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THE ZERO-DIVISOR GRAPH OF A MODULE

A. R. NAGHIPOUR

Abstract. Let R be a commutative ring with identity and M an
R-module. In this paper, we associate a graph to M , say Γ(RM),
such that when M = R, Γ(RM) coincide with the zero-divisor
graph of R. Many well-known results by D. F. Anderson and P.
S. Livingston, have been generalized for Γ(RM). We will show
that Γ(RM) is connected with diam(Γ(RM)) ≤ 3, and if Γ(RM)
contains a cycle, then gr(Γ(RM)) ≤ 4. We will also show that
Γ(RM) = ∅ if and only if M is a prime module. Among other
results, it is shown that for a reduced module M satisfying DCC
on cyclic submodules, gr (Γ(RM)) = ∞ if and only if Γ(RM) is
a star graph. Finally, we study the zero-divisor graph of free R-
modules.

1. Introduction

Throughout the paper, R is a commutative ring with identity and

RM is a unitary R-module. Let Z(R) be the set of zero-divisors of
R. Associating graphs to algebraic structures has become an exciting
research topic in the last twenty years. There are many papers on
assigning a graph to a ring; see for instance, [2, 3, 6, 9, 10, 18]. Most of
the work has focused on the zero-divisor graph. The concept of a zero-
divisor graph of a ring R was first introduced by Beck in [7], where
he was mainly interested in coloring. This investigation of colorings
of a commutative ring was then continued by Anderson and Naseer
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in [5]. In [3], Anderson and Livingston associate a graph, Γ(R), with
vertices Z∗(R) := Z(R) \ {0}, the set of non-zero zero-divisors of R,
and for distinct x, y ∈ Z∗(R), the vertices x and y are adjacent if and
only if xy = 0. The zero-divisor graphs of commutative rings have
been extensively studied by many authors, and become a major field
of research; see for instance, [11, 22] and two survey papers [1, 13].
In [22], Redmond extended the zero-divisor graph of a commutative
ring to an ideal-based zero-divisor graph of a commutative ring. This
notion of zero-divisor graph was also studied in [19, 21, 25]. The graph
of zero-divisors for commutative rings has been generalized to modules
over commutative rings; see for instance, [8, 16, 23].

In this paper, we introduce a new (and natural) definition of the zero-
divisor graph for modules. As any suitable generalization, many of well
known results about zero-divisor graph of rings have been generalized
to modules.

The concept of a zero-divisor elements of a ring, has been generalized
to a module (see for example [24], or any other book in commutative
algebra):

Zdv(RM) = {r ∈ R|rx = 0 for some non-zero x ∈ M}.
Let N and K be two submodules of an R-module M . Then, (N :

K) := {r ∈ R|rK ⊆ N} is an ideal of R. The ideal (0 : M) is called
the annihilator of M and is denoted by Ann(M); for x ∈ M , we may
write Ann(x) for the ideal Ann(Rx). We give a new generalization of
the concept of zero-divisor elements in rings to modules:

Definition 1.1. Let M be an R-module. The set of the zero-divisors
of M is:

Z(RM) := {x ∈ M |x∈ Ann(y)M or y ∈Ann(x)M for some 0 ̸= y ∈M}.

We note that when M = R, this concept coincides with the set of
zero-divisor elements of R.

Definition 1.2. Let M be an R-module. We define an undirected
graph Γ(RM) with vertices Z∗(RM) := Z(RM)\{0}, where x−−y is an
edge between distinct vertices x and y if and only if x ∈ Ann(y)M or
y ∈ Ann(x)M .

We note that, the graph Γ(RM) is exactly a generalization of the
zero-divisor graph of R (i.e., Γ(RR) = Γ(R)). As usual, Z and Zn

will denote the integers and integers modulo n, respectively. The zero-
divisor graphs of some Z-modules are presented in figure1.

Let G be a graph with the vertex set V (G). For two distinct vertices
x and y of V (G) the notation x−−y means that x and y are adjacent.
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Figure 1. The zero-divisor graphs of some Z-modules.

For x ∈ V (G), we denote by NG(x) the set of all vertices of G adjacent
to x. Also, the size of NG(x) is denoted by degG(x) and it is called
the degree of x. A walk of length n in a graph G between two vertices
x, y is an ordered list of vertices x = x0, x1, ..., xn = y such that xi−1 is
adjacent to xi, for i = 1, ..., n. We denote this walk by

x0−−x1−− · · ·−−xn.

If the vertices in a walk are all distinct, it defines a path in G. A cycle
is a path x0−− · · ·−−xn with an extra edge x0−−xn. The girth of G,
denoted by gr(G), is the length of a shortest cycle in G (gr(G) = ∞,
if G has no cycle). A graph G is called connected if for any vertices x
and y of G there exists a path between x and y. For x, y ∈ V (G), the
distance between x and y, denoted by d(x, y), is the length of a shortest
path between x and y. The greatest distance between any two vertices
in G, is the diameter of G, denoted by diam(G).

A graph G is called bipartite if V (G) admits a partition into two
classes such that vertices in the same partition class must not be adja-
cent. A simple bipartite graph in which every two vertices from differ-
ent partition classes are adjacent, is called a complete bipartite graph.
Let Km,n denote the complete bipartite graph on two nonempty dis-
joint sets V1 and V2 with |V1| = m and |V2| = n (we allow m and n to
be infinite cardinals). A K1,n graph will often be called a star graph.
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The motivation of this paper is the study of interplay between the
graph-theoretic properties of Γ(RM) and the module-theoretic proper-
ties of RM . The organization of the paper is as follows: In Section 2 of
this paper, we give some basic properties of Γ(RM). In Section 3, we
determine when the graph Γ(RM) is bipartite. In Section 4, we study
Γ(RF ), where F is a free R-module. Finally, in Section 5, we study
Γ(RM), where M is a multiplication R-module.

