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THE ZERO-DIVISOR GRAPH OF A MODULE
A. R. NAGHIPOUR

ABSTRACT. Let R be a commutative ring with identity and M an
R-module. In this paper, we associate a graph to M, say I'(rM),
such that when M = R, T'(gM) coincide with the zero-divisor
graph of R. Many well-known results by D. F. Anderson and P.
S. Livingston, have been generalized for I'(zgM). We will show
that I'(g M) is connected with diam(I'(rM)) < 3, and if I'(r M)
contains a cycle, then gr(I'(rkM)) < 4. We will also show that
I'(rM) = 0 if and only if M is a prime module. Among other
results, it is shown that for a reduced module M satisfying DCC
on cyclic submodules, gr (I'(rM)) = oo if and only if T'(rM) is
a star graph. Finally, we study the zero-divisor graph of free R-
modules.

1. INTRODUCTION

Throughout the paper, R is a commutative ring with identity and
rM is a unitary R-module. Let Z(R) be the set of zero-divisors of
R. Associating graphs to algebraic structures has become an exciting
research topic in the last twenty years. There are many papers on

assigning a graph to a ring; see for instance, [2, 3, 6, 9, 10, 18]. Most of
the work has focused on the zero-divisor graph. The concept of a zero-
divisor graph of a ring R was first introduced by Beck in [7], where

he was mainly interested in coloring. This investigation of colorings
of a commutative ring was then continued by Anderson and Naseer
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in [5]. In [3], Anderson and Livingston associate a graph, I'(R), with
vertices Z*(R) := Z(R) \ {0}, the set of non-zero zero-divisors of R,
and for distinct z,y € Z*(R), the vertices x and y are adjacent if and
only if zy = 0. The zero-divisor graphs of commutative rings have
been extensively studied by many authors, and become a major field
of research; see for instance, [I1, 22] and two survey papers [I, 13].
In [22], Redmond extended the zero-divisor graph of a commutative
ring to an ideal-based zero-divisor graph of a commutative ring. This
notion of zero-divisor graph was also studied in [19, 21, 25]. The graph
of zero-divisors for commutative rings has been generalized to modules
over commutative rings; see for instance, [, 10,

In this paper, we introduce a new (and natural) deﬁnltlon of the zero-
divisor graph for modules. As any suitable generalization, many of well
known results about zero-divisor graph of rings have been generalized
to modules.

The concept of a zero-divisor elements of a ring, has been generalized
to a module (see for example [21], or any other book in commutative
algebra):

Zdv(gM) = {r € R|rx = 0 for some non-zerox € M}.

Let N and K be two submodules of an R-module M. Then, (N :
K):={r € Rl[rK C N} is an ideal of R. The ideal (0 : M) is called
the annihilator of M and is denoted by Ann(M); for x € M, we may
write Ann(z) for the ideal Ann(Rz). We give a new generalization of
the concept of zero-divisor elements in rings to modules:

Definition 1.1. Let M be an R-module. The set of the zero-divisors
of M is:

Z(gM) :=={z € M|xe Ann(y)M ory € Ann(z)M for some0 # y € M }.

We note that when M = R, this concept coincides with the set of
zero-divisor elements of R.

Definition 1.2. Let M be an R-module. We define an undirected
graph I'(gk M) with vertices Z*(gM) := Z(gM)\ {0}, where x—y is an
edge between distinct vertices z and y if and only if € Ann(y)M or
y € Ann(z)M.

We note that, the graph I'(rM) is exactly a generalization of the
zero-divisor graph of R (i.e., I'(zkR) = I'(R)). As usual, Z and Z,
will denote the integers and integers modulo n, respectively. The zero-
divisor graphs of some Z-modules are presented in figurel.

Let G be a graph with the vertex set V' (G). For two distinct vertices
x and y of V(G) the notation z—y means that x and y are adjacent.
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F1GURE 1. The zero-divisor graphs of some Z-modules.

For x € V(G), we denote by Ng(z) the set of all vertices of G' adjacent
to x. Also, the size of Ng(x) is denoted by deg.,(z) and it is called
the degree of x. A walk of length n in a graph G between two vertices
x,y is an ordered list of vertices x = ¢, x1, ..., x, = y such that x;_; is
adjacent to x;, for « = 1,...,n. We denote this walk by

To—X1— " —Tp.

If the vertices in a walk are all distinct, it defines a path in G. A cycle
is a path zop—---—ux, with an extra edge xo—=x,. The girth of G,
denoted by gr(G), is the length of a shortest cycle in G (gr(G) = oo,
if G has no cycle). A graph G is called connected if for any vertices x
and y of G there exists a path between z and y. For z,y € V(G), the
distance between = and y, denoted by d(z,y), is the length of a shortest
path between = and y. The greatest distance between any two vertices
in G, is the diameter of G, denoted by diam(G).

