Journal of Algebraic Systems Vol. 5, No. 1, (2017), pp 1-13

MOST RESULTS ON A-IDEALS IN MV-MODULES

S. SAIDI GORAGHANI*, AND R. A. BORZOOEI

ABSTRACT. In the present paper, by considering the notion of MV-modules which is the structure that naturally correspond to lu-modules over lu-rings, we prove some results on prime A-ideals and state some conditions to obtain a prime A-ideal in MV-modules. Also, we state some conditions that an A-ideal is not prime and investigate conditions that $K \subseteq \bigcup_{i=1}^{n} K_i$ implies $K \subseteq K_j$, where K, K_1, \cdots, K_n are A-ideals of A-module M and $1 \leq j \leq n$.

1. INTRODUCTION

MV-algebras were defined by C. C. Chang [2, 3] as algebras corresponding to the Lukasiewicz infinite valued propositional calculus. These algebras have appeared in the literature under different names and polynomially equivalent presentation: CN-algebras, Wajsberg algebras, bounded commutative BCK-algebras and bricks. It is discovered that MV-algebras are naturally related to the Murray-Von Neumann order of projections in operator algebras on Hilbert spaces and that they play an interesting role as invariants of approximately finitedimensional C^* -algebras. They are also naturally related to Ulam's searching games with lies. MV-algebras admit a natural lattice reduct and hence a natural order structure. Many important properties can be derived from the fact, established by Chang, that non-trivial MValgebras are sub-direct products of MV-chains, that is, totally ordered MV-algebras. To prove this fundamental result, Chang introduced the notion of prime ideal in an MV-algebra. A product MV-algebra

MSC(2010): Primary: 06F35; Secondary: 06D35, 16D80

Keywords: MV-algebra, MV-module, Prime A-ideal.

Received: 18 February 2016, Accepted: 1 March 2017.

^{*}Corresponding author.

(or PMV-algebra, for short) is an MV-algebra which has an associative binary operation ".". It satisfies an extra property which will be explained in Preliminaries section. During last years, PMV-algebras were considered and their equivalence with a certain class of l-rings with strong unit was proved. It seems quite natural to introduce modules over such algebras, generalizing the divisible MV-algebras and the MV-algebras obtained from Riesz spaces and to prove natural equivalence theorems. Hence, the notion of MV-modules was introduced as an action of a PMV-algebra over an MV-algebra by A. Di Nola [6]. Recently, Forouzesh, Eslami and Borumand Saeid [7] defined prime Aideals in MV-modules. Since MV-modules are in their infancy, stating and opening of any subject in this field can be useful. Hence, in this paper, we study prime A-ideals and state some conditions to obtain a prime A-ideal (or no prime A-ideal) in MV-modules. Also, in special case, we prove that if $K \subseteq \bigcup_{i=1}^{n} K_i$, then $K \subseteq K_j$, where K, K_1, \ldots, K_n are A-ideals of A-module M and $1 \leq j \leq n$. In fact, our results in this paper gives new insights to anyone who is interested in studying and development of MV-modules.

2. Preliminaries

In this section, we review related lemmas and theorems that we will use in the next sections.

Definition 2.1. [4] An *MV*-algebra is a structure $M = (M, \oplus, ', 0)$ of type (2, 1, 0) such that

- (MV1) $(M, \oplus, 0)$ is an abelian monoid,
- $(MV2) \ (a')' = a,$
- $(MV3) \ 0' \oplus a = 0',$
- $(MV4) \ (a' \oplus b)' \oplus b = (b' \oplus a)' \oplus a,$

If we define the constant 1 = 0' and operations \odot and \ominus by $a \odot b = (a' \oplus b')', a \ominus b = a \odot b'$, then

- $(MV5) (a \oplus b) = (a' \odot b')',$
- $(MV6) \ a \oplus 1 = 1,$ $(MV7) \ (a \cap b) \oplus b$

$$(MV7)$$
 $(a \ominus b) \oplus b = (b \ominus a) \oplus a$

 $(MV8) \ a \oplus a' = 1,$

for every $a, b \in M$. It is clear that $(M, \odot, 1)$ is an abelian monoid. Now, if we define auxiliary operations \lor and \land on M by $a \lor b = (a \odot b') \oplus b$ and $a \land b = a \odot (a' \oplus b)$, for every $a, b \in M$, then $(M, \lor, \land, 0)$ is a bounded distributive lattice. An MV-algebra M is a Boolean algebra if and only if the operation " \oplus " is idempotent, i.e., $a \oplus a = a$, for every $a \in M$. In every MV-algebra M, the following conditions are equivalent: (i) $a' \oplus b = 1$, (ii) $a \odot b' = 0$, (iii) $b = a \oplus (b \ominus a)$, (iv) $\exists c \in M$ such that