We follow standard notations and terminologies from graph theory
[12] and module theory [15].

2. Basic Properties of Γ(RM)

We begin with the following evident proposition.

Proposition 2.1. Let M be an R-module and I be an ideal of R. Then

(1) Γ(RM) = Γ(R/Ann(M)M),
(2) Γ(R(R/I)) = Γ(R/I).

Let I be an arbitrary index set, and let {Mi|i ∈ I} be a family of
R-modules. The direct product

∏
i∈I Mi = {(xi)I |xi ∈ Mi} is an R-

module. We also note that a direct product of rings is a ring endowed
with componentwise operations. We are going to explain the relation-
ship between the zero-divisor graph of

∏
i∈I R/mi as R-module and as

ring.

Theorem 2.2. Let {mi|i ∈ I} be a family of maximal ideals of R and

RM =
∏

i∈I R/mi. Then

(1) Γ(RM) is a subgraph of Γ(
∏

i∈I R/mi),
(2) Γ(RM) = Γ(

∏
i∈I R/mi) if and only if the mi’s are distinct

ideals.

Proof. (1): Let (xi)I and (yi)I be two adjacent vertices of Γ(RM).
Without loss of generality, we may assume that (xi)I ∈ Ann(yi)IM .
Then, xi ∈ ∩j∈IAnn(yj)M ⊆ Ann(yi)M , for all i ∈ I. It then follows
that xiyi = 0 and hence (xi)I(yi)I = 0. So, (xi)I and (yi)I are two
adjacent vertices of Γ(

∏
i∈I R/mi).

(2)⇒: Suppose mr = ms, for some distinct elements r, s ∈ I. Let
xr := 1 and xi := 0 for all i ̸= r and let ys := 1 and yi := 0 for
all i ̸= s. Then, (xi)I(yi)I = 0, and hence (xi)I−−(yi)I is an edge in
Γ(
∏

i∈I R/mi). But (xi)I and (yi)I are not adjacent in Γ(RM), since
(xi)I ̸∈ Ann(yi)IM and (yi)I ̸∈ Ann(xi)IM .
⇐: Let (xi)I and (yi)I be two adjacent vertices of Γ(

∏
i∈I R/mi). We

have
Ann(xi)IM =

∩
ı∈I

Ann(xi)M =
∏
i∈I

Ni,
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where Ni = 0 if xi ̸= 0 and Ni = Mi if xi = 0. Since (xi)I(yi)I = 0,
the assumption yi ̸= 0 implies that xi = 0 and hence (yi)I ∈

∏
i∈I Ni.

It then follows that (xi)I and (yi)I are two adjacent vertices of Γ(RM).
Hence, the assertion follows from Part (1). □

It is well-known that a ring R is a domain if and only if the zero-
divisor graph Γ(R) is empty. The following proposition is a natural
generalization of this fact. We recall that an R-module M ̸= 0 is called
a prime module if its zero submodule is prime, i.e., rx = 0 for x ∈ M ,
r ∈ R implies that x = 0 or rM = (0) (see [14] and [20]).

Proposition 2.3. Let M be an R-module. Then the following are
equivalent:

(1) Γ(RM) = ∅ i.e., Z(M) = {0},
(2) Zdv(M) = Ann(M),
(3) M is a prime R-module.

Proof. (1)⇒(3) Suppose that Γ(RM) = ∅. If M is not a prime module,
then there exist r ∈ R \ Ann(M) and non-zero element x ∈ M such
that rx = 0. Since r ̸∈ Ann(M), there exists a non-zero element y ∈ M
such that ry ̸= 0. It follows that ry−−x is an edge of Γ(RM) and hence
Γ(RM) ̸= ∅, which is a contradiction.

(3)⇒(1) Suppose that M is a prime R-module. If Γ(RM) ̸= ∅,
then there exist x, y ∈ Z∗(RM) such that x ∈ Ann(y)M . Therefore,
there exist r1, . . . , rn ∈ Ann(y) and z1, . . . , zn ∈ M such that x =
r1z1 + · · · + rnzn. Since, riy = 0 for all 1 ≤ i ≤ n and M is prime, we
have riM = 0 for all 1 ≤ i ≤ n. This implies that x = 0, which is a
contradiction.

(2)⇔(3) Follows easily from the definition of prime modules. □
Corollary 2.4. Let R be a ring. Then R is a field if and only if
Γ(RM) = ∅ for every R-module M .

Proof. If R is field, then proposition 2.3 implies that Γ(RM) = ∅. Now,
suppose that Γ(RM) = ∅, for every R-module M . Let m be a non-zero
maximal ideal of R and 0 ̸= x ∈ m. Set M := R/m × R. Then,
(0, x) ∈ Ann(1 + m, 0)M . Therefore, (0, x) is adjacent to (1 + m, 0).
Thus, Γ(RM) ̸= ∅, which is a contradiction. Therefore, m = 0 and
hence R is a field. □

A semisimple module M is said to be homogeneous if M is a direct
sum of pairwise isomorphic simple submodules.

Corollary 2.5. Let M be a homogeneous semisimple R-module. Then,
Γ(RM) = ∅.
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Proof. Since Ann(M) is a maximal ideal of R, M is vector space over
R/Ann(M). Hence, the assertion follows easily from Proposition 2.3.