A graph G is called bipartite if V(G) admits a partition into two
classes such that vertices in the same partition class must not be adja-
cent. A simple bipartite graph in which every two vertices from differ-
ent partition classes are adjacent, is called a complete bipartite graph.
Let K™ denote the complete bipartite graph on two nonempty dis-
joint sets V1 and V4 with |[V;| = m and |V3| = n (we allow m and n to
be infinite cardinals). A K" graph will often be called a star graph.
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The motivation of this paper is the study of interplay between the
graph-theoretic properties of I'(g M) and the module-theoretic proper-
ties of g M. The organization of the paper is as follows: In Section 2 of
this paper, we give some basic properties of I'(zgM). In Section 3, we
determine when the graph I'(g M) is bipartite. In Section 4, we study
['(grF), where F is a free R-module. Finally, in Section 5, we study
I'(gM), where M is a multiplication R-module.

We follow standard notations and terminologies from graph theory
[12] and module theory [15].

2. BAsic PROPERTIES OF I'(rM)

We begin with the following evident proposition.

Proposition 2.1. Let M be an R-module and I be an ideal of R. Then
(1) T(rM) = T'(r/ Amn(ary M),
(2) D(r(R/1)) = T(R/T).

Let I be an arbitrary index set, and let {M;|i € I} be a family of
R-modules. The direct product [[,., M; = {(x;)/|lz; € M;} is an R-
module. We also note that a direct product of rings is a ring endowed
with componentwise operations. We are going to explain the relation-
ship between the zero-divisor graph of [[,.; R/m; as R-module and as
ring.

i€l

Theorem 2.2. Let {my;|i € I} be a family of mazimal ideals of R and
rM = 1],c; R/m;. Then
(1) T'(gM) is a subgraph of I'(][,c; R/my),
(2) [(rM) = TI([Lic; R/my) if and only if the m;’s are distinct
ideals.

Proof. (1): Let (z;); and (y;); be two adjacent vertices of I'(gM).
Without loss of generality, we may assume that (z;); € Ann(y;); M.
Then, z; € NjerAnn(y;)M C Ann(y;)M, for all i € I. It then follows
that x;5; = 0 and hence (x;);(y;)r = 0. So, (x;)r and (y;); are two
adjacent vertices of I'(] [,.; R/m;).

(2)=-: Suppose m, = my, for some distinct elements r,s € I. Let
x, = 1 and z; := 0 for all 4+ # r and let y;, := 1 and y; := 0 for
all i # s. Then, (x;);(y;)r = 0, and hence (z;);—(y;); is an edge in
I'(T[;e; R/m;). But (z;); and (y;); are not adjacent in I'(zM), since
(x;); & Ann(y;) ;M and (y;); & Ann(x;) M.
<: Let (z;)r and (y;); be two adjacent vertices of I'(] ]
have

l%/ny). We

i€l

Ann(z;)) M = ﬂAnn(xi)M = H Ni,

1€] el
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where N; = 0 if x; # 0 and N; = M; if x; = 0. Since (x;);(y;)r = 0,
the assumption y; # 0 implies that x; = 0 and hence (y;); € [[,c; Ni-
It then follows that (x;); and (y;); are two adjacent vertices of I'(zp M ).
Hence, the assertion follows from Part (1). O

It is well-known that a ring R is a domain if and only if the zero-
divisor graph I'(R) is empty. The following proposition is a natural
generalization of this fact. We recall that an R-module M # 0 is called
a prime module if its zero submodule is prime, i.e., rx = 0 for x € M,
r € R implies that x = 0 or rM = (0) (see [11] and [20]).

Proposition 2.3. Let M be an R-module. Then the following are
equivalent:

(1) D(rM) = 0 i.c., Z(M) = {0},

(2) Zdv(M) = Ann(M),

(3) M is a prime R-module.

Proof. (1)=(3) Suppose that T'(zkM) = 0. If M is not a prime module,
then there exist » € R\ Ann(M) and non-zero element x € M such
that 7z = 0. Since r ¢ Ann(M), there exists a non-zero element y € M
such that ry # 0. It follows that ry—z is an edge of I'(x M) and hence
['(rM) # (), which is a contradiction.

(3)=(1) Suppose that M is a prime R-module. If T'(zM) # 0,
then there exist z,y € Z*(gM) such that € Ann(y)M. Therefore,
there exist r1,...,7, € Ann(y) and zy,...,2, € M such that x =
ri1z1+ -+ rpzp. Since, r;y = 0 for all 1 < ¢ < n and M is prime, we
have r;M = 0 for all 1 < ¢ < n. This implies that x = 0, which is a
contradiction.

(2)<(3) Follows easily from the definition of prime modules. O

Corollary 2.4. Let R be a ring. Then R is a field if and only if
['(gM) =0 for every R-module M.

