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REES SHORT EXACT SEQUENCES OF S-POSETS

R. KHOSRAVI∗

Abstract. In this paper, the notion of Rees short exact sequence
for S-posets is introduced, and we investigate the conditions for
which these sequences are left or right split. Unlike the case for
S-acts, being right split does not imply left split. Furthermore, we
present equivalent conditions of a right S-poset P for the functor
Hom(P,−) to be exact.

1. Introduction

A monoid S is said to be a pomonoid if it is a poset whose partial
order ≤ is compatible with the binary operation of S. A right S-poset
AS, is a right S-act A equipped with a partial order ≤ and in addition,
for all s, t ∈ S and a, b ∈ A, if s ≤ t then as ≤ at, and if a ≤ b then
as ≤ bs. An S-subposet of a right S-poset A, is a subset of A that
is closed under the S-action. The one element S-poset is denoted by
Θ = {θ}. Moreover, S-morphisms are the functions that preserve both
the action and the order. An S-morphism ι : A −→ B is a regular
monomorphism if and only if it is an order-embedding, i.e.,

a ≤ a′ ⇔ ι(a) ≤ ι(a′),

for all a, a′ ∈ A. An S-isomorphism is an S-morphism which is both
regular monomorphism and epimorphism. A surjective order embed-
ding of posets is called an order isomorphism.
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As in the unordered case, the coproduct in S-posets is simply the
disjoint union, with S-action and order given componentwise, and as
usual the coproduct of a family {Ai, i ∈ I} will be denoted by

⨿
i∈I Ai.

An S-poset P is called projective if for any S-epimorphism π : A −→
B and any S-morphism f : P −→ B, there exists an S-morphism ϕ :
P −→ A such that πϕ = f , i.e., Hom(P,−) preserves epimorphisms.
One can find the following characterization for projective S-posets in
[5].

Lemma 1.1. An S-poset P is projective if and only if P =
⨿

i∈I eiS
where e2i = ei ∈ S, i ∈ I.

Short exact sequences of modules have been investigated in many
papers. In [3], projective S-acts and exact sequences in S-acts are in-
troduced. Thereby, in [4] Rees short exact sequence of S-acts is studied.
In this paper, we introduce Rees short exact sequences of S-posets. In
Section 2, we study general properties of Rees short exact sequences.
In Section 3, we give some conditions on a Rees short exact sequence to
be left or right split. Projectivity of S-posets was investigated in some
papers such as [2] and [5]. Now, a question is that whether Hom(P,−)
can be an exact functor if P is a projective S-poset. In Section 4,
we obtain a characterization for Hom(P,−) to be exact, and give a
negative answer to this question.

Let A be a right S-poset. An S-poset congruence θ on A is a right
S-act congruence with the property that the S-act A/θ can be made
into an S-poset in such a way that the natural map A −→ A/θ is an
S-poset map. For an S-act congruence θ on A, we write a ≤θ a

′, if the
so-called θ-chain

a ≤ a1θb1 ≤ a2θb2 ≤ ... ≤ anθbn ≤ a′,

from a to a′ exists in A, where ai, bi ∈ A, 1 ≤ i ≤ n. It can be
shown that an S-act congruence θ on a right S-poset A is an S-poset
congruence if and only if aθa′ whenever a ≤θ a

′ ≤θ a. Let H ⊆ A×A.
The relation ν(H) is called the S-poset congruence on AS induced by
H, the following method of constructing ν(H) by means of an auxiliary
relation α(H) was given in [1].

Indeed, a ≤α(H) b if and only if a ≤ b or there exist n ≥ 1, (ci, di) ∈
H, si ∈ S, 1 ≤ i ≤ n such that

a ≤ c1s1 d1s1 ≤ c2s2 ... dnsn ≤ b.

The relation ν(H) given by a ν(H) b if and only if a ≤α(H) b ≤α(H) a.
A subposet B of A is called convex if B = [B], where

[B] = {a ∈ A | ∃ b, b′ ∈ B, b ≤ a ≤ b′}.
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Let K be a proper convex right ideal of a pomonoid S. We define now
the congruence ρK on S such that sρKt if s = t or s, t ∈ K. The
quotient S/ρK is called the Rees factor and denoted by S/K. Then,
[s]ρK ≤ [t]ρK if and only if s ≤ t, or there exists k, k′ ∈ K such that
s ≤ k and k′ ≤ t. In general, for any convex S-subposet B of A, the
quotient A/ρB is the Rees factor, and it is usually denoted by A/B.

