.3 that G is a
Frobenius group with kernel K and |G/K| = 2. Hence, |Z(G)| = 1
and G ∼= D14, a contradiction.

If kG(G−K) = 2, then we may assume that G−K = xG ∪ yG and
K −Z(G) = zG ∪ wG ∪ tG. So, we have |xG|+ |yG| = |G−K| = |G|/2
and |zG| + |wG| + |tG| = |K − Z(G)| = 3|G|/7. Therefore, |CG(z)| =
|CG(w)| = |CG(t)| = 7 and by Lemma 2.4, we have K is a Frobenius
group with kernel Z(G), a contradiction.

If kG(G−K) = 3, then we may assume that G−K = xG ∪ yG ∪ zG

and K − Z(G) = wG ∪ tG. So, we have 1
|CG(w)| +

1
|CG(t)| =

3
7
. Suppose

that |CG(w)| = 7a and |CG(t)| = 7b, for some integers a and b. Then,
1
a
+ 1

b
= 3, which has no solution, a contradiction.

If kG(G−K) = 4, then we may assume thatG−K = xG∪yG∪zG∪wG

and K − Z(G) = tG. Therefore, we have |CG(t)| = 7
3
, a contradiction.

Subcase 2.7. Suppose that G/Z(G) ∼= S4. Then, kG/Z(G)(G/Z(G)) =
5. Since kG(G − Z(G)) = 5, G/Z(G) has three non-trivial conjugacy
classes as the same as three conjugacy classes of G − Z(G). Also
G/Z(G) has one non-trivial conjugacy class that is the union of two
remaining conjugacy classes of G − Z(G). Since the order of the cen-
tralizer of representative of each of four non-trivial conjugacy classes
of G/Z(G) is 3, 4 or 8, we have the following two cases:
(1) The order of the centralizer of representative of one of five non-
central conjugacy classes of G is 3. In this case, using a similar ar-
gument mentioned before, we conclude that |Z(G)| = 1. Therefore,
G ∼= S4, a contradiction.
(2) The order of the centralizer of representative of none of five non-
central conjugacy classes of G is 3. So, G has three non-central conju-
gacy classes, in which the orders of the centralizers of representatives
of them are 4, 4 and 8. Thus, we have 1

4
+ 1

4
+ 1

8
+ 1

a
+ 1

b
+ 1

24
= 1,

where a and b are the orders of the centralizers of representatives of
two other conjugacy classes. This equality holds if a = b = 6 or a = 4,
b = 12. In the first case, we get |Z(G)| = 2. Therefore, |G| = 48 and
by [6], we have a contradiction. In the second case, |Z(G)| = 2 or 4.
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Therefore, |G| = 48 or 96 and by [6], we have a contradiction.
Subcase 2.8. Assume that G/Z(G) ∼= Z7 ×f Z3. In this case kG/Z(G)(
G/Z(G)) = 5. If |Z(G)| = 1, then G ∼= Z7 ×f Z3, a contradiction.
Now, suppose that |Z(G)| > 1. Let K/Z(G) be a Sylow 7-subgroup of
G/Z(G). Then we have K ◁G and |G/K| = 3.

If kG(G −K) = 1, then it follows from Proposition 2.3 that G is a
Frobenius group with kernel K. Hence, |Z(G)| = 1, a contradiction.

If kG(G − K) = 2, then we may assume that G − K = xG ∪ yG

and K − Z(G) = zG ∪ wG ∪ tG. So we have 1
|CG(x)| +

1
|CG(y)| = 2

3
.

Let |CG(x)| = 3a and |CG(y)| = 3b, for some integers a and b. Then
1
a
+ 1

b
= 2 and so |CG(x)| = |CG(y)| = 3. Now, by Lemma 2.4, G is a

Frobenius group with kernel K. Hence, |Z(G)| = 1, a contradiction.
If kG(G−K) = 3, then we may assume that G−K = xG∪yG∪zG and

K−Z(G) = wG∪tG. So, we have 1
|CG(w)|+

1
|CG(t)| =

2
7
. Let |CG(w)| = 7a

and |CG(t)| = 7b, for some integers a and b. Then 1
a
+ 1

b
= 2 and so

|CG(w)| = |CG(t)| = 7. Now, by Lemma 2.4, K is a Frobenius group
with kernel Z(G), a contradiction.

