Journal of Algebraic Systems Vol. 4, No. 2, (2017), pp 155-171 DOI: 10.22044/jas.2017.858

THE ZERO-DIVISOR GRAPH OF A MODULE

A. R. NAGHIPOUR

ABSTRACT. Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, say $\Gamma(_RM)$, such that when M = R, $\Gamma(_RM)$ coincide with the zero-divisor graph of R. Many well-known results by D. F. Anderson and P. S. Livingston, have been generalized for $\Gamma(_RM)$. We will show that $\Gamma(_RM)$ is connected with diam $(\Gamma(_RM)) \leq 3$, and if $\Gamma(_RM)$ contains a cycle, then $\operatorname{gr}(\Gamma(_RM)) \leq 4$. We will also show that $\Gamma(_RM) = \emptyset$ if and only if M is a prime module. Among other results, it is shown that for a reduced module M satisfying DCC on cyclic submodules, $\operatorname{gr}(\Gamma(_RM)) = \infty$ if and only if $\Gamma(_RM)$ is a star graph. Finally, we study the zero-divisor graph of free R-modules.

1. INTRODUCTION

Throughout the paper, R is a commutative ring with identity and $_RM$ is a unitary R-module. Let Z(R) be the set of zero-divisors of R. Associating graphs to algebraic structures has become an exciting research topic in the last twenty years. There are many papers on assigning a graph to a ring; see for instance, [2, 3, 6, 9, 10, 18]. Most of the work has focused on the zero-divisor graph. The concept of a zero-divisor graph of a ring R was first introduced by Beck in [7], where he was mainly interested in coloring. This investigation of colorings of a commutative ring was then continued by Anderson and Naseer

MSC(2010): Primary: 05C25, 05C38, 05C40; Secondary: 13C99, 13E10.

Keywords: Annihilator, Connectivity, Diameter, Girth, Reduced module, Zero-divisor graph.

Received: 4 December 2016, Accepted: 30 January 2017.

in [5]. In [3], Anderson and Livingston associate a graph, $\Gamma(R)$, with vertices $Z^*(R) := Z(R) \setminus \{0\}$, the set of non-zero zero-divisors of R, and for distinct $x, y \in Z^*(R)$, the vertices x and y are adjacent if and only if xy = 0. The zero-divisor graphs of commutative rings have been extensively studied by many authors, and become a major field of research; see for instance, [11, 22] and two survey papers [1, 13]. In [22], Redmond extended the zero-divisor graph of a commutative ring to an ideal-based zero-divisor graph of a commutative ring. This notion of zero-divisor graph was also studied in [19, 21, 25]. The graph of zero-divisors for commutative rings has been generalized to modules over commutative rings; see for instance, [8, 16, 23].

In this paper, we introduce a new (and natural) definition of the zerodivisor graph for modules. As any suitable generalization, many of well known results about zero-divisor graph of rings have been generalized to modules.

The concept of a zero-divisor elements of a ring, has been generalized to a module (see for example [24], or any other book in commutative algebra):

$$\operatorname{Zdv}_{R}M) = \{ r \in R | rx = 0 \text{ for some non-zero } x \in M \}.$$

Let N and K be two submodules of an R-module M. Then, $(N : K) := \{r \in R | rK \subseteq N\}$ is an ideal of R. The ideal (0 : M) is called the *annihilator* of M and is denoted by Ann(M); for $x \in M$, we may write Ann(x) for the ideal Ann(Rx). We give a new generalization of the concept of zero-divisor elements in rings to modules:

Definition 1.1. Let M be an R-module. The set of the zero-divisors of M is:

 $Z(_RM) := \{ x \in M | x \in \operatorname{Ann}(y)M \text{ or } y \in \operatorname{Ann}(x)M \text{ for some } 0 \neq y \in M \}.$

We note that when M = R, this concept coincides with the set of zero-divisor elements of R.

Definition 1.2. Let M be an R-module. We define an undirected graph $\Gamma(_RM)$ with vertices $Z^*(_RM) := Z(_RM) \setminus \{0\}$, where x - y is an edge between distinct vertices x and y if and only if $x \in \operatorname{Ann}(y)M$ or $y \in \operatorname{Ann}(x)M$.

We note that, the graph $\Gamma(RM)$ is exactly a generalization of the zero-divisor graph of R (i.e., $\Gamma(RR) = \Gamma(R)$). As usual, \mathbb{Z} and \mathbb{Z}_n will denote the integers and integers modulo n, respectively. The zero-divisor graphs of some \mathbb{Z} -modules are presented in figure 1.

Let G be a graph with the vertex set V(G). For two distinct vertices x and y of V(G) the notation x-y means that x and y are adjacent.

FIGURE 1. The zero-divisor graphs of some \mathbb{Z} -modules.

For $x \in V(G)$, we denote by $N_G(x)$ the set of all vertices of G adjacent to x. Also, the size of $N_G(x)$ is denoted by $\deg_G(x)$ and it is called the *degree* of x. A *walk* of length n in a graph G between two vertices x, y is an ordered list of vertices $x = x_0, x_1, ..., x_n = y$ such that x_{i-1} is adjacent to x_i , for i = 1, ..., n. We denote this walk by

$$x_0 - x_1 - \cdots - x_n$$
.

If the vertices in a walk are all distinct, it defines a *path* in G. A cycle is a path $x_0 - \cdots - x_n$ with an extra edge $x_0 - x_n$. The girth of G, denoted by gr(G), is the length of a shortest cycle in G ($gr(G) = \infty$, if G has no cycle). A graph G is called *connected* if for any vertices xand y of G there exists a path between x and y. For $x, y \in V(G)$, the distance between x and y, denoted by d(x, y), is the length of a shortest path between x and y. The greatest distance between any two vertices in G, is the diameter of G, denoted by diam(G).

A graph G is called *bipartite* if V(G) admits a partition into two classes such that vertices in the same partition class must not be adjacent. A simple bipartite graph in which every two vertices from different partition classes are adjacent, is called a *complete bipartite* graph. Let $K^{m,n}$ denote the complete bipartite graph on two nonempty disjoint sets V_1 and V_2 with $|V_1| = m$ and $|V_2| = n$ (we allow m and n to be infinite cardinals). A $K^{1,n}$ graph will often be called a *star graph*.

The motivation of this paper is the study of interplay between the graph-theoretic properties of $\Gamma(_RM)$ and the module-theoretic properties of $_RM$. The organization of the paper is as follows: In Section 2 of this paper, we give some basic properties of $\Gamma(_RM)$. In Section 3, we determine when the graph $\Gamma(_RM)$ is bipartite. In Section 4, we study $\Gamma(_RF)$, where F is a free R-module. Finally, in Section 5, we study $\Gamma(_RM)$, where M is a multiplication R-module.

We follow standard notations and terminologies from graph theory [12] and module theory [15].

2. Basic Properties of $\Gamma(_RM)$

We begin with the following evident proposition.