2. Rees short exact sequences

In this section, we introduce Rees short exact sequences of S-posets,
and study some general properties of them. First, we need some pre-
liminaries.

Let f : A −→ B be an S-epimorphism. The subkernel of an S-poset
morphism f is defined by

−→
kerf := {(a, a′) ∈ A× A : f(a) ≤ f(a′)}.

Then, ν(
−→
kerf) = kerf := {(a, a′) ∈ A × A : f(a) = f(a′)}, and in

AS/kerf ,

[a]kerf ≤ [a′]kerf if and only if f(a) ≤ f(a′).

Moreover, the mapping f : AS/kerf −→ BS defined by f([a]kerf ) =
f(a) for a ∈ A is an S-isomorphism. For more information, see [1].
From now onwards we denote the subkernel of f briefly by Kf . Obvi-
ously, f is a regular monomorphism if and only if

Kf = ξA = {(a, a′) ∈ A× A| a ≤ a′}.
Let f : A −→ B be an S-morphism. We have f(A) = {f(a) : a ∈ A}

and f(A) is an S-subposet of BS. Let θf = (f(A)× f(A))∪∆B, where
∆B = {(b, b) : b ∈ B}. One can verify that θf is a Rees S-act
congruence on BS. We have b ≤θf b

′ if there exists a θ-chain

b ≤ b1θc1 ≤ b2θc2 ... ≤ bnθcn ≤ b′,

where bi, ci ∈ B, 1 ≤ i ≤ n. It is easy to prove b ≤θf b
′ if and only if

b ≤ b′ or b ≤ f(a), f(a′) ≤ b′ for a, a′ ∈ A. We define

If = {(b, b′) ∈ B ×B : b ≤θf b
′},

and Imf = If ∩ (If )
op = ([f(A)] × [f(A)]) ∪∆B, where [f(A)] is the

convex closure of f(A). Clearly, Imf is an S-poset congruence, and
[b]Imf

≤ [b′]Imf
if and only if (b, b′) ∈ If .

Definition 2.1. Suppose that A,B,C are posets, and f : A −→ B,
g : B −→ C are order preserving maps. Then the sequence

A
f−→ B

g−→ C
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is exact at B if If = Kg, i.e., ≤Imf
=≤kerg and it is called a short

exact sequence. If g is surjective, f is a regular monomorphism, and
If = Kg.

The following lemma will be useful in the sequel.

Lemma 2.2. Suppose that A,B,C, L,M,N are posets, and f, g, h, r
are order preserving maps. Let the following diagram be commutative:

A B C

L M N

f

α

g

β γ

h r

where α, β, γ are order isomorphisms. Then the followings hold:

(i) The upper row is exact at B if and only if the lower row is exact
at M .

(ii) The upper row is a short exact sequence if and only if the lower
row is a short exact sequence.

Proof. (i). Suppose that the upper row is exact at B. So, If = Kg. We
will show that Ih = Kr. Suppose that (m,m

′) ∈ Ih andm ≰ m′. Then,
m ≤ h(l), h(l′) ≤ m′ for l, l′ ∈ L. So, l = α(a), l′ = α(a′) for a, a′ ∈ A.
Since hα = βf , m ≤ β(f(a)). We have m = β(b) for b ∈ B, β is an
order embedding, which implies that b ≤ f(a). Similarly, m′ = β(b′)
and f(a′) ≤ b′. Thus, (b, b′) ∈ If , and since If = Kg, g(b) ≤ g(b′).
Therefore,

r(m) = rβ(b) = γg(b) ≤ γg(b′) = rβ(b′) = r(m′),

and (m,m′) ∈ Kr. Hence, Ih ⊆ Kr. Conversely, Suppose that r(m) ≤
r(m′) and m ≰ m′. Let m = β(b) and m′ = β(b′) for b, b′ ∈ B. Then,

γg(b) = rβ(b) = r(m) ≤ r(m′) = rβ(b′) = γg(b′),

and so g(b) ≤ g(b′). Since If = Kg, (b, b
′) ∈ If . Thus, there exist

a, a′ ∈ A such that b ≤ f(a), f(a′) ≤ b′. So β(b) ≤ β(f(a)), β(f(a′)) ≤
β(b′), and then m ≤ β(f(a)) = h(α(a)) and h(α(a′)) = β(f(a′)) ≤ m′.
Therefore, (m,m′) ∈ Ih, as required.

