Journal of Algebraic Systems

Vol. 5, No. 1, (2017), pp 1-13

MOST RESULTS ON A-IDEALS IN $M V$-MODULES

S. SAIDI GORAGHANI*, AND R. A. BORZOOEI

Abstract

In the present paper, by considering the notion of $M V$ -modules which is the structure that naturally correspond to $l u$ modules over $l u$-rings, we prove some results on prime A-ideals and state some conditions to obtain a prime A-ideal in $M V$-modules. Also, we state some conditions that an A-ideal is not prime and investigate conditions that $K \subseteq \bigcup_{i=1}^{n} K_{i}$ implies $K \subseteq K_{j}$, where K, K_{1}, \cdots, K_{n} are A-ideals of A-module M and $1 \leq j \leq n$.

1. Introduction

$M V$-algebras were defined by C. C. Chang [2, 3] as algebras corresponding to the Łukasiewicz infinite valued propositional calculus. These algebras have appeared in the literature under different names and polynomially equivalent presentation: $C N$-algebras, Wajsberg algebras, bounded commutative $B C K$-algebras and bricks. It is discovered that $M V$-algebras are naturally related to the Murray-Von Neumann order of projections in operator algebras on Hilbert spaces and that they play an interesting role as invariants of approximately finitedimensional C^{*}-algebras. They are also naturally related to Ulam's searching games with lies. $M V$-algebras admit a natural lattice reduct and hence a natural order structure. Many important properties can be derived from the fact, established by Chang, that non-trivial $M V$ algebras are sub-direct products of $M V$-chains, that is, totally ordered $M V$-algebras. To prove this fundamental result, Chang introduced the notion of prime ideal in an $M V$-algebra. A product $M V$-algebra

[^0](or $P M V$-algebra, for short) is an $M V$-algebra which has an associative binary operation ".". It satisfies an extra property which will be explained in Preliminaries section. During last years, $P M V$-algebras were considered and their equivalence with a certain class of l-rings with strong unit was proved. It seems quite natural to introduce modules over such algebras, generalizing the divisible $M V$-algebras and the $M V$-algebras obtained from Riesz spaces and to prove natural equivalence theorems. Hence, the notion of $M V$-modules was introduced as an action of a $P M V$-algebra over an $M V$-algebra by A. Di Nola [6]. Recently, Forouzesh, Eslami and Borumand Saeid [7] defined prime A ideals in $M V$-modules. Since $M V$-modules are in their infancy, stating and opening of any subject in this field can be useful. Hence, in this paper, we study prime A-ideals and state some conditions to obtain a prime A-ideal (or no prime A-ideal) in $M V$-modules. Also, in special case, we prove that if $K \subseteq \bigcup_{i=1}^{n} K_{i}$, then $K \subseteq K_{j}$, where K, K_{1}, \ldots, K_{n} are A-ideals of A-module M and $1 \leq j \leq n$. In fact, our results in this paper gives new insights to anyone who is interested in studying and development of $M V$-modules.

2. Preliminaries

In this section, we review related lemmas and theorems that we will use in the next sections.