If kG(G−K) = 4, then we may assume thatG−K = xG∪yG∪zG∪wG

and K − Z(G) = tG. Then, we have |CG(t)| = 7/2, a contradiction.
Subcase 2.9. Suppose that G/Z(G) ∼= Z5×f Z4. In this case kG/Z(G)(
G/Z(G)) = 5. If |Z(G)| = 1, then G ∼= Z5 ×f Z4, a contradiction.
Now, suppose that |Z(G)| > 1 and K/Z(G) be a Sylow 5-subgroup of
G/Z(G). Then, we have K ◁G and |G/K| = 4.

If kG(G −K) = 1, then it follows from Proposition 2.3 that G is a
Frobenius group with kernel K. Hence |Z(G)| = 1, a contradiction.

If kG(G−K) = 2, then we may assume that G−K = xG ∪ yG and
K − Z(G) = zG ∪ wG ∪ tG. It then implies that 1

|CG(x)| +
1

|CG(y)| =
3
4

and 1
|CG(z)| +

1
|CG(w)| +

1
|CG(t)| =

1
5
. Thus, either |CG(x)| = 2, |CG(y)| =

4, |CG(z)| = |CG(w)| = |CG(t)| = 15 or |CG(x)| = 2, |CG(y)| = 4,
|CG(z)| = |CG(w)| = 20, |CG(t)| = 10. In the first case, we have
|Z(G)| = 1, a contradiction. In the second case, |Z(G)| = 2. Therefore,
|G| = 40 and by [6], we get a contradiction.

If kG(G−K) = 3, then we may assume that G−K = xG ∪ yG ∪ zG

and K − Z(G) = wG ∪ tG. So, we have 1
|CG(x)| +

1
|CG(y)| +

1
|CG(z)| =

3
4

and 1
|CG(w)| +

1
|CG(t)| = 1

5
. Then we conclude that either |CG(x)| =

|CG(y)| = |CG(z)| = 4, |CG(w)| = |CG(t)| = 10 or |CG(x)| = 2,
|CG(y)| = |CG(z)| = 8, |CG(w)| = |CG(t)| = 10. In the both cases,
|Z(G)| = 2 and so |G| = 40, which is not possible.

If kG(G−K) = 4, then we may assume thatG−K = xG∪yG∪zG∪wG

and K − Z(G) = tG. Therefore, |CG(t)| = 5 and by Lemma 2.4, K is
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a Frobenius group with kernel Z(G), a contradiction.
Subcase 2.10. Suppose that G/Z(G) ∼= D12. In this case kG/Z(G)(
G/Z(G)) = 6. If |Z(G)| = 1, then G ∼= D12, a contradiction. Now, sup-
pose that |Z(G)| > 1 and K/Z(G) be a Sylow 3-subgroup of G/Z(G).
Then, we have K ◁G and |G/K| = 4.

If kG(G −K) = 1, then it follows from Proposition 2.3 that G is a
Frobenius group with kernel K. Hence, |Z(G)| = 1, a contradiction.

If kG(G − K) = 2, then we may assume that G − K = xG ∪ yG

and K − Z(G) = zG ∪ wG ∪ tG. So, we have 1
|CG(x)| +

1
|CG(y)| =

3
4
and

1
|CG(t)| +

1
|CG(w)| +

1
|CG(t)| =

1
6
. Then, we conclude that either |CG(x)| =

2, |CG(y)| = 4, |CG(z)| = |CG(w)| = |CG(t)| = 18 or |CG(x)| = 2,
|CG(y)| = 4, |CG(z)| = |CG(w)| = 24, |CG(t)| = 12. In the both cases,
|Z(G)| = 2 and |G| = 24, which is not possible.

If kG(G−K) = 3, then we may assume that G−K = xG ∪ yG ∪ zG

and K − Z(G) = wG ∪ tG. So, we have 1
|CG(x)| +

1
|CG(y)| +

1
|CG(z)| =

3
4
and 1

|CG(w)| +
1

|CG(t)| = 1
6
. It then implies that either |CG(x)| =

|CG(y)| = |CG(z)| = 4, |CG(w)| = |CG(t)| = 12 or |CG(x)| = |CG(y)| =
8, |CG(z)| = 2, |CG(w)| = |CG(t)| = 12. In the first case, we have
|Z(G)| = 2 or 4 and so |G| = 24 or 48, which is not possible. In the
second case, |Z(G)| = 2 and hence |G| = 24, a contradiction.