Similarly, we can show that, if the lower row of the diagram is exact
at M , then the upper row is also exact at B.

(ii). Suppose that the upper row is a short exact sequence. By (i),
the lower row of the diagram is exact at M . First, we show that h
is a regular monomorphism. Suppose that h(l) ≤ h(l′) for l, l′ ∈ L.
Since α is surjective, there exist a, a′ ∈ A such that l = α(a), l′ =
α(a′). So, βf(a) = hα(a) = h(l) ≤ h(l′) = hα(a′) = βf(a′). Now,
since β and f are regular monomorphisms, we get a ≤ a′ and h is a
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regular monomorphism. Moreover, since the diagram is commutative,
the surjectivity of γ is easily follows. □
Definition 2.3. Let A,B,C be S-posets. Then the sequence

A
f−→ B

g−→ C,

is called a Rees short exact sequence if it is a short exact sequence and
f, g are also S-morphisms.

Example 2.4. (i). Let K be a proper convex right ideal of a pomonoid
S. Then

K
ιK−→ S

π−→ S/K,

is a Rees short exact sequence.
(ii). Let K be a proper right ideal of a pomonoid S. Then

K
ιK−→ S

π−→ S/[K],

is a Rees short exact sequence.
(iii). Let B be a proper S-subposet of an S-poset AS. Then

B
ιB−→ A

π−→ A/[B],

is a Rees short exact sequence.
(iv). Let A,B be S-posets. Then the sequence

A
ιA−→ A

⨿
B
⨿

Θ
ρ−→ B

⨿
Θ,

is a Rees short exact sequence, where ρ(c) = c if c ∈ B, otherwise
ρ(c) = θ. Clearly, IιA = Kρ = (A× A) ∪ ξA⨿

B
⨿

Θ.
(v). Let A,B be S-posets and B contains a zero 0. Consider the

sequence

A
ι−→ A

∏
B

π−→ B,

where ι(a) = (a, 0), π(a, b) = b. In general, this sequence is not exact.
Indeed

Iι = {((a, b), (a′, b′))| a, a′ ∈ A, b ≤ 0 ≤ b′} ∪ ξA∏
B,

and Kπ = {((a, b), (a′, b′))| a, a′ ∈ A, b ≤ b′}. Therefore, it is easily
checked that the sequence is a Rees short exact sequence if and only if
A = Θ or B = Θ.

In the following lemma, we give an evident result about Rees short
exact sequences.

Lemma 2.5. Let A,B,C be S-posets, and f : A −→ B, g : B −→ C
be S-morphisms. Then the followings hold:

(i) If If = Kg, then Imf = kerg.
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(ii) The sequence B
g−→ C

π−→ Θ is exact at C if and only if g is
an epimorphism.

(iii) If A contains a zero, then f is a regular monomorphism if and

only if the sequence Θ
ι−→ A

f−→ B is exact at B.

Lemma 2.5 is not valid for S-posets. For instance, let S = {0, 1, s,
s2, . . .} be a free word monoid equipped with the order 0 < 1 < s <
s2 < . . . and K = sS = {0, s, s2, . . .}. So, [K] = S. Let L = s2S ⊆
M = sS, then M/[L] = Θ. Define α : K −→ L and β : S −→ M by
α(si) = si+1 and β(1) = s2, also h : L −→ M by h(si) = si+1. Then,
we have the following commutative diagram:

K S Θ

L M Θ.

ιK

α

π

β ι

h π

As we mentioned, the upper and lower rows are Rees short exact se-
quences. It is clear that α and ι are epimorphisms but not β.

Suppose that A,B are S-posets, and f : A −→ B is an S-morphism.
Clearly, Kf is an S-subposet of A

∏
A. Now, we close this section with

a slight type of Snake Lemma for S-posets.

Lemma 2.6. Suppose that A,B,C, L,M,N are S-posets, and f, g, h, r,
α, β, γ are S-morphisms. Let the following diagram be commutative:

A B C

L M N

f

α

g

β γ

h r

where the upper and lower rows are exact at B and M , respectively,
and for each b1 ≤ b2 ∈ B there exists a ∈ A such that b1 ≤ f(a) ≤ b2.
Then, there exists a sequence Kα −→ Kβ −→ Kγ which is exact at Kβ.