 $a \oplus c = b$, for every $a, b \in M$. For any two elements a, b of MV-algebra M, a < b if and only if a, b satisfy in the above equivalent conditions (i) - (iv). An ideal of MV-algebra M is a subset I of M, satisfying the following conditions: (I1) $0 \in I$, (I2) $x \leq y$ and $y \in I$ imply that $x \in I$, (I3) $x \oplus y \in I$, for every $x, y \in I$. A proper ideal I of M is a prime ideal if and only if $x \ominus y \in I$ or $y \ominus x \in I$, for every $x, y \in M$. A proper ideal I of M is a maximal ideal of M if and only if no proper ideal of M strictly contains I. In MV-algebra M, the distance function $d: M \times M \to M$ is defined by $d(x,y) = (x \ominus y) \oplus (y \ominus x)$ which satisfies (i) d(x,y) = 0 if and only if x = y, (ii) d(x, y) = d(y, x), (iii) $d(x, z) \leq d(x, y) \oplus d(y, z)$, $(iv) d(x,y) = d(x',y'), (v) d(x \oplus z, y \oplus t) \leq d(x,y) \oplus d(z,t),$ for every $x, y, z, t \in M$. Let I be an ideal of MV-algebra M. Then, we denote $x \sim y \ (x \equiv_I y)$ if and only if $d(x, y) \in I$, for every $x, y \in M$. So, \sim is a congruence relation on M. Denote the equivalence class containing $x \text{ by } \frac{x}{I} \text{ and } \frac{M}{I} = \{\frac{x}{I} : x \in M\}.$ Then, $(\frac{M}{I}, \oplus, ', \frac{0}{I})$ is an MV-algebra, where $(\frac{x}{I})' = \frac{x'}{I}$ and $\frac{x}{I} \oplus \frac{y}{I} = \frac{x \oplus y}{I}$, for all $x, y \in M$. Let M and K be two MV-algebras. A mapping $f: M \to K$ is called an MV-homomorphism if (H1) f(0) = 0, $(H2) f(x \oplus y) = f(x) \oplus f(y)$ and (H3) f(x') = (f(x))', for every $x, y \in M$. If f is one to one (resp. onto), then f is called an MV-monomorphism (resp. epimorphism) and if f is onto and one to one, then f is called an MV-isomorphism (see [6]).

Proposition 2.2. [4] Let M be an MV-algebra and $z \in M$. Then the principal ideal generated by z is denoted by $\langle z \rangle$ and $\langle z \rangle = \{x \in M : nz = \underbrace{z \oplus \cdots \oplus z}_{n \text{ times}} \ge x, \text{ for some } n \ge 0\}.$

Lemma 2.3. [4] In every MV-algebra M, the natural order " \leq " has the following properties:

- (i) $x \leq y$ if and only if $y' \leq x'$,
- (ii) if $x \leq y$, then $x \oplus z \leq y \oplus z$, for every $z \in M$.

Definition 2.4. [5] In MV-algebra M, a partial addition is defined as following:

x + y is defined iff $x \leq y'$ and in this case, $x + y = x \oplus y$, for any $x, y \in M$.

Lemma 2.5. [6] In MV-algebra M,

- $(i) \ x + 0 = x,$
- (ii) if x + y = z, then $y = x' \odot z$,
- (iii) if z + x = z + y, then x = y,
- (iv) if $z + x \le z + y$, then $x \le y$, where "+" is the partial addition on M.

Definition 2.6. [5] A product MV-algebra (or PMV-algebra, for short) is a structure $A = (A, \oplus, ., ', 0)$, where $(A, \oplus, ', 0)$ is an MV-algebra and "." is a binary associative operation on A such that the following property is satisfied: if x + y is defined, then x.z + y.z and z.x + z.y are defined and (x + y).z = x.z + y.z, z.(x + y) = z.x + z.y, for every $x, y, z \in A$, where "+" is the partial addition on A. A unity for the product is an element $e \in A$ such that e.x = x.e = x, for every $x \in A$. If A has a unity for product, then A is called a unital PMV-algebra. A PMV-homomorphism is an MV-homomorphism which also commutes with the product operation.

Lemma 2.7. [5] If A is a unital PMV-algebra, then;

- (i) the unity for product is e = 1,
- (ii) $x.y \leq x \wedge y$, for every $x, y \in A$.

Lemma 2.8. [5] Let A be a PMV-algebra. Then, 1.a = a and $a \le b$ implies that $a.c \le b.c$ and $c.a \le c.b$, for any $a, b, c \in A$.

Definition 2.9. [6] Let $A = (A, \oplus, ., ', 0)$ be a *PMV*-algebra, $M = (M, \oplus, ', 0)$ be an *MV*-algebra and the operation $\Phi : A \times M \longrightarrow M$ be defined by $\Phi(a, m) = am$, which satisfies the following axioms:

(AM1) if x + y is defined in M, then ax + ay is defined in M and a(x + y) = ax + ay,

(AM2) if a + b is defined in A, then ax + bx is defined in M and (a + b)x = ax + bx,

(AM3) (a.b)x = a(bx), for every $a, b \in A$ and $x, y \in M$.

Then M is called a (left) MV-module over A or briefly an A-module. We say that M is a *unitary* MV-module if A has a unity 1_A for the product and

(AM4) $1_A x = x$, for every $x \in M$.