Proposition 2.1. Let M be an R-module and I be an ideal of R. Then

(1) $\Gamma(_RM) = \Gamma(_{R/\operatorname{Ann}(M)}M),$

(2) $\Gamma(R(R/I)) = \Gamma(R/I).$

Let I be an arbitrary index set, and let $\{M_i | i \in I\}$ be a family of R-modules. The direct product $\prod_{i \in I} M_i = \{(x_i)_I | x_i \in M_i\}$ is an R-module. We also note that a direct product of rings is a ring endowed with componentwise operations. We are going to explain the relationship between the zero-divisor graph of $\prod_{i \in I} R/\mathfrak{m}_i$ as R-module and as ring.

Theorem 2.2. Let $\{\mathfrak{m}_i | i \in I\}$ be a family of maximal ideals of R and $_RM = \prod_{i \in I} R/\mathfrak{m}_i$. Then

- (1) $\Gamma(_RM)$ is a subgraph of $\Gamma(\prod_{i\in I} R/\mathfrak{m}_i)$,
- (2) $\Gamma(RM) = \Gamma(\prod_{i \in I} R/\mathfrak{m}_i)$ if and only if the \mathfrak{m}_i 's are distinct ideals.

Proof. (1): Let $(x_i)_I$ and $(y_i)_I$ be two adjacent vertices of $\Gamma(_R M)$. Without loss of generality, we may assume that $(x_i)_I \in \operatorname{Ann}(y_i)_I M$. Then, $x_i \in \bigcap_{j \in I} \operatorname{Ann}(y_j) M \subseteq \operatorname{Ann}(y_i) M$, for all $i \in I$. It then follows that $x_i y_i = 0$ and hence $(x_i)_I (y_i)_I = 0$. So, $(x_i)_I$ and $(y_i)_I$ are two adjacent vertices of $\Gamma(\prod_{i \in I} R/\mathfrak{m}_i)$.

(2) \Rightarrow : Suppose $\mathfrak{m}_r = \mathfrak{m}_s$, for some distinct elements $r, s \in I$. Let $x_r := 1$ and $x_i := 0$ for all $i \neq r$ and let $y_s := 1$ and $y_i := 0$ for all $i \neq s$. Then, $(x_i)_I(y_i)_I = 0$, and hence $(x_i)_I - (y_i)_I$ is an edge in $\Gamma(\prod_{i \in I} R/\mathfrak{m}_i)$. But $(x_i)_I$ and $(y_i)_I$ are not adjacent in $\Gamma(_RM)$, since $(x_i)_I \notin \operatorname{Ann}(y_i)_I M$ and $(y_i)_I \notin \operatorname{Ann}(x_i)_I M$.

 \Leftarrow : Let $(x_i)_I$ and $(y_i)_I$ be two adjacent vertices of $\Gamma(\prod_{i \in I} R/\mathfrak{m}_i)$. We have

$$\operatorname{Ann}(x_i)_I M = \bigcap_{i \in I} \operatorname{Ann}(x_i) M = \prod_{i \in I} N_i$$

where $N_i = 0$ if $x_i \neq 0$ and $N_i = M_i$ if $x_i = 0$. Since $(x_i)_I(y_i)_I = 0$, the assumption $y_i \neq 0$ implies that $x_i = 0$ and hence $(y_i)_I \in \prod_{i \in I} N_i$. It then follows that $(x_i)_I$ and $(y_i)_I$ are two adjacent vertices of $\Gamma(_RM)$. Hence, the assertion follows from Part (1).

It is well-known that a ring R is a domain if and only if the zerodivisor graph $\Gamma(R)$ is empty. The following proposition is a natural generalization of this fact. We recall that an R-module $M \neq 0$ is called a *prime* module if its zero submodule is prime, i.e., rx = 0 for $x \in M$, $r \in R$ implies that x = 0 or rM = (0) (see [14] and [20]).

Proposition 2.3. Let M be an R-module. Then the following are equivalent:

- (1) $\Gamma(_{R}M) = \emptyset$ *i.e.*, $Z(M) = \{0\},\$
- (2) $\operatorname{Zdv}(M) = \operatorname{Ann}(M)$,
- (3) M is a prime R-module.

Proof. (1) \Rightarrow (3) Suppose that $\Gamma(_R M) = \emptyset$. If M is not a prime module, then there exist $r \in R \setminus \operatorname{Ann}(M)$ and non-zero element $x \in M$ such that rx = 0. Since $r \notin \operatorname{Ann}(M)$, there exists a non-zero element $y \in M$ such that $ry \neq 0$. It follows that ry - x is an edge of $\Gamma(_R M)$ and hence $\Gamma(_R M) \neq \emptyset$, which is a contradiction.

 $(3) \Rightarrow (1)$ Suppose that M is a prime R-module. If $\Gamma(_R M) \neq \emptyset$, then there exist $x, y \in Z^*(_R M)$ such that $x \in \operatorname{Ann}(y)M$. Therefore, there exist $r_1, \ldots, r_n \in \operatorname{Ann}(y)$ and $z_1, \ldots, z_n \in M$ such that $x = r_1 z_1 + \cdots + r_n z_n$. Since, $r_i y = 0$ for all $1 \le i \le n$ and M is prime, we have $r_i M = 0$ for all $1 \le i \le n$. This implies that x = 0, which is a contradiction.

 $(2) \Leftrightarrow (3)$ Follows easily from the definition of prime modules.

Corollary 2.4. Let R be a ring. Then R is a field if and only if $\Gamma(_RM) = \emptyset$ for every R-module M.

Proof. If R is field, then proposition 2.3 implies that $\Gamma(_R M) = \emptyset$. Now, suppose that $\Gamma(_R M) = \emptyset$, for every R-module M. Let \mathfrak{m} be a non-zero maximal ideal of R and $0 \neq x \in \mathfrak{m}$. Set $M := R/\mathfrak{m} \times R$. Then, $(0, x) \in \operatorname{Ann}(1 + \mathfrak{m}, 0)M$. Therefore, (0, x) is adjacent to $(1 + \mathfrak{m}, 0)$. Thus, $\Gamma(_R M) \neq \emptyset$, which is a contradiction. Therefore, $\mathfrak{m} = 0$ and hence R is a field.

A semisimple module M is said to be *homogeneous* if M is a direct sum of pairwise isomorphic simple submodules.

Corollary 2.5. Let M be a homogeneous semisimple R-module. Then, $\Gamma(_RM) = \emptyset$.

Proof. Since Ann(M) is a maximal ideal of R, M is vector space over R/Ann(M). Hence, the assertion follows easily from Proposition 2.3.

We are now in a good position to bring a generalization of [3, Theorem 2.2].

Theorem 2.6. Let M be an R-module. Then, $\Gamma(_RM)$ is finite if and only if either M is finite or a prime module. In particular, if $1 \leq |\Gamma(_RM)| < \infty$, then M is finite and is not a prime module.

Proof. (\Rightarrow): Suppose that $\Gamma(_RM)$ is finite and nonempty. Then, there are non-zero elements $x, y \in M$ such that $x \in \operatorname{Ann}(y)M$. Therefore, there exist $r_1, \ldots, r_n \in \operatorname{Ann}(y)$ and $z_1, \ldots, z_n \in M$ such that $x = r_1z_1 + \cdots + r_nz_n$. Since $x \neq 0$, we have $r_iz_i \neq 0$ for some $1 \leq i \leq n$. Let $L = r_iM$. Then $L \subseteq Z(_RM)$ is finite. If M is infinite, then there exists $x_0 \in L$ such that $A := \{m \in M | r_im = x_0\}$ is infinite. If m_0 is a fixed element of A, then $N := \{m_0 - m | m \in A, m \neq m_0\}$ is an infinite subset of A. For any element $m_0 - m \in N$, we have $r_i(m_0 - m) = 0$. Thus $x_0 - (m_0 - m)$ is an edge in $\Gamma(_RM)$ and hence $\Gamma(_RM)$ is infinite, a contradiction. Thus M must be finite.