Proof. Define σ : Kα −→ Kβ and τ : Kβ −→ Kγ by σ(a1, a2) =
(f(a1), f(a2)) and τ(b1, b2) = (g(b1), g(b2)). It can be easily checked
that σ and τ are S-morphisms. We will show that Kτ = Iσ. Suppose
that ((b1, b

′
1), (b2, b

′
2)) ∈ Kτ . So

τ(b1, b
′
1) ≤ τ(b2, b

′
2), i.e., (g(b1), g(b

′
1)) ≤ (g(b2), g(b

′
2)).

Hence, (b1, b2), (b
′
1, b

′
2) ∈ Kg = If . We have the following four cases:

(i) If b1 ≤ b2, b
′
1 ≤ b′2, obviously ((b1, b

′
1), (b2, b

′
2)) ∈ Iσ.
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(ii) If b1 ≤ f(a1), f(a2) ≤ b2, b
′
1 ≤ f(a′1), f(a

′
2) ≤ b′2 for some

a1, a2, a
′
1, a

′
2 ∈ A, then

(b1, b
′
1) ≤ σ(a1, a

′
1), σ(a2, a

′
2) ≤ (b2, b

′
2),

and therefore ((b1, b
′
1), (b2, b

′
2)) ∈ Iσ.

(iii) If b1 ≤ f(a1), f(a2) ≤ b2, b
′
1 ≤ b′2 for some a1, a2 ∈ A, by

assumption there exists a′ ∈ A such that b′1 ≤ f(a′) ≤ b′2.
Then, (b1, b

′
1) ≤ σ(a1, a

′), σ(a2, a
′) ≤ (b2, b

′
2), and therefore

((b1, b
′
1), (b2, b

′
2)) ∈ Iσ.

(iv) If b1 ≤ b2, b
′
1 ≤ f(a′1), f(a

′
2) ≤ b′2 for some a′1, a

′
2 ∈ A, the

result can be obtained by a similar argument as in the previous
part.

Therefore, Kτ ⊆ Iσ. Similarly, one can shows that Iσ ⊆ Kτ . □

3. Split Rees short exact sequences

In this section, the conditions under which a Rees short exact se-
quence is right or left split are given. Moreover, we give examples which
illustrate that right split and left split does not imply each other.

Definition 3.1. Let A,B,C be S-posets. The Rees short exact se-

quence A
f−→ B

g−→ C is called left (resp., right ) split if there exists
an S-morphism f ′ : B −→ A (resp., g′ : C −→ B) such that f ′f = 1A
(resp., gg′ = 1C), where 1A is the identity map on A.

As an example of this definition, let A,B be S-posets. Then, the
sequence

A
⨿

Θ
ιA

⨿
Θ−→ A

⨿
B
⨿

Θ
ρB

⨿
Θ−→ B

⨿
Θ,

is right and left split by

ρA
⨿

Θ : A
⨿

B
⨿

Θ −→ A
⨿

Θ,

and
ιB⨿

Θ : B
⨿

Θ −→ A
⨿

B
⨿

Θ,

with ρA⨿
ΘιA

⨿
Θ = 1A⨿

Θ and ρB⨿
ΘιB

⨿
Θ = 1B⨿

Θ.
As a direct consequence of Definition 3.1, we have:

Corollary 3.2. Let E,A,B, P be right S-posets. Then

(i) If E is a regular injective S-poset, then the Rees short exact

sequence E
f−→ A

g−→ B is left split.
(ii) If P is a projective S-poset, then the Rees short exact sequence

A
f−→ B

g−→ P is right split.

The following definition is useful in investigating right split sequences.
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Definition 3.3. Suppose that B is a right S-poset and contains a zero.
An S-subposet A of B is said to be a minimal 0-direct summand of B
if there exists an S-subposet T of B such that B = A∪T, and for each
a ∈ A, t ∈ T (a ≤ t ⇔ 0 ≤ t) and (t ≤ a ⇔ t ≤ 0). We denote it by
B = A⊕́T .

If B = A⊕́T , clearly A ∩ T = {0}

Theorem 3.4. Let A,B,C be S-posets that each contains a zero, and

A
f−→ B

g−→ C,

be a Rees short exact sequence. Then, it is right split if and only if
[f(A)] is a minimal 0-direct summand of B .