Definition 2.1. [4] An $M V$-algebra is a structure $M=\left(M, \oplus,{ }^{\prime}, 0\right)$ of type $(2,1,0)$ such that
$(M V 1)(M, \oplus, 0)$ is an abelian monoid,
(MV2) $\left(a^{\prime}\right)^{\prime}=a$,
(MV3) $0^{\prime} \oplus a=0^{\prime}$,
$(M V 4)\left(a^{\prime} \oplus b\right)^{\prime} \oplus b=\left(b^{\prime} \oplus a\right)^{\prime} \oplus a$,
If we define the constant $1=0^{\prime}$ and operations \odot and \ominus by $a \odot b=$ $\left(a^{\prime} \oplus b^{\prime}\right)^{\prime}, a \ominus b=a \odot b^{\prime}$, then
$(M V 5)(a \oplus b)=\left(a^{\prime} \odot b^{\prime}\right)^{\prime}$,
(MV6) $a \oplus 1=1$,
$(M V 7)(a \ominus b) \oplus b=(b \ominus a) \oplus a$,
(MV8) $a \oplus a^{\prime}=1$,
for every $a, b \in M$. It is clear that $(M, \odot, 1)$ is an abelian monoid. Now, if we define auxiliary operations \vee and \wedge on M by $a \vee b=\left(a \odot b^{\prime}\right) \oplus b$ and $a \wedge b=a \odot\left(a^{\prime} \oplus b\right)$, for every $a, b \in M$, then $(M, \vee, \wedge, 0)$ is a bounded distributive lattice. An $M V$-algebra M is a Boolean algebra if and only if the operation " \oplus " is idempotent, i.e., $a \oplus a=a$, for every $a \in M$. In every $M V$-algebra M, the following conditions are equivalent: (i) $a^{\prime} \oplus b=1,(i i) a \odot b^{\prime}=0,(i i i) b=a \oplus(b \ominus a),(i v) \exists c \in M$ such that
$a \oplus c=b$, for every $a, b \in M$. For any two elements a, b of $M V$-algebra $M, a \leq b$ if and only if a, b satisfy in the above equivalent conditions (i) $-(i v)$. An ideal of $M V$-algebra M is a subset I of M, satisfying the following conditions: $(I 1) 0 \in I,(I 2) x \leq y$ and $y \in I$ imply that $x \in I$, (I3) $x \oplus y \in I$, for every $x, y \in I$. A proper ideal I of M is a prime ideal if and only if $x \ominus y \in I$ or $y \ominus x \in I$, for every $x, y \in M$. A proper ideal I of M is a maximal ideal of M if and only if no proper ideal of M strictly contains I. In $M V$-algebra M, the distance function $d: M \times M \rightarrow M$ is defined by $d(x, y)=(x \ominus y) \oplus(y \ominus x)$ which satisfies $(i) d(x, y)=0$ if and only if $x=y,(i i) d(x, y)=d(y, x),(i i i) d(x, z) \leq d(x, y) \oplus d(y, z)$, (iv) $d(x, y)=d\left(x^{\prime}, y^{\prime}\right),(v) d(x \oplus z, y \oplus t) \leq d(x, y) \oplus d(z, t)$, for every $x, y, z, t \in M$. Let I be an ideal of $M V$-algebra M. Then, we denote $x \sim y\left(x \equiv_{I} y\right)$ if and only if $d(x, y) \in I$, for every $x, y \in M$. So, \sim is a congruence relation on M. Denote the equivalence class containing x by $\frac{x}{I}$ and $\frac{M}{I}=\left\{\frac{x}{I}: x \in M\right\}$. Then, $\left(\frac{M}{I}, \oplus,{ }^{\prime}, \frac{0}{I}\right)$ is an $M V$-algebra, where $\left(\frac{x}{I}\right)^{\prime}=\frac{x^{\prime}}{I}$ and $\frac{x}{I} \oplus \frac{y}{I}=\frac{x \oplus y}{I}$, for all $x, y \in M$. Let M and K be two $M V$-algebras. A mapping $f: M \rightarrow K$ is called an $M V$-homomorphism if $(H 1) f(0)=0,(H 2) f(x \oplus y)=f(x) \oplus f(y)$ and $(H 3) f\left(x^{\prime}\right)=(f(x))^{\prime}$, for every $x, y \in M$. If f is one to one (resp. onto), then f is called an $M V$-monomorphism (resp. epimorphism) and if f is onto and one to one, then f is called an $M V$-isomorphism (see [6]).

Proposition 2.2. [4] Let M be an $M V$-algebra and $z \in M$. Then the principal ideal generated by z is denoted by $\langle z\rangle$ and $\langle z\rangle=\{x \in M$: $n z=\underbrace{z \oplus \cdots \oplus z}_{n \text { times }} \geq x$, for some $n \geq 0\}$.