If kG(G−K) = 4, then we may assume thatG−K = xG∪yG∪zG∪wG

and K − Z(G) = tG. Thus, we have |CG(x)| = |CG(y)| = |CG(z)| = 6,
|CG(w)| = 4, |CG(t)| = 6 or |CG(x)| = |CG(y)| = |CG(z)| = 12,
|CG(w)| = 2, |CG(t)| = 6 or |CG(x)| = |CG(y)| = 8, |CG(z)| =
|CG(w)| = 4, |CG(t)| = 6. In each case, |Z(G)| = 2 and so |G| = 24,
which is not possible.
Subcase 2.11. Suppose that G/Z(G) ∼= D18. In this case kG/Z(G)(G/
Z(G)) = 6. If |Z(G)| = 1, then G ∼= D18. Now, suppose that
|Z(G)| > 1 and K/Z(G) be a Sylow 3-subgroup of G/Z(G). Then,
we have K ◁G and |G/K| = 2.

If kG(G −K) = 1, then it follows from Proposition 2.3 that G is a
Frobenius group with kernel K. Hence, |Z(G)| = 1, a contradiction.

If kG(G − K) = 2, then we may assume that G − K = xG ∪ yG

and K − Z(G) = zG ∪ wG ∪ tG. So, we have 1
|CG(x)| +

1
|CG(y)| =

1
2
and

1
|CG(z)|+

1
|CG(w)|+

1
|CG(t)| =

4
9
. It then implies that |CG(x)| = |CG(y)| = 4,

|CG(z)| = 9 and |CG(w)| = |CG(t)| = 6. Therefore, |Z(G)| = 1, a
contradiction.

If kG(G−K) = 3, then we may assume that G−K = xG ∪ yG ∪ zG

and K − Z(G) = wG ∪ tG. So, we have 1
|CG(x)| +

1
|CG(y)| +

1
|CG(z)| =

1
2

and 1
|CG(w)| +

1
|CG(t)| =

4
9
. Hence, we have either |CG(x)| = |CG(y)| =
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|CG(z)| = 6, |CG(w)| = 9, |CG(t)| = 3 or |CG(x)| = |CG(y)| = 8,
|CG(z)| = 4, |CG(w)| = 9, |CG(t)| = 3. In the first case, we have
|Z(G)| = 3. Therefore, |G| = 54 and by [6], we get a contradiction. In
the second case, |Z(G)| = 1, a contradiction.

If kG(G−K) = 4, then we may assume thatG−K = xG∪yG∪zG∪wG

and K − Z(G) = tG. Therefore, |CG(t)| = 9
4
, a contradiction.

Subcase 2.12. Suppose that G/Z(G) ∼= (Z3)
2 ×f Z2. In this case

kG/Z(G)(G/Z(G)) = 6. If |Z(G)| = 1, then G ∼= (Z3)
2×f Z2. Now, sup-

pose that |Z(G)| > 1 and K/Z(G) be a Sylow 3-subgroup of G/Z(G).
Then, we have K ◁G and |G/K| = 2.

If kG(G −K) = 1, then it follows from Proposition 2.3 that G is a
Frobenius group with kernel K. Hence, |Z(G)| = 1, a contradiction.

If kG(G − K) = 2, then we may assume that G − K = xG ∪ yG

and K − Z(G) = zG ∪ wG ∪ tG. So, we have 1
|CG(x)| +

1
|CG(y)| =

1
2
and

1
|CG(z)| +

1
|CG(w)| +

1
|CG(t)| =

4
9
. Thus |CG(x)| = |CG(y)| = 4, |CG(z)| = 9,

|CG(w)| = |CG(t)| = 6. Therefore |Z(G)| = 1, a contradiction.
If kG(G−K) = 3, then we may assume that G−K = xG ∪ yG ∪ zG

and K−Z(G) = wG∪ tG. So we have 1
|CG(x)| +

1
|CG(y)| +

1
|CG(z)| =

1
2
and

1
|CG(w)| +

1
|CG(t)| =

4
9
. It then implies that either |CG(x)| = |CG(y)| =

|CG(z)| = 6, |CG(w)| = 9, |CG(t)| = 3 or |CG(x)| = |CG(y)| = 8,
|CG(z)| = 4, |CG(w)| = 9, |CG(t)| = 3. In the first case, we have
|Z(G)| = 3 and so |G| = 54, which is not possible. In the second case,
|Z(G)| = 1, a contradiction.