Proof. Necessity. First we show that b ∈ [f(A)] if and only if g(b) = 0.
If b ∈ [f(A)], since 0 ∈ f(A), we have (b, 0) ∈ Imf . So, (b, 0) ∈ kerg,
and then g(b) = g(0) = 0. Conversely, if g(b) = 0, then (b, 0) ∈ kerg =
Imf . So, b ∈ [f(A)].

Suppose that the sequence A
f−→ B

g−→ C is right split. So,
there exists g′ : C −→ B such that gg′ = 1C . We show that B =
[f(A)]⊕́g′(g(B)). Let b ∈ B. Take g(b) = c. Then,

g(g′(c)) = g(g′(g(b))) = g(b), and (g′(c), b) ∈ kerg = Imf .

So either b ∈ [f(A)] or b = g′(c) = g′(g(b)) ∈ g′(g(B)). Then, B =
[f(A)]∪g′(g(B)). Assume that b ∈ [f(A)], b′ ∈ g′(g(B)) and b ≤ b′. So,
b′ = g′g(b′′) for some b′′ ∈ B. Since g(b) = 0, 0 = g(b) ≤ g(g′g(b′′)) =
g(b′′). Then, 0 = g′(0) ≤ g′g(b′′) = b′. If b′ ≤ b, the result follows
similarly.

Sufficiency. Let B = [f(A)]⊕́T for an S-subposet T of B. First,
we show that g|T : T −→ C is an S-isomorphism. Since g is an
epimorphism, for each c ∈ C there exists b ∈ B such that g(b) = c. If
c ̸= 0, then b /∈ [f(A)] and so b ∈ T . Hence, g|T is an epimorphism.
Suppose that g(t) ≤ g(t′) for t, t′ ∈ T . So, (t, t′) ∈ Kg = If , and t ≤ t′

or t ≤ f(a′), f(a′) ≤ t′. Then, t ≤ t′ or in view of Definition 3.3,
t ≤ 0 ≤ t′. So, g|T is a regular monomorphism. Now, let

g′ = (g|T )−1 : C
(g|T )−1

−→ T
ι−→ B.

It is clear that g′ is an S-morphism. Moreover, let c ∈ C and g(t) = c
for t ∈ T , then gg′(c) = gι(g|T )−1(c) = gι(t) = g(t) = c. Therefore,
gg′ = 1C , and the sequence is right split. □
Theorem 3.5. Let A,B,C be S-posets that each contains a zero, and

A
f−→ B

g−→ C,
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be a Rees short exact sequence. Then, it is left split if and only if there
exists an S-morphism σ : B −→ A

∏
C such that Im(σf) = A

∏
{0}

and σf : A −→ A
∏
{0} exists an S-isomorphism.

Proof. Suppose that the sequence is left split. Then, by definition, there
is an S-morphism f ′ : B −→ A such that f ′f = 1A. Let σ : B −→
A
∏
C be defined by σ(b) = (f ′(b), g(b)). It is obvious that σ is an S-

morphism such that Im(σf) = A
∏
{0} and σf : A −→ A

∏
{0} is an

S-isomorphism. Conversely, suppose that there exists an S-morphism
σ : B −→ A

∏
C such that Im(σf) = A

∏
{0} and σf : A −→ A

∏
{0}

is an S-isomorphism. Let

f ′ = (σf)−1πσ : B
σ−→ A

∏
C

π−→ A
∏

{0} (σf)−1

−→ A,

where π(a, c) = (a, 0) for each a ∈ A, c ∈ C. It is clear that f ′ is an
S-morphism and f ′f = 1A, as required. □

Example 2.3 of [4] illustrates that, for S-acts a left split Rees short
exact sequence is not necessarily right split. In this example, if we
consider the order as the trivial order this statement is also valid in
the category of S-posets. In the category of S-acts, right splitness
implies left splitness. But the following example illustrates that, for
S-posets, right splitness of a Rees short exact sequence does not imply
left splitness.

Example 3.6. Let S = {0, 1, s, s2, . . .} be a free word monoid equipped
with the order 0 < 1 < s < s2 < . . .. Take K = sS = {0, s, s2, . . .}.
So, K is a right ideal of S but not convex, and [K] = S. Then

K
ιK−→ S

π−→ S/[K]

is a Rees short exact sequence. Clearly, it is right split but it is not
left split. Otherwise, there exists ρ : S −→ K such that ριK = 1K.
Then ρ(1) ̸= 0 and if ρ(1) = si for some i ≥ 1, then ρ(s) = si+1. So
ριK(s) = ρ(s) = si+1 ̸= s, a contradiction.