Lemma 2.10. [6] Let A be a PMV-algebra and M be an A-module. Then;

- (a) 0x = 0, (b) a0 = 0, (c) $ax' \le (ax)'$, (d) $a'x \le (ax)'$, (e) (ax)' = a'x + (1x)', (f) $x \le y$ implies that $ax \le ay$, (g) $a \le b$ implies that $ax \le bx$, (h) $a(x \oplus y) \le ax \oplus ay$, (c) $a(x \oplus y) \le ax \oplus ay$,
- (i) $d(ax, ay) \le ad(x, y),$
- (j) if $x \equiv_I y$, then $ax \equiv_I ay$, where I is an ideal of A,

(k) if M is a unitary MV-module, then (ax)' = a'x + x', for every $a, b \in A$ and $x, y \in M$.

Definition 2.11. [6] Let A be a PMV-algebra and M_1 , M_2 be two A-modules. A map $f: M_1 \to M_2$ is called an A-module homomorphism or (A-homomorphism, for short) if f is an MV-homomorphism and (H4): f(ax) = af(x), for every $x \in M_1$ and $a \in A$.

Definition 2.12. [6] Let A be a PMV-algebra and M be an A-module. Then, an ideal $N \subseteq M$ is called an A-ideal of M if (I4) $ax \in N$, for every $a \in A$ and $x \in N$.

Definition 2.13. [7] Let M be an A-module and N be a proper A-ideal of M. Then, N is called a *prime* A-ideal of M, if $am \in N$ implies that $m \in N$ or $a \in (N : M)$, for any $a \in A$ and $m \in M$, where $(N : M) = \{a \in A : aM \subseteq N\}$. Moreover, the set of all prime A-ideals of M is denoted by Spec(M).

Note. From now onwards, A denotes a PMV-algebra.

3. Some results on prime A-ideals in MV-modules

In this section, we state and prove some conditions to obtain a prime A-ideal in MV-modules.

Example 3.1. Let $A = \{0, 1, 2, 3\}$ and the operations " \oplus " and "." on A are defined as follows:

\oplus	0	1	2	3		0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	1	1	3	3	1	0	1	0	1
2	2	3	2	3	2	0	0	2	2
3	3	3	3	3	3	0	1	2	3

Consider 0' = 3, 1' = 2, 2' = 1 and 3' = 0. Then, it is easy to show that $(A, \oplus, ', ., 0)$ is a *PMV*-algebra and $(A, \oplus, ', 0)$ is an *MV*-algebra. Now, let the operation $\bullet : A \times A \longrightarrow A$ be defined by $a \bullet b = a.b$, for every $a, b \in A$. It is easy to show that A is an *MV*-module on A and $I = \{0, 1\}, J = \{0, 2\}$ are prime A-ideals of A. $\{0\}$ is not a prime A-ideal of A. Note that $1 \bullet 2 = 0$, but $2 \notin \{0\}$ and $1 \notin (\{0\} : A) = \{0\}$.

Proposition 3.2. Let M be an A-module and N, L be A-ideals of M. Then;

- (i) $(N:M) = \{a \in A : aM \subseteq N\}$ is an ideal of A,
- (ii) (N:m) is an ideal of A, for every $m \in M$,
- (iii) N is a prime A-ideal of M if and only if (N:m) = (N:M), where $m \notin N$.

Proof. (i) It is clear that $0 \in (N : M)$. Let $\alpha, \beta \in (N : M)$. Then, $\alpha m, \beta m \in N$, for every $m \in N$. Since $\beta m \leq (\alpha m)' \oplus \beta m$, by Lemma 2.3(i), we get $(\alpha m) \odot (\beta m)' = ((\alpha m)' \oplus \beta m)' \leq (\beta m)'$ and so $(\alpha m) \odot (\beta m)' + \beta m$ is defined, where "+" is the partial addition on M. Similarly, $\alpha \odot \beta' + \beta$ is defined, too. Also, since $\alpha \odot \beta' \leq \beta'$, by Lemma 2.10 (d) and (g), we have $(\alpha \odot \beta')m \leq \beta'm \leq (\beta m)'$ and so $(\alpha \odot \beta')m + \beta m$ is defined. Now, $\alpha \leq \alpha \lor \beta$ implies that $\alpha m \leq (\alpha \lor \beta)m$ and similarly, $\beta m \leq (\alpha \lor \beta)m$. Then, $\alpha m \lor \beta m \leq (\alpha \lor \beta)m$ and so

$$(\alpha m) \odot (\beta m)' + \beta m = \alpha m \lor \beta m \le (\alpha \lor \beta)m = (\alpha \odot \beta' \oplus \beta)m$$
$$= (\alpha \odot \beta' + \beta)m = (\alpha \odot \beta')m + \beta m.$$

By Lemma 2.5 (*iv*), we have $\alpha m \odot (\beta m)' \leq (\alpha \odot \beta')m$. If we set $\alpha \oplus \beta$ instead of α , then by Lemma 2.10 (g), we get $(\alpha \oplus \beta)m \odot (\beta m)' \leq ((\alpha \oplus \beta) \odot \beta')m = (\alpha \land \beta')m \leq \alpha m$. Since

$$(\alpha \oplus \beta)m = (\alpha \oplus \beta)m \lor \beta m = (\alpha \oplus \beta)m \odot (\beta m)' \oplus \beta m \le \alpha m \oplus \beta m \in N,$$

hence $\alpha \oplus \beta \in (N : M)$. Now, let $\alpha \leq \beta$ and $\beta \in (N : M)$. Then, by Lemma 2.10(g), we have $\alpha m \leq \beta m \in N$ and so $\alpha m \in N$, for every $m \in M$. It means that $\alpha \in (N : M)$.