Proof. If R is field, then proposition 2.3 implies that I'(zg M) = 0. Now,
suppose that I'(gx M) = (), for every R-module M. Let m be a non-zero
maximal ideal of R and 0 # = € m. Set M := R/m x R. Then,
(0,z) € Ann(1 + m,0)M. Therefore, (0,x) is adjacent to (1 + m,0).
Thus, I'(gkM) # (0, which is a contradiction. Therefore, m = 0 and
hence R is a field. 0]

A semisimple module M is said to be homogeneous if M is a direct
sum of pairwise isomorphic simple submodules.

Corollary 2.5. Let M be a homogeneous semisimple R-module. Then,
L(rgM) = 0.
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Proof. Since Ann(M) is a maximal ideal of R, M is vector space over
R/Ann(M). Hence, the assertion follows easily from Proposition 2.3.
U

We are now in a good position to bring a generalization of [3, The-
orem 2.2].

Theorem 2.6. Let M be an R-module. Then, I'(rkM) is finite if and
only if either M 1is finite or a prime module. In particular, if 1 <
IT(rM)| < 0o, then M is finite and is not a prime module.

Proof. (=): Suppose that ['(xg M) is finite and nonempty. Then, there
are non-zero elements z,y € M such that + € Ann(y)M. Therefore,
there exist r1,...,r, € Ann(y) and z1,...,2, € M such that z =
r1z1 + - + rpzy. Since x # 0, we have r;2; # 0 for some 1 < i < n.
Let L = ;M. Then L C Z(gM) is finite. If M is infinite, then there
exists xyp € L such that A := {m € M|r;m = z¢} is infinite. If mg is a
fixed element of A, then N := {my—m|m € A,m # my} is an infinite
subset of A. For any element my —m € N, we have r;(mo —m) = 0.
Thus zo—(mg —m) is an edge in I'(xp M) and hence I'(x M) is infinite,
a contradiction. Thus M must be finite.

(«<): If M is finite, there is nothing to prove, also if M is prime, then
the assertion follows from Proposition 2.3. O

Corollary 2.7. Let M be an R-module such that T'(rkM) # 0. If every
vertex of I'(rM) has finite degree, then M is a finite module.

Proof. The assertion follows from the proof of the theorem 2.6. OJ

The following lemma has a key role in the proof of our main results
in the sequel.

Lemma 2.8. Let M be an R-module, v,y € M and r € R. If z—vy
is an edge in T'(rM), then either ry € {0,x} or x—ry is an edge in
['(rM).

Proof. Let x and y be two adjacent vertices of I'(zgM) and let ry &
{0,z}. If x € Ann(y)M, then x € Ann(ry)M, and hence, x and ry are
adjacent. If y € Ann(x)M, then ry € Ann(x)M, and hence, z and ry
are adjacent. This completes the proof. O

The next result is a generalization of [3, Theorem 2.3].

Theorem 2.9. Let M be an R-module. Then I'(gM) is connected with
diam(I'(rM)) < 3.

Proof. Let x and y be distinct vertices of I'(g M). If either x € Ann(y)M
ory € Ann(x)M, then d(x,y) = 1. So, suppose that d(x,y) # 1. There
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exists a vertex @’ of I'(g M) such that x € Ann(2’)M or 2’ € Ann(z)M.
We consider the following two cases:

Case 1: There exists a vertex y’ of I'(gM) such that y € Ann(y')M.
Then, there exist ry,...,r, € Ann(y’) and 2q,...,2, € M such that
Yy =121+ -+ rpz,. If 2’ = 0 for all 4, then x—a’—y is a path
of length 2. If rz’ # 0 for some 1 < i < n, then by Lemma 2.8,
r—r;x'—y'—y is a walk, and hence d( y) <

Case 2: There exists a vertex 3’ of F(RM) Such that ¢ € Ann(y)M.
Then, there exist ry,...,r, € Ann(y) and z1,...,z, € M such that
Yy =riz1+ -+ 1z, I e =0 for all 4, then x—1y'—vy is a path of
length 2. If ;2 £ 0 for some 1 < i < n, then z—a'—r;x—y is a walk,

and hence d(z,y) < 3. O
Theorem 2.10. Let M be an R-module. If T'(rM) contains a cycle,
then

gr(I'(rM)) < 4.

Proof. Let xg—x1—x9— -+ —x,—xo be a cycle in T'(xkM). If n < 4,
we are done. So, suppose that n > 5. We consider the following two
cases:

Case 1: z,_1 € Ann(z,)M. Then, there exist ry,...,7, € Ann(z,)
and 21,...,2, € M such that z,_1 =riz1 4+ -+ rnzm. If r;z; =0 for
all 1 <17 <n, then x1—=x,_; is an edge, and hence x1—z,_1—x,—xg
—uxy is a cycle of length 4. Suppose that r;xy # 0 for some 1 < i < m.
If rjzy = xp, then xg—x5 is an edge and hence rg—x;—xo—x is a
cycle of length 3. If r;xy = x,, then z9—ux, is an edge and hence
To—X1—To—T,—Ts is a cycle of length 4. So, suppose that r;z; &
{zo,x,}. Then xo—r;z1—x,—1x0 is a cycle of length 3.

