Journal of Algebraic Systems
Vol. 4, No. 2, (2017), pp 155-171
DOI: 10.22044/jas.2017.858

THE ZERO-DIVISOR GRAPH OF A MODULE

A. R. NAGHIPOUR

Abstract

Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, say $\Gamma\left({ }_{R} M\right)$, such that when $M=R, \Gamma\left({ }_{R} M\right)$ coincide with the zero-divisor graph of R. Many well-known results by D. F. Anderson and P. S. Livingston, have been generalized for $\Gamma\left({ }_{R} M\right)$. We will show that $\Gamma\left({ }_{R} M\right)$ is connected with $\left.\operatorname{diam}\left(\Gamma{ }_{R} M\right)\right) \leq 3$, and if $\Gamma\left({ }_{R} M\right)$ contains a cycle, then $\operatorname{gr}\left(\Gamma\left({ }_{R} M\right)\right) \leq 4$. We will also show that $\Gamma\left({ }_{R} M\right)=\emptyset$ if and only if M is a prime module. Among other results, it is shown that for a reduced module M satisfying DCC on cyclic submodules, $\operatorname{gr}\left(\Gamma\left({ }_{R} M\right)\right)=\infty$ if and only if $\Gamma\left({ }_{R} M\right)$ is a star graph. Finally, we study the zero-divisor graph of free R modules.

1. Introduction

Throughout the paper, R is a commutative ring with identity and ${ }_{R} M$ is a unitary R-module. Let $Z(R)$ be the set of zero-divisors of R. Associating graphs to algebraic structures has become an exciting research topic in the last twenty years. There are many papers on assigning a graph to a ring; see for instance, $[2,3,6,9,10,18]$. Most of the work has focused on the zero-divisor graph. The concept of a zerodivisor graph of a ring R was first introduced by Beck in [7], where he was mainly interested in coloring. This investigation of colorings of a commutative ring was then continued by Anderson and Naseer

[^0]Received: 4 December 2016, Accepted: 30 January 2017.
in [5]. In [3], Anderson and Livingston associate a graph, $\Gamma(R)$, with vertices $Z^{*}(R):=Z(R) \backslash\{0\}$, the set of non-zero zero-divisors of R, and for distinct $x, y \in Z^{*}(R)$, the vertices x and y are adjacent if and only if $x y=0$. The zero-divisor graphs of commutative rings have been extensively studied by many authors, and become a major field of research; see for instance, [11, 22] and two survey papers [1, 13]. In [22], Redmond extended the zero-divisor graph of a commutative ring to an ideal-based zero-divisor graph of a commutative ring. This notion of zero-divisor graph was also studied in [19, 21, 25]. The graph of zero-divisors for commutative rings has been generalized to modules over commutative rings; see for instance, $[8,16,23]$.

In this paper, we introduce a new (and natural) definition of the zerodivisor graph for modules. As any suitable generalization, many of well known results about zero-divisor graph of rings have been generalized to modules.

The concept of a zero-divisor elements of a ring, has been generalized to a module (see for example [24], or any other book in commutative algebra):

$$
\operatorname{Zdv}\left({ }_{R} M\right)=\{r \in R \mid r x=0 \text { for some non-zero } x \in M\} .
$$

Let N and K be two submodules of an R-module M. Then, $(N$: $K):=\{r \in R \mid r K \subseteq N\}$ is an ideal of R. The ideal $(0: M)$ is called the annihilator of M and is denoted by $\operatorname{Ann}(M)$; for $x \in M$, we may write $\operatorname{Ann}(x)$ for the ideal $\operatorname{Ann}(R x)$. We give a new generalization of the concept of zero-divisor elements in rings to modules:

Definition 1.1. Let M be an R-module. The set of the zero-divisors of M is:
$Z\left({ }_{R} M\right):=\{x \in M \mid x \in \operatorname{Ann}(y) M$ or $y \in \operatorname{Ann}(x) M$ for some $0 \neq y \in M\}$.
We note that when $M=R$, this concept coincides with the set of zero-divisor elements of R.

Definition 1.2. Let M be an R-module. We define an undirected graph $\Gamma\left({ }_{R} M\right)$ with vertices $Z^{*}\left({ }_{R} M\right):=Z\left({ }_{R} M\right) \backslash\{0\}$, where $x-y$ is an edge between distinct vertices x and y if and only if $x \in \operatorname{Ann}(y) M$ or $y \in \operatorname{Ann}(x) M$.

We note that, the graph $\Gamma\left({ }_{R} M\right)$ is exactly a generalization of the zero-divisor graph of R (i.e., $\Gamma\left({ }_{R} R\right)=\Gamma(R)$). As usual, \mathbb{Z} and \mathbb{Z}_{n} will denote the integers and integers modulo n, respectively. The zerodivisor graphs of some \mathbb{Z}-modules are presented in figure1.

Let G be a graph with the vertex set $V(G)$. For two distinct vertices x and y of $V(G)$ the notation $x-y$ means that x and y are adjacent.

Figure 1. The zero-divisor graphs of some \mathbb{Z}-modules.

For $x \in V(G)$, we denote by $N_{G}(x)$ the set of all vertices of G adjacent to x. Also, the size of $N_{G}(x)$ is denoted by $\operatorname{deg}_{G}(x)$ and it is called the degree of x. A walk of length n in a graph G between two vertices x, y is an ordered list of vertices $x=x_{0}, x_{1}, \ldots, x_{n}=y$ such that x_{i-1} is adjacent to x_{i}, for $i=1, \ldots, n$. We denote this walk by

$$
x_{0}-x_{1}-\cdots-x_{n}
$$

If the vertices in a walk are all distinct, it defines a path in G. A cycle is a path $x_{0}-\cdots-x_{n}$ with an extra edge $x_{0}-x_{n}$. The girth of G, denoted by $\operatorname{gr}(G)$, is the length of a shortest cycle in $G(\operatorname{gr}(G)=\infty$, if G has no cycle). A graph G is called connected if for any vertices x and y of G there exists a path between x and y. For $x, y \in V(G)$, the distance between x and y, denoted by $d(x, y)$, is the length of a shortest path between x and y. The greatest distance between any two vertices in G, is the diameter of G, denoted by $\operatorname{diam}(G)$.

A graph G is called bipartite if $V(G)$ admits a partition into two classes such that vertices in the same partition class must not be adjacent. A simple bipartite graph in which every two vertices from different partition classes are adjacent, is called a complete bipartite graph. Let $K^{m, n}$ denote the complete bipartite graph on two nonempty disjoint sets V_{1} and V_{2} with $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$ (we allow m and n to be infinite cardinals). A $K^{1, n}$ graph will often be called a star graph.

The motivation of this paper is the study of interplay between the graph-theoretic properties of $\Gamma\left({ }_{R} M\right)$ and the module-theoretic properties of ${ }_{R} M$. The organization of the paper is as follows: In Section 2 of this paper, we give some basic properties of $\Gamma\left({ }_{R} M\right)$. In Section 3, we determine when the graph $\Gamma\left({ }_{R} M\right)$ is bipartite. In Section 4, we study $\Gamma\left({ }_{R} F\right)$, where F is a free R-module. Finally, in Section 5, we study $\Gamma\left({ }_{R} M\right)$, where M is a multiplication R-module.

We follow standard notations and terminologies from graph theory [12] and module theory [15].

2. Basic Properties of $\Gamma\left({ }_{R} M\right)$

We begin with the following evident proposition.
Proposition 2.1. Let M be an R-module and I be an ideal of R. Then
(1) $\Gamma\left({ }_{R} M\right)=\Gamma(R / \operatorname{Ann}(M) M)$,
(2) $\Gamma\left({ }_{R}(R / I)\right)=\Gamma(R / I)$.

Let I be an arbitrary index set, and let $\left\{M_{i} \mid i \in I\right\}$ be a family of R-modules. The direct product $\prod_{i \in I} M_{i}=\left\{\left(x_{i}\right)_{I} \mid x_{i} \in M_{i}\right\}$ is an R module. We also note that a direct product of rings is a ring endowed with componentwise operations. We are going to explain the relationship between the zero-divisor graph of $\prod_{i \in I} R / \mathfrak{m}_{i}$ as R-module and as ring.