(ii) By (i), the proof is clear.

(iii) By (i) and (ii), the proof is straight forward.

Lemma 3.3. Let M be a unitary A-module and $m \in M$. Then;

$$I_m = \{\sum_{i=1}^k t_i m : \sum_{i=1}^k t_i m \le nm, \text{ for some } n, k \in \mathbb{N} \cup \{0\}, where t_i \in A \text{ and } t_1 m + \dots + t_k m \text{ is defined } \}$$

is an A-ideal of M.

Proof. (I_1) It is clear that $0 \in I_m$. (I_2) Let $x \leq \sum_{i=1}^k t_i m \in I_m$, for some $x \in M$. Then, $x = 1x \leq \sum_{i=1}^k t_i m \leq nm \in I_m$, where $n \geq 0$ and so $x \in I_m$. (I_3) Let $\sum_{i=1}^k t_i m, \sum_{i=1}^w s_i m \in I_m$. Then, there exist $n_1, n_2 \geq 0$ such that $\sum_{i=1}^k t_i m \leq n_1 m$ and $\sum_{i=1}^w s_i m \leq n_2 m$ and so

$$\sum_{i=1}^{k+w} c_i m = \sum_{i=1}^{k} t_i m \oplus \sum_{i=1}^{w} s_i m \le n_1 m \oplus n_2 m = \underbrace{m \oplus \dots \oplus m}_{n_1 \ times} \oplus \underbrace{m \oplus \dots \oplus m}_{n_2 \ times} = (n_1 + n_2)m,$$

where

$$c_i = \begin{cases} t_i & 1 \le i \le k\\ s_{i-k} & k+1 \le i \le k+w \end{cases},$$

It means that $\sum_{i=1}^{k} t_i m \oplus \sum_{i=1}^{w} s_i m \in I_m$. (I_4) Let $a \in A$ and $\sum_{i=1}^{k} t_i m \in I_m$. Then, there exists $n \ge 0$ such that $\sum_{i=1}^{k} t_i m \le nm$. Since $\sum_{i=1}^{k} t_i m \le nm = \underbrace{m \oplus \cdots \oplus m}_{n \text{ times}}$, by Lemma

2.10(f) and (h), hence

$$a(\sum_{i=1}^{k} t_i m) \le a(m \oplus \dots \oplus m) \le \underbrace{am \oplus \dots \oplus am}_{n \text{ times}}.$$

By Lemma 2.10(k), since $(am)' \oplus m = a'm \oplus m' \oplus m = 1$, and $am \le m$, so $a(\sum_{i=1}^{k} t_i m) \le \underbrace{m \oplus \cdots \oplus m}_{n \text{ times}} = nm$. It results that $\sum_{i=1}^{k} (a.t_i)m = \sum_{i=1}^{k} a(t_i m) \in I_m$.

Notation. For A-module M, non-empty subset I of A and A-ideal N of M, we let $IN = \{xm : x \in I, m \in N\}$.

Definition 3.4. A *PMV*-algebra *A* is called *commutative*, if x.y = y.x, for every $x, y \in A$.

Example 3.5. In Example 3.1, A is a commutative PMV-algebra.

Theorem 3.6. Let A be commutative MV-algebra, M be a unitary A-module, N be a proper A-ideal of M and $x \oplus x = x$, for every $x \in A$. Then, N is a prime A-ideal of M if and only if for every ideal I of A and A-ideal D of M, $ID \subseteq N$ implies that $I \subseteq (N : M)$ or $D \subseteq N$.

Proof. (\Rightarrow) Let N be a prime A-ideal of M, I be an ideal of A and D be an A-ideal of M such that $ID \subseteq N$. We will show that $I \subseteq (N : M)$ or $D \subseteq N$. Let $I \nsubseteq (N : M)$ and $D \nsubseteq N$. Then, there exist $x \in A$ and $d \in D$ such that $xM \nsubseteq N$ and $d \notin N$. On the other hand, $ID \subseteq N$ implies that $xd \in N$. Since N is a prime A-ideal of M and $d \notin N$, $xM \subseteq N$, which is a contradiction.

(\Leftarrow) For every ideal I of A and A-ideal D of M, let $ID \subseteq N$ implies that $I \subseteq (N : M)$ or $D \subseteq N$. Then suppose that there exist $x \in A$ and $m \in M$ such that $xm \in N$ and $m \notin N$. By Proposition 2.2 and Lemma 3.3, let $I = \langle x \rangle$ and $D = I_m$. Then for $y \in I$, by Proposition 2.2, there exists $n \ge 0$ such that $y \le nx$ and so $y \ominus nx = 0$. Hence,

$$ym = (y \ominus 0)m = (y \ominus (y \ominus nx))m = (y \odot (y \odot (nx)')')m$$
$$= (y \odot (y' \oplus nx))m = (y \land nx)m.$$

By Lemma 2.10 (g), since $y \wedge nx \leq nx$ and $x \oplus x = x$, we get

$$ym = (y \wedge nx)m \le (nx)m = (\underbrace{x \oplus x \oplus \dots \oplus x}_{n \text{ times}})m = xm \in N.$$

Hence, $ym \in N$ and then we get $ID = \{y(\sum_{i=1}^{k} t_im) : y, t_i \in A\} = \{\sum_{i=1}^{k} t_i(ym) : y, t \in A\} \subseteq N$ and so $I \subseteq (N : M)$ or $D \subseteq N$. Since $m \notin N$, hence $I \subseteq (N : M)$ and so $xM \subseteq N$. Therefore, N is a prime A-ideal of M.