(\Leftarrow): If *M* is finite, there is nothing to prove, also if *M* is prime, then the assertion follows from Proposition 2.3.

Corollary 2.7. Let M be an R-module such that $\Gamma(_RM) \neq \emptyset$. If every vertex of $\Gamma(_RM)$ has finite degree, then M is a finite module.

Proof. The assertion follows from the proof of the theorem 2.6. \Box

The following lemma has a key role in the proof of our main results in the sequel.

Lemma 2.8. Let M be an R-module, $x, y \in M$ and $r \in R$. If x-y is an edge in $\Gamma(_RM)$, then either $ry \in \{0, x\}$ or x-ry is an edge in $\Gamma(_RM)$.

Proof. Let x and y be two adjacent vertices of $\Gamma(_R M)$ and let $ry \notin \{0, x\}$. If $x \in \operatorname{Ann}(y)M$, then $x \in \operatorname{Ann}(ry)M$, and hence, x and ry are adjacent. If $y \in \operatorname{Ann}(x)M$, then $ry \in \operatorname{Ann}(x)M$, and hence, x and ry are adjacent. This completes the proof. \Box

The next result is a generalization of [3, Theorem 2.3].

Theorem 2.9. Let M be an R-module. Then $\Gamma(_RM)$ is connected with diam $(\Gamma(_RM)) \leq 3$.

Proof. Let x and y be distinct vertices of $\Gamma(_R M)$. If either $x \in \operatorname{Ann}(y)M$ or $y \in \operatorname{Ann}(x)M$, then d(x, y) = 1. So, suppose that $d(x, y) \neq 1$. There

exists a vertex x' of $\Gamma(_R M)$ such that $x \in \operatorname{Ann}(x')M$ or $x' \in \operatorname{Ann}(x)M$. We consider the following two cases:

Case 1: There exists a vertex y' of $\Gamma(_RM)$ such that $y \in \operatorname{Ann}(y')M$. Then, there exist $r_1, \ldots, r_n \in \operatorname{Ann}(y')$ and $z_1, \ldots, z_n \in M$ such that $y = r_1 z_1 + \cdots + r_n z_n$. If $r_i x' = 0$ for all i, then x - x' - y is a path of length 2. If $r_i x' \neq 0$ for some $1 \leq i \leq n$, then by Lemma 2.8, $x - r_i x' - y' - y$ is a walk, and hence $d(x, y) \leq 3$.

Case 2: There exists a vertex y' of $\Gamma(_RM)$ such that $y' \in \operatorname{Ann}(y)M$. Then, there exist $r_1, \ldots, r_n \in \operatorname{Ann}(y)$ and $z_1, \ldots, z_n \in M$ such that $y' = r_1 z_1 + \cdots + r_n z_n$. If $r_i x = 0$ for all i, then x - y' - y is a path of length 2. If $r_i x \neq 0$ for some $1 \leq i \leq n$, then $x - x' - r_i x - y$ is a walk, and hence $d(x, y) \leq 3$.

Theorem 2.10. Let M be an R-module. If $\Gamma(_RM)$ contains a cycle, then

$$\operatorname{gr}(\Gamma(_R M)) \le 4.$$

Proof. Let $x_0 - x_1 - x_2 - \cdots - x_n - x_0$ be a cycle in $\Gamma(RM)$. If $n \leq 4$, we are done. So, suppose that $n \geq 5$. We consider the following two cases:

Case 1: $x_{n-1} \in \operatorname{Ann}(x_n)M$. Then, there exist $r_1, \ldots, r_m \in \operatorname{Ann}(x_n)$ and $z_1, \ldots, z_m \in M$ such that $x_{n-1} = r_1z_1 + \cdots + r_mz_m$. If $r_ix_1 = 0$ for all $1 \leq i \leq n$, then $x_1 - x_{n-1}$ is an edge, and hence $x_1 - x_{n-1} - x_n - x_0$ $-x_1$ is a cycle of length 4. Suppose that $r_ix_1 \neq 0$ for some $1 \leq i \leq m$. If $r_ix_1 = x_0$, then $x_0 - x_2$ is an edge and hence $x_0 - x_1 - x_2 - x_0$ is a cycle of length 3. If $r_ix_1 = x_n$, then $x_2 - x_n$ is an edge and hence $x_2 - x_1 - x_0 - x_n - x_2$ is a cycle of length 4. So, suppose that $r_ix_1 \notin \{x_0, x_n\}$. Then $x_0 - r_ix_1 - x_n - x_0$ is a cycle of length 3.

Case 2: $x_n \in \operatorname{Ann}(x_{n-1})M$. Then, there exist $r_1, \ldots, r_m \in \operatorname{Ann}(x_n)$ and $z_1, \ldots, z_m \in M$ such that $x_n = r_1 z_1 + \cdots + r_m z_m$. If $r_i x_1 = 0$ for all $1 \leq i \leq m$, then $x_1 - x_n$ is an edge and hence $x_n - x_0 - x_1 - x_n$ is a cycle of length 3. Suppose that $r_i x_1 \neq 0$ for some $1 \leq i \leq m$. If $r_i x_1 = x_0$, then $x_0 - x_2$ is an edge and hence $x_0 - x_1 - x_2 - x_0$ is a cycle of length 3. If $r_i x_1 = x_{n-1}$, then $x_0 - x_{n-1}$ is an edge and hence $x_0 - x_n - x_{n-1} - x_0$ is a cycle of length 3. So, suppose that $r_i x_1 \notin \{x_0, x_{n-1}\}$. Then, $x_0 - r_i x_1 - x_{n-1} - x_n - x_0$ is a cycle of length 4.

In the following theorem, we answer to the question that "when does $\Gamma(_R M)$ contain a cycle?".

Theorem 2.11. Let M be an R-module. If $\Gamma(_RM)$ has a path of length four, then $\Gamma(_RM)$ has a cycle.

