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A NOTE ON THE COMMUTING GRAPHS OF A
CONJUGACY CLASS IN SYMMETRIC GROUPS

S. H. JAFARI

Abstract. The aim of this paper is to obtain the automorphism
group of the commuting graph of a conjugacy class in the sym-
metric groups. The clique number, coloring number, independence
number and diameter of these graphs are also computed.

1. Introduction

Let L = (V,E) be a graph with vertex set V and edge set E. The
(open) neighborhood N(a) of a vertex a ∈ V is the set of all vertices
that are adjacent to a, and the closed neighborhood of a is defined as
N [a] = N(a)∪{a}. The distance between vertices x and y in L, denoted
by d(x, y), is defined as the length of a shortest path connecting them.
Note that d(x, x) = 0, and d(x, y) = ∞ if there is no path connecting
x and y. The diameter diam(L) is the maximum of d(x, y) taken over
all pairs of vertices of L. A subset X ⊆ V is called an independence
set if there exists no edge with both endpoints in X. The independent
number α(L) is the maximum cardinality among all independent sets in
L and the chromatic number ω(L) is the maximum number of vertices
that are mutually adjacent, that is the order of a maximum complete
subgraph of L. The chromatic number of L is the minimum number of
colors which are used for the coloring of the vertices of L, where any two
adjacent vertices has distinct colors. Let us denote the clique number
of L by χ(L). The Kneser graph Kn:m is the graph whose vertices
are the m-subsets of a fixed n-set, and two vertices are adjacent if the
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corresponding m-subsets are disjoint. We refer to [6] for other graph
theory notations of this paper.

Let G be a group and S ⊆ G. The commuting graph C(G,S) is the
graph with vertex set S such that two vertices are adjacent if and only
if they commute. Akbari and his co-workers [1] studied the commut-
ing graph of a ring and Araújo et al. [2] investigated this graph for
semigroups. In [3], Bates et al. determined the diameter of C(Sn, X),
where X is the set of m−cycles and n ≥ 2m + 1 ≥ 7. In some special
cases, they obtained upper bounds for diameter of commuting graph.
In [4, 5], the authors, among others, obtained a number of results on
the diameter of commuting graph of a finite group.

In this paper, we apply the main properties of the Kneser graphs to
obtain the automorphism group of the commuting graph of a conjugacy
class in symmetric groups and then determine the clique number, the
independence number and the diameter of these graphs. For the sake
of completeness, we mention here the main properties of Kneser graphs
which is crucial throughout this paper.

Theorem 1.1. Suppose L = Kn:m, n > 2m and n = 2m+ k. Then we
have

(1) Aut(L) = Sn, where Sn is the symmetric group of degree n,
(2) ω(L) = ⌊ n

m
⌋,

(3) χ(L) = n− 2k + 2,
(4) α(L) = (n−1

m−1),
(5) diam(L) = ⌈m−1

k
⌉ + 1.

2. preliminary results

Let L be a graph. A subgraph H of L is called an EN -subgraph if any
two vertices of H have equal closed neighborhood. An EN -subgraph
of L is called MEN-subgraph if it is maximal among the set of all EN -
subgraphs of L. It can be seen that any EN -subgraph is complete and
the set of vertices of L can be partitioned into the vertex sets of all
MEN -subgraphs of L. Suppose x ∈ V (L). The set of MEN -subgraph
B with x ∈ V (B) is denoted by x. Define the weighted graph L as
follows: V (L) = {x|x ∈ V (L)}, weight(x) = |x| and two vertices x and
y are adjacent if and only if x and y are adjacent in L.

We start our result, by the following elementary lemma:

Lemma 2.1. Let L be a graph and φ ∈ Aut(L). Then φ ∈ Aut(L),

where φ(x) = φ(x).
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Proof. Let L be a graph and φ ∈ Aut(L). Since φ(N [x]) = N [φ(x)]
for all x, hence, B ∈ L if and only if φ(B) ∈ L. On the other hand, if

x ∈ B then φ(B) = φ(x), proving the lemma. □

Theorem 2.2. For a graph L with |V (L)| < ∞, we have Aut(L) ∼=
Aut(L) ⋉

∏
B∈V (L) S|B|.

Proof. Define ψ : Aut(L) → Aut(L), by ψ(φ) = φ such that φ(B) =
φ(B). Then ψ is homomorphism and |Aut(L)| ≤ |kerl(ψ)||Aut(L)|.
But kerl(ψ) = {φ|φ(B) = B, for all B ∈ L}. On the other hand, all
functions where induced a bijection function on each B are in kerl(ψ)
and so kerl(ψ) ∼=

∏
B∈V (L) S|B|, where Sn is the symmetric group of

degree n.
We now find a subgroup H of Aut(G) such that H ∩ kerl(φ) = 1.