Definition 3.7. Let M be an A-module. Then M is called a *Boolean* A-module if $ax \oplus ay \leq a(x \oplus y)$, for every $a \in A$ and $x, y \in M$.

Example 3.8. If A is a Boolean algebra, then every A-module M is a Boolean A-module.

Proposition 3.9. [1, 10] Let M be a Boolean A-module.

- (i) If I is an A-ideal of M, then $\frac{M}{I}$ is an A-module.
- (ii) If N and K are two A-ideals of M such that $N \subseteq K$, then $\frac{K}{N} = \{\frac{k}{N} : k \in K\}$ is an A-ideal of $\frac{M}{N}$.

Proposition 3.10. Let M be a Boolean A-module and N be an A-ideal of M. Then P is a prime A-ideal of M if and only if $\frac{P}{N}$ is a prime A-ideal of $\frac{M}{N}$, where $N \subseteq P$.

Proof. (⇒) Let *P* be a prime *A*-ideal of *M*. By Proposition 3.9, $\frac{M}{N}$ is an *A*-module and $\frac{P}{N}$ is an *A*-ideal of $\frac{M}{N}$. Let $x\frac{m}{N} \in \frac{P}{N}$, where $x \in A$ and $m \in M$. Then there exists $q \in P$ such that $\frac{xm}{N} = \frac{q}{N}$ and so $d(xm,q) \in N \subseteq P$. Since $xm = d(xm,0) \leq d(xm,q) \oplus d(q,0) \in P$, $xm \in P$ and so $x \in (P : M)$ or $m \in P$. It results that $x\frac{M}{N} \subseteq \frac{P}{N}$ or $\frac{m}{N} \in \frac{P}{N}$. Therefore, $\frac{P}{N}$ is a prime *A*-ideal of $\frac{M}{N}$. (⇐) The proof is straight forward.

Lemma 3.11. Consider A as A-module. Let I be an ideal of A and P be a prime A-ideal of A containing I. Then $\frac{P}{I}$ is a prime A-ideal of $\frac{A}{I}$.

Proof. Note that if the operation $\bullet: A \times \frac{A}{I} \to \frac{A}{I}$ is defined by $x \bullet_{I}^{y} = \frac{x \cdot y}{I}$, for any $x, y \in A$, then $\frac{A}{I}$ is an A-module. By Proposition 3.9, $\frac{P}{I}$ is an A-ideal of $\frac{A}{I}$, and it is easy to show that $\frac{P}{I}$ is a prime A-ideal of $\frac{A}{I}$. \Box

Lemma 3.12. Let M_1 and M_2 be two A-modules, $\Phi : M_1 \to M_2$ be an MV-homomorphism and N be a prime A-ideal of M_2 such that $\phi(M_1) \nsubseteq N$. Then, $\phi^{-1}(N)$ is a prime A-ideal of M_1 .

Proof. The proof is straight forward.

Notation. If M_1 and M_2 are two MV-algebras, then $hom(M_1, M_2)$ denotes the set of all MV-homomorphisms from M_1 to M_2 .

Theorem 3.13. Let M be an A-module, rad(A) be the intersection of all prime A-ideals of A as A-module and $hom(M, \frac{A}{rad(A)}) \neq 0$. Then M contains a prime A-ideal.

8

Proof. Since $hom(M, \frac{A}{rad(A)}) \neq 0$, then there exists an MV-homomorphism $\phi : M \to \frac{A}{rad(A)}$ such that $\phi(m) = \frac{a}{rad(A)} \neq \frac{0}{rad(A)}$, for some $m \in M$ and $a \in A$. Hence, $a \notin rad(A)$ and then there exists a prime A-ideal P of M such that $a \notin P$. Since $\frac{a}{rad(A)} \notin \frac{P}{rad(A)}$, $\phi(M) \nsubseteq \frac{P}{rad(A)}$. Therefore, by Lemmas 3.11 and 3.12, $\phi^{-1}(\frac{P}{rad(A)})$ is a prime A-ideal of M.

4. Most results on A-ideals in MV-modules

In this section, we obtain some conditions that an A-ideal is not prime. Also, we investigate if K, K_1, \ldots, K_n are A-ideals of A-module M such that $K \subseteq \bigcup_{i=1}^n K_i$, then $K \subseteq K_j$, for some $1 \le j \le n$.

Definition 4.1. Let M be an A-module and K, K_1, \ldots, K_n be A-ideals of M. Then, $\bigcup_{i=1}^n K_i$ is called an *efficient covering* of K, if $K \subseteq \bigcup_{i=1}^n K_i$ and $K \nsubseteq \bigcup_{j\neq i=1}^n K_i$, for every $1 \le j \le n$. Moreover, $K = \bigcup_{i=1}^n K_i$ is called an *efficient union*, if $K \ne \bigcup_{j\neq i=1}^n K_i$, for every $1 \le j \le n$.