Proof. Let $x_1 - x_2 - x_3 - x_4 - x_5$ be a path of length four. We consider the following two cases:

Case 1: $x_1 \in Ann(x_2)M$. Then, there exist $r_1, \ldots, r_n \in Ann(x_2)$ and $y_1, \ldots, y_n \in M$ such that $x_1 = r_1 y_1 + \cdots + r_n y_n$. If $r_i x_4 = 0$ for all $1 \leq i \leq n$, then x_1 and x_4 are adjacent and hence $x_1 - x_2 - x_3 - x_4 - x_1$ is a cycle. Now, let $z := r_i x_4 \neq 0$ for some $1 \leq i \leq n$. Then, we have the following subcases: Subcase 1.1: $z = x_1$. Then, $x_1 - x_2 - x_3 - x_4 - x_5 - x_1$ is a cycle. Subcase 1.2: $z = x_2$. Then, $x_2 - x_3 - x_4 - x_5 - x_2$ is a cycle. Subcase 1.3: $z = x_3$. Then, $x_3 - x_4 - x_5 - x_3$ is a cycle. Subcase 1.4: $z = x_4$. Then, $x_2 - x_3 - x_4 - x_2$ is a cycle. Subcase 1.5: $z = x_5$. Then, $x_2 - x_3 - x_4 - x_2$ is a cycle. Subcase 1.6: $z \notin \{x_1, x_2, x_3, x_4, x_5\}$. Then, $x_2 - x_3 - x_4 - x_5 - z - x_2$ is a cycle. **Case 2**: $x_2 \in \text{Ann}(x_1)M$. So there exist $r_1, \ldots, r_n \in \text{Ann}(x_1)$ and $y_1, \ldots, y_n \in M$ and such that $x_2 = r_1 y_1 + \cdots + r_n y_n$. If $r_i x_4 = 0$ for all $1 \leq i \leq n$, then x_2 and x_4 are adjacent and hence $x_2 - x_3 - x_4 - x_2$ is a cycle. Now, let $z := r_i x_4 \neq 0$ for some $1 \leq i \leq n$. Then, we have the following subcases: Subcase 2.1: $z = x_1$. Then, $x_1 - x_2 - x_3 - x_1$ is a cycle. Subcase 2.2: $z = x_2$. Then, $x_2 - x_3 - x_4 - x_5 - x_2$ is a cycle. Subcase 2.3: $z = x_3$. Then, $x_3 - x_4 - x_5 - x_3$ is a cycle. Subcase 2.4: $z = x_4$. Then, $x_1 - x_2 - x_3 - x_4 - x_1$ is a cycle. Subcase 2.5: $z = x_5$. Then, $x_1 - x_2 - x_3 - x_4 - x_5 - x_1$ is a cycle. Subcase 2.6: $z \notin \{x_1, x_2, x_3, x_4, x_5\}$. Then, $x_3 - x_4 - x_5 - z - x_3$ is a cycle.

So, the proof is complete.

3. BIPARTITE GRAPHS

In [17], the authors showed that a zero-divisor semigroup graph is bipartite if and only if it contains no triangles. The following theorem is an analogous of this result.

Theorem 3.1. Let M be an R-module. Then $\Gamma(_RM)$ is bipartite if and only if it contains no triangles.

Proof. \Rightarrow : Follows immediately from the fact that any bipartite graph contains no cycles of odd length.

 \Leftarrow : We will show that for every cycle of odd length $2n+1 \ge 5$, there exists a cycle with length 2m+1 such that m < n. Suppose that $n \ge 2$ and $x_1 - x_2 - \cdots - x_{2n+1} - x_1$ is a cycle with odd length 2n+1. Since x_1 is adjacent to x_2 , we have the following two cases:

Case 1: $x_1 \in \operatorname{Ann}(x_2)M$. So, there exist $r_1, \ldots, r_t \in \operatorname{Ann}(x_2)$ and $y_1, \ldots, y_t \in M$ such that $x_1 = r_1y_1 + \cdots + r_ty_t$. If $r_ix_4 = 0$ for all $1 \le i \le t$, then x_1 is adjacent to x_4 and hence $x_1 - x_4 - x_5 - \cdots - x_{2n+1} - x_1$ is

a cycle with odd length 2n - 1. Now, suppose that $r_j x_4 \neq 0$ for some $1 \leq j \leq t$. Let $z := r_j x_4$. We consider the following three subcases: Subcase 1.1: $z = x_2$. Then $x_1 - z - x_5 - \cdots - x_{2n+1} - x_1$ is a cycle with odd length 2n - 1.

Subcase 1.2: $z = x_3$. Then $x_3 - x_4 - x_5 - x_3$ is a triangle.

Subcase 1.3: $z \notin \{x_2, x_3\}$. Then $x_3 - z - x_2 - x_3$ is a triangle.

Case 2: $x_2 \in \operatorname{Ann}(x_1)M$. So, there exist $r_1, \ldots, r_t \in \operatorname{Ann}(x_1)$ and $y_1, \ldots, y_t \in M$ such that $x_2 = r_1y_1 + \cdots + r_ty_t$. If $r_ix_4 = 0$ for all $1 \leq i \leq t$, then x_2 is adjacent to x_4 and hence we have a triangle. Now suppose that $r_jx_4 \neq 0$ for some $1 \leq j \leq t$. Let $z := r_jx_4$. Then, $x_1 - z - x_5 - \cdots - x_{2n+1} - x_1$ is a cycle with odd length 2n - 1.

So, by induction on n, $\Gamma({}_{R}M)$ contains a triangle.

We recall that an *R*-module *M* is called *reduced* if whenever $r^2x = 0$ (where $r \in R$ and $x \in M$), then rx = 0. A submodule *N* of an *R*-module *M* is called *essential* (or *large*) in *M* if, for every non-zero submodule *K* of *M*, we have $N \cap K \neq 0$.

Theorem 3.2. Let M be a reduced R-module satisfying DCC on cyclic submodules and let $\Gamma(_R M)$ be a bipartite graph with parts V_1 and V_2 . Let $\overline{V}_1 = V_1 \cup \{0\}$ and $\overline{V}_2 = V_2 \cup \{0\}$. Then

- (1) \overline{V}_1 and \overline{V}_2 are submodules of M,
- (2) $\overline{V}_1 \oplus \overline{V}_2$ is an essential submodule of M.

Proof. (1): We will show that \overline{V}_1 is a submodules of M. Let $x, y \in \overline{V}_1$. First we show that $x - y \in \overline{V}_1$. If x = y, we are done. Now, let $x \neq y$. If x or y is equal to zero, then $x - y \in \overline{V}_1$. So, we may assume that neither x nor y is zero. There exist $x', y' \in V_2$ such that x, y are adjacent to x', y', respectively. We consider the following two cases:

Case 1: $x' \in \operatorname{Ann}(x)M$ and $y' \in \operatorname{Ann}(y)M$. Without loss of generality, we may assume that $x' = rx_1$ and $y' = sy_1$, where $r \in \operatorname{Ann}(x)$, $s \in \operatorname{Ann}(y)$ and $x_1, y_1 \in M$. Let $z := srx_1$. We claim that $z \neq 0$. If z = 0, then x' and y' are adjacent and hence x' = y', since $x', y' \in V_2$. It then follows that $s^2y_1 = srx_1 = 0$ and hence $y' = sy_1 = 0$, which is a contradiction. So, $z \neq 0$. Since $z \in \operatorname{Ann}(x)M \cap \operatorname{Ann}(y)M$, we must have $z \in V_2$. If z = x - y, then $r^2s^2x_1 = rsx - rsy = 0$. Since M is reduced, we have z = 0, a contradiction. So $z \neq x - y$. On the other hand, $z \in \operatorname{Ann}(x - y)M$, and hence $x - y \in \overline{V_1}$.