□
We are now in a good position to bring a generalization of [3, The-

orem 2.2].

Theorem 2.6. Let M be an R-module. Then, Γ(RM) is finite if and
only if either M is finite or a prime module. In particular, if 1 ≤
|Γ(RM)| < ∞, then M is finite and is not a prime module.

Proof. (⇒): Suppose that Γ(RM) is finite and nonempty. Then, there
are non-zero elements x, y ∈ M such that x ∈ Ann(y)M . Therefore,
there exist r1, . . . , rn ∈ Ann(y) and z1, . . . , zn ∈ M such that x =
r1z1 + · · · + rnzn. Since x ̸= 0, we have rizi ̸= 0 for some 1 ≤ i ≤ n.
Let L = riM . Then L ⊆ Z(RM) is finite. If M is infinite, then there
exists x0 ∈ L such that A := {m ∈ M |rim = x0} is infinite. If m0 is a
fixed element of A, then N := {m0 −m|m ∈ A,m ̸= m0} is an infinite
subset of A. For any element m0 −m ∈ N , we have ri(m0 −m) = 0.
Thus x0−−(m0 −m) is an edge in Γ(RM) and hence Γ(RM) is infinite,
a contradiction. Thus M must be finite.
(⇐): If M is finite, there is nothing to prove, also if M is prime, then
the assertion follows from Proposition 2.3. □
Corollary 2.7. Let M be an R-module such that Γ(RM) ̸= ∅. If every
vertex of Γ(RM) has finite degree, then M is a finite module.

Proof. The assertion follows from the proof of the theorem 2.6. □
The following lemma has a key role in the proof of our main results

in the sequel.

Lemma 2.8. Let M be an R-module, x, y ∈ M and r ∈ R. If x−−y
is an edge in Γ(RM), then either ry ∈ {0, x} or x−−ry is an edge in
Γ(RM).

Proof. Let x and y be two adjacent vertices of Γ(RM) and let ry ̸∈
{0, x}. If x ∈ Ann(y)M , then x ∈ Ann(ry)M , and hence, x and ry are
adjacent. If y ∈ Ann(x)M , then ry ∈ Ann(x)M , and hence, x and ry
are adjacent. This completes the proof. □

The next result is a generalization of [3, Theorem 2.3].

Theorem 2.9. Let M be an R-module. Then Γ(RM) is connected with
diam(Γ(RM)) ≤ 3.

Proof. Let x and y be distinct vertices of Γ(RM). If either x ∈ Ann(y)M
or y ∈ Ann(x)M , then d(x, y) = 1. So, suppose that d(x, y) ̸= 1. There
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exists a vertex x′ of Γ(RM) such that x ∈ Ann(x′)M or x′ ∈ Ann(x)M .
We consider the following two cases:
Case 1: There exists a vertex y′ of Γ(RM) such that y ∈ Ann(y′)M .
Then, there exist r1, . . . , rn ∈ Ann(y′) and z1, . . . , zn ∈ M such that
y = r1z1 + · · · + rnzn. If rix

′ = 0 for all i, then x−−x′−−y is a path
of length 2. If rix

′ ̸= 0 for some 1 ≤ i ≤ n, then by Lemma 2.8,
x−−rix

′−−y′−−y is a walk, and hence d(x, y) ≤ 3.
Case 2: There exists a vertex y′ of Γ(RM) such that y′ ∈ Ann(y)M .
Then, there exist r1, . . . , rn ∈ Ann(y) and z1, . . . , zn ∈ M such that
y′ = r1z1 + · · · + rnzn. If rix = 0 for all i, then x−−y′−−y is a path of
length 2. If rix ̸= 0 for some 1 ≤ i ≤ n, then x−−x′−−rix−−y is a walk,
and hence d(x, y) ≤ 3. □
Theorem 2.10. Let M be an R-module. If Γ(RM) contains a cycle,
then

gr(Γ(RM)) ≤ 4.

Proof. Let x0−−x1−−x2−− · · ·−−xn−−x0 be a cycle in Γ(RM). If n ≤ 4,
we are done. So, suppose that n ≥ 5. We consider the following two
cases:
Case 1: xn−1 ∈ Ann(xn)M . Then, there exist r1, . . . , rm ∈ Ann(xn)
and z1, . . . , zm ∈ M such that xn−1 = r1z1+ · · ·+ rmzm. If rix1 = 0 for
all 1 ≤ i ≤ n, then x1−−xn−1 is an edge, and hence x1−−xn−1−−xn−−x0

−−x1 is a cycle of length 4. Suppose that rix1 ̸= 0 for some 1 ≤ i ≤ m.
If rix1 = x0, then x0−−x2 is an edge and hence x0−−x1−−x2−−x0 is a
cycle of length 3. If rix1 = xn, then x2−−xn is an edge and hence
x2−−x1−−x0−−xn−−x2 is a cycle of length 4. So, suppose that rix1 ̸∈
{x0, xn}. Then x0−−rix1−−xn−−x0 is a cycle of length 3.
Case 2: xn ∈ Ann(xn−1)M . Then, there exist r1, . . . , rm ∈ Ann(xn)
and z1, . . . , zm ∈ M such that xn = r1z1+ · · ·+rmzm. If rix1 = 0 for all
1 ≤ i ≤ m, then x1−−xn is an edge and hence xn−−x0−−x1−−xn is a cycle
of length 3. Suppose that rix1 ̸= 0 for some 1 ≤ i ≤ m. If rix1 = x0,
then x0−−x2 is an edge and hence x0−−x1−−x2−−x0 is a cycle of length 3.
If rix1 = xn−1, then x0−−xn−1 is an edge and hence x0−−xn−−xn−1−−x0

is a cycle of length 3. So, suppose that rix1 ̸∈ {x0, xn−1}. Then,
x0−−rix1−−xn−1−−xn−−x0 is a cycle of length 4. □
In the following theorem, we answer to the question that “when does

Γ(RM) contain a cycle?”.