Example 4.2. Let $A = M = \{0, 1, 2, 3\}$ and the operations " \oplus " and "'" be defined on M as follows:

\oplus	0	1	2	3					
0	0	1	2	3	/	0	1	2	3
1	1	1	2	3		2	1 0	<u></u> 1	<u> </u>
2	2	2	2	3		5	Δ	1	0
3	3	3	3	3					

Also, for every $a, b \in A$,

$$a.b = \begin{cases} 0 & a \neq y \\ x & a = b \end{cases}$$

Then, it is easy to show that $(M, \oplus, ', 0)$ is an MV-algebra and $(A, \oplus, ', ., 0)$ is a PMV-algebra. Now, let the operation $\bullet : A \times M \longrightarrow M$ be defined by $a \bullet b = a.b$, for every $a \in A$ and $b \in M$. It is easy to see that M is an A-module and $K_1 = \{0, 1\}, K_2 = \{0, 2\}, K = \{0, 1, 2\}$ are A-ideals of M. Also, $K_1 \cup K_2$ is an efficient covering of K and it is an efficient union.

Lemma 4.3. Let M be an A-module, K, K_1, \ldots, K_n be A-ideals of Mand $K = \bigcup_{i=1}^n K_i$ be an efficient union of A-ideals of M, where n > 1. Then, $\bigcap_{i\neq i=1}^n K_i = \bigcap_{i=1}^n K_i$, for every $1 \le j \le n$.

Proof. Without loss of generality, let j = 1 and $a \in \bigcap_{i=2}^{n} K_i$. Since K has an efficient covering, then there exists $b \in K$ such that $b \notin \bigcup_{i=2}^{n} K_i$. Now, if $a \oplus b \in \bigcup_{i=2}^{n} K_i$, then there exists $2 \le t \le n$ such that $a \oplus b \in K_t$. Since $b \leq a \oplus b \in K_t$, hence $b \in K_t$, which is a contradiction. Hence, $a \oplus b \in K - \bigcup_{i=2}^n K_i$ and so $a \oplus b \in K_1$. Since $a \leq a \oplus b \in K_1$, we get $a \in K_1$ and then $a \in \bigcap_{i=1}^n K_i$. It results that $\bigcap_{i=2}^n K_i \subseteq \bigcap_{i=1}^n K_i$, and therefore $\bigcap_{i=2}^n K_i = \bigcap_{i=1}^n K_i$.

Theorem 4.4. (Prime avoidance of A-ideals) Let M be a unitary Amodule and K, K_1, \ldots, K_n be A-ideals of M. (i) If $K \subseteq \bigcup_{i=1}^n K_i$ is an efficient covering of K and $(K_t : M) \nsubseteq (K_j : M)$, for any $j \neq t$, where $1 \leq j, t \leq n$, then K_j is not a prime A-ideal of M, for every $1 \leq j \leq n$.

(ii) If $K \subseteq \bigcup_{i=1}^{n} K_i$, at most two of K_i 's are not prime and $(K_i : M) \notin (K_j : M)$, where $n \ge 3$, $j \ne i$ and $1 \le i, j \le n$, then there exists $1 \le j \le n$ such that $K \subseteq K_j$.

Proof. (i) We first show that $K = \bigcup_{i=1}^{n} (K \cap K_i)$ is an efficient union of K. Since $K \subseteq \bigcup_{i=1}^{n} K_i$ is an efficient covering of K, then there exists $a \in K$ such that $a \notin \bigcup_{j \neq i=1}^{n} K_i$, for any $j \neq i$, where $1 \leq 1$ $j \leq n$. Hence, $a \notin K_i$ and so $a \notin K \cap K_i$, for any $i \neq j$. It then follows that $a \notin \bigcup_{j \neq i=1}^{n} (K \cap K_i)$ and so $K \neq \bigcup_{j \neq i=1}^{n} (K \cap K_i)$. Hence, $K = \bigcup_{i=1}^{n} (K \cap K_i)$ is an efficient union of K. Let j be a constant number, where $1 \leq j \leq n$. If $i \neq j$, then $(K_i : M) \not\subseteq (K_j : M)$ and so there exists $a_i \in (K_i : M) - (K_i : M)$, where $1 \leq i \leq n$. We set $a = a_1 a_2 \dots a_{j-1} a_{j+1} \dots a_n$. Since A is unital, by Lemma 2.7 (*ii*), we have $a \leq a_i$, where $1 \leq i \leq n$. Since $a \leq a_i \in (K_i : M)$, $a \in (K_i : M)$, for any $i \neq j$. Now, we show that K_i is not a prime A-ideal of M. Since $K = \bigcup_{i=1}^{n} (K \cap K_i)$ is an efficient union of K, there exists $x \in K - K_j$ and so by Lemma 4.3, we get $ax \in \bigcap_{i\neq i=1}^{n} (K \cap K_i) = \bigcap_{i=1}^{n} (K \cap K_i) \subseteq$ K_j . If K_j is a prime A-ideal, then $x \in K_j$ or $a \in (K_j : M)$, which in any of two cases is a contradiction. Therefore, K_i is not a prime A-ideal of M, for every $1 \leq j \leq n$.