Theorem 2.2. Let $\left\{\mathfrak{m}_{i} \mid i \in I\right\}$ be a family of maximal ideals of R and ${ }_{R} M=\prod_{i \in I} R / \mathfrak{m}_{i}$. Then
(1) $\Gamma\left({ }_{R} M\right)$ is a subgraph of $\Gamma\left(\prod_{i \in I} R / \mathfrak{m}_{i}\right)$,
(2) $\Gamma\left({ }_{R} M\right)=\Gamma\left(\prod_{i \in I} R / \mathfrak{m}_{i}\right)$ if and only if the \mathfrak{m}_{i} 's are distinct ideals.

Proof. (1): Let $\left(x_{i}\right)_{I}$ and $\left(y_{i}\right)_{I}$ be two adjacent vertices of $\Gamma\left({ }_{R} M\right)$. Without loss of generality, we may assume that $\left(x_{i}\right)_{I} \in \operatorname{Ann}\left(y_{i}\right)_{I} M$. Then, $x_{i} \in \cap_{j \in I} \operatorname{Ann}\left(y_{j}\right) M \subseteq \operatorname{Ann}\left(y_{i}\right) M$, for all $i \in I$. It then follows that $x_{i} y_{i}=0$ and hence $\left(x_{i}\right)_{I}\left(y_{i}\right)_{I}=0$. So, $\left(x_{i}\right)_{I}$ and $\left(y_{i}\right)_{I}$ are two adjacent vertices of $\Gamma\left(\prod_{i \in I} R / \mathfrak{m}_{i}\right)$.
$(2) \Rightarrow$: Suppose $\mathfrak{m}_{r}=\mathfrak{m}_{s}$, for some distinct elements $r, s \in I$. Let $x_{r}:=1$ and $x_{i}:=0$ for all $i \neq r$ and let $y_{s}:=1$ and $y_{i}:=0$ for all $i \neq s$. Then, $\left(x_{i}\right)_{I}\left(y_{i}\right)_{I}=0$, and hence $\left(x_{i}\right)_{I}-\left(y_{i}\right)_{I}$ is an edge in $\Gamma\left(\prod_{i \in I} R / \mathfrak{m}_{i}\right)$. But $\left(x_{i}\right)_{I}$ and $\left(y_{i}\right)_{I}$ are not adjacent in $\Gamma\left({ }_{R} M\right)$, since $\left(x_{i}\right)_{I} \notin \operatorname{Ann}\left(y_{i}\right)_{I} M$ and $\left(y_{i}\right)_{I} \notin \operatorname{Ann}\left(x_{i}\right)_{I} M$.
\Leftarrow : Let $\left(x_{i}\right)_{I}$ and $\left(y_{i}\right)_{I}$ be two adjacent vertices of $\Gamma\left(\prod_{i \in I} R / \mathfrak{m}_{i}\right)$. We have

$$
\operatorname{Ann}\left(x_{i}\right)_{I} M=\bigcap_{1 \in I} \operatorname{Ann}\left(x_{i}\right) M=\prod_{i \in I} N_{i}
$$

where $N_{i}=0$ if $x_{i} \neq 0$ and $N_{i}=M_{i}$ if $x_{i}=0$. Since $\left(x_{i}\right)_{I}\left(y_{i}\right)_{I}=0$, the assumption $y_{i} \neq 0$ implies that $x_{i}=0$ and hence $\left(y_{i}\right)_{I} \in \prod_{i \in I} N_{i}$. It then follows that $\left(x_{i}\right)_{I}$ and $\left(y_{i}\right)_{I}$ are two adjacent vertices of $\Gamma\left({ }_{R} M\right)$. Hence, the assertion follows from Part (1).

It is well-known that a ring R is a domain if and only if the zerodivisor graph $\Gamma(R)$ is empty. The following proposition is a natural generalization of this fact. We recall that an R-module $M \neq 0$ is called a prime module if its zero submodule is prime, i.e., $r x=0$ for $x \in M$, $r \in R$ implies that $x=0$ or $r M=(0)$ (see [14] and [20]).

Proposition 2.3. Let M be an R-module. Then the following are equivalent:
(1) $\Gamma\left({ }_{R} M\right)=\emptyset$ i.e., $Z(M)=\{0\}$,
(2) $\operatorname{Zdv}(M)=\operatorname{Ann}(M)$,
(3) M is a prime R-module.

Proof. (1) $\Rightarrow(3)$ Suppose that $\Gamma\left({ }_{R} M\right)=\emptyset$. If M is not a prime module, then there exist $r \in R \backslash \operatorname{Ann}(M)$ and non-zero element $x \in M$ such that $r x=0$. Since $r \notin \operatorname{Ann}(M)$, there exists a non-zero element $y \in M$ such that $r y \neq 0$. It follows that $r y-x$ is an edge of $\Gamma\left({ }_{R} M\right)$ and hence $\Gamma\left({ }_{R} M\right) \neq \emptyset$, which is a contradiction.
$(3) \Rightarrow(1)$ Suppose that M is a prime R-module. If $\Gamma\left({ }_{R} M\right) \neq \emptyset$, then there exist $x, y \in Z^{*}\left({ }_{R} M\right)$ such that $x \in \operatorname{Ann}(y) M$. Therefore, there exist $r_{1}, \ldots, r_{n} \in \operatorname{Ann}(y)$ and $z_{1}, \ldots, z_{n} \in M$ such that $x=$ $r_{1} z_{1}+\cdots+r_{n} z_{n}$. Since, $r_{i} y=0$ for all $1 \leq i \leq n$ and M is prime, we have $r_{i} M=0$ for all $1 \leq i \leq n$. This implies that $x=0$, which is a contradiction.
$(2) \Leftrightarrow(3)$ Follows easily from the definition of prime modules.
Corollary 2.4. Let R be a ring. Then R is a field if and only if $\Gamma\left({ }_{R} M\right)=\emptyset$ for every R-module M.

Proof. If R is field, then proposition 2.3 implies that $\Gamma\left({ }_{R} M\right)=\emptyset$. Now, suppose that $\Gamma\left({ }_{R} M\right)=\emptyset$, for every R-module M. Let \mathfrak{m} be a non-zero maximal ideal of R and $0 \neq x \in \mathfrak{m}$. Set $M:=R / \mathfrak{m} \times R$. Then, $(0, x) \in \operatorname{Ann}(1+\mathfrak{m}, 0) M$. Therefore, $(0, x)$ is adjacent to $(1+\mathfrak{m}, 0)$. Thus, $\Gamma\left({ }_{R} M\right) \neq \emptyset$, which is a contradiction. Therefore, $\mathfrak{m}=0$ and hence R is a field.

A semisimple module M is said to be homogeneous if M is a direct sum of pairwise isomorphic simple submodules.

Corollary 2.5. Let M be a homogeneous semisimple R-module. Then, $\Gamma\left({ }_{R} M\right)=\emptyset$.

Proof. Since $\operatorname{Ann}(M)$ is a maximal ideal of R, M is vector space over $R / \operatorname{Ann}(M)$. Hence, the assertion follows easily from Proposition 2.3.

We are now in a good position to bring a generalization of [3, Theorem 2.2].

Theorem 2.6. Let M be an R-module. Then, $\Gamma\left({ }_{R} M\right)$ is finite if and only if either M is finite or a prime module. In particular, if $1 \leq$ $\left|\Gamma\left({ }_{R} M\right)\right|<\infty$, then M is finite and is not a prime module.

Proof. (\Rightarrow) : Suppose that $\Gamma\left({ }_{R} M\right)$ is finite and nonempty. Then, there are non-zero elements $x, y \in M$ such that $x \in \operatorname{Ann}(y) M$. Therefore, there exist $r_{1}, \ldots, r_{n} \in \operatorname{Ann}(y)$ and $z_{1}, \ldots, z_{n} \in M$ such that $x=$ $r_{1} z_{1}+\cdots+r_{n} z_{n}$. Since $x \neq 0$, we have $r_{i} z_{i} \neq 0$ for some $1 \leq i \leq n$. Let $L=r_{i} M$. Then $L \subseteq Z\left({ }_{R} M\right)$ is finite. If M is infinite, then there exists $x_{0} \in L$ such that $A:=\left\{m \in M \mid r_{i} m=x_{0}\right\}$ is infinite. If m_{0} is a fixed element of A, then $N:=\left\{m_{0}-m \mid m \in A, m \neq m_{0}\right\}$ is an infinite subset of A. For any element $m_{0}-m \in N$, we have $r_{i}\left(m_{0}-m\right)=0$. Thus $x_{0}-\left(m_{0}-m\right)$ is an edge in $\Gamma\left({ }_{R} M\right)$ and hence $\Gamma\left({ }_{R} M\right)$ is infinite, a contradiction. Thus M must be finite.
(\Leftarrow) : If M is finite, there is nothing to prove, also if M is prime, then the assertion follows from Proposition 2.3.