Theorem 2.11. Let M be an R-module. If Γ(RM) has a path of length
four, then Γ(RM) has a cycle.

Proof. Let x1−−x2−−x3−−x4−−x5 be a path of length four. We consider
the following two cases:
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Case 1: x1 ∈ Ann(x2)M . Then, there exist r1, . . . , rn ∈ Ann(x2) and
y1, . . . , yn ∈ M such that x1 = r1y1 + · · · + rnyn. If rix4 = 0 for all
1 ≤ i ≤ n, then x1 and x4 are adjacent and hence x1−−x2−−x3−−x4−−x1

is a cycle. Now, let z := rix4 ̸= 0 for some 1 ≤ i ≤ n. Then, we have
the following subcases:
Subcase 1.1: z = x1. Then, x1−−x2−−x3−−x4−−x5−−x1 is a cycle.
Subcase 1.2: z = x2. Then, x2−−x3−−x4−−x5−−x2 is a cycle.
Subcase 1.3: z = x3. Then, x3−−x4−−x5−−x3 is a cycle.
Subcase 1.4: z = x4. Then, x2−−x3−−x4−−x2 is a cycle.
Subcase 1.5: z = x5. Then, x2−−x3−−x4−−x2 is a cycle.
Subcase 1.6: z ̸∈ {x1, x2, x3, x4, x5}. Then, x2−−x3−−x4−−x5−−z−−x2 is
a cycle.
Case 2: x2 ∈ Ann(x1)M . So there exist r1, . . . , rn ∈ Ann(x1) and
y1, . . . , yn ∈ M and such that x2 = r1y1 + · · ·+ rnyn. If rix4 = 0 for all
1 ≤ i ≤ n, then x2 and x4 are adjacent and hence x2−−x3−−x4−−x2 is
a cycle. Now, let z := rix4 ̸= 0 for some 1 ≤ i ≤ n. Then, we have the
following subcases:
Subcase 2.1: z = x1. Then, x1−−x2−−x3−−x1 is a cycle.
Subcase 2.2: z = x2. Then, x2−−x3−−x4−−x5−−x2 is a cycle.
Subcase 2.3: z = x3. Then, x3−−x4−−x5−−x3 is a cycle.
Subcase 2.4: z = x4. Then, x1−−x2−−x3−−x4−−x1 is a cycle.
Subcase 2.5: z = x5. Then, x1−−x2−−x3−−x4−−x5−−x1 is a cycle.
Subcase 2.6: z ̸∈ {x1, x2, x3, x4, x5}. Then, x3−−x4−−x5−−z−−x3 is a
cycle.
So, the proof is complete. □

3. Bipartite Graphs

In [17], the authors showed that a zero-divisor semigroup graph is
bipartite if and only if it contains no triangles. The following theorem
is an analogous of this result.

Theorem 3.1. Let M be an R-module. Then Γ(RM) is bipartite if
and only if it contains no triangles.

Proof. ⇒: Follows immediately from the fact that any bipartite graph
contains no cycles of odd length.

⇐: We will show that for every cycle of odd length 2n+1 ≥ 5, there
exists a cycle with length 2m+1 such that m < n. Suppose that n ≥ 2
and x1−−x2−− · · ·−−x2n+1−−x1 is a cycle with odd length 2n+ 1. Since
x1 is adjacent to x2, we have the following two cases:
Case 1: x1 ∈ Ann(x2)M . So, there exist r1, . . . , rt ∈ Ann(x2) and
y1, . . . , yt ∈ M such that x1 = r1y1+· · ·+rtyt. If rix4 = 0 for all 1 ≤ i ≤
t, then x1 is adjacent to x4 and hence x1−−x4−−x5−− · · ·−−x2n+1−−x1 is
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a cycle with odd length 2n − 1. Now, suppose that rjx4 ̸= 0 for some
1 ≤ j ≤ t. Let z := rjx4. We consider the following three subcases:
Subcase 1.1: z = x2. Then x1−−z−−x5−− · · ·−−x2n+1−−x1 is a cycle
with odd length 2n− 1.
Subcase 1.2: z = x3. Then x3−−x4−−x5−−x3 is a triangle.
Subcase 1.3: z ̸∈ {x2, x3}. Then x3−−z−−x2−−x3 is a triangle.
Case 2: x2 ∈ Ann(x1)M . So, there exist r1, . . . , rt ∈ Ann(x1) and
y1, . . . , yt ∈ M such that x2 = r1y1 + · · · + rtyt. If rix4 = 0 for all
1 ≤ i ≤ t, then x2 is adjacent to x4 and hence we have a triangle.
Now suppose that rjx4 ̸= 0 for some 1 ≤ j ≤ t. Let z := rjx4. Then,
x1−−z−−x5−− · · ·−−x2n+1−−x1 is a cycle with odd length 2n− 1.
So, by induction on n, Γ(RM) contains a triangle. □
We recall that an R-module M is called reduced if whenever r2x = 0

(where r ∈ R and x ∈ M), then rx = 0. A submodule N of an
R-module M is called essential (or large) in M if, for every non-zero
submodule K of M , we have N ∩K ̸= 0.