(*ii*) We have $K \subseteq \bigcup_{i=1}^{n} K_i$. Let $K \subseteq \bigcup_{t=1}^{m} K_{i_t}$ be an efficient covering of K, where $1 \leq m \leq n$ and $m \neq 2$. If m > 2, then at least one of the K_{i_t} 's is prime A-ideal of M and so by (*i*), that is a contradiction. Hence, m = 1 and therefore $K \subseteq K_j$, for some $1 \leq j \leq n$. \Box

Example 4.5. By Example 4.2, we have $(K_1 : M) = \{0, 1\}$ and $(K_2 : M) = \{0, 2\}$. It is clear that $(K_1 : M) \nsubseteq (K_2 : M)$ and $(K_2 : M) \oiint (K_1 : M)$. Note that K_1 and K_2 are not prime A-ideals of M. For example, $2.3 = 0 \in K_1$, but $3 \notin K_1$ and $2 \notin (K_1 : M)$.

Note.Now, we want to state a different shape of the theorem of "prime avoidance of A-ideals". Let K, K_1, \ldots, K_n be A-ideals of M and m_1+K_1, \cdots, m_n+K_n be cosets in M, for $m_i \in M$, where $1 \leq i \leq n$. We say $\bigcup_{i=1}^n (m_i+K_i)$ is an efficient covering of K, if $K \subseteq \bigcup_{i=1}^n (m_i+K_i)$

10

and $K \nsubseteq \bigcup_{j \neq i=1}^{n} (m_i + K_i)$, for every $1 \le j \le n$. Moreover, $K = \bigcup_{i=1}^{n} (m_i + K_i)$ is an efficient union, if $K \ne \bigcup_{j \ne i=1}^{n} (m_i + K_i)$, for every $1 \le j \le n$.

Lemma 4.6. Let M be an A-module, N be an A-ideal of M and $m \oplus N = \{m \oplus n : n \in N\}$. Then, $m \oplus N = N$, where $m \in M$ and $m \leq n$, for every $0 \neq n \in N$.

Proof. Since $m \leq n \in N$, by (I_2) , we get $m \in N$ and so $m \oplus N \subseteq N$. Since $n' \leq n' \oplus m$, by Lemma 2.3 (i), we have $(n' \oplus m)' \leq n \in N$ and hence $(n' \oplus m)' \in N$. Now, by (MV4), we have

$$n = n \oplus 0 = n \oplus 1' = n \oplus (m' \oplus n)' = m \oplus (n' \oplus m)' \in m \oplus N,$$

for every $n \in N$ and then $N \subseteq m \oplus N$. Therefore, $m \oplus N = N$.

Lemma 4.7. Let M be an A-module, K, K_1, \ldots, K_n be A-ideals of Mand $K \subseteq \bigcup_{i=1}^n (K_i + m_i)$ be an efficient covering of K, where $n \ge 2$ and $m_i \le k_i$, for every $0 \ne k_i \in K_i$, $1 \le i \le n$ and "+" is the partial addition on M. Then $K \cap (\bigcap_{j \ne i=1}^n K_i) \subseteq K_j$, but $K \nsubseteq K_j$, for any $1 \le j \le n$.

Proof. Without loss of generality, we accept j = 1. Let $a \in K \cap \bigcap_{i=2}^{n} K_i$ and $b \in K - \bigcup_{i=2}^{n} (K_i + m_i)$. Then, $b \in K_1 + m_1$. If there exits $j \ge 2$ such that $a + b \in K_j + m_j$, then $a \in K_j$ implies that $b \in K_j + m_j$, which is a contradiction. Hence, $a+b \in K - \bigcup_{i=2}^{n} (K_i + m_i)$ and so $a+b \in K_1 + m_1$. It then results that $a + b = k_1 + m_1$, for some $k_1 \in K_1$. On the other hand, $b = k + m_1$, for some $k \in K_1$. Then, $a + k + m_1 = k_1 + m_1$ and so by Lemma 2.5 (*iii*), we get $a + k = k_1$. By Lemma 2.5 (*ii*), we have $a = k' \odot k_1 = (k'_1 \oplus k)'$. Since $k'_1 \leq k'_1 \oplus k$, $(k'_1 \oplus k)' \leq k_1 \in K_1$ so $a = (k'_1 \oplus k)' \in K_1$. Hence, $K \cap (\bigcap_{i \neq 1} K_i) \subseteq K_1$. Now, let there exists $1 \leq j \leq n$ such that $K \subseteq K_j$. If $m_j \in K_j$, then by Lemma 4.6, we have $K \subseteq K_j = K_j + m_j$, which is a contradiction. Which the fact that $\bigcup_{i=1}^{n} (K_i + m_i)$ is an efficient covering of K. If $m_j \notin K_j$, then we will show that $K \cap (K_j + m_j) = \emptyset$. Let $x \in K \cap (K_j + m_j)$. Then there exists $k_j \in K_j$ such that $x = k_j + m_j \in K \subseteq K_j$. Since $m_j \leq k_j + m_j$, then $m_j \in K_j$, which is a contradiction. Hence, $K \cap (K_j + m_j) = \emptyset$ and so $K \subseteq \bigcup_{i \neq j}^{n} (K_i + m_i)$, which is a contradiction. Which the fact that $\bigcup_{i=1}^{n} (K_i + m_i)$ is an efficient covering of K. Therefore, $K \not\subseteq K_j$, for any $1 \leq j \leq n$.