Corollary 2.7. Let M be an R-module such that $\Gamma\left({ }_{R} M\right) \neq \emptyset$. If every vertex of $\Gamma\left({ }_{R} M\right)$ has finite degree, then M is a finite module.

Proof. The assertion follows from the proof of the theorem 2.6.
The following lemma has a key role in the proof of our main results in the sequel.
Lemma 2.8. Let M be an R-module, $x, y \in M$ and $r \in R$. If $x-y$ is an edge in $\Gamma\left({ }_{R} M\right)$, then either $r y \in\{0, x\}$ or $x-r y$ is an edge in $\Gamma\left({ }_{R} M\right)$.

Proof. Let x and y be two adjacent vertices of $\Gamma\left({ }_{R} M\right)$ and let $r y \notin$ $\{0, x\}$. If $x \in \operatorname{Ann}(y) M$, then $x \in \operatorname{Ann}(r y) M$, and hence, x and $r y$ are adjacent. If $y \in \operatorname{Ann}(x) M$, then $r y \in \operatorname{Ann}(x) M$, and hence, x and $r y$ are adjacent. This completes the proof.

The next result is a generalization of [3, Theorem 2.3].
Theorem 2.9. Let M be an R-module. Then $\Gamma\left({ }_{R} M\right)$ is connected with $\operatorname{diam}\left(\Gamma\left({ }_{R} M\right)\right) \leq 3$.

Proof. Let x and y be distinct vertices of $\Gamma\left({ }_{R} M\right)$. If either $x \in \operatorname{Ann}(y) M$ or $y \in \operatorname{Ann}(x) M$, then $d(x, y)=1$. So, suppose that $d(x, y) \neq 1$. There
exists a vertex x^{\prime} of $\Gamma\left({ }_{R} M\right)$ such that $x \in \operatorname{Ann}\left(x^{\prime}\right) M$ or $x^{\prime} \in \operatorname{Ann}(x) M$. We consider the following two cases:
Case 1: There exists a vertex y^{\prime} of $\Gamma\left({ }_{R} M\right)$ such that $y \in \operatorname{Ann}\left(y^{\prime}\right) M$. Then, there exist $r_{1}, \ldots, r_{n} \in \operatorname{Ann}\left(y^{\prime}\right)$ and $z_{1}, \ldots, z_{n} \in M$ such that $y=r_{1} z_{1}+\cdots+r_{n} z_{n}$. If $r_{i} x^{\prime}=0$ for all i, then $x-x^{\prime}-y$ is a path of length 2. If $r_{i} x^{\prime} \neq 0$ for some $1 \leq i \leq n$, then by Lemma 2.8, $x-r_{i} x^{\prime}-y^{\prime}-y$ is a walk, and hence $d(x, y) \leq 3$.
Case 2: There exists a vertex y^{\prime} of $\Gamma\left({ }_{R} M\right)$ such that $y^{\prime} \in \operatorname{Ann}(y) M$. Then, there exist $r_{1}, \ldots, r_{n} \in \operatorname{Ann}(y)$ and $z_{1}, \ldots, z_{n} \in M$ such that $y^{\prime}=r_{1} z_{1}+\cdots+r_{n} z_{n}$. If $r_{i} x=0$ for all i, then $x-y^{\prime}-y$ is a path of length 2. If $r_{i} x \neq 0$ for some $1 \leq i \leq n$, then $x-x^{\prime}-r_{i} x-y$ is a walk, and hence $d(x, y) \leq 3$.
Theorem 2.10. Let M be an R-module. If $\Gamma\left({ }_{R} M\right)$ contains a cycle, then

$$
\operatorname{gr}\left(\Gamma\left({ }_{R} M\right)\right) \leq 4 .
$$

Proof. Let $x_{0}-x_{1}-x_{2}-\cdots-x_{n}-x_{0}$ be a cycle in $\Gamma\left({ }_{R} M\right)$. If $n \leq 4$, we are done. So, suppose that $n \geq 5$. We consider the following two cases:
Case 1: $x_{n-1} \in \operatorname{Ann}\left(x_{n}\right) M$. Then, there exist $r_{1}, \ldots, r_{m} \in \operatorname{Ann}\left(x_{n}\right)$ and $z_{1}, \ldots, z_{m} \in M$ such that $x_{n-1}=r_{1} z_{1}+\cdots+r_{m} z_{m}$. If $r_{i} x_{1}=0$ for all $1 \leq i \leq n$, then $x_{1}-x_{n-1}$ is an edge, and hence $x_{1}-x_{n-1}-x_{n}-x_{0}$ $-x_{1}$ is a cycle of length 4 . Suppose that $r_{i} x_{1} \neq 0$ for some $1 \leq i \leq m$. If $r_{i} x_{1}=x_{0}$, then $x_{0}-x_{2}$ is an edge and hence $x_{0}-x_{1}-x_{2}-x_{0}$ is a cycle of length 3 . If $r_{i} x_{1}=x_{n}$, then $x_{2}-x_{n}$ is an edge and hence $x_{2}-x_{1}-x_{0}-x_{n}-x_{2}$ is a cycle of length 4 . So, suppose that $r_{i} x_{1} \notin$ $\left\{x_{0}, x_{n}\right\}$. Then $x_{0}-r_{i} x_{1}-x_{n}-x_{0}$ is a cycle of length 3 .
Case 2: $x_{n} \in \operatorname{Ann}\left(x_{n-1}\right) M$. Then, there exist $r_{1}, \ldots, r_{m} \in \operatorname{Ann}\left(x_{n}\right)$ and $z_{1}, \ldots, z_{m} \in M$ such that $x_{n}=r_{1} z_{1}+\cdots+r_{m} z_{m}$. If $r_{i} x_{1}=0$ for all $1 \leq i \leq m$, then $x_{1}-x_{n}$ is an edge and hence $x_{n}-x_{0}-x_{1}-x_{n}$ is a cycle of length 3 . Suppose that $r_{i} x_{1} \neq 0$ for some $1 \leq i \leq m$. If $r_{i} x_{1}=x_{0}$, then $x_{0}-x_{2}$ is an edge and hence $x_{0}-x_{1}-x_{2}-x_{0}$ is a cycle of length 3 . If $r_{i} x_{1}=x_{n-1}$, then $x_{0}-x_{n-1}$ is an edge and hence $x_{0}-x_{n}-x_{n-1}-x_{0}$ is a cycle of length 3 . So, suppose that $r_{i} x_{1} \notin\left\{x_{0}, x_{n-1}\right\}$. Then, $x_{0}-r_{i} x_{1}-x_{n-1}-x_{n}-x_{0}$ is a cycle of length 4 .

In the following theorem, we answer to the question that "when does $\Gamma\left({ }_{R} M\right)$ contain a cycle?".
Theorem 2.11. Let M be an R-module. If $\Gamma\left({ }_{R} M\right)$ has a path of length four, then $\Gamma\left({ }_{R} M\right)$ has a cycle.