Case 2: $x \in \operatorname{Ann}(x')M$ and $y' \in \operatorname{Ann}(y)M$. Then there exist are $r_1, \ldots, r_n \in \operatorname{Ann}(x')$ and $x_1, \ldots, x_n \in M$ such that $x = r_1x_1 + \cdots + r_nx_n$ and again without loss of generality, we may assume that $y' = sy_1$, for some $s \in \operatorname{Ann}(y)$ and $y_1 \in M$. Let $z_0 := sx$. If $z_0 = 0$, then $0 \neq y' \in \operatorname{Ann}(x-y)M$ and hence $x - y \in \overline{V}_1$. Now, let $z_0 \neq 0$.

Consider the following ascending chain of cyclic submodules:

$$Rz_0 \supseteq Rr_1z_0 \supseteq Rr_1^2z_0 \supseteq \cdots$$
.

Suppose that $Rz_0 = Rr_1z_0$. Then, there exists $a \in R$ such that $z_0 = ar_1z_0$. Since M is reduced, $z_0 \neq y$ and hence $z_0 - y$ is an edge in V_1 , which is a contradiction. Let $n_1 \geq 1$ be the smallest integer number such that $Rr_1^{n_1}z_0 = Rr_1^{n_1+1}z_0$. There exists $a_1 \in R$ such that $r_1^{n_1}z_0 = a_1r_1^{n_1+1}z_0$. Set $z_1 = (r_1^{n_1-1} - a_1r_1^{n_1})z_0$. Then, $z_1 \neq 0$ and we have the following ascending chain of cyclic submodules:

$$Rz_1 \supset Rr_1z_1 \supseteq Rr_1^2z_1 \supseteq \cdots$$

Let $n_2 \geq 1$ be the smallest integer number such that $Rr_2^{n_2}z_1 = Rr_2^{n_2+1}z_1$. There exists $a_2 \in R$ such that $r_2^{n_2}z_1 = a_2r_2^{n_2+1}z_1$. Set $z_2 = (r_2^{n_2-1} - a_2r_2^{n_2})z_1$. By continuing this process, we have $z_n = (r_n^{n_n-1} - a_nr_n^{n_n})z_{n-1}$. We have $z_n \neq 0$ and

$$z_n \in (\operatorname{Ann}(r_1x_1) \cap \dots \cap \operatorname{Ann}(r_nx_n) \cap \operatorname{Ann}(y))M$$

$$\subseteq (\operatorname{Ann}(r_1x_1 + \dots r_nx_n) \cap (\operatorname{Ann}(y))M$$

$$\subseteq (\operatorname{Ann}(x) \cap \operatorname{Ann}(y))M$$

$$\subset \operatorname{Ann}(x - y)M.$$

It follows that $z_n \in V_2$ and hence $x - y \in \overline{V}_1$. **Case 3**: $x' \in \operatorname{Ann}(x)M$ and $y \in \operatorname{Ann}(y')M$. The proof of this case is similar to that of Case 2.

Case 4: $x \in Ann(x')M$ and $y \in Ann(y')M$. Then there exist $r_1, \ldots, r_n \in Ann(x')$ and $x_1, \ldots, x_n \in M$ such that $x = r_1x_1 + \cdots + r_nx_n$. Let $z_0 := y'$. Consider the following ascending chain of cyclic submodules:

$$Rz_0 \supseteq Rr_1z_0 \supseteq Rr_1^2z_0 \supseteq \cdots$$

Suppose that $Rz_0 = Rr_1z_0$. Then, there exists $a \in R$ such that $z_0 = ar_1z_0$. Since M is reduced, $z_0 \neq y'$ and hence $z_0 - y'$ is an edge in V_2 , which is a contradiction. Let $n_1 \geq 1$ be the smallest integer number such that $Rr_1^{n_1}z_0 = Rr_1^{n_1+1}z_0$. There exists $a_1 \in R$ such that $r_1^{n_1}z_0 = a_1r_1^{n_1+1}z_0$. Set $z_1 = (r_1^{n_1-1} - a_1r_1^{n_1})z_0$. We have $z_1 \neq 0$ and the following ascending chain of cyclic submodules:

$$Rz_1 \supset Rr_1z_1 \supseteq Rr_1^2z_1 \supseteq \cdots$$

Let $n_2 \geq 1$ be the smallest integer number such that $Rr_2^{n_2}z_1 = Rr_2^{n_2+1}z_1$. There exists $a_2 \in R$ such that $r_2^{n_2}z_1 = a_2r_2^{n_2+1}z_1$. Set $z_2 = (r_2^{n_2-1} - a_2r_2^{n_2})z_1$. By continuing this process we have $z_n = (r_n^{n_n-1} - a_nr_n^{n_n})z_{n-1}$. We have $x \in \operatorname{Ann}(z_n)M$, $r_i \in \operatorname{Ann}(z_n)$, for all $1 \leq i \leq n$. We also have $y \in \operatorname{Ann}(y')M \subseteq \operatorname{Ann}(z_n)M$. Therefore, $z_n \in V_2$. If $z_n \neq x - y$, then

 $x-y \in V_1$, since $x-y \in Ann(z_n)M$. If $z_n = x-y$, then $x \in Ann(x-y)$ and $y \in Ann(x-y)$. It follows that $x-y \in V_1$.

Now, let $r \in R$ and $x \in V_1$ such that $rx \neq 0$. We show that $rx \in V_1$. There exists $y \in V_2$ such x is adjacent to y. We have the following two cases:

Case 1: $y \in \operatorname{Ann}(x)M$. Without loss of generality, we may assume that $y = r_1z_1$, for some $r_1 \in \operatorname{Ann}(x)$ and $z_1 \in M$. If $rx = r_1z_1$, then $r_1^2z_1 = rr_1x = 0$ and hence rx = 0, which is a contradiction. So, $rx \neq r_1z_1$. Since rx is adjacent to r_1z_1 and $r_1z_1 \in V_2$, we have $rx \in V_1$. **Case 2**: $x \in \operatorname{Ann}(x)M$. Then there exist $r_1, \ldots, r_n \in \operatorname{Ann}(x)$ and $z_1, \ldots, z_n \in M$ such that $x = r_1z_1 + \cdots + r_nz_n$. We may assume $r_iz_i \neq 0$ for all $1 \leq i \leq n$. Let $1 \leq i \leq n$. We claim that $r_iz_i \in V_1$. If $r_iz_i = y$, then $r_i^2z_i = 0$, and hence $r_iz_i = 0$, a contradiction. Since r_iz_i is adjacent to y, we must have $r_iz_i \in V_1$. So, $x = r_1z_1 + \cdots + r_nz_n \in \overline{V_1}$. It then follows that $\overline{V_1}$ is a submodule of M and a similar argument shows that $\overline{V_2}$ is a submodule of M.

(2): Let $x \in M \setminus (\overline{V}_1 \oplus \overline{V}_2)$. Since $\Gamma(_RM)$ is bipartite, there exist $x_0, y_0 \in \overline{V}_1 \cup \overline{V}_2$ such that $x_0 \in \operatorname{Ann}(y_0)M$. So, there exist $r_1, \ldots, r_n \in \operatorname{Ann}(y_0)$ and $x_1, \ldots, x_n \in M$ such that $x_0 = r_1x_1 + \cdots + r_nx_n$. There exists $1 \leq i \leq n$ such that $r_ix_i \neq 0$. Since M is reduced, the assumption $r_ix = 0$ implies that $x \in V_1 \cup V_2$, which is a contradiction. So, $r_ix \neq 0$. Consider the following ascending chain of cyclic submodules:

$$Rx \supseteq Rr_i x \supseteq Rr_i^2 x \supseteq \cdots$$
.