Case 2: z,, € Ann(x,_1)M. Then, there exist ry,...,7, € Ann(z,)
and zq,...,2, € M such that x,, = r1z1+---+rpz,. Ilf r;zy =0 for all
1 <14 <'m, then x1—ux, is an edge and hence x,, —xro—2x1—x, is a cycle
of length 3. Suppose that r;x; # 0 for some 1 < i < m. If r;z; = x,
then xqg—ux5 is an edge and hence zg—x;—xy—x( is a cycle of length 3.
If ryzy = x,_q, then xg—x,_1 is an edge and hence xo—x,—x,_1—x
is a cycle of length 3. So, suppose that rx; & {xg,2,-1}. Then,
To—TiT1—Tp_1—Typ—To is a cycle of length 4. O

In the following theorem, we answer to the question that “when does
['(rM) contain a cycle?”.

Theorem 2.11. Let M be an R-module. IfT'(rM) has a path of length
four, then T'(rM) has a cycle.

Proof. Let x1—x9—x3—x4—x5 be a path of length four. We consider
the following two cases:
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Case 1: x; € Ann(zy)M. Then, there exist r,...,7, € Ann(xs) and
Y1, .. Yn € M such that 1 = riy1 + -+ + ry,. If ;24 = 0 for all
1 <4 < n, then z; and x4 are adjacent and hence x1—xo—r3—r4—12
is a cycle. Now, let z := r;x4 # 0 for some 1 < i < n. Then, we have
the following subcases:
Subcase 1.1: z = x;. Then, x1—x9y—r3—2r4—1x5—121 is a cycle.
Subcase 1.2: z = x9. Then, xo—x3—x4—2x5—x5 is a cycle.
Subcase 1.3: z = x3. Then, xr3—xs—x5—2x3 is a cycle.
Subcase 1.4: z = x4. Then, xo—x3—x4—2 is a cycle.
Subcase 1.5: z = x5. Then, xo—x3—x4—2> is a cycle.
Subcase 1.6: z & {x1, 29, x3, x4, 25} Then, xo—r3—r4—2r5—2—129 i
a cycle.
Case 2: x5 € Ann(zy)M. So there exist r1,...,7, € Ann(z;) and
Y1,---,Yn € M and such that xo = ry; + - +r,y,. If r;zy =0 for all
1 <1 < n, then x5 and x4 are adjacent and hence ro—x3—xs—x9 is
a cycle. Now, let z := r;x4 # 0 for some 1 < ¢ < n. Then, we have the
following subcases:
Subcase 2.1: z = x;. Then, x1—xy—x3—x; is a cycle.
Subcase 2.2: z = xy. Then, ro—x3—x4—x5—129 is a cycle.
Subcase 2.3: z = x3. Then, r3—xs—x5—x3 is a cycle.
Subcase 2.4: z = x4. Then, r1—x9—x3—x4—1x1 is a cycle.
Subcase 2.5: z = x5. Then, r1—xs—x3—2x4—r5—17 is a cycle.
Subcase 2.6: z & {x1,T9,x3, 24,25} Then, x3—xy—r5—2—213 IS a
cycle.

So, the proof is complete. O

3. BIPARTITE GRAPHS

In [17], the authors showed that a zero-divisor semigroup graph is
bipartite if and only if it contains no triangles. The following theorem
is an analogous of this result.

Theorem 3.1. Let M be an R-module. Then I'(rM) is bipartite if
and only if it contains no triangles.

Proof. = Follows immediately from the fact that any bipartite graph
contains no cycles of odd length.

<: We will show that for every cycle of odd length 2n+1 > 5, there
exists a cycle with length 2m + 1 such that m < n. Suppose that n > 2
and x1—xy— -+ —T9, 1 —x1 is a cycle with odd length 2n + 1. Since
x1 is adjacent to xy, we have the following two cases:
Case 1: z; € Ann(xg)M. So, there exist rq,...,r, € Ann(zy) and
Y1, .-, Y € M such that 1 = riy;+---+ry. friey =0foralll <4 <
t, then x; is adjacent to x4 and hence vy —zy—x5— - - - —2op11—x is



THE ZERO-DIVISOR GRAPH OF A MODULE 163

a cycle with odd length 2n — 1. Now, suppose that r;x4 # 0 for some
1 <j<t. Letz:=r;xy. We consider the following three subcases:
Subcase 1.1: z = x9. Then z;—z—x5— -+ —9,,1—x1 is a cycle
with odd length 2n — 1.
Subcase 1.2: z = x3. Then x3—xy—x5—x3 is a triangle.
Subcase 1.3: z & {x9,23}. Then x3—z—xs—ux3 is a triangle.
Case 2: x5 € Ann(z1)M. So, there exist r,...,r € Ann(z;) and
Yi,..-,Y € M such that zo = riy; + -+ + rye. If ryxy = 0 for all
1 < i < t, then x5 is adjacent to x4 and hence we have a triangle.
Now suppose that r;jzs # 0 for some 1 < j <t. Let 2z := rjzy. Then,
X1—2—T5— -+ —To,r1—T1 18 & cycle with odd length 2n — 1.