Since L is finite, there exists a total order ≤ on V (L). Set H =
{φ|φ(B) ∈ V (L), for all B ∈ V (L) and φ preserve the partial order
}. It is clear that H is a subgroup of Aut(L). Let φ ∈ H, B =
{x1, . . . , xt} ∈ V (L) and φ(B) = B where x1 < x2 < · · · < xt. So,
{φ(x1), . . . , φ(xt)} = B and consequently φ(xi) = xi, for all i. Thus,
if φ ∈ H then φ(B) = B if and only if φ(x) = x, for all x ∈ B.
Thus, H ∩ kerl(ψ) = 1 and then |Aut(L)| ≥ |kerl(ψ)||H|. Now f :
H → Aut(L) given by f(φ) = ψ(φ) is an homomorphism. Assume
that h ∈ Aut(L). For B = {x1, . . . , xt} ∈ L, x1 < . . . < xt, we
define φ(xi) = yi, where h(B) = {y1, . . . , yt}, y1 < . . . < yt. If x, y
are adjacent and x, y ∈ B for some B, then φ(x), φ(y) ∈ φ(B) and
are adjacent. If x, y are adjacent and x ∈ B1, y ∈ B2 for some B1 ̸=
B2, then φ(x) ∈ φ(B1), φ(y) ∈ φ(B2) and, since B1, B2 are adjacent,
φ(B1), φ(B2) are adjacent and consequently φ(x), φ(y) are adjacent.

Thus φ ∈ Aut(L) and f(φ) = h. Consequently, f is an automor-
phism, which completes the proof. □

For a graph L, we define the relation ∼ on V (L) as follows: a ∼ b
if and only if N(a) = N(b). It is easy to see that ∼ is an equivalence
relation on V (L). Denote the equivalence class of x by [x]. More-

over, define the weighted graph L̃ with vertex set {[x]|x ∈ V (L)},
weight([x]) = |[x]| and, [x] is adjacent to [y] if and only if x is adjacent
to y. Then we can see that no pair of elements of [x] are adjacent in
L. Similar to the Theorem 2.2, we can obtain the following:

Theorem 2.3. For a finite graph L, we have Aut(L) ∼= Aut(L̃) ⋉∏
[x]∈V (L̃) S|[x]|.

We have the following important theorem:
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Theorem 2.4. For a finite graph L with |V (L)| ≥ 2, the following
hold:

(1) α(L) = α(L) and if L, L̃ are regular then α(L) = rα(L̃), where

r is the weight of each vertex of L̃.

(2) χ(L) = χ(L̃) and if L,L are regular then χ(L) = rχ(L), where
r is the weight of each vertex of L.

(3) ω(L) = ω(L̃) and if L,L are regular then ω(L) = rω(L), where
r is the weight of each vertex of L.

(4) If L is not complete, then diam(L) = diam(L).

(5) Let L be connected but not complete. If L̃ is complete, then

diam(L) = diam(L̃) + 1 otherwise diam(L) = diam(L̃).

Proof. (1) It is clear that α(L) ≥ α(L). Let {x1, . . . , xs} ⊆ V (L) be an
independent set. Then xi, xj are not adjacent and, then xi, xj are not

adjacent. Thus α(L) ≤ α(L), as required. Also, if {[x1], . . . , [xs]} ⊆ L̃
is an independent set then any element of [xi] is not adjacent to any
element of [xj], therefore [x1]∪ . . .∪ [xs] is an independent set of L. On
the other hand, if A is a maximal independent set of L and x ∈ A, then

[x] ⊆ A and {[x]|x ∈ A} is an independent set of L̃. Thus, α(L̃) ≥ s/r,
which completes (1).

(2) The proof of χ(L) = χ(L̃) is trivial. Assume that {u1, . . . , ut} is
a coloring set of L. We use r distinct colors u1i , . . . , u

r
i for vertices in

x, where x has color ui. Thus, χ(L) ≤ rχ(L̃). Let S be a coloring set
for L and ux is the color of x. We consider the color of b ∈ x for x
and obtain a coloring set for L. Assume that A is an arbitrary subset
of V (L), where |A ∩ x| = 1. Then {ux|x ∈ A} is a coloring set of L.
Consequently, |S| ≥ rχ(L), as required.
(3) Is similar to (1).
(4) Is elementary.

(5) We see that L̃ is complete if and only if L is a complete k-partite

graph, where k = |L̃|. So, we assume that L̃ is not complete. Let

diam(L̃) = s ≥ 2, d([a], [b]) = s and, [a] = [a0]− [a1]−· · ·− [as] = [b] is
a path. Then a = a0−a1−· · ·−as = b is a path and thus d(a, b) ≤ s. If
d(a, b) = t and a = x0 − x1 − · · ·− xt = b is a path, then we can obtain
a path with length less than or equal to t. From which d(a, b) = s

and diam(L̃) ≤ diam(L). Since L̃ is not complete, diam(L̃) ≥ 2. Let
d(x, y) = diam(L) = t for t ≥ 2 and x = x0 − x1 − · · · − xt = y is
a path. Because d(x, y) ≥ 2, [x] ̸= [y] and thus d(x, y) = d([x], [y]),
which completes the proof. □
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Note. For a graph L, if L or L̃ is regular with equal weights, then we
can consider this graphs un-weighted.