Suppose that $Rx = Rr_i x$. Then, $x \in V_1 \cup V_2$, which is a contradiction. Let $n \ge 1$ be the smallest integer number such that $Rr_i^n x = Rr_i^{n+1} x$. There exists $a \in R$ such that $r_i^n x = ar_i^{n+1} x$. Set $z = (r_i^{n-1} - ar_i^n) x$. We have $0 \ne z \in (V_1 \cup V_2)$ and so $\overline{V}_1 \oplus \overline{V}_2$ is an essential submodule of M.

Theorem 3.3. Let M be a reduced R-module satisfying DCC on cyclic submodules. If $\Gamma(_RM)$ is a bipartite graph, then it is a complete bipartite graph.

Proof. Let $\Gamma(_R M)$ be a bipartite graph with parts V_1 and V_2 . Let $x \in V_1$ and $y \in V_2$. We will show that x and y are adjacent. We consider the following three cases:

Case 1: $\operatorname{Ann}(x) \not\subseteq \operatorname{Ann}(y)$. Let $r \in \operatorname{Ann}(x)$ such that $r \notin \operatorname{Ann}(y)$. If Ry = Rry, then y = ray for some $a \in R$ and hence x is adjacent to y. Now, suppose that $Ry \neq Rry$. Consider the following ascending chain of cyclic submodules:

$$Ry \supseteq Rry \supseteq Rr^2 y \supseteq \cdots$$
.

Let $n \ge 1$ be the smallest integer number such that $Rr^n y = Rr^{n+1}y$. There exists $b \in R$ such that $r^n y = br^{n+1}y$. Set $z = (r^{n-1} - br^n)y$. By the definition of n, we have $0 \ne z \in V_2$. Now, we consider the following two subcases:

Subcase 1.1: z = ry. Then, $r^2y = 0$ and hence z = 0, which is a contradiction.

Subcase 1.2: $z \neq ry$. Then, z and ry are adjacent vertices of V_2 , which is again a contradiction.

Case 2: Ann $y \not\subseteq$ Ann(x). The proof of this case is similar to that of Case 1.

Case 3: $\operatorname{Ann}(x) = \operatorname{Ann}(y)$. There exists $\alpha \in V_2$ such that α is adjacent to x. Since $\alpha, y \in V_2$, the assumption $\alpha \in \operatorname{Ann}(x)M = \operatorname{Ann}(y)M$, implies that $\alpha = y$. Hence, x and y are adjacent. Now, suppose that $x \in \operatorname{Ann}(\alpha)M$. Then, there exist $r_1, \ldots, r_n \in \operatorname{Ann}(\alpha)$ and $x_1, \ldots, x_n \in M$ such that $x = r_1x_1 + \cdots + r_nx_n$. If $r_iy = 0$ for all $1 \leq i \leq n$, then x and y are adjacent, and we are done. Now, suppose that there exists $1 \leq i \leq n$ such that $r_iy \neq 0$. Since M is reduced, r_iy and α are adjacent vertices in V_2 , which is a contradiction. This completes the proof.

If $M = R = \mathbb{Z}_3 \times \mathbb{Z}_4$, then $\Gamma(_R M)$ is bipartite which is not complete bipartite. So, the reduced condition in Theorem 3.3 is essential. We have not found any example of a module M to show that the DCC condition in Theorem 3.3 is essential, which motivates to ask the following question.

Question 3.4. Let M be a reduced R-module such that $\Gamma(_RM)$ is a bipartite graph. Is $\Gamma(_RM)$ a complete bipartite graph?

In [4, Theorem 2.2], it has been proved that for a reduced commutative ring R, $\operatorname{gr}(R) = 4$ if and only if $\Gamma(R) = K^{m,n}$ with $m, n \geq 2$. In the following corollary, we prove an analogous result for $\Gamma(R)$.

Corollary 3.5. Let M be a reduced R-module satisfying DCC on cyclic submodules. Then, $\operatorname{gr}(\Gamma(_RM)) = 4$ if and only if $\Gamma(_RM) = K^{m,n}$ with $m, n \geq 2$.

Proof. Let $\operatorname{gr}(\Gamma(_RM)) = 4$. By Theorem 3.1, $\Gamma(_RM)$ has no cycle of odd length, and hence it is a bipartite graph. Now, by Theorem 3.3, we observe that $\Gamma(_RM)$ is a complete bipartite graph. Since $\Gamma(_RM)$ has a cycle of length four, we have $\Gamma(_RM) = K^{m,n}$ with $m, n \geq 2$. The converse is trivial.

In [4, Theorem 2.4], it has been proved that for a reduced commutative ring R, $\Gamma(R)$ is nonempty with $\operatorname{gr}(R) = \infty$ if and only if

 $\Gamma(R) = K^{1,n}$ for some $n \ge 1$. In the following corollary, we prove an analogous result for $\Gamma(RM)$.

Corollary 3.6. Let M be a reduced R-module satisfying DCC on cyclic submodules. Then, $gr(\Gamma(_RM)) = \infty$ if and only if $\Gamma(_RM)$ is a star graph.

Proof. Let $\operatorname{gr}(\Gamma(_RM)) = \infty$. Then, $\Gamma(_RM)$ has no cycle and hence it is a bipartite graph. By Theorem 3.3, $\Gamma(_RM)$ is a complete bipartite graph. Let $\Gamma(_RM) = K^{m,n}$, where $m, n \geq 1$. Since $\Gamma(_RM)$ has no cycle, then either m = 1 or n = 1, which implies that $\Gamma(_RM)$ is a star graph. The converse is trivial.

4. Zero-divisor graphs of free modules

We recall that an R-module F is called *free* if it is isomorphic to a direct sum of copies of R. We write $R^{(I)}$ for the direct sum $\bigoplus_{i \in I} R_i$, where each R_i is a copy of R, and I is an arbitrary indexing set. If I is a finite set with n elements, then the direct sum and the direct product coincide; in this case, we write R^n for $R^{(I)} = R \times \cdots \times R$ (n times).

We begin this section with the following useful and evident proposition.

Proposition 4.1. Let $_{R}F = R^{(I)}$ be a free *R*-module and $(x_{i})_{I}, (y_{i})_{I} \in Z^{*}(_{R}F)$. Then

- (1) $Z(_RF) = \{(x_i)_I \in F \mid \exists \ 0 \neq y \in R \text{ such that } yx_i = 0 \text{ for all } i \in I\},$
- (2) $(x_i)_I (y_i)_I$ is an edge in $\Gamma({}_RF)$ if and only if $x_iy_j = 0$ for all $i, j \in I$.

Theorem 4.2. Let $F = R^{(I)}$ be a free *R*-module. Then, $\Gamma({}_{R}F)$ is complete if and only if $F = R = \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $(Z(R))^{2} = 0$.

Proof. If $F = R = \mathbb{Z}_2 \times \mathbb{Z}_2$ or $(Z(R))^2 = 0$, then it is easy to see that $\Gamma(_R F)$ is complete.