So, by induction on n, I'(gk M) contains a triangle. O

We recall that an R-module M is called reduced if whenever r?xz = 0
(where r € R and x € M), then rx = 0. A submodule N of an
R-module M is called essential (or large) in M if, for every non-zero
submodule K of M, we have N N K # 0.

Theorem 3.2. Let M be a reduced R-module satisfying DCC on cyclic
submodules and let I'(rM) be a bipartite graph with parts Vi and V5.
Let Vi = Vi U{0} and Vy = Vo U{0}. Then

(1) V1 and V4 are submodules of M,

(2) V1@V, is an essential submodule of M.

Proof. (1): We will show that V is a submodules of M. Let ,y € V.
First we show that © —y € V. If + = y, we are done. Now, let
x #y. If z or y is equal to zero, then z — y € V1. So, we may assume
that neither x nor y is zero. There exist 2/, € V, such that z,y are
adjacent to z’, 1/, respectively. We consider the following two cases:
Case 1: 2/ € Ann(z)M and 3 € Ann(y) M. Without loss of generality,
we may assume that ' = rz; and ¥y = sy;, where r € Ann(z), s €
Ann(y) and zq,y; € M. Let z := srxz;. We claim that z # 0. If 2z =0,
then 2’ and 3 are adjacent and hence 2’ = ¢/, since 2/,y’ € V5. It
then follows that s%y; = sraz; = 0 and hence 3y = sy; = 0, which is a
contradiction. So, z # 0. Since z € Ann(z)M N Ann(y)M, we must
have z € V3. If 2z =  — y, then r%s?z; = rsz — rsy = 0. Since M is
reduced, we have z = 0, a contradiction. So z # x — y. On the other
hand, z € Ann(z — y)M, and hence z —y € V.

Case 2: z € Ann(2')M and y' € Ann(y)M. Then there exist are
T1,...,T € Ann(2’) and xy, ..., x, € M such that x = riz1+---+r,2,
and again without loss of generality, we may assume that 3y’ = sy,
for some s € Ann(y) and y; € M. Let zg := sx. If zp = 0, then
0 # ¢y € Ann(z — y)M and hence x —y € V. Now, let z # 0.



164 NAGHIPOUR

Consider the following ascending chain of cyclic submodules:
Rzy D Rrizg D Rrizg D

Suppose that Rzy = Rrizg. Then, there exists a € R such that zg =
arizg. Since M is reduced, zy # y and hence zy—vy is an edge in V7,
which is a contradiction. Let n; > 1 be the smallest integer number
such that Rri"zy = Rr]*™'z,. There exists a; € R such that 7]z =
a2, Set 2y = (P — ayr)z. Then, 2z, # 0 and we have the
following ascending chain of cyclic submodules:

Rz D Rriz O Rr%zl D

Let ny > 1 be the smallest integer number such that Rry?z; = RT”QH

There exists as € R such that ry?z; = a2r§2+ z1. Set z9 = (7“;‘2 -

asry?) 2. By continuing this process, we have z, = (r"»~1 —q,rm )zn,l.
We have z, # 0 and
z, € (Ann(rizy)N---NAnn(rp,z,) N Ann(y)) M
C (Ann(riz; +. fr’nxn) N (Ann(y))M
C (Ann(z)NAnn(y))M
C Amn(z —y)M.

It follows that z, € V5 and hence x —y € V.

Case 3: 2/ € Ann(z)M and y € Ann(y')M. The proof of this case is
similar to that of Case 2.

Case 4: x € Ann(z')M and y € Ann(y')M. Then there exist ry,...,r,
€ Ann(2') and xy,...,2z, € M such that x = rizqy + -+ + rpz,. Let
2o := 9. Consider the following ascending chain of cyclic submodules:

Rzy 2 Rrizy 2 Rr%zo D)

Suppose that Rzy = Rrizg. Then, there exists a € R such that zg =
aryzg. Since M is reduced, zg # ¢’ and hence zp—y' is an edge in V5,
which is a contradiction. Let n; > 1 be the smallest integer number
such that Rr"zy = Rri*™ 2,. There exists a; € R such that 7]z, =
a2y, Set 2 = (rit™ ! alr’fl)zo. We have z; # 0 and the following

ascending chain of cyclic submodules:
Rz D Rriz; D Rriz; D

Let ny > 1 be the smallest integer number such that Rry?z; = Rr"2+1

There exists as € R such that r3?z; = CL27’32+121. Set zg = (7’5‘2 L
as75?) 2. By continuing this process we have z, = (r"™~1 —a,r™)z, ;.
We have x € Ann(z,)M, r; € Ann(z,), for all 1 <i < n. We also have
y € Ann(y' )M C Ann(z,)M. Therefore, z, € V. If z, # = — y, then
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r—y € Vi, since r—y € Ann(z,)M. If z, = x—y, then x € Ann(x —1y)
and y € Ann(x — y). It follows that z —y € V.