Proof. Let $x_{1}-x_{2}-x_{3}-x_{4}-x_{5}$ be a path of length four. We consider the following two cases:

Case 1: $x_{1} \in \operatorname{Ann}\left(x_{2}\right) M$. Then, there exist $r_{1}, \ldots, r_{n} \in \operatorname{Ann}\left(x_{2}\right)$ and $y_{1}, \ldots, y_{n} \in M$ such that $x_{1}=r_{1} y_{1}+\cdots+r_{n} y_{n}$. If $r_{i} x_{4}=0$ for all $1 \leq i \leq n$, then x_{1} and x_{4} are adjacent and hence $x_{1}-x_{2}-x_{3}-x_{4}-x_{1}$ is a cycle. Now, let $z:=r_{i} x_{4} \neq 0$ for some $1 \leq i \leq n$. Then, we have the following subcases:
Subcase 1.1: $z=x_{1}$. Then, $x_{1}-x_{2}-x_{3}-x_{4}-x_{5}-x_{1}$ is a cycle.
Subcase 1.2: $z=x_{2}$. Then, $x_{2}-x_{3}-x_{4}-x_{5}-x_{2}$ is a cycle.
Subcase 1.3: $z=x_{3}$. Then, $x_{3}-x_{4}-x_{5}-x_{3}$ is a cycle.
Subcase 1.4: $z=x_{4}$. Then, $x_{2}-x_{3}-x_{4}-x_{2}$ is a cycle.
Subcase 1.5: $z=x_{5}$. Then, $x_{2}-x_{3}-x_{4}-x_{2}$ is a cycle.
Subcase 1.6: $z \notin\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. Then, $x_{2}-x_{3}-x_{4}-x_{5}-z-x_{2}$ is a cycle.
Case 2: $x_{2} \in \operatorname{Ann}\left(x_{1}\right) M$. So there exist $r_{1}, \ldots, r_{n} \in \operatorname{Ann}\left(x_{1}\right)$ and $y_{1}, \ldots, y_{n} \in M$ and such that $x_{2}=r_{1} y_{1}+\cdots+r_{n} y_{n}$. If $r_{i} x_{4}=0$ for all $1 \leq i \leq n$, then x_{2} and x_{4} are adjacent and hence $x_{2}-x_{3}-x_{4}-x_{2}$ is a cycle. Now, let $z:=r_{i} x_{4} \neq 0$ for some $1 \leq i \leq n$. Then, we have the following subcases:
Subcase 2.1: $z=x_{1}$. Then, $x_{1}-x_{2}-x_{3}-x_{1}$ is a cycle.
Subcase 2.2: $z=x_{2}$. Then, $x_{2}-x_{3}-x_{4}-x_{5}-x_{2}$ is a cycle.
Subcase 2.3: $z=x_{3}$. Then, $x_{3}-x_{4}-x_{5}-x_{3}$ is a cycle.
Subcase 2.4: $z=x_{4}$. Then, $x_{1}-x_{2}-x_{3}-x_{4}-x_{1}$ is a cycle.
Subcase 2.5: $z=x_{5}$. Then, $x_{1}-x_{2}-x_{3}-x_{4}-x_{5}-x_{1}$ is a cycle.
Subcase 2.6: $z \notin\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. Then, $x_{3}-x_{4}-x_{5}-z-x_{3}$ is a cycle.

So, the proof is complete.

3. Bipartite Graphs

In [17], the authors showed that a zero-divisor semigroup graph is bipartite if and only if it contains no triangles. The following theorem is an analogous of this result.

Theorem 3.1. Let M be an R-module. Then $\Gamma\left({ }_{R} M\right)$ is bipartite if and only if it contains no triangles.
Proof. \Rightarrow : Follows immediately from the fact that any bipartite graph contains no cycles of odd length.
\Leftarrow : We will show that for every cycle of odd length $2 n+1 \geq 5$, there exists a cycle with length $2 m+1$ such that $m<n$. Suppose that $n \geq 2$ and $x_{1}-x_{2}-\cdots-x_{2 n+1}-x_{1}$ is a cycle with odd length $2 n+1$. Since x_{1} is adjacent to x_{2}, we have the following two cases:
Case 1: $x_{1} \in \operatorname{Ann}\left(x_{2}\right) M$. So, there exist $r_{1}, \ldots, r_{t} \in \operatorname{Ann}\left(x_{2}\right)$ and $y_{1}, \ldots, y_{t} \in M$ such that $x_{1}=r_{1} y_{1}+\cdots+r_{t} y_{t}$. If $r_{i} x_{4}=0$ for all $1 \leq i \leq$ t, then x_{1} is adjacent to x_{4} and hence $x_{1}-x_{4}-x_{5}-\cdots-x_{2 n+1}-x_{1}$ is
a cycle with odd length $2 n-1$. Now, suppose that $r_{j} x_{4} \neq 0$ for some $1 \leq j \leq t$. Let $z:=r_{j} x_{4}$. We consider the following three subcases:
Subcase 1.1: $z=x_{2}$. Then $x_{1}-z-x_{5}-\cdots-x_{2 n+1}-x_{1}$ is a cycle with odd length $2 n-1$.
Subcase 1.2: $z=x_{3}$. Then $x_{3}-x_{4}-x_{5}-x_{3}$ is a triangle.
Subcase 1.3: $z \notin\left\{x_{2}, x_{3}\right\}$. Then $x_{3}-z-x_{2}-x_{3}$ is a triangle.
Case 2: $x_{2} \in \operatorname{Ann}\left(x_{1}\right) M$. So, there exist $r_{1}, \ldots, r_{t} \in \operatorname{Ann}\left(x_{1}\right)$ and $y_{1}, \ldots, y_{t} \in M$ such that $x_{2}=r_{1} y_{1}+\cdots+r_{t} y_{t}$. If $r_{i} x_{4}=0$ for all $1 \leq i \leq t$, then x_{2} is adjacent to x_{4} and hence we have a triangle. Now suppose that $r_{j} x_{4} \neq 0$ for some $1 \leq j \leq t$. Let $z:=r_{j} x_{4}$. Then, $x_{1}-z-x_{5}-\cdots-x_{2 n+1}-x_{1}$ is a cycle with odd length $2 n-1$.

So, by induction on $n, \Gamma\left({ }_{R} M\right)$ contains a triangle.
We recall that an R-module M is called reduced if whenever $r^{2} x=0$ (where $r \in R$ and $x \in M$), then $r x=0$. A submodule N of an R-module M is called essential (or large) in M if, for every non-zero submodule K of M, we have $N \cap K \neq 0$.

Theorem 3.2. Let M be a reduced R-module satisfying DCC on cyclic submodules and let $\Gamma\left({ }_{R} M\right)$ be a bipartite graph with parts V_{1} and V_{2}. Let $\bar{V}_{1}=V_{1} \cup\{0\}$ and $\bar{V}_{2}=V_{2} \cup\{0\}$. Then
(1) \bar{V}_{1} and \bar{V}_{2} are submodules of M,
(2) $\bar{V}_{1} \oplus \bar{V}_{2}$ is an essential submodule of M.

Proof. (1): We will show that \bar{V}_{1} is a submodules of M. Let $x, y \in \bar{V}_{1}$. First we show that $x-y \in \bar{V}_{1}$. If $x=y$, we are done. Now, let $x \neq y$. If x or y is equal to zero, then $x-y \in \bar{V}_{1}$. So, we may assume that neither x nor y is zero. There exist $x^{\prime}, y^{\prime} \in V_{2}$ such that x, y are adjacent to x^{\prime}, y^{\prime}, respectively. We consider the following two cases:
Case 1: $x^{\prime} \in \operatorname{Ann}(x) M$ and $y^{\prime} \in \operatorname{Ann}(y) M$. Without loss of generality, we may assume that $x^{\prime}=r x_{1}$ and $y^{\prime}=s y_{1}$, where $r \in \operatorname{Ann}(x), s \in$ $\operatorname{Ann}(y)$ and $x_{1}, y_{1} \in M$. Let $z:=s r x_{1}$. We claim that $z \neq 0$. If $z=0$, then x^{\prime} and y^{\prime} are adjacent and hence $x^{\prime}=y^{\prime}$, since $x^{\prime}, y^{\prime} \in V_{2}$. It then follows that $s^{2} y_{1}=s r x_{1}=0$ and hence $y^{\prime}=s y_{1}=0$, which is a contradiction. So, $z \neq 0$. Since $z \in \operatorname{Ann}(x) M \cap \operatorname{Ann}(y) M$, we must have $z \in V_{2}$. If $z=x-y$, then $r^{2} s^{2} x_{1}=r s x-r s y=0$. Since M is reduced, we have $z=0$, a contradiction. So $z \neq x-y$. On the other hand, $z \in \operatorname{Ann}(x-y) M$, and hence $x-y \in \bar{V}_{1}$.
Case 2: $x \in \operatorname{Ann}\left(x^{\prime}\right) M$ and $y^{\prime} \in \operatorname{Ann}(y) M$. Then there exist are $r_{1}, \ldots, r_{n} \in \operatorname{Ann}\left(x^{\prime}\right)$ and $x_{1}, \ldots, x_{n} \in M$ such that $x=r_{1} x_{1}+\cdots+r_{n} x_{n}$ and again without loss of generality, we may assume that $y^{\prime}=s y_{1}$, for some $s \in \operatorname{Ann}(y)$ and $y_{1} \in M$. Let $z_{0}:=s x$. If $z_{0}=0$, then $0 \neq y^{\prime} \in \operatorname{Ann}(x-y) M$ and hence $x-y \in \bar{V}_{1}$. Now, let $z_{0} \neq 0$.