Theorem 3.2. Let M be a reduced R-module satisfying DCC on cyclic
submodules and let Γ(RM) be a bipartite graph with parts V1 and V2.
Let V 1 = V1 ∪ {0} and V 2 = V2 ∪ {0}. Then

(1) V 1 and V 2 are submodules of M ,
(2) V 1 ⊕ V 2 is an essential submodule of M .

Proof. (1): We will show that V 1 is a submodules of M . Let x, y ∈ V 1.
First we show that x − y ∈ V 1. If x = y, we are done. Now, let
x ̸= y. If x or y is equal to zero, then x− y ∈ V 1. So, we may assume
that neither x nor y is zero. There exist x′, y′ ∈ V2 such that x, y are
adjacent to x′, y′, respectively. We consider the following two cases:
Case 1: x′ ∈ Ann(x)M and y′ ∈ Ann(y)M . Without loss of generality,
we may assume that x′ = rx1 and y′ = sy1, where r ∈ Ann(x), s ∈
Ann(y) and x1, y1 ∈ M . Let z := srx1. We claim that z ̸= 0. If z = 0,
then x′ and y′ are adjacent and hence x′ = y′, since x′, y′ ∈ V2. It
then follows that s2y1 = srx1 = 0 and hence y′ = sy1 = 0, which is a
contradiction. So, z ̸= 0. Since z ∈ Ann(x)M ∩ Ann(y)M , we must
have z ∈ V2. If z = x − y, then r2s2x1 = rsx − rsy = 0. Since M is
reduced, we have z = 0, a contradiction. So z ̸= x − y. On the other
hand, z ∈ Ann(x− y)M , and hence x− y ∈ V 1.
Case 2: x ∈ Ann(x′)M and y′ ∈ Ann(y)M . Then there exist are
r1, . . . , rn ∈ Ann(x′) and x1, . . . , xn ∈ M such that x = r1x1+· · ·+rnxn

and again without loss of generality, we may assume that y′ = sy1,
for some s ∈ Ann(y) and y1 ∈ M . Let z0 := sx. If z0 = 0, then
0 ̸= y′ ∈ Ann(x − y)M and hence x − y ∈ V 1. Now, let z0 ̸= 0.
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Consider the following ascending chain of cyclic submodules:

Rz0 ⊇ Rr1z0 ⊇ Rr21z0 ⊇ · · · .

Suppose that Rz0 = Rr1z0. Then, there exists a ∈ R such that z0 =
ar1z0. Since M is reduced, z0 ̸= y and hence z0−−y is an edge in V1,
which is a contradiction. Let n1 ≥ 1 be the smallest integer number
such that Rrn1

1 z0 = Rrn1+1
1 z0. There exists a1 ∈ R such that rn1

1 z0 =
a1r

n1+1
1 z0. Set z1 = (rn1−1

1 − a1r
n1
1 )z0. Then, z1 ̸= 0 and we have the

following ascending chain of cyclic submodules:

Rz1 ⊃ Rr1z1 ⊇ Rr21z1 ⊇ · · · .

Let n2 ≥ 1 be the smallest integer number such thatRrn2
2 z1 = Rrn2+1

2 z1.
There exists a2 ∈ R such that rn2

2 z1 = a2r
n2+1
2 z1. Set z2 = (rn2−1

2 −
a2r

n2
2 )z1. By continuing this process, we have zn = (rnn−1

n −anr
nn
n )zn−1.

We have zn ̸= 0 and

zn ∈ (Ann(r1x1) ∩ · · · ∩ Ann(rnxn) ∩ Ann(y))M

⊆ (Ann(r1x1 + . . . rnxn) ∩ (Ann(y))M

⊆ (Ann(x) ∩ Ann(y))M

⊆ Ann(x− y)M.

It follows that zn ∈ V2 and hence x− y ∈ V 1.
Case 3: x′ ∈ Ann(x)M and y ∈ Ann(y′)M . The proof of this case is
similar to that of Case 2.
Case 4: x ∈ Ann(x′)M and y ∈ Ann(y′)M . Then there exist r1, . . . , rn
∈ Ann(x′) and x1, . . . , xn ∈ M such that x = r1x1 + · · · + rnxn. Let
z0 := y′. Consider the following ascending chain of cyclic submodules:

Rz0 ⊇ Rr1z0 ⊇ Rr21z0 ⊇ · · · .

Suppose that Rz0 = Rr1z0. Then, there exists a ∈ R such that z0 =
ar1z0. Since M is reduced, z0 ̸= y′ and hence z0−−y′ is an edge in V2,
which is a contradiction. Let n1 ≥ 1 be the smallest integer number
such that Rrn1

1 z0 = Rrn1+1
1 z0. There exists a1 ∈ R such that rn1

1 z0 =
a1r

n1+1
1 z0. Set z1 = (rn1−1

1 −a1r
n1
1 )z0. We have z1 ̸= 0 and the following

ascending chain of cyclic submodules:

Rz1 ⊃ Rr1z1 ⊇ Rr21z1 ⊇ · · · .

Let n2 ≥ 1 be the smallest integer number such thatRrn2
2 z1 = Rrn2+1

2 z1.
There exists a2 ∈ R such that rn2

2 z1 = a2r
n2+1
2 z1. Set z2 = (rn2−1

2 −
a2r

n2
2 )z1. By continuing this process we have zn = (rnn−1

n −anr
nn
n )zn−1.