Now, let r € R and x € V; such that rx # 0. We show that rz € V;.

There exists y € V5 such x is adjacent to y. We have the following two
cases:
Case 1: y € Ann(x)M. Without loss of generality, we may assume
that y = ryz1, for some r; € Ann(z) and z; € M. If rz = ryz;, then
r?z1 = rriz = 0 and hence rz = 0, which is a contradiction. So,
rax # rizy. Since rx is adjacent to r12z; and r1z; € Vo, we have rx € ;.
Case 2: z € Ann(z)M. Then there exist r,...,7r, € Ann(z) and
21y...,2n € M such that v = riz; + -+ + r,2,. We may assume
rizi #0forall 1 <i<n. Let 1 <7 <n. We claim that r;z; € V;. If
riz; = 1y, then rfzi = 0, and hence r;z; = 0, a contradiction. Since r;z;
is adjacent to y, we must have r;z; € V4. So, £ = 1214 - - +7Tnzn € V1.
It then follows that V; is a submodule of M and a similar argument
shows that V5 is a submodule of M.

(2): Let z € M\ (V, ®Vy). Since I'(xkM) is bipartite, there exist
To, Yo € V1 UV such that zy € Ann(yo)M. So, there exist r1,...,7, €
Ann(yo) and xy,...,x, € M such that xog =z, + -+ + r,2,. There
exists 1 <1 < nsuch that r;x; # 0. Since M is reduced, the assumption
r;x = 0 implies that z € V; U V5, which is a contradiction. So, r;x # 0.
Consider the following ascending chain of cyclic submodules:

RJSQRTZ-QJQRTZZ:BQ---.

Suppose that Rx = Rr;x. Then, x € V; U V5, which is a contradiction.
Let n > 1 be the smallest integer number such that Rrfz = Rria.
There exists a € R such that 1Pz = ar]*'z. Set 2 = (r?™' — ar?)a.
We have 0 # z € (V, UV;) and so V| @ V, is an essential submodule
of M. O]

Theorem 3.3. Let M be a reduced R-module satisfying DCC on cyclic
submodules. If T'(rM) is a bipartite graph, then it is a complete bipar-
tite graph.

Proof. Let I'(g M) be a bipartite graph with parts V; and V5. Let x € V)
and y € V5. We will show that x and y are adjacent. We consider the
following three cases:

Case 1: Ann(z) € Ann(y). Let r € Ann(x) such that r ¢ Ann(y). If
Ry = Rry, then y = ray for some a € R and hence x is adjacent to y.
Now, suppose that Ry # Rry. Consider the following ascending chain
of cyclic submodules:

RyDRryD RrPy D ---.
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Let n > 1 be the smallest integer number such that Rr"y = Rr"tly.
There exists b € R such that r"y = br"™'y. Set z = (r"~! — br")y. By
the definition of n, we have 0 # z € V5. Now, we consider the following
two subcases:

Subcase 1.1: z = ry. Then, r?y = 0 and hence z = 0, which is a
contradiction.

Subcase 1.2: z # ry. Then, z and ry are adjacent vertices of V5, which
is again a contradiction.

Case 2: Anny € Ann(z). The proof of this case is similar to that of
Case 1.

Case 3: Ann(z) = Ann(y). There exists o € V5 such that « is adjacent
to z. Since «,y € Vs, the assumption o € Ann(z)M = Ann(y)M,
implies that a = y. Hence, x and y are adjacent. Now, suppose that
xr € Ann(a)M. Then, there exist r1,...,r, € Ann(«a) and z1,...,x, €
M such that * = riz; +--- +rpx,. If ryy = 0 for all 1 < i < n,
then z and y are adjacent, and we are done. Now, suppose that there
exists 1 < i < n such that r;y # 0. Since M is reduced, r;y and « are
adjacent vertices in V5, which is a contradiction. This completes the
proof. O

If M = R =73 X Zy, then I'(gM) is bipartite which is not complete
bipartite. So, the reduced condition in Theorem 3.3 is essential. We
have not found any example of a module M to show that the DCC con-
dition in Theorem 3.3 is essential, which motivates to ask the following
question.

Question 3.4. Let M be a reduced R-module such that I'(zkM) is a
bipartite graph. Is I'(g M) a complete bipartite graph?