Consider the following ascending chain of cyclic submodules:

$$
R z_{0} \supseteq R r_{1} z_{0} \supseteq R r_{1}^{2} z_{0} \supseteq \cdots
$$

Suppose that $R z_{0}=R r_{1} z_{0}$. Then, there exists $a \in R$ such that $z_{0}=$ $a r_{1} z_{0}$. Since M is reduced, $z_{0} \neq y$ and hence $z_{0}-y$ is an edge in V_{1}, which is a contradiction. Let $n_{1} \geq 1$ be the smallest integer number such that $R r_{1}^{n_{1}} z_{0}=R r_{1}^{n_{1}+1} z_{0}$. There exists $a_{1} \in R$ such that $r_{1}^{n_{1}} z_{0}=$ $a_{1} r_{1}^{n_{1}+1} z_{0}$. Set $z_{1}=\left(r_{1}^{n_{1}-1}-a_{1} r_{1}^{n_{1}}\right) z_{0}$. Then, $z_{1} \neq 0$ and we have the following ascending chain of cyclic submodules:

$$
R z_{1} \supset R r_{1} z_{1} \supseteq R r_{1}^{2} z_{1} \supseteq \cdots .
$$

Let $n_{2} \geq 1$ be the smallest integer number such that $R r_{2}^{n_{2}} z_{1}=R r_{2}^{n_{2}+1} z_{1}$. There exists $a_{2} \in R$ such that $r_{2}^{n_{2}} z_{1}=a_{2} r_{2}^{n_{2}+1} z_{1}$. Set $z_{2}=\left(r_{2}^{n_{2}-1}-\right.$ $\left.a_{2} r_{2}^{n_{2}}\right) z_{1}$. By continuing this process, we have $z_{n}=\left(r_{n}^{n_{n}-1}-a_{n} r_{n}^{n_{n}}\right) z_{n-1}$. We have $z_{n} \neq 0$ and

$$
\begin{aligned}
z_{n} & \in\left(\operatorname{Ann}\left(r_{1} x_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(r_{n} x_{n}\right) \cap \operatorname{Ann}(y)\right) M \\
& \subseteq\left(\operatorname{Ann}\left(r_{1} x_{1}+\ldots r_{n} x_{n}\right) \cap(\operatorname{Ann}(y)) M\right. \\
& \subseteq(\operatorname{Ann}(x) \cap \operatorname{Ann}(y)) M \\
& \subseteq \operatorname{Ann}(x-y) M .
\end{aligned}
$$

It follows that $z_{n} \in V_{2}$ and hence $x-y \in \bar{V}_{1}$.
Case 3: $x^{\prime} \in \operatorname{Ann}(x) M$ and $y \in \operatorname{Ann}\left(y^{\prime}\right) M$. The proof of this case is similar to that of Case 2.
Case 4: $x \in \operatorname{Ann}\left(x^{\prime}\right) M$ and $y \in \operatorname{Ann}\left(y^{\prime}\right) M$. Then there exist r_{1}, \ldots, r_{n} $\in \operatorname{Ann}\left(x^{\prime}\right)$ and $x_{1}, \ldots, x_{n} \in M$ such that $x=r_{1} x_{1}+\cdots+r_{n} x_{n}$. Let $z_{0}:=y^{\prime}$. Consider the following ascending chain of cyclic submodules:

$$
R z_{0} \supseteq R r_{1} z_{0} \supseteq R r_{1}^{2} z_{0} \supseteq \cdots
$$

Suppose that $R z_{0}=R r_{1} z_{0}$. Then, there exists $a \in R$ such that $z_{0}=$ $a r_{1} z_{0}$. Since M is reduced, $z_{0} \neq y^{\prime}$ and hence $z_{0}-y^{\prime}$ is an edge in V_{2}, which is a contradiction. Let $n_{1} \geq 1$ be the smallest integer number such that $R r_{1}^{n_{1}} z_{0}=R r_{1}^{n_{1}+1} z_{0}$. There exists $a_{1} \in R$ such that $r_{1}^{n_{1}} z_{0}=$ $a_{1} r_{1}^{n_{1}+1} z_{0}$. Set $z_{1}=\left(r_{1}^{n_{1}-1}-a_{1} r_{1}^{n_{1}}\right) z_{0}$. We have $z_{1} \neq 0$ and the following ascending chain of cyclic submodules:

$$
R z_{1} \supset R r_{1} z_{1} \supseteq R r_{1}^{2} z_{1} \supseteq \cdots .
$$

Let $n_{2} \geq 1$ be the smallest integer number such that $R r_{2}^{n_{2}} z_{1}=R r_{2}^{n_{2}+1} z_{1}$. There exists $a_{2} \in R$ such that $r_{2}^{n_{2}} z_{1}=a_{2} r_{2}^{n_{2}+1} z_{1}$. Set $z_{2}=\left(r_{2}^{n_{2}-1}-\right.$ $\left.a_{2} r_{2}^{n_{2}}\right) z_{1}$. By continuing this process we have $z_{n}=\left(r_{n}^{n_{n}-1}-a_{n} r_{n}^{n_{n}}\right) z_{n-1}$. We have $x \in \operatorname{Ann}\left(z_{n}\right) M, r_{i} \in \operatorname{Ann}\left(z_{n}\right)$, for all $1 \leq i \leq n$. We also have $y \in \operatorname{Ann}\left(y^{\prime}\right) M \subseteq \operatorname{Ann}\left(z_{n}\right) M$. Therefore, $z_{n} \in V_{2}$. If $z_{n} \neq x-y$, then
$x-y \in V_{1}$, since $x-y \in \operatorname{Ann}\left(z_{n}\right) M$. If $z_{n}=x-y$, then $x \in \operatorname{Ann}(x-y)$ and $y \in \operatorname{Ann}(x-y)$. It follows that $x-y \in V_{1}$.

Now, let $r \in R$ and $x \in V_{1}$ such that $r x \neq 0$. We show that $r x \in V_{1}$. There exists $y \in V_{2}$ such x is adjacent to y. We have the following two cases:
Case 1: $y \in \operatorname{Ann}(x) M$. Without loss of generality, we may assume that $y=r_{1} z_{1}$, for some $r_{1} \in \operatorname{Ann}(x)$ and $z_{1} \in M$. If $r x=r_{1} z_{1}$, then $r_{1}^{2} z_{1}=\operatorname{rr}_{1} x=0$ and hence $r x=0$, which is a contradiction. So, $r x \neq r_{1} z_{1}$. Since $r x$ is adjacent to $r_{1} z_{1}$ and $r_{1} z_{1} \in V_{2}$, we have $r x \in V_{1}$. Case 2: $x \in \operatorname{Ann}(x) M$. Then there exist $r_{1}, \ldots, r_{n} \in \operatorname{Ann}(x)$ and $z_{1}, \ldots, z_{n} \in M$ such that $x=r_{1} z_{1}+\cdots+r_{n} z_{n}$. We may assume $r_{i} z_{i} \neq 0$ for all $1 \leq i \leq n$. Let $1 \leq i \leq n$. We claim that $r_{i} z_{i} \in V_{1}$. If $r_{i} z_{i}=y$, then $r_{i}^{2} z_{i}=0$, and hence $r_{i} z_{i}=0$, a contradiction. Since $r_{i} z_{i}$ is adjacent to y, we must have $r_{i} z_{i} \in V_{1}$. So, $x=r_{1} z_{1}+\cdots+r_{n} z_{n} \in \bar{V}_{1}$. It then follows that \bar{V}_{1} is a submodule of M and a similar argument shows that \bar{V}_{2} is a submodule of M.
(2): Let $x \in M \backslash\left(\bar{V}_{1} \oplus \bar{V}_{2}\right)$. Since $\Gamma\left({ }_{R} M\right)$ is bipartite, there exist $x_{0}, y_{0} \in \bar{V}_{1} \cup \bar{V}_{2}$ such that $x_{0} \in \operatorname{Ann}\left(y_{0}\right) M$. So, there exist $r_{1}, \ldots, r_{n} \in$ $\operatorname{Ann}\left(y_{0}\right)$ and $x_{1}, \ldots, x_{n} \in M$ such that $x_{0}=r_{1} x_{1}+\cdots+r_{n} x_{n}$. There exists $1 \leq i \leq n$ such that $r_{i} x_{i} \neq 0$. Since M is reduced, the assumption $r_{i} x=0$ implies that $x \in V_{1} \cup V_{2}$, which is a contradiction. So, $r_{i} x \neq 0$. Consider the following ascending chain of cyclic submodules:

$$
R x \supseteq R r_{i} x \supseteq R r_{i}^{2} x \supseteq \cdots .
$$

Suppose that $R x=R r_{i} x$. Then, $x \in V_{1} \cup V_{2}$, which is a contradiction. Let $n \geq 1$ be the smallest integer number such that $R r_{i}^{n} x=R r_{i}^{n+1} x$. There exists $a \in R$ such that $r_{i}^{n} x=a r_{i}^{n+1} x$. Set $z=\left(r_{i}^{n-1}-a r_{i}^{n}\right) x$. We have $0 \neq z \in\left(V_{1} \cup V_{2}\right)$ and so $\bar{V}_{1} \oplus \bar{V}_{2}$ is an essential submodule of M.

Theorem 3.3. Let M be a reduced R-module satisfying DCC on cyclic submodules. If $\Gamma\left({ }_{R} M\right)$ is a bipartite graph, then it is a complete bipartite graph.

Proof. Let $\Gamma\left({ }_{R} M\right)$ be a bipartite graph with parts V_{1} and V_{2}. Let $x \in V_{1}$ and $y \in V_{2}$. We will show that x and y are adjacent. We consider the following three cases:
Case 1: $\operatorname{Ann}(x) \nsubseteq \operatorname{Ann}(y)$. Let $r \in \operatorname{Ann}(x)$ such that $r \notin \operatorname{Ann}(y)$. If $R y=R r y$, then $y=r a y$ for some $a \in R$ and hence x is adjacent to y. Now, suppose that $R y \neq R r y$. Consider the following ascending chain of cyclic submodules:

$$
R y \supseteq R r y \supseteq R r^{2} y \supseteq \cdots
$$

Let $n \geq 1$ be the smallest integer number such that $R r^{n} y=R r^{n+1} y$. There exists $b \in R$ such that $r^{n} y=b r^{n+1} y$. Set $z=\left(r^{n-1}-b r^{n}\right) y$. By the definition of n, we have $0 \neq z \in V_{2}$. Now, we consider the following two subcases:
Subcase 1.1: $z=r y$. Then, $r^{2} y=0$ and hence $z=0$, which is a contradiction.
Subcase 1.2: $z \neq r y$. Then, z and $r y$ are adjacent vertices of V_{2}, which is again a contradiction.
Case 2: Anny $\nsubseteq \operatorname{Ann}(x)$. The proof of this case is similar to that of Case 1.
Case 3: $\operatorname{Ann}(x)=\operatorname{Ann}(y)$. There exists $\alpha \in V_{2}$ such that α is adjacent to x. Since $\alpha, y \in V_{2}$, the assumption $\alpha \in \operatorname{Ann}(x) M=\operatorname{Ann}(y) M$, implies that $\alpha=y$. Hence, x and y are adjacent. Now, suppose that $x \in \operatorname{Ann}(\alpha) M$. Then, there exist $r_{1}, \ldots, r_{n} \in \operatorname{Ann}(\alpha)$ and $x_{1}, \ldots, x_{n} \in$ M such that $x=r_{1} x_{1}+\cdots+r_{n} x_{n}$. If $r_{i} y=0$ for all $1 \leq i \leq n$, then x and y are adjacent, and we are done. Now, suppose that there exists $1 \leq i \leq n$ such that $r_{i} y \neq 0$. Since M is reduced, $r_{i} y$ and α are adjacent vertices in V_{2}, which is a contradiction. This completes the proof.

If $M=R=\mathbb{Z}_{3} \times \mathbb{Z}_{4}$, then $\Gamma\left({ }_{R} M\right)$ is bipartite which is not complete bipartite. So, the reduced condition in Theorem 3.3 is essential. We have not found any example of a module M to show that the DCC condition in Theorem 3.3 is essential, which motivates to ask the following question.

Question 3.4. Let M be a reduced R-module such that $\Gamma\left({ }_{R} M\right)$ is a bipartite graph. Is $\Gamma\left({ }_{R} M\right)$ a complete bipartite graph?

In [4, Theorem 2.2], it has been proved that for a reduced commutative ring $R, \operatorname{gr}(R)=4$ if and only if $\Gamma(R)=K^{m, n}$ with $m, n \geq 2$. In the following corollary, we prove an analogous result for $\Gamma\left({ }_{R} M\right)$.

Corollary 3.5. Let M be a reduced R-module satisfying DCC on cyclic submodules. Then, $\operatorname{gr}\left(\Gamma\left({ }_{R} M\right)\right)=4$ if and only if $\Gamma\left({ }_{R} M\right)=K^{m, n}$ with $m, n \geq 2$.
Proof. Let $\operatorname{gr}\left(\Gamma\left({ }_{R} M\right)\right)=4$. By Theorem 3.1, $\Gamma\left({ }_{R} M\right)$ has no cycle of odd length, and hence it is a bipartite graph. Now, by Theorem 3.3, we observe that $\Gamma\left({ }_{R} M\right)$ is a complete bipartite graph. Since $\Gamma\left({ }_{R} M\right)$ has a cycle of length four, we have $\Gamma\left({ }_{R} M\right)=K^{m, n}$ with $m, n \geq 2$. The converse is trivial.

In [4, Theorem 2.4], it has been proved that for a reduced commutative ring $R, \Gamma(R)$ is nonempty with $\operatorname{gr}(R)=\infty$ if and only if
$\Gamma(R)=K^{1, n}$ for some $n \geq 1$. In the following corollary, we prove an analogous result for $\Gamma\left({ }_{R} M\right)$.

Corollary 3.6. Let M be a reduced R-module satisfying DCC on cyclic submodules. Then, $\operatorname{gr}\left(\Gamma\left({ }_{R} M\right)\right)=\infty$ if and only if $\Gamma\left({ }_{R} M\right)$ is a star graph.

Proof. Let $\operatorname{gr}\left(\Gamma\left({ }_{R} M\right)\right)=\infty$. Then, $\Gamma\left({ }_{R} M\right)$ has no cycle and hence it is a bipartite graph. By Theorem 3.3, $\Gamma\left({ }_{R} M\right)$ is a complete bipartite graph. Let $\Gamma\left({ }_{R} M\right)=K^{m, n}$, where $m, n \geq 1$. Since $\Gamma\left({ }_{R} M\right)$ has no cycle, then either $m=1$ or $n=1$, which implies that $\Gamma\left({ }_{R} M\right)$ is a star graph. The converse is trivial.

4. ZERO-DIVISOR GRAPHS OF FREE MODULES

We recall that an R-module F is called free if it is isomorphic to a direct sum of copies of R. We write $R^{(I)}$ for the direct sum $\bigoplus_{i \in I} R_{i}$, where each R_{i} is a copy of R, and I is an arbitrary indexing set. If I is a finite set with n elements, then the direct sum and the direct product coincide; in this case, we write R^{n} for $R^{(I)}=R \times \cdots \times R$ (n times).

We begin this section with the following useful and evident proposition.

Proposition 4.1. Let ${ }_{R} F=R^{(I)}$ be a free R-module and $\left(x_{i}\right)_{I},\left(y_{i}\right)_{I} \in$ $Z^{*}\left({ }_{R} F\right)$. Then
(1) $Z\left({ }_{R} F\right)=\left\{\left(x_{i}\right)_{I} \in F \mid \exists 0 \neq y \in R\right.$ such that $y x_{i}=0$ for all $i \in$ I\},
(2) $\left(x_{i}\right)_{I}-\left(y_{i}\right)_{I}$ is an edge in $\Gamma\left({ }_{R} F\right)$ if and only if $x_{i} y_{j}=0$ for all $i, j \in I$.