4. The Exactness of Hom(P,−)

In this section, we show that Hom(P,−) is an exact functor if and
only if P = eS, for some e2 = e ∈ S. So, in general, the functor
Hom(P,−) is not exact for an arbitrary projective S-poset P . Let S
and T be pomonoids, AS, PS right S-posets, and TP be also a left T -
poset. It is easily proved that Hom(TPS, AS) is a right T -poset where,
for any f ∈ Hom(TPS, AS) and t ∈ T , we have (ft)(c) = f(tc), and
f ≤ g if and only if f(c) ≤ g(c) for each c ∈ P . Let f : AS → BS

be an S-morphism. Take f ∗ := Hom(P, f) : Hom(TPS, AS) −→
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Hom(TPS, BS) by f ∗(ψ)(c) = f(ψ(c)) for every c ∈ P and ψ ∈
Hom(TPS, AS). Then, f

∗ is a T -morphism.

Lemma 4.1. The functor Hom(P,−) preserves regular monomor-
phisms.

Proof. Let AS, BS be right S-posets and f : A −→ B a regular
monomorphism. We want to show that f ∗ : Hom(P,A) −→ Hom(P,B)
is a regular monomorphism. Suppose that f ∗(α) ≤ f ∗(β) for α, β ∈
Hom(P,A). Then fα ≤ fβ, and for each c ∈ P we have f(α(c)) ≤
f(β(c)). Since f is a regular monomorphism, α(c) ≤ β(c). This means
that α ≤ β, and we are done. □

Let A be an S-poset and e ∈ S an idempotent. We define ae.es =
aese for any es ∈ eS and ae ∈ Ae. Clearly, Ae is a right eS-poset. The
following lemmas are useful to reach the main result.

Lemma 4.2. Let A, B and C be S-posets and A
f−→ B

g−→ C a Rees
short exact sequence. Then, for any idempotent e ∈ S, the sequence

Ae
ef−→ Be

eg−→ Ce is also a Rees short exact sequence as eS-posets,
where ef = f |Ae and eg = g|Be are eS-morphisms.

Proof. It is easy to prove that fe and ge are eS-morphisms. Since f is
a regular monomorphism, clearly ef is also a regular monomorphism.
Moreover, for any ce ∈ Ce, since g is an epimorphism, there exists
b ∈ B such that g(b) = ce. Then, eg(be) = (eg(b))e = ce, and hence, eg
is an epimorphism. Now, we show that Keg = Ief . Let (be, b′e) ∈ Ief

with be ≰ b′e. Since (be, b′e) ∈ If and Kg = If , we have eg(be) =
g(be) ≤ g(b′e) = eg(b′e), and hence (be, b′e) ∈ Keg. Conversely, suppose
that (be, b′e) ∈ Keg with be ≰ b′e. Since Kg = If , (be, b′e) ∈ If .
Therefore, there exist a, a′ ∈ A such that be ≤ f(a), f(a′) ≤ b′e.
This implies that be ≤ f(ae), f(a′e) ≤ b′e, and then (be, b′e) ∈ Ief .
Therefore, Keg = Ief . □

Lemma 4.3. Let B be an S-poset. Then, σB : Hom(eS,B) −→ Be
defined by σB(f) = f(e) is an eS-isomorphism.

Proof. As we mentioned earlier, Hom(eS,B) and Be are right eS-
posets. It can be easily checked that σB is an eS-morphism. Let
σB(f) ≤ σB(g) for f, g ∈ Hom(eS,B). Then, f(e) ≤ g(e), and so for
each s ∈ S, we have f(es) ≤ g(es). Hence, f ≤ g and σB is a regular
monomorphism. Moreover, for any be ∈ Be, we define f : eS −→ B
by f(es) = bes. Then, f ∈ Hom(eS,B) and σB(f) = f(e) = be. This
shows that σB is an epimorphism and the result follows. □
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Lemma 4.4. Let B be an S-poset. Then αB : Hom(
⨿

i∈I eiS,B) −→∏
i∈I Bei defined by αB(f) = (f(ei))i∈I is an order isomorphism.