In [1, Theorem 2.2], it has been proved that for a reduced commu-
tative ring R, gr(R) = 4 if and only if I'(R) = K™" with m,n > 2. In
the following corollary, we prove an analogous result for I'(g M).

Corollary 3.5. Let M be a reduced R-module satisfying DCC on cyclic
submodules. Then, gr(I'(rRM)) = 4 if and only if T'(gM) = K™™ with
m,n > 2.

Proof. Let gr(I'(kM)) = 4. By Theorem 3.1, I'( M) has no cycle of
odd length, and hence it is a bipartite graph. Now, by Theorem 3.3,
we observe that I'(gM) is a complete bipartite graph. Since I'(x M)
has a cycle of length four, we have I'(x M) = K™" with m,n > 2. The
converse is trivial. 0

In [4, Theorem 2.4], it has been proved that for a reduced com-
mutative ring R, I'(R) is nonempty with gr(R) = oo if and only if
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['(R) = Kb for some n > 1. In the following corollary, we prove an
analogous result for I'(g M).

Corollary 3.6. Let M be a reduced R-module satisfying DCC on cyclic
submodules. Then, gr(I'(rkM)) = oo if and only if T'(rM) is a star
graph.

Proof. Let gr(I'(rRM)) = oo. Then, I'(g M) has no cycle and hence it
is a bipartite graph. By Theorem 3.3, I'(zgM) is a complete bipartite
graph. Let I'(gM) = K™", where m,n > 1. Since I'(zg M) has no
cycle, then either m = 1 or n = 1, which implies that I'(g M) is a star
graph. The converse is trivial. 0

4. ZERO-DIVISOR GRAPHS OF FREE MODULES

We recall that an R-module F' is called free if it is isomorphic to a
direct sum of copies of R. We write R for the direct sum D, R,
where each R; is a copy of R, and [ is an arbitrary indexing set. If [ is
a finite set with n elements, then the direct sum and the direct product
coincide; in this case, we write R" for R = R x --- x R (n times).

We begin this section with the following useful and evident proposi-
tion.

Proposition 4.1. Let gk = RY) be a free R-module and (z;)1, (y;); €
Z*(rF). Then
(1) Z(rF) = {(zs); € F|30# y € R such that yx; =0 for all i €
I},
(2) (xi)1—(yi)1 is an edge in I'(gF) if and only if z;y; = 0 for all
ijel.
Theorem 4.2. Let F = RY be a free R-module. Then, T'(gF) is
complete if and only if F = R =7y X Zy or (Z(R))* = 0.

Proof. f F = R =7y X Zy or (Z(R))?> = 0, then it is easy to see that
['(rF) is complete.

Conversely, suppose that ['(gF') is complete. Let ig € I and x,y be
two distinct elements of Z*(R). Let z; = y; = 0 for alli € I\{io}, x;, =
xz and y;, = y. Then, (z;)r, (y;)r € Z*(rF) and hence xy = 0. Thus,
['(R) is complete. Then, [3, Theorem 2.8] implies that R = Zg X Zg or
(Z(R))> = 0. We show that |I| = 1, if R = Zy x Z,. Suppose on the
contrary that |I| > 2. Let i1,is be two distinct elements of 1. Put

(1,0) if i = i1,
€T; = (1, O) if i = ig,
(0,0) otherwise,
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and
'_{ (1,0) if i =1y,

"7 1 (0,0) otherwise.

Then, x := (z;)1,y := (y;)1 € Z*(rF') and z and y are not adjacent in
['(rF), a contradiction. This completes the proof. O

Let F = RY). In the following three theorems, we study the rela-
tionship between the properties of I'(gF') and I'(R).

Theorem 4.3. Let F = R" be a finitely generated free R-module. Let
a € Z*(R), t = degppya, A= {(z1,...,2,) € Z*(rF)|x; = 0 or 1; =
a} and x € A. Then,

degF(RF)(:E) o { (t+2)" —2 otherwise.

Proof. Let t = degppy(a) and Npg)(a) = {a1,...,a}. If a® # 0, then
NF(RF)(x> = {(xb s 71'71)‘1'1 S {07 ag, ... 7at}} \ {0}

Therefore, degp(, () = |Nr(,r)(7)] = (t+1)" — 1. Now, suppose that
a? = 0. Then,

Nriary (@) = {(z1,. .., 20) |2 € {0,a,a1,...,a:}} \ {0, 2}
Hence, degp(,m(2) = [Nr(r) (@) = (t +2)" — 2. -

Theorem 4.4. Let F = RY) such that |I| > 2. Then

| gr(T'(R)) if R is reduced,
gr(l(rF)) = { 3 otherwise.