Theorem 4.2. Let $F=R^{(I)}$ be a free R-module. Then, $\Gamma\left({ }_{R} F\right)$ is complete if and only if $F=R=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $(Z(R))^{2}=0$.
Proof. If $F=R=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $(Z(R))^{2}=0$, then it is easy to see that $\Gamma\left({ }_{R} F\right)$ is complete.

Conversely, suppose that $\Gamma\left({ }_{R} F\right)$ is complete. Let $i_{0} \in I$ and x, y be two distinct elements of $Z^{*}(R)$. Let $x_{i}=y_{i}=0$ for all $i \in I \backslash\left\{i_{0}\right\}, x_{i_{0}}=$ x and $y_{i_{0}}=y$. Then, $\left(x_{i}\right)_{I},\left(y_{i}\right)_{I} \in Z^{*}\left({ }_{R} F\right)$ and hence $x y=0$. Thus, $\Gamma(R)$ is complete. Then, [3, Theorem 2.8] implies that $R=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $(Z(R))^{2}=0$. We show that $|I|=1$, if $R=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Suppose on the contrary that $|I| \geq 2$. Let i_{1}, i_{2} be two distinct elements of I. Put

$$
x_{i}:= \begin{cases}(1,0) & \text { if } i=i_{1} \\ (1,0) & \text { if } i=i_{2} \\ (0,0) & \text { otherwise }\end{cases}
$$

and

$$
y_{i}:= \begin{cases}(1,0) & \text { if } i=i_{1} \\ (0,0) & \text { otherwise }\end{cases}
$$

Then, $x:=\left(x_{i}\right)_{I}, y:=\left(y_{i}\right)_{I} \in Z^{*}\left({ }_{R} F\right)$ and x and y are not adjacent in $\Gamma\left({ }_{R} F\right)$, a contradiction. This completes the proof.

Let $F=R^{(I)}$. In the following three theorems, we study the relationship between the properties of $\Gamma\left({ }_{R} F\right)$ and $\Gamma(R)$.

Theorem 4.3. Let $F=R^{n}$ be a finitely generated free R-module. Let $a \in Z^{*}(R), t=\operatorname{deg}_{\Gamma(R)} a, A=\left\{\left(x_{1}, \ldots, x_{n}\right) \in Z^{*}\left({ }_{R} F\right) \mid x_{i}=0\right.$ or $x_{i}=$ $a\}$ and $x \in A$. Then,

$$
\operatorname{deg}_{\left.\Gamma{ }_{R} F\right)}(x)= \begin{cases}(t+1)^{n}-1 & \text { if } a^{2} \neq 0, \\ (t+2)^{n}-2 & \text { otherwise } .\end{cases}
$$

Proof. Let $t=\operatorname{deg}_{\Gamma(R)}(a)$ and $N_{\Gamma(R)}(a)=\left\{a_{1}, \ldots, a_{t}\right\}$. If $a^{2} \neq 0$, then

$$
N_{\Gamma\left({ }_{R} F\right)}(x)=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in\left\{0, a_{1}, \ldots, a_{t}\right\}\right\} \backslash\{0\} .
$$

Therefore, $\operatorname{deg}_{\Gamma\left({ }_{R} F\right)}(x)=\left|N_{\Gamma\left({ }_{R} F\right)}(x)\right|=(t+1)^{n}-1$. Now, suppose that $a^{2}=0$. Then,

$$
N_{\Gamma\left({ }_{R} F\right)}(x)=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in\left\{0, a, a_{1}, \ldots, a_{t}\right\}\right\} \backslash\{0, x\} .
$$

Hence, $\operatorname{deg}_{\Gamma\left({ }_{R} F\right)}(x)=\left|N_{\Gamma\left({ }_{R} F\right)}(x)\right|=(t+2)^{n}-2$.
Theorem 4.4. Let $F=R^{(I)}$ such that $|I| \geq 2$. Then

$$
\operatorname{gr}\left(\Gamma\left({ }_{R} F\right)\right)= \begin{cases}\operatorname{gr}(\Gamma(R)) & \text { if } R \text { is reduced }, \\ 3 & \text { otherwise } .\end{cases}
$$

Proof. First suppose that R is not reduced. Then, there exists $0 \neq a \in$ R such that $a^{2}=0$. Let i_{1}, i_{2} be two distinct elements of I. Put

$$
x_{i}:=\left\{\begin{array}{ll}
a & \text { if } i=i_{1}, \\
0 & \text { otherwise },
\end{array} y_{i}:= \begin{cases}a & \text { if } i=i_{2} \\
0 & \text { otherwise }\end{cases}\right.
$$

and $z_{i}:=a$ for all $i \in I$. Then $\left(x_{i}\right)_{I}-\left(y_{i}\right)_{I}-\left(z_{i}\right)_{I}-\left(x_{i}\right)_{I}$ is a cycle of length three and hence $\operatorname{gr}\left(\Gamma\left({ }_{R} F\right)\right)=3$. Now, suppose that R is reduced. Let $a_{1}-a_{2}-\cdots-a_{t}-a_{1}$ be a cycle in $\Gamma(R)$. Let $j \in\{1,2, \ldots, t\}$ and $i_{0} \in I$. Put

$$
x_{i}^{j}:= \begin{cases}a_{j} & \text { if } i=i_{0} \\ 0 & \text { otherwise } .\end{cases}
$$

Then, $\left(x_{i}^{1}\right)_{I}-\left(x_{i}^{2}\right)_{I}-\cdots-\left(x_{i}^{t}\right)_{I}-\left(x_{i}^{1}\right)_{I}$ is a cycle in $\Gamma\left({ }_{R} F\right)$ and hence, $\operatorname{gr}(\Gamma(R)) \leq \operatorname{gr}\left(\Gamma\left({ }_{R} F\right)\right)$. Now, let

$$
\left(x_{i}^{1}\right)_{I}-\left(x_{i}^{2}\right)_{I}-\cdots-\left(x_{i}^{t}\right)_{I}-\left(x_{i}^{1}\right)_{I},
$$

be a cycle in $\Gamma(F)$. For all $j \in\{1,2, \ldots, t\}$, there exists $i_{j} \in I$ such that $x_{i_{j}}^{j} \neq 0$. Then, $x_{i_{1}}^{1}-x_{i_{2}}^{2}-\cdots-x_{i_{t}}^{t}-x_{i_{1}}^{1}$ is a cycle in $\Gamma(R)$ and hence, $\operatorname{gr}\left(\Gamma\left({ }_{R} F\right)\right) \leq \operatorname{gr}(\Gamma(R))$. This completes the proof.

A clique in a graph G is a subset of pairwise adjacent vertices. The supremum of the size of cliques in G, denoted by $\omega(G)$, is called the clique number of G.
Theorem 4.5. Let $F=R^{n}$ be a finitely generated free R-module. Then $\omega\left(\Gamma\left({ }_{R} F\right)\right)=\omega(\Gamma(R))$.

Proof. Let $\left\{\left(x_{i}^{1}\right)_{I},\left(x_{i}^{2}\right)_{I}, \ldots,\left(x_{i}^{t}\right)_{I}\right\}$ be a clique in $\Gamma\left({ }_{R} F\right)$. For each $1 \leq$ $j \leq t$, there exists $i_{j} \in I$ such that $x_{i_{j}}^{j} \neq 0$. Then, $\left\{x_{i_{1}}^{1}, x_{i_{2}}^{2}, \ldots, x_{i_{t}}^{t}\right\}$ is a clique in $\Gamma(R)$ and hence $\omega\left(\Gamma\left({ }_{R} F\right)\right) \leq \omega(\Gamma(R))$. Now, let $\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ be a clique in $\Gamma(R)$. Let $1 \leq j \leq t$ and $i_{0} \in I$. Put

$$
x_{i}^{j}:= \begin{cases}x_{j} & \text { if } i=i_{0} \\ 0 & \text { otherwise. }\end{cases}
$$

Then, $\left\{\left(x_{i}^{1}\right)_{I},\left(x_{i}^{2}\right)_{I}, \ldots,\left(x_{i}^{t}\right)_{I}\right\}$ is a clique in $\Gamma\left({ }_{R} F\right)$ and hence $\omega(\Gamma(R)) \leq$ $\omega\left(\Gamma\left({ }_{R} F\right)\right)$. This completes the proof.