Theorem 4.8. Let M be an A-module, K, K_1, \ldots, K_n be A-ideals of M and $K + m \subseteq \bigcup_{i=1}^n K_i$ be an efficient covering of K + m and $(K_j : M) \nsubseteq (K_t : M)$, for every $j \neq t$, where $1 \leq j, t \leq n$ and $m \in M$. Then K_j is not a prime A-ideal of M, for every $1 \leq j \leq n$.

Proof. By Lemma 4.7, we have $K \cap (\bigcap_{j \neq i=1}^{n} K_i) \subseteq K_j$ and $K \nsubseteq K_j$, for every $1 \leq j \leq n$. Let $I = (\bigcap_{j \neq i=1}^{n} K_i : M)$. Then, $IK \subseteq K \cap (\bigcap_{j \neq i=1}^{n} K_i) \subseteq K_j$. Now, let K_j be a prime A-ideal of M. Then, $K \subseteq K_j$ or $IM \subseteq K_j$. Since $K \nsubseteq K_j$, $I \subseteq (K_j : M)$. On the other hand, $I = (\bigcap_{j \neq i=1}^{n} K_i : M) = \bigcap_{j \neq i=1} (K_i : M) \subseteq (K_j : M)$, for every $i \neq j$. Hence, there exists $i \neq j$ such that $(K_i : M) \subseteq (K_j : M)$, which is a contradiction. Therefore, K_i is not a prime A-ideal of M, for every $1 \leq i \leq n$.

5. Conclusions

Our results in this paper about the A-ideals of MV-modules gives new insights for anyone who is interested in studying and development of ideals in MV-modules. One can study of ideals in MV-modules and obtain some new methods to study and characterize the A-ideals of MV-modules. Furthermore, one can define another types of A-ideals in MV-modules and study many other subjects in this field.

Acknowledgments

The authors wish to thank referee for some very helpful comments in improving several aspects of this paper.

References

- R. A. Borzooei and S. Saidi Goraghani, Free MV-modules, J. Intell. Fuzzy Systems 31(1) (2016), 151–161.
- C. C. Chang, Algebric analysis of many-valued logic, Trans. Amer. Math. Soc. 88 (1958), 467–490.
- C. C. Chang, A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74–80.
- 4. R. Cignoli, M. L. D'Ottaviano, and D. Mundici, Algebric foundation of Manyvalued reasoning, Kluwer Academic, Dordrecht, 2000.
- A. Di Nola and A. Dvurečenskij, Product MV-algebras, Multiple-Valued Logics 6 (2001), 193–215.
- A. Di Nola, P. Flondor and I. Leustean, MV-modules, J. Algebra. 267 (2003), 21–40.
- F. Forouzesh, E. Eslami and A. Borumand Saeid, On prime A-ideals in MVmodules, U. P. B. Sci. Bull. 76 (2014), 181–198.
- T. Kroupa, Conditional probability on MV-algebras, Fuzzy Sets and Systems 149 (2005), 369–381.
- S. Saidi Goraghani and R. A. Borzooei, Prime --Ideals and Fuzzy Prime --Ideals in PMV-algebras, Ann. Fuzzy Math. Inform. 12 (2016), 527–538.

10. S. Saidi Goraghani and R. A. Borzooei, Results on prime ideals in *PMV*-algebras and *MV*-modules, *Italian J. Pure Appl. Math.*, to appear.

Simin Saidi Goraghani

Department of Mathematics, University of Farhangian, Tehran, Iran. Email: siminsaidi@yahoo.com

Rajab Ali Borzooei

Department of Mathematics, University of Shahid Beheshti, Tehran, Iran. Email: borzooei@sbu.ac.ir Journal of Algebraic Systems

MOST RESULTS ON A-IDEALS IN MV-MODULES S. SAIDI GORAGHANI, R. A. BORZOOEI

نتایجی بیشتر روی A–ایدهآلها در MV–مدولها

سیمین سعیدی گراغانی و رجب علی برزویی^۲ دانشگاه فرهنگیان، تهران، ایران^۱، دانشگاه شهید بهشتی، تهران، ایران^۲

در مقاله ارائه شده، با در نظر گرفتن MV-مدولها که به طور طبیعی ساختاری متناظر با lu- lu مدولها روی lu مدولها روی lu وی k-ایدهآلهای اول ثابت کرده و شرایطی را برای یافتن A-ایدهآلهای اول ثابت کرده و شرایطی را برای یافتن A- ایدهآلهای اول در MV-مدولها بیان میکنیم. همچنین شرایط را برای داشتن یک A-ایدهآل غیراول بیان و برای A-ایدهآلهای و K, K_1, \ldots, K_n از K-مدول M شرایطی را مورد بررسی قرار میداول بیان و این M ای $j \leq n$ می کنیم. میداول بیان و برای M می میداول بیان و برای K_1, \ldots, K_n مدول M شرایطی را مورد بررسی قرار میداول بیان و این $K_i \leq M^n$

كلمات كليدى: MV-جبر، MV-مدول، A-ايد،آل اول.