Conversely, suppose that $\Gamma(RF)$ is complete. Let $i_0 \in I$ and x, y be two distinct elements of $Z^*(R)$. Let $x_i = y_i = 0$ for all $i \in I \setminus \{i_0\}, x_{i_0} = x$ and $y_{i_0} = y$. Then, $(x_i)_I, (y_i)_I \in Z^*(RF)$ and hence xy = 0. Thus, $\Gamma(R)$ is complete. Then, [3, Theorem 2.8] implies that $R = \mathbb{Z}_2 \times \mathbb{Z}_2$ or $(Z(R))^2 = 0$. We show that |I| = 1, if $R = \mathbb{Z}_2 \times \mathbb{Z}_2$. Suppose on the contrary that $|I| \ge 2$. Let i_1, i_2 be two distinct elements of I. Put

$$x_i := \begin{cases} (1,0) & \text{if } i = i_1, \\ (1,0) & \text{if } i = i_2, \\ (0,0) & \text{otherwise,} \end{cases}$$

and

$$y_i := \begin{cases} (1,0) & \text{if } i = i_1, \\ (0,0) & \text{otherwise.} \end{cases}$$

Then, $x := (x_i)_I, y := (y_i)_I \in Z^*({}_RF)$ and x and y are not adjacent in $\Gamma({}_RF)$, a contradiction. This completes the proof.

Let $F = R^{(I)}$. In the following three theorems, we study the relationship between the properties of $\Gamma(_R F)$ and $\Gamma(R)$.

Theorem 4.3. Let $F = R^n$ be a finitely generated free R-module. Let $a \in Z^*(R)$, $t = \deg_{\Gamma(R)} a$, $A = \{(x_1, \ldots, x_n) \in Z^*(RF) | x_i = 0 \text{ or } x_i = a\}$ and $x \in A$. Then,

$$\deg_{\Gamma(RF)}(x) = \begin{cases} (t+1)^n - 1 & \text{if } a^2 \neq 0, \\ (t+2)^n - 2 & \text{otherwise.} \end{cases}$$

Proof. Let $t = \deg_{\Gamma(R)}(a)$ and $N_{\Gamma(R)}(a) = \{a_1, \ldots, a_t\}$. If $a^2 \neq 0$, then

$$N_{\Gamma(RF)}(x) = \{(x_1, \dots, x_n) | x_i \in \{0, a_1, \dots, a_t\}\} \setminus \{0\}.$$

Therefore, $\deg_{\Gamma(RF)}(x) = |N_{\Gamma(RF)}(x)| = (t+1)^n - 1$. Now, suppose that $a^2 = 0$. Then,

$$N_{\Gamma(RF)}(x) = \{(x_1, \dots, x_n) | x_i \in \{0, a, a_1, \dots, a_t\}\} \setminus \{0, x\}.$$

Hence, $\deg_{\Gamma(RF)}(x) = |N_{\Gamma(RF)}(x)| = (t+2)^n - 2.$

Theorem 4.4. Let $F = R^{(I)}$ such that $|I| \ge 2$. Then

$$\operatorname{gr}(\Gamma(_R F)) = \begin{cases} \operatorname{gr}(\Gamma(R)) & \text{if } R \text{ is reduced,} \\ 3 & \text{otherwise.} \end{cases}$$

Proof. First suppose that R is not reduced. Then, there exists $0 \neq a \in R$ such that $a^2 = 0$. Let i_1, i_2 be two distinct elements of I. Put

$$x_i := \begin{cases} a & \text{if } i = i_1, \\ 0 & \text{otherwise,} \end{cases} \quad y_i := \begin{cases} a & \text{if } i = i_2, \\ 0 & \text{otherwise.} \end{cases}$$

and $z_i := a$ for all $i \in I$. Then $(x_i)_I - (y_i)_I - (z_i)_I - (x_i)_I$ is a cycle of length three and hence $\operatorname{gr}(\Gamma(_RF)) = 3$. Now, suppose that R is reduced. Let $a_1 - a_2 - \cdots - a_t - a_1$ be a cycle in $\Gamma(R)$. Let $j \in \{1, 2, \ldots, t\}$ and $i_0 \in I$. Put

$$x_i^j := \begin{cases} a_j & \text{if } i = i_0, \\ 0 & \text{otherwise} \end{cases}$$

Then, $(x_i^1)_I - (x_i^2)_I - \cdots - (x_i^t)_I - (x_i^1)_I$ is a cycle in $\Gamma(_RF)$ and hence, $\operatorname{gr}(\Gamma(R)) \leq \operatorname{gr}(\Gamma(_RF))$. Now, let

$$(x_i^1)_I - (x_i^2)_I - \cdots - (x_i^t)_I - (x_i^1)_I,$$

be a cycle in $\Gamma(F)$. For all $j \in \{1, 2, \ldots, t\}$, there exists $i_j \in I$ such that $x_{i_j}^j \neq 0$. Then, $x_{i_1}^1 - x_{i_2}^2 - \cdots - x_{i_t}^t - x_{i_1}^1$ is a cycle in $\Gamma(R)$ and hence, $\operatorname{gr}(\Gamma(RF)) \leq \operatorname{gr}(\Gamma(R))$. This completes the proof. \Box

A *clique* in a graph G is a subset of pairwise adjacent vertices. The supremum of the size of cliques in G, denoted by $\omega(G)$, is called the *clique number* of G.

Theorem 4.5. Let $F = R^n$ be a finitely generated free *R*-module. Then $\omega(\Gamma(_RF)) = \omega(\Gamma(R))$.

Proof. Let $\{(x_i^1)_I, (x_i^2)_I, \ldots, (x_i^t)_I\}$ be a clique in $\Gamma(RF)$. For each $1 \leq j \leq t$, there exists $i_j \in I$ such that $x_{i_j}^j \neq 0$. Then, $\{x_{i_1}^1, x_{i_2}^2, \ldots, x_{i_t}^t\}$ is a clique in $\Gamma(R)$ and hence $\omega(\Gamma(RF)) \leq \omega(\Gamma(R))$. Now, let $\{x_1, x_2, \ldots, x_t\}$ be a clique in $\Gamma(R)$. Let $1 \leq j \leq t$ and $i_0 \in I$. Put

$$x_i^j := \begin{cases} x_j & \text{if } i = i_0, \\ 0 & \text{otherwise.} \end{cases}$$

Then, $\{(x_i^1)_I, (x_i^2)_I, \ldots, (x_i^t)_I\}$ is a clique in $\Gamma(RF)$ and hence $\omega(\Gamma(R)) \leq \omega(\Gamma(RF))$. This completes the proof. \Box

The next theorem shows that the structure of a finitely generated free *R*-module *F* can be determined by $\Gamma(F)$. We denote the maximum degree of vertices of a graph *G* by $\Delta(G)$.

Theorem 4.6. Let M and N be two finitely generated free R-module. If $\Gamma(_RM) \cong \Gamma(_RN)$, then $M \cong N$ as R-modules.