The next theorem shows that the structure of a finitely generated free R-module F can be determined by $\Gamma(F)$. We denote the maximum degree of vertices of a graph G by $\Delta(G)$.

Theorem 4.6. Let M and N be two finitely generated free R-module. If $\Gamma\left({ }_{R} M\right) \cong \Gamma\left({ }_{R} N\right)$, then $M \cong N$ as R-modules.

Proof. Let $M=R^{m}$ and $N=R^{n}$, for some natural numbers m, n. Suppose that $m>n$. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a vertex of $\Gamma\left({ }_{R} N\right)$ such that $\operatorname{deg}_{\Gamma\left(R_{R} N\right)}(x)=\Delta\left(\Gamma\left({ }_{R} N\right)\right)$. Since $x \in Z^{*}(\Gamma(N))$, there exists $0 \neq a \in R$ such that $a x_{1}=a x_{2}=\cdots=a x_{n}=0$. Let $y=$ $\left(x_{1}, x_{2}, \ldots, x_{n}, 0, \ldots, 0\right) \in M$. Then, the set
$\left\{\left(y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{m-n}\right) \in{ }_{R} M \mid\left(y_{1}, \ldots, y_{n}\right) \in N_{\Gamma\left({ }_{R} N\right)}(x), z_{i} \in\{0, a\}\right\}$, is a subset of $N_{\Gamma\left({ }_{R} N\right)}(y)$. It then follows that $\Delta\left(\Gamma\left({ }_{R} M\right)\right) \geq \operatorname{deg}_{\Gamma\left({ }_{R} M\right)}(y)$ $>\operatorname{deg}_{\Gamma\left({ }_{R} N\right)}(x)=\Delta\left(\Gamma\left({ }_{R} N\right)\right)$, a contradiction. So, $m \leq n$. A similar argument shows that $n \leq m$. This completes the proof.

5. Further Notes

In this short section, we study $\Gamma\left({ }_{R} M\right)$, where M is a multiplication R-module. We recall that an R-module M is called a multiplication module if for each submodule N of M, there exists an ideal I of R such that $N=I M$. Let $N=I M$ and $K=J M$, for some ideals I and J of R. The product of N and K, is denoted by $N * K$, and
defined by $I J M$. It is easy to see that the product of N and K, is independent of presentations of N and K. In [16], Lee and Varmazyar have given a generalization of the concept of zero-divisor graph of rings to multiplication modules. For a multiplication R-module M, they defined an undirected graph $\Gamma_{*}\left({ }_{R} M\right)$, with vertices $\{0 \neq x \in M \mid R x *$ $R y=0$ for some non-zero $y \in M\}$, where distinct vertices x and y are adjacent if and only if $R x * R y=0$.

The following theorem shows that, in multiplication modules, this generalization and the one given in this paper are the same.

Theorem 5.1. Let M be a multiplication R-module. Then, $\Gamma\left({ }_{R} M\right)=$ $\Gamma_{*}\left({ }_{R} M\right)$.

Proof. Let x and y be two non-zero element of M and suppose that $R x=I M$ and $R y=J M$, for some ideals I and J of R. Let $x-y$ be an edge in $\Gamma_{*}\left({ }_{R} M\right)$. Since $R x * R y=0$, we have $I J M=0$ and hence $I \subseteq \operatorname{Ann}(J M)$. It then follows that $I M \subseteq \operatorname{Ann}(J M) M$. Therefore, $R x \subseteq \operatorname{Ann}(R y) M$ and hence, $x-y$ is an edge in $\Gamma\left({ }_{R} M\right)$.

Now, suppose that $x-y$ is an edge in $\Gamma\left({ }_{R} M\right)$. It then follows that $R x \subseteq \operatorname{Ann}(R y) M$. So $I M \subseteq \operatorname{Ann}(J M) M$. In view of [26, Theorem 9], we have the following two cases:
Case 1: $I \subseteq \operatorname{Ann}(J M)+\operatorname{Ann}(M)$. In this case, $I \subseteq \operatorname{Ann}(J M)$, since $\operatorname{Ann}(M) \subseteq \operatorname{Ann}(J M)$. It then follows that $I J M=0$ and hence, $x-y$ is an edge in $\Gamma_{*}\left({ }_{R} M\right)$.
Case 2: $M=((\operatorname{Ann}(J M)+\operatorname{Ann}(M)): I) M$. In this case, we have $M=(\operatorname{Ann}(J M): I) M$ and hence, $I J M=[(\operatorname{Ann}(J M): I) I](J M) \subseteq$ $\operatorname{Ann}(J M) J M=0$. Therefore, $x-y$ is an edge in $\Gamma_{*}\left({ }_{R} M\right)$. This completes the proof.

Acknowledgments

I would like to thank the Center of Excellence for Mathematics, Shahrekord University for financial support.

References

1. D. F. Anderson, M. C. Axtell and J. Stickles, Zero-divisor graphs in commutative rings, Commutative Algebra, Springer New York (2011), 23-45.
2. D. F. Anderson and A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl. 12(5) (2013), 1250212.
3. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra $217(2)$ (1999), 434-447.
4. D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210(2) (2007), 543-550.
5. D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (1993), 500-514.
6. M. Baziar, E. Momtahan and S. Safaeeyan, A zero-divisor graph for modulus with respect to their (first) dual, J. Algebra Appl. 12(2) (2013), 1250151.
7. I. Beck, Coloring of commutative rings, J. Algebra 116(1) (1988), 208-226.
8. M. Behboodi, Zero-divisor graph for modules over commutative rings, J. Commut. Algebra 4(2) (2012), 175-197.
9. M. Behboodi and Z. Rakeei, The annihilator-ideal graph of commutative rings I, J. Algebra Appl. 10(4) (2011), 727-739.
10. M. Behboodi and Z. Rakeei, The annihilator-ideal graph of commutative rings II, J. Algebra Appl. 10(4) (2011), 741-753.
11. N. Bloomfield, The zero divisor graphs of commutative local rings of order p^{4} and p^{5}, Comm. Algebra 41(2) (2013), 765-775.
12. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publication Co., Inc., New York, 1976.
13. J. Coykendall, S. Sather-Wagstaff, L. Sheppardson and S. Spiroff, On zero divisor graphs, Progress in Commutative Algebra 2 (2012), 241-299.
14. J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1978), 156-181.
15. T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, Berlin-HeidelbergNew York, 1998.
16. S. C. Lee and R. Varmazyar, Zero-divisor graphs of multiplication modules, Honam Math. J. 34(4) (2012), 571-584.
17. D. Lu and T. Wu, On bipartite zero-divisor graphs, Discrete Math. 309(4) (2009), 755-762.
18. H. R. Maimani, M. R. Pournaki, A. Tehranian and S. Yassemi, Graphs attached to rings revisited, Arab. J. Sci. Eng. 36 (2011), 997-1011.
19. H. R. Maimani, M. R. Pournaki and S. Yassemi, Zero-divisor graph with respect to an ideal, Comm. Algebra 34(3) (2006), 923-929.
20. R. L. McCasland, M. E. Moore and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra 25(1) (1997), 79-103.
21. M. J. Nikmehr and S. Khojasteh, A generalized ideal-based zero-divisor graph, J. Algebra Appl. 14(6) (2015), 1550079.
22. S. P. Redmond, Generalizations of the Zero-Divisor Graph of a Ring, Doctoral Dissertation, The University of Tennessee, Knoxville, 2001.
23. S. Safaeeyan, M. Baziar and E. Momtahan, A generalization of the zero-divisor graph for modules, J. Korean Math. Soc. 51(1) (2014), 78-98.
24. R. Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, Cambridge 1990.
25. J. G. Smith, Properties of Ideal-Based Zero-Divisor Graphs of Commutative Rings, Doctoral Dissertation, The University of Tennessee, Knoxville, 2014.
26. P. F. Smith, Some remarks on multiplication modules, Arch. Math. 50 (1988), 223-235.

A. R. Naghipour

Department of Mathematics, Shahrekord University, P.O. Box 115, Shahrekord, Iran.
Email: naghipour@sci.sku.ac.ir

[^0]: MSC(2010): Primary: 05C25, 05C38, 05C40; Secondary: 13C99, 13E10.
 Keywords: Annihilator, Connectivity, Diameter, Girth, Reduced module, Zero-divisor graph.