Proof. Similar to the argument of the previous lemma, one can prove
that αB is a regular monomorphism. For any (biei)i∈I ∈

∏
i∈I Bei, we

have fi : eiS −→ B with σB(fi) = f(ei) = biei. Take f =
⨿

i∈I fi ∈
Hom(

⨿
i∈I eiS,B). So αB(f) = (biei)i∈I , and it is surjective. □

A functor τ : S − Posets −→ Posets is called exact if A
f−→ B

g−→
C is exact at B implies that τ(A)

τ(f)−→ τ(B)
τ(g)−→ τ(C) is exact at

τ(B). Using Lemma 2.5, an exact functor preserves epimorphisms. By
Lemma 4.1, one can show that the functorHom(P,−) preserves regular
monomorphisms. So it is deduced that the functor Hom(P,−) is exact

if we could imply that the sequence Hom(P,A)
f∗
−→ Hom(P,B)

g∗−→
Hom(P,C) is a short exact sequence for each Rees short exact sequence

A
f−→ B

g−→ C.
Now, a characterization for the functor Hom(P,−) to be exact is

given.

Theorem 4.5. Let S be a pomonoid and P be an S-poset. Then,
Hom(P,−) is an exact functor if and only if P = eS, for some idem-
potent e ∈ S.

Proof. Necessity. Suppose thatHom(P,−) is an exact functor. Then P
is projective and by Lemma 1.1, P =

⨿
i∈I eiS for some idempotent ei ∈

S. It suffices to prove that |I| = 1. LetB be an S-poset andA = S
⨿
S.

Then, we have the Rees short exact sequence A
ι−→ A

⨿
B

π−→ B
⨿

Θ,
where ι(a) = a fore each a ∈ A, and π(c) = c if c ∈ B otherwise
π(c) = θ. By Lemma 4.4, αA : Hom(

⨿
i∈I eiS,A) −→

∏
i∈I Aei is an

order isomorphism. Also, we have the following commutative diagram:

Hom(
⨿

i∈I eiS,A) Hom(
⨿

i∈I eiS,A
⨿
B) Hom(

⨿
i∈I eiS,B

⨿
Θ)

∏
i∈I Aei

∏
i∈I(Aei

⨿
Bei)

∏
i∈I(Bei

⨿
Θ)

f∗

αA

g∗

αA
⨿

B αB
⨿

Θ

ι′ g′

where ι′ is the inclusion map and g′((ciei)i∈I) = (g(ciei))i∈I . By as-
sumption, the upper row is exact at Hom(

⨿
i∈I eiS,A

⨿
B). So, by

Lemma 2.2, the lower row in the diagram is exact at
∏

i∈I(Aei
⨿
Bei).

Suppose that |I| > 1. Since |Aei| > 1 for any i ∈ I, we can take
a1ej, a2ej ∈ Aej with a1ej ̸= a2ej for some j ∈ I. Denote c1 = (xiei)i∈I
and c2 = (yiei)i∈I , where xj = a1, yj = a2, and xi = yi ∈ B if i ̸= j
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for all i ∈ I. It is obvious that (c1, c2) ∈ Kg′ but (c1, c2) /∈ Iι′ , a
contradiction.

Sufficiency. Let e be an idempotent of a pomonoid S and P = eS.

Suppose that A
f−→ B

g−→ C is a Rees short exact sequence. By

Lemma 4.3, the sequence Ae
ef−→ Be

eg−→ Ce is also a Rees short exact
sequence of eS-posets. Moreover, we have the following commutative
diagram:

Hom(P,A) Hom(P,B) Hom(P,C)

Ae Be Ce.

f∗

σA

g∗

σB σC

ef eg

By Lemma 2.2, the upper row in the diagram is exact, and so the
functor Hom(P,−) is exact. □
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مرتب جزئی S-سیستم�های رسته�ی در ریس کوتاه کامل دنباله�های

خسروی رقیه
فسا دانشگاه

معرفی مرتب جزئی S-سیستم�های رسته�ی در ریس کوتاه کامل دنباله�های مفهوم مقاله این در
می�کنیم. بررسی باشند چپ تجزیه یا راست تجزیه دنباله�ها این آن تحت که نیز شرایطی است. شده
چپ تجزیه دنباله�ها بودن راست تجزیه مرتب جزئی S-سیستم�های برای S-سیستم�ها، رسته�ی برخلاف
تابعگر بودن کامل با معادل شرایط P راست مرتب جزئی S-سیستم یک برای بعلاوه نمی�دهد. نتیجه را

می�دهیم. ارائه Hom(P,−)

. ریس کوتاه کامل دنباله مرتب، جزئی S-سیستم مرتب، جزئی کلیدی:تکواره کلمات

۴
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