We have x ∈ Ann(zn)M , ri ∈ Ann(zn), for all 1 ≤ i ≤ n. We also have
y ∈ Ann(y′)M ⊆ Ann(zn)M . Therefore, zn ∈ V2. If zn ̸= x − y, then
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x−y ∈ V1, since x−y ∈ Ann(zn)M . If zn = x−y, then x ∈ Ann(x−y)
and y ∈ Ann(x− y). It follows that x− y ∈ V1.

Now, let r ∈ R and x ∈ V1 such that rx ̸= 0. We show that rx ∈ V1.
There exists y ∈ V2 such x is adjacent to y. We have the following two
cases:
Case 1: y ∈ Ann(x)M . Without loss of generality, we may assume
that y = r1z1, for some r1 ∈ Ann(x) and z1 ∈ M . If rx = r1z1, then
r21z1 = rr1x = 0 and hence rx = 0, which is a contradiction. So,
rx ̸= r1z1. Since rx is adjacent to r1z1 and r1z1 ∈ V2, we have rx ∈ V1.
Case 2: x ∈ Ann(x)M . Then there exist r1, . . . , rn ∈ Ann(x) and
z1, . . . , zn ∈ M such that x = r1z1 + · · · + rnzn. We may assume
rizi ̸= 0 for all 1 ≤ i ≤ n. Let 1 ≤ i ≤ n. We claim that rizi ∈ V1. If
rizi = y, then r2i zi = 0, and hence rizi = 0, a contradiction. Since rizi
is adjacent to y, we must have rizi ∈ V1. So, x = r1z1+ · · ·+rnzn ∈ V 1.
It then follows that V 1 is a submodule of M and a similar argument
shows that V 2 is a submodule of M .

(2): Let x ∈ M \ (V 1 ⊕ V 2). Since Γ(RM) is bipartite, there exist
x0, y0 ∈ V 1∪V 2 such that x0 ∈ Ann(y0)M . So, there exist r1, . . . , rn ∈
Ann(y0) and x1, . . . , xn ∈ M such that x0 = r1x1 + · · · + rnxn. There
exists 1 ≤ i ≤ n such that rixi ̸= 0. SinceM is reduced, the assumption
rix = 0 implies that x ∈ V1 ∪ V2, which is a contradiction. So, rix ̸= 0.
Consider the following ascending chain of cyclic submodules:

Rx ⊇ Rrix ⊇ Rr2i x ⊇ · · · .

Suppose that Rx = Rrix. Then, x ∈ V1 ∪ V2, which is a contradiction.
Let n ≥ 1 be the smallest integer number such that Rrni x = Rrn+1

i x.
There exists a ∈ R such that rni x = arn+1

i x. Set z = (rn−1
i − arni )x.

We have 0 ̸= z ∈ (V1 ∪ V2) and so V 1 ⊕ V 2 is an essential submodule
of M . □

Theorem 3.3. Let M be a reduced R-module satisfying DCC on cyclic
submodules. If Γ(RM) is a bipartite graph, then it is a complete bipar-
tite graph.

Proof. Let Γ(RM) be a bipartite graph with parts V1 and V2. Let x ∈ V1

and y ∈ V2. We will show that x and y are adjacent. We consider the
following three cases:
Case 1: Ann(x) ̸⊆ Ann(y). Let r ∈ Ann(x) such that r ̸∈ Ann(y). If
Ry = Rry, then y = ray for some a ∈ R and hence x is adjacent to y.
Now, suppose that Ry ̸= Rry. Consider the following ascending chain
of cyclic submodules:

Ry ⊇ Rry ⊇ Rr2y ⊇ · · · .
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Let n ≥ 1 be the smallest integer number such that Rrny = Rrn+1y.
There exists b ∈ R such that rny = brn+1y. Set z = (rn−1 − brn)y. By
the definition of n, we have 0 ̸= z ∈ V2. Now, we consider the following
two subcases:
Subcase 1.1: z = ry. Then, r2y = 0 and hence z = 0, which is a
contradiction.
Subcase 1.2: z ̸= ry. Then, z and ry are adjacent vertices of V2, which
is again a contradiction.
Case 2: Anny ̸⊆ Ann(x). The proof of this case is similar to that of
Case 1.
Case 3: Ann(x) = Ann(y). There exists α ∈ V2 such that α is adjacent
to x. Since α, y ∈ V2, the assumption α ∈ Ann(x)M = Ann(y)M ,
implies that α = y. Hence, x and y are adjacent. Now, suppose that
x ∈ Ann(α)M . Then, there exist r1, . . . , rn ∈ Ann(α) and x1, . . . , xn ∈
M such that x = r1x1 + · · · + rnxn. If riy = 0 for all 1 ≤ i ≤ n,
then x and y are adjacent, and we are done. Now, suppose that there
exists 1 ≤ i ≤ n such that riy ̸= 0. Since M is reduced, riy and α are
adjacent vertices in V2, which is a contradiction. This completes the
proof. □

If M = R = Z3 ×Z4, then Γ(RM) is bipartite which is not complete
bipartite. So, the reduced condition in Theorem 3.3 is essential. We
have not found any example of a module M to show that the DCC con-
dition in Theorem 3.3 is essential, which motivates to ask the following
question.

Question 3.4. Let M be a reduced R-module such that Γ(RM) is a
bipartite graph. Is Γ(RM) a complete bipartite graph?

In [4, Theorem 2.2], it has been proved that for a reduced commu-
tative ring R, gr(R) = 4 if and only if Γ(R) = Km,n with m,n ≥ 2. In
the following corollary, we prove an analogous result for Γ(RM).