3. Main results

Let σ = (12 . . .m) be a cycle of length m in Sn and S = σSn . We
obtain the automorphism group, chromatic number, clique number and
diameter of C(Sn, S). We start by the following elementary lemma.

Lemma 3.1. CSn(σ) = ⟨σ⟩ × Sym({m+ 1, . . . , n}).

Proof. It is enough to see that n(n − 1) . . . (n −m + 1)/m = |σSn | =
[Sn : CSn(σ)] and ⟨σ⟩ × Sym({m+ 1, . . . , n}) ⊆ CSn(σ). □
Corollary 3.2. Consider the graph C(Sn, S). If (m,n) ̸= (2, 4), then
the vertices of any MEN-subgraph are the generators of ⟨α⟩, for some
α ∈ S.

Proof. Suppose α ∈ S. Without loss of generality, we can assume
that α = (12 . . .m). By Lemma 3.1, N [α] = S ∩ (⟨α ⟩ ∪ Sym({m +
1, . . . , n})) = (S∩⟨α⟩)∪ (S∩Sym({m+1, . . . , n})). If β ∈ N(α)−⟨a⟩,
then β ∈ Sym({m+1, . . . , n}). We see that α = β if and only if (m,n)
= (2, 4), and hence the result follows. □

We are now ready to present our main result.

Theorem 3.3. Suppose n > 2m and n = 2m+ k. Then,

(1) α(C(Sn, S)) =
(n−1
m−1)(m−1)!

ϕ(m)
,

(2) χ(C(Sn, S) = ϕ(m)(n− 2m+ 2),
(3) ω(C(Sn, S) = ϕ(m)⌊ n

m
⌋,

(4) diam(C(Sn, S)) = ⌈m−1
k

⌉ + 1,

(5) Aut(C(Sn, S)) = (Sn ⋉ Sd
c ) ⋉ Sb

a, where a = ϕ(m),

b = n(n−1)···(n−m+1)
mϕ(m)

, c = (m−1)!
ϕ(m)

, d = b
c
and ϕ is the Euler func-

tion.

Proof. Since C(Sn, S) is a graph with equal weights ϕ(m), we can as-
sume that it is un-weighted. Let L be such a graph and x = (a1 . . . am) ∈
S. Since (m,n) ̸= (2, 2), hence x = gen(x), where gen(x) is the set

of all generators of ⟨x⟩. Since N((12 . . .m)) = {β | β ∈ Sym(m + 1,

. . . , n)}, N((a1 . . . am))=N((b1 . . . bm)) if and only if {a1, . . . , am} =

{b1, . . . , bm}. Therefore, [x] = {(b1 . . . bm)|{b1, . . . , bm} = {a1, . . . , am}}.

We now consider the graph L̃. Then two vertices a = [(a1 . . . am)] and

b = [(b1 . . . bm)] are adjacent if and only if {a1, . . . , am} and {b1, . . . , bm}
are disjoint. But |S ∩ Sm| = (m − 1)! and |(12 . . .m)| = φ(m), thus
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all weights of vertices of L̃ are equal to (m−1)!
ϕ(m)

and so we can consider

this graph to be un-weighted, say L′. Hence, V (L′) is all subsets of
{1, . . . , n} with m elements such that two vertices are adjacent if and
only if they are disjoint. This concludes that L′ is the Kneser graph
Kn:m. By above assumption and Theorems 1.1, 2.2, 2.3 and 2.4, the
proof will be proved. □

It is merit to mention here that the part (d) of Theorem 3.3 is a
main result of [3].
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متقارن گروه های در تزویج رده یک جابجایی گراف

جعفری حیدر سید
ایران شاهرود، شاهرود، صنعتی دانشگاه

رأس دو و بوده گروه از مجموعه ای زیر آن رأسی مجموعه ی که است گرافی گروه، یک جابجایی گراف
محاسبه مقاله این در ما اصلی هدف شوند. جابجا هم با گروه در عنصر دو اگر تنها و اگر مجاورند گراف در
مقاله این در همچنین است. متقارن گروهای در تزویج رده یک برای جابجایی گراف خودریختی های گروه

است. شده محاسبه گراف ها این قطر و استقلال عدد رنگی، عدد خوشه ای، عدد

جابجایی. گراف خودریختی ها، گروه متقارن، گروه کلیدی: کلمات
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