Proof. First suppose that R is not reduced. Then, there exists 0 # a €
R such that a® = 0. Let 41,y be two distinct elements of 1. Put

o= a lflzll, L a lf’L:ZQ,
‘"1 0 otherwise, Yi"=1 0 otherwise.

and z; := a for all ¢ € I. Then (z;);—(y;)1—(z:)1—(x;); is a cycle of
length three and hence gr(I'(gF')) = 3. Now, suppose that R is reduced.
Let a;—as— -+ —a;—aq be a cycle in I'(R). Let j € {1,2,...,t} and

10 € 1. Put
i a; if 1 = ig,
i1 0 otherwise.
Then, (z});—(x?);— -+ —(xt);—(x}); is a cycle in T'(xF') and hence,

gr(l'(R)) < gr(I'(rF)). Now, let

(ffg)l—(fﬁ)l— T —(175)1—(1’%)17
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be a cycle in I'(F). For all j € {1,2,...,t}, there exists i; € I such
that xfj # 0. Then, z} —a? —---—al —a is a cycle in I'(R) and
hence, gr(I'(gF')) < gr(I'(R)). This completes the proof. O]

A cligue in a graph G is a subset of pairwise adjacent vertices. The
supremum of the size of cliques in G, denoted by w(G), is called the
cliqgue number of G.

Theorem 4.5. Let F' = R" be a finitely generated free R-module. Then
w('(rF)) = w(I'(R)).

Proof. Let {(x})1, (})1,..., (#});} be a clique in T'(zF). For each 1 <
j < t, there exists 4; € I such that ] # 0. Then, {z; ,2},...,2}}isa
clique in I'(R) and hence w(I'(rF)) < w(I'(R)). Now, let {1, z9, ..., 2}
be a clique in I'(R). Let 1 < j <t and ig € I. Put

.’Ifj L T if 1= io,

¢ 1 0 otherwise.

Then, {(z})7, ()1, ..., (z});} isaclique in T'(xF) and hence w(T'(R)) <
w(I'(gF)). This completes the proof. O

The next theorem shows that the structure of a finitely generated
free R-module F' can be determined by I'(F"). We denote the maximum
degree of vertices of a graph G by A(G).

Theorem 4.6. Let M and N be two finitely generated free R-module.
IfT'(gM) =2 T'(gN), then M = N as R-modules.

Proof. Let M = R™ and N = R", for some natural numbers m,n.
Suppose that m > n. Let © = (x1,29,...,x,) be a vertex of I'(gN)
such that degr, ) (z) = A(I'(gN)). Since x € Z*(I'(N)), there ex-
ists 0 # a € R such that ar; = ary = -+ = azr, = 0. Let y =
(x1,2Z2,...,2,,0,...,0) € M. Then, the set

{(yl, e Yns 21y Zmen) € RM (Y1, -, Yn) € Noeny (), 2 € {0, a}} ,
is a subset of Np(,n)(y). It then follows that A(I'(rM)) > degr,ar)(y)

> degp(,n(z) = A(['(rN)), a contradiction. So, m < n. A similar
argument shows that n < m. This completes the proof. 0

5. FURTHER NOTES

In this short section, we study I'(gM), where M is a multiplication
R-module. We recall that an R-module M is called a multiplication
module if for each submodule N of M, there exists an ideal I of R
such that N = IM. Let N = IM and K = JM, for some ideals
I and J of R. The product of N and K, is denoted by N % K, and
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defined by IJM. It is easy to see that the product of N and K, is
independent of presentations of N and K. In [16], Lee and Varmazyar
have given a generalization of the concept of zero-divisor graph of rings
to multiplication modules. For a multiplication R-module M, they
defined an undirected graph I',(gM), with vertices {0 # = € M|Rz
Ry = 0 for some non-zero y € M}, where distinct vertices x and y
are adjacent if and only if Rz x Ry = 0.

The following theorem shows that, in multiplication modules, this
generalization and the one given in this paper are the same.

Theorem 5.1. Let M be a multiplication R-module. Then, I'(rpM) =
I.(rM).

Proof. Let x and y be two non-zero element of M and suppose that
Rx = IM and Ry = JM, for some ideals [ and J of R. Let z—y be
an edge in [',(gkM). Since Rz * Ry = 0, we have IJM = 0 and hence
I € Ann(JM). It then follows that IM C Ann(JM)M. Therefore,
Rx C Ann(Ry)M and hence, z—y is an edge in I'(zM).

Now, suppose that z—y is an edge in I'(gM). It then follows that
Rx C Ann(Ry)M. So IM C Ann(JM)M. In view of [26, Theorem 9],
we have the following two cases:

Case 1: I C Ann(JM) + Ann(M). In this case, I C Ann(JM), since
Ann(M) C Ann(JM). It then follows that IJM = 0 and hence, x—y
is an edge in I'y,(rM).

Case 2: M = ((Ann(JM) + Ann(M)) : I)M. In this case, we have
M = (Ann(JM) : I)M and hence, IJM = [(Ann(JM) : I)I|(JM) C
Ann(JM)JM = 0. Therefore, z—y is an edge in I',(gM). This com-
pletes the proof. |
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