Proof. Let $M = \mathbb{R}^m$ and $N = \mathbb{R}^n$, for some natural numbers m, n. Suppose that m > n. Let $x = (x_1, x_2, \ldots, x_n)$ be a vertex of $\Gamma(\mathbb{R}^N)$ such that $\deg_{\Gamma(\mathbb{R}^N)}(x) = \Delta(\Gamma(\mathbb{R}^N))$. Since $x \in Z^*(\Gamma(N))$, there exists $0 \neq a \in \mathbb{R}$ such that $ax_1 = ax_2 = \cdots = ax_n = 0$. Let $y = (x_1, x_2, \ldots, x_n, 0, \ldots, 0) \in M$. Then, the set

 $\left\{ (y_1, \ldots, y_n, z_1, \ldots, z_{m-n}) \in {}_R M | (y_1, \ldots, y_n) \in N_{\Gamma(RN)}(x), z_i \in \{0, a\} \right\},$ is a subset of $N_{\Gamma(RN)}(y)$. It then follows that $\Delta(\Gamma(RM)) \ge \deg_{\Gamma(RM)}(y)$ $> \deg_{\Gamma(RN)}(x) = \Delta(\Gamma(RN)),$ a contradiction. So, $m \le n$. A similar argument shows that $n \le m$. This completes the proof. \Box

5. Further Notes

In this short section, we study $\Gamma(RM)$, where M is a multiplication R-module. We recall that an R-module M is called a *multiplication* module if for each submodule N of M, there exists an ideal I of R such that N = IM. Let N = IM and K = JM, for some ideals I and J of R. The product of N and K, is denoted by N * K, and

defined by IJM. It is easy to see that the product of N and K, is independent of presentations of N and K. In [16], Lee and Varmazyar have given a generalization of the concept of zero-divisor graph of rings to multiplication modules. For a multiplication R-module M, they defined an undirected graph $\Gamma_*(RM)$, with vertices $\{0 \neq x \in M | Rx * Ry = 0 \text{ for some non-zero } y \in M\}$, where distinct vertices x and yare adjacent if and only if Rx * Ry = 0.

The following theorem shows that, in multiplication modules, this generalization and the one given in this paper are the same.

Theorem 5.1. Let M be a multiplication R-module. Then, $\Gamma(_RM) = \Gamma_*(_RM)$.

Proof. Let x and y be two non-zero element of M and suppose that Rx = IM and Ry = JM, for some ideals I and J of R. Let x-y be an edge in $\Gamma_*(_RM)$. Since Rx * Ry = 0, we have IJM = 0 and hence $I \subseteq \operatorname{Ann}(JM)$. It then follows that $IM \subseteq \operatorname{Ann}(JM)M$. Therefore, $Rx \subseteq \operatorname{Ann}(Ry)M$ and hence, x-y is an edge in $\Gamma(_RM)$.

Now, suppose that x-y is an edge in $\Gamma(_RM)$. It then follows that $Rx \subseteq \operatorname{Ann}(Ry)M$. So $IM \subseteq \operatorname{Ann}(JM)M$. In view of [26, Theorem 9], we have the following two cases:

Case 1: $I \subseteq \operatorname{Ann}(JM) + \operatorname{Ann}(M)$. In this case, $I \subseteq \operatorname{Ann}(JM)$, since $\operatorname{Ann}(M) \subseteq \operatorname{Ann}(JM)$. It then follows that IJM = 0 and hence, x - y is an edge in $\Gamma_*(_RM)$.

Case 2: $M = ((\operatorname{Ann}(JM) + \operatorname{Ann}(M)) : I)M$. In this case, we have $M = (\operatorname{Ann}(JM) : I)M$ and hence, $IJM = [(\operatorname{Ann}(JM) : I)I](JM) \subseteq \operatorname{Ann}(JM)JM = 0$. Therefore, x - y is an edge in $\Gamma_*(_RM)$. This completes the proof.

Acknowledgments

I would like to thank the Center of Excellence for Mathematics, Shahrekord University for financial support.

References

- D. F. Anderson, M. C. Axtell and J. Stickles, Zero-divisor graphs in commutative rings, *Commutative Algebra, Springer New York* (2011), 23–45.
- D. F. Anderson and A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl. 12(5) (2013), 1250212.
- D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217(2) (1999), 434–447.
- 4. D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210(2) (2007), 543–550.

- D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (1993), 500–514.
- M. Baziar, E. Momtahan and S. Safaeeyan, A zero-divisor graph for modulus with respect to their (first) dual, J. Algebra Appl. 12(2) (2013), 1250151.
- 7. I. Beck, Coloring of commutative rings, J. Algebra **116**(1) (1988), 208–226.
- M. Behboodi, Zero-divisor graph for modules over commutative rings, J. Commut. Algebra 4(2) (2012), 175–197.
- M. Behboodi and Z. Rakeei, The annihilator-ideal graph of commutative rings I, J. Algebra Appl. 10(4) (2011), 727–739.
- M. Behboodi and Z. Rakeei, The annihilator-ideal graph of commutative rings II, J. Algebra Appl. 10(4) (2011), 741–753.
- 11. N. Bloomfield, The zero divisor graphs of commutative local rings of order p^4 and p^5 , Comm. Algebra **41**(2) (2013), 765–775.
- J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, American Elsevier Publication Co., Inc., New York, 1976.
- J. Coykendall, S. Sather-Wagstaff, L. Sheppardson and S. Spiroff, On zero divisor graphs, *Progress in Commutative Algebra* 2 (2012), 241–299.
- 14. J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1978), 156-181.
- T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, Berlin-Heidelberg-New York, 1998.
- S. C. Lee and R. Varmazyar, Zero-divisor graphs of multiplication modules, Honam Math. J. 34(4) (2012), 571–584.
- D. Lu and T. Wu, On bipartite zero-divisor graphs, *Discrete Math.* 309(4) (2009), 755–762.
- H. R. Maimani, M. R. Pournaki, A. Tehranian and S. Yassemi, Graphs attached to rings revisited, Arab. J. Sci. Eng. 36 (2011), 997–1011.
- 19. H. R. Maimani, M. R. Pournaki and S. Yassemi, Zero-divisor graph with respect to an ideal, *Comm. Algebra* **34**(3) (2006), 923–929.
- R. L. McCasland, M. E. Moore and P. F. Smith, On the spectrum of a module over a commutative ring, *Comm. Algebra* 25(1) (1997), 79–103.
- M. J. Nikmehr and S. Khojasteh, A generalized ideal-based zero-divisor graph, J. Algebra Appl. 14(6) (2015), 1550079.
- 22. S. P. Redmond, Generalizations of the Zero-Divisor Graph of a Ring, Doctoral Dissertation, The University of Tennessee, Knoxville, 2001.
- S. Safaeeyan, M. Baziar and E. Momtahan, A generalization of the zero-divisor graph for modules, J. Korean Math. Soc. 51(1) (2014), 78–98.
- 24. R. Y. Sharp, *Steps in Commutative Algebra*, Cambridge University Press, Cambridge 1990.
- 25. J. G. Smith, Properties of Ideal-Based Zero-Divisor Graphs of Commutative Rings, Doctoral Dissertation, The University of Tennessee, Knoxville, 2014.
- P. F. Smith, Some remarks on multiplication modules, Arch. Math. 50 (1988), 223–235.

A. R. Naghipour

Department of Mathematics, Shahrekord University, P.O. Box 115, Shahrekord, Iran.

Email: naghipour@sci.sku.ac.ir