Corollary 3.5. Let M be a reduced R-module satisfying DCC on cyclic
submodules. Then, gr(Γ(RM)) = 4 if and only if Γ(RM) = Km,n with
m,n ≥ 2.

Proof. Let gr(Γ(RM)) = 4. By Theorem 3.1, Γ(RM) has no cycle of
odd length, and hence it is a bipartite graph. Now, by Theorem 3.3,
we observe that Γ(RM) is a complete bipartite graph. Since Γ(RM)
has a cycle of length four, we have Γ(RM) = Km,n with m,n ≥ 2. The
converse is trivial. □

In [4, Theorem 2.4], it has been proved that for a reduced com-
mutative ring R, Γ(R) is nonempty with gr(R) = ∞ if and only if
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Γ(R) = K1,n for some n ≥ 1. In the following corollary, we prove an
analogous result for Γ(RM).

Corollary 3.6. Let M be a reduced R-module satisfying DCC on cyclic
submodules. Then, gr(Γ(RM)) = ∞ if and only if Γ(RM) is a star
graph.

Proof. Let gr(Γ(RM)) = ∞. Then, Γ(RM) has no cycle and hence it
is a bipartite graph. By Theorem 3.3, Γ(RM) is a complete bipartite
graph. Let Γ(RM) = Km,n, where m,n ≥ 1. Since Γ(RM) has no
cycle, then either m = 1 or n = 1, which implies that Γ(RM) is a star
graph. The converse is trivial. □

4. Zero-divisor graphs of free modules

We recall that an R-module F is called free if it is isomorphic to a
direct sum of copies of R. We write R(I) for the direct sum

⊕
i∈I Ri,

where each Ri is a copy of R, and I is an arbitrary indexing set. If I is
a finite set with n elements, then the direct sum and the direct product
coincide; in this case, we write Rn for R(I) = R× · · · ×R (n times).

We begin this section with the following useful and evident proposi-
tion.

Proposition 4.1. Let RF = R(I) be a free R-module and (xi)I , (yi)I ∈
Z∗(RF ). Then

(1) Z(RF ) = {(xi)I ∈ F |∃ 0 ̸= y ∈ R such that yxi = 0 for all i ∈
I},

(2) (xi)I−−(yi)I is an edge in Γ(RF ) if and only if xiyj = 0 for all
i, j ∈ I.

Theorem 4.2. Let F = R(I) be a free R-module. Then, Γ(RF ) is
complete if and only if F = R = Z2 × Z2 or (Z(R))2 = 0.

Proof. If F = R = Z2 × Z2 or (Z(R))2 = 0, then it is easy to see that
Γ(RF ) is complete.

Conversely, suppose that Γ(RF ) is complete. Let i0 ∈ I and x, y be
two distinct elements of Z∗(R). Let xi = yi = 0 for all i ∈ I\{i0}, xi0 =
x and yi0 = y. Then, (xi)I , (yi)I ∈ Z∗(RF ) and hence xy = 0. Thus,
Γ(R) is complete. Then, [3, Theorem 2.8] implies that R = Z2 ×Z2 or
(Z(R))2 = 0. We show that |I| = 1, if R = Z2 × Z2. Suppose on the
contrary that |I| ≥ 2. Let i1, i2 be two distinct elements of I. Put

xi :=

 (1, 0) if i = i1,
(1, 0) if i = i2,
(0, 0) otherwise,
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and

yi :=

{
(1, 0) if i = i1,
(0, 0) otherwise.

Then, x := (xi)I , y := (yi)I ∈ Z∗(RF ) and x and y are not adjacent in
Γ(RF ), a contradiction. This completes the proof. □

Let F = R(I). In the following three theorems, we study the rela-
tionship between the properties of Γ(RF ) and Γ(R).

Theorem 4.3. Let F = Rn be a finitely generated free R-module. Let
a ∈ Z∗(R), t = degΓ(R) a, A = {(x1, . . . , xn) ∈ Z∗(RF )|xi = 0 or xi =
a} and x ∈ A. Then,

degΓ(RF )(x) =

{
(t+ 1)n − 1 if a2 ̸= 0,
(t+ 2)n − 2 otherwise.

Proof. Let t = degΓ(R)(a) and NΓ(R)(a) = {a1, . . . , at}. If a2 ̸= 0, then

NΓ(RF )(x) = {(x1, . . . , xn)|xi ∈ {0, a1, . . . , at}} \ {0}.
Therefore, degΓ(RF )(x) = |NΓ(RF )(x)| = (t+1)n−1. Now, suppose that

a2 = 0. Then,

NΓ(RF )(x) = {(x1, . . . , xn)|xi ∈ {0, a, a1, . . . , at}} \ {0, x}.
Hence, degΓ(RF )(x) = |NΓ(RF )(x)| = (t+ 2)n − 2. □

Theorem 4.4. Let F = R(I) such that |I| ≥ 2. Then

gr(Γ(RF )) =

{
gr(Γ(R)) if R is reduced,
3 otherwise.

Proof. First suppose that R is not reduced. Then, there exists 0 ̸= a ∈
R such that a2 = 0. Let i1, i2 be two distinct elements of I. Put

xi :=

{
a if i = i1,
0 otherwise,

yi :=

{
a if i = i2,
0 otherwise.

and zi := a for all i ∈ I. Then (xi)I−−(yi)I−−(zi)I−−(xi)I is a cycle of
length three and hence gr(Γ(RF )) = 3. Now, suppose thatR is reduced.
Let a1−−a2−− · · ·−−at−−a1 be a cycle in Γ(R). Let j ∈ {1, 2, . . . , t} and
i0 ∈ I. Put

xj
i :=

{
aj if i = i0,
0 otherwise.