If kG(G−K) = 4, then we may assume thatG−K = xG∪yG∪zG∪wG

and K − Z(G) = tG. Therefore, |CG(t)| = 9
4
, a contradiction.

Subcase 2.13. Suppose that G/Z(G) ∼= (Z3)
2 ×f Z4. In this case

kG/Z(G)(G/Z(G)) = 6. If |Z(G)| = 1, then G ∼= (Z3)
2×f Z4. Now, sup-

pose that |Z(G)| > 1 and K/Z(G) be a Sylow 3-subgroup of G/Z(G).
Then, we have K ◁G and |G/K| = 4.

If kG(G −K) = 1, then it follows from Proposition 2.3 that G is a
Frobenius group with kernel K. Hence, |Z(G)| = 1, a contradiction.

If kG(G − K) = 2, then we may assume that G − K = xG ∪ yG

and K − Z(G) = zG ∪ wG ∪ tG. So, we have 1
|CG(x)| +

1
|CG(y)| = 3

4

and 1
|CG(z)| +

1
|CG(w)| +

1
|CG(t)| =

2
9
. Thus, we conclude that |CG(x)| = 2,

|CG(y)| = 4, |CG(z)| = 9, |CG(w)| = |CG(t)| = 18. Therefore, |Z(G)| =
1, a contradiction.

If kG(G−K) = 3, then we may assume that G−K = xG ∪ yG ∪ zG

and K − Z(G) = wG ∪ tG. So, we have 1
|CG(x)| +

1
|CG(y)| +

1
|CG(z)| =

3
4
and 1

|CG(w)| +
1

|CG(t)| = 2
9
. It then implies that either |CG(x)| =

|CG(y)| = |CG(z)| = 4, |CG(w)| = |CG(t)| = 9 or |CG(x)| = 2,
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|CG(y)| = |CG(z)| = 8, |CG(w)| = |CG(t)| = 9. In the both cases,
|Z(G)| = 1, a contradiction.

If kG(G−K) = 4, then we may assume thatG−K = xG∪yG∪zG∪wG

and K − Z(G) = tG. Therefore, |CG(t)| = 9
2
, a contradiction.

Subcase 2.14. Suppose that G/Z(G) ∼= (Z3)
2 ×f Q8. In this case

kG/Z(G)(G/Z(G)) = 6. If |Z(G)| = 1, then G ∼= (Z3)
2 ×f Q8. Now sup-

pose that |Z(G)| > 1 and K/Z(G) be a Sylow 3-subgroup of G/Z(G).
Then, we have K ◁G and |G/K| = 8.

If kG(G −K) = 1, then it follows from Proposition 2.3 that G is a
Frobenius group with kernel K. Hence, |Z(G)| = 1, a contradiction.

If kG(G−K) = 2, then we may assume that G−K = xG ∪ yG and
K −Z(G) = zG ∪wG ∪ tG. So, we have 1

|CG(x)| +
1

|CG(y)| =
7
8
, which has

no integer solution, a contradiction.
If kG(G−K) = 3, then we may assume that G−K = xG ∪ yG ∪ zG

and K − Z(G) = wG ∪ tG. So, we have 1
|CG(x)| +

1
|CG(y)| +

1
|CG(z)| =

7
8

and 1
|CG(w)| +

1
|CG(t)| =

1
9
. It then implies that |CG(x)| = 8, |CG(y)| = 2,

|CG(z)| = 4, |CG(w)| = |CG(t)| = 18. Therefore, |Z(G)| = 2 and
|G| = 144. Hence, by [6], we get a contradiction.