Then, (x1
i )I−−(x2

i )I−− · · ·−−(xt
i)I−−(x1

i )I is a cycle in Γ(RF ) and hence,
gr(Γ(R)) ≤ gr(Γ(RF )). Now, let

(x1
i )I−−(x2

i )I−− · · ·−−(xt
i)I−−(x1

i )I ,
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be a cycle in Γ(F ). For all j ∈ {1, 2, . . . , t}, there exists ij ∈ I such

that xj
ij

̸= 0. Then, x1
i1
−−x2

i2
−− · · ·−−xt

it−−x1
i1

is a cycle in Γ(R) and

hence, gr(Γ(RF )) ≤ gr(Γ(R)). This completes the proof. □
A clique in a graph G is a subset of pairwise adjacent vertices. The

supremum of the size of cliques in G, denoted by ω(G), is called the
clique number of G.

Theorem 4.5. Let F = Rn be a finitely generated free R-module. Then
ω(Γ(RF )) = ω(Γ(R)).

Proof. Let {(x1
i )I , (x

2
i )I , . . . , (x

t
i)I} be a clique in Γ(RF ). For each 1 ≤

j ≤ t, there exists ij ∈ I such that xj
ij
̸= 0. Then, {x1

i1
, x2

i2
, . . . , xt

it} is a

clique in Γ(R) and hence ω(Γ(RF )) ≤ ω(Γ(R)). Now, let {x1, x2, . . . , xt}
be a clique in Γ(R). Let 1 ≤ j ≤ t and i0 ∈ I. Put

xj
i :=

{
xj if i = i0,
0 otherwise.

Then, {(x1
i )I , (x

2
i )I , . . . , (x

t
i)I} is a clique in Γ(RF ) and hence ω(Γ(R)) ≤

ω(Γ(RF )). This completes the proof. □
The next theorem shows that the structure of a finitely generated

free R-module F can be determined by Γ(F ). We denote the maximum
degree of vertices of a graph G by ∆(G).

Theorem 4.6. Let M and N be two finitely generated free R-module.
If Γ(RM) ∼= Γ(RN), then M ∼= N as R-modules.

Proof. Let M = Rm and N = Rn, for some natural numbers m,n.
Suppose that m > n. Let x = (x1, x2, . . . , xn) be a vertex of Γ(RN)
such that degΓ(RN)(x) = ∆(Γ(RN)). Since x ∈ Z∗(Γ(N)), there ex-
ists 0 ̸= a ∈ R such that ax1 = ax2 = · · · = axn = 0. Let y =
(x1, x2, . . . , xn, 0, . . . , 0) ∈ M . Then, the set{
(y1, . . . , yn, z1, . . . , zm−n) ∈ RM |(y1, . . . , yn) ∈ NΓ(RN)(x), zi ∈ {0, a}

}
,

is a subset of NΓ(RN)(y). It then follows that ∆(Γ(RM)) ≥ degΓ(RM)(y)
> degΓ(RN)(x) = ∆(Γ(RN)), a contradiction. So, m ≤ n. A similar
argument shows that n ≤ m. This completes the proof. □

5. Further Notes

In this short section, we study Γ(RM), where M is a multiplication
R-module. We recall that an R-module M is called a multiplication
module if for each submodule N of M , there exists an ideal I of R
such that N = IM . Let N = IM and K = JM , for some ideals
I and J of R. The product of N and K, is denoted by N ∗ K, and
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defined by IJM . It is easy to see that the product of N and K, is
independent of presentations of N and K. In [16], Lee and Varmazyar
have given a generalization of the concept of zero-divisor graph of rings
to multiplication modules. For a multiplication R-module M , they
defined an undirected graph Γ∗(RM), with vertices {0 ̸= x ∈ M |Rx ∗
Ry = 0 for some non-zero y ∈ M}, where distinct vertices x and y
are adjacent if and only if Rx ∗Ry = 0.

The following theorem shows that, in multiplication modules, this
generalization and the one given in this paper are the same.

Theorem 5.1. Let M be a multiplication R-module. Then, Γ(RM) =
Γ∗(RM).

Proof. Let x and y be two non-zero element of M and suppose that
Rx = IM and Ry = JM , for some ideals I and J of R. Let x−−y be
an edge in Γ∗(RM). Since Rx ∗ Ry = 0, we have IJM = 0 and hence
I ⊆ Ann(JM). It then follows that IM ⊆ Ann(JM)M . Therefore,
Rx ⊆ Ann(Ry)M and hence, x−−y is an edge in Γ(RM).

Now, suppose that x−−y is an edge in Γ(RM). It then follows that
Rx ⊆ Ann(Ry)M . So IM ⊆ Ann(JM)M . In view of [26, Theorem 9],
we have the following two cases:
Case 1: I ⊆ Ann(JM) + Ann(M). In this case, I ⊆ Ann(JM), since
Ann(M) ⊆ Ann(JM). It then follows that IJM = 0 and hence, x−−y
is an edge in Γ∗(RM).
Case 2: M = ((Ann(JM) + Ann(M)) : I)M . In this case, we have
M = (Ann(JM) : I)M and hence, IJM = [(Ann(JM) : I)I](JM) ⊆
Ann(JM)JM = 0. Therefore, x−−y is an edge in Γ∗(RM). This com-
pletes the proof. □
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