If kG(G − K) = 4, then we may assume that G − K = xG ∪
yG ∪ zG ∪ wG and K − Z(G) = tG. Then, we conclude that ei-
ther |CG(x)| = |CG(y)| = |CG(z)| = 8, |CG(w)| = 2, |CG(t)| = 9 or
|CG(x)| = |CG(y)| = |CG(z)| = 4, |CG(w)| = 8, |CG(t)| = 9. In the
both cases, |Z(G)| = 1, a contradiction.
Subcase 2.15. Suppose that G/Z(G) ∼= Z4 ⋊Z3. In this case kG/Z(G)

(G/Z(G)) = 6. If |Z(G)| = 1, then G ∼= Z4 ⋊ Z3. Now, suppose that
|Z(G)| > 1 and K/Z(G) be a Sylow 2-subgroup of G/Z(G). Then we
have K ◁G and |G/K| = 3.

If kG(G −K) = 1, then it follows from Proposition 2.3 that G is a
Frobenius group with kernel K. Hence, |Z(G)| = 1, a contradiction.

If kG(G − K) = 2, then we may assume that G − K = xG ∪ yG

and K − Z(G) = zG ∪ wG ∪ tG. So, we have 1
|CG(x)| +

1
|CG(y)| =

2
3
and

1
|CG(z)| +

1
|CG(w)| +

1
|CG(t)| =

1
4
. Thus, we conclude that either |CG(x)| =

|CG(y)| = 3, |CG(z)| = |CG(w)| = |CG(t)| = 12 or |CG(x)| = |CG(y)| =
3, |CG(z)| = 8, |CG(w)| = |CG(t)| = 16. In the first case, we have
|Z(G)| = 3 and so |G| = 36, which is not possible. In the second case,
|Z(G)| = 1, a contradiction.

If kG(G−K) = 3, then we may assume that G−K = xG ∪ yG ∪ zG

and K−Z(G) = wG∪ tG. So, we have 1
|CG(x)| +

1
|CG(y)| +

1
|CG(z)| =

2
3
and

1
|CG(w)| +

1
|CG(t)| =

1
4
. It then implies that either |CG(x)| = |CG(y)| =

6, |CG(z)| = 3, |CG(w)| = |CG(t)| = 8 or |CG(x)| = |CG(y)| = 6,
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|CG(z)| = 3, |CG(w)| = 6, |CG(t)| = 12. In the first case, we have
|Z(G)| = 1, a contradiction. In the second case, |Z(G)| = 3 and hence
|G| = 36, which is not possible.

If kG(G−K) = 4, then we may assume thatG−K = xG∪yG∪zG∪wG

and K −Z(G) = tG. So, we have 1
|CG(x)| +

1
|CG(y)| +

1
|CG(z)| +

1
|CG(w)| =

2
3

and 1
|CG(t)| = 1

4
. Thus, |CG(x)| = |CG(y)| = |CG(z)| = |CG(w)| =

6, |CG(t)| = 4 or |CG(x)| = 3, |CG(y)| = |CG(z)| = |CG(w)| = 9,
|CG(t)| = 4 or |CG(x)| = 3, |CG(y)| = 6, |CG(z)| = |CG(w)| = 12,
|CG(t)| = 4. In the first case, we have |Z(G)| = 2 and so |G| = 24.
Therefore, G ∼= SL(2, 3). In the other two cases, we have |Z(G)| = 1,
a contradiction.

Now the proof of Theorem 1.1 is complete.
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FINITE GROUPS WITH FIVE NON-CENTRAL
CONJUGACY CLASSES
M. REZAEI AND Z. FORUZANFAR

نامرکزی تزویج کلاس پنج با متناهی گروه های

فر فروزان زینب و رضائی مهدی
زهرا بوئین مهندسی و فنی عالی آموزش مرکز

،G از A زیرمجموعه یک برای باشد. G مرکز Z(G) و باشد متناهی گروه یک G کنید فرض
این در می کنیم. تعریف است، غیربدیهی A با اشتراکشان که G تزویج کلاس های تعداد برابر را KG(A)

را می کنند صدق KG(G− Z(G)) = ۵ خاصیت در که G متناهی گروه های تمامی ساختار ما مقاله،
می کنیم. رده بندی را آنها و کرده بررسی

تزویج. کلاس فروبنیوس، گروه متناهی، گروه کلیدی: کلمات

١
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