Lemma 2.3. [4] In every MV-algebra M, the natural order " \leq " has the following properties:
(i) $x \leq y$ if and only if $y^{\prime} \leq x^{\prime}$,
(ii) if $x \leq y$, then $x \oplus z \leq y \oplus z$, for every $z \in M$.

Definition 2.4. [5] In $M V$-algebra M, a partial addition is defined as following:
$x+y$ is defined iff $x \leq y^{\prime}$ and in this case, $x+y=x \oplus y$, for any $x, y \in M$.

Lemma 2.5. [6] In $M V$-algebra M,
(i) $x+0=x$,
(ii) if $x+y=z$, then $y=x^{\prime} \odot z$,
(iii) if $z+x=z+y$, then $x=y$,
(iv) if $z+x \leq z+y$, then $x \leq y$, where " + " is the partial addition on M.

Definition 2.6. [5] A product $M V$-algebra (or PMV-algebra, for short) is a structure $A=\left(A, \oplus, .,^{\prime}, 0\right)$, where $\left(A, \oplus,^{\prime}, 0\right)$ is an $M V$-algebra and "." is a binary associative operation on A such that the following property is satisfied: if $x+y$ is defined, then $x . z+y . z$ and $z . x+z . y$ are defined and $(x+y) . z=x . z+y . z, z \cdot(x+y)=z . x+z . y$, for every $x, y, z \in A$, where " + " is the partial addition on A. A unity for the product is an element $e \in A$ such that $e . x=x . e=x$, for every $x \in A$. If A has a unity for product, then A is called a unital $P M V$-algebra. A $P M V$-homomorphism is an $M V$-homomorphism which also commutes with the product operation.

Lemma 2.7. [5] If A is a unital PMV-algebra, then;
(i) the unity for product is $e=1$,
(ii) $x . y \leq x \wedge y$, for every $x, y \in A$.

Lemma 2.8. [5] Let A be a $P M V$-algebra. Then, $1 . a=a$ and $a \leq b$ implies that $a . c \leq b . c$ and $c . a \leq c . b$, for any $a, b, c \in A$.

Definition 2.9. [6] Let $A=\left(A, \oplus, .,{ }^{\prime}, 0\right)$ be a $P M V$-algebra, $M=$ $\left(M, \oplus,^{\prime}, 0\right)$ be an $M V$-algebra and the operation $\Phi: A \times M \longrightarrow M$ be defined by $\Phi(a, m)=a m$, which satisfies the following axioms:
(AM1) if $x+y$ is defined in M, then $a x+a y$ is defined in M and $a(x+y)=a x+a y$,
(AM2) if $a+b$ is defined in A, then $a x+b x$ is defined in M and $(a+b) x=a x+b x$
(AM3) $(a . b) x=a(b x)$, for every $a, b \in A$ and $x, y \in M$.
Then M is called a (left) $M V$-module over A or briefly an A-module. We say that M is a unitary $M V$-module if A has a unity 1_{A} for the product and
(AM4) $1_{A} x=x$, for every $x \in M$.
Lemma 2.10. [6] Let A be a $P M V$-algebra and M be an A-module. Then;
(a) $0 x=0$,
(b) $a 0=0$,
(c) $a x^{\prime} \leq(a x)^{\prime}$,
(d) $a^{\prime} x \leq(a x)^{\prime}$,
(e) $(a x)^{\prime}=a^{\prime} x+(1 x)^{\prime}$,
(f) $x \leq y$ implies that $a x \leq a y$,
(g) $a \leq b$ implies that $a x \leq b x$,
(h) $a(x \oplus y) \leq a x \oplus a y$,
(i) $d(a x, a y) \leq a d(x, y)$,
(j) if $x \equiv_{I} y$, then $a x \equiv_{I}$ ay, where I is an ideal of A,
(k) if M is a unitary $M V$-module, then $(a x)^{\prime}=a^{\prime} x+x^{\prime}$, for every $a, b \in A$ and $x, y \in M$.

Definition 2.11. [6] Let A be a $P M V$-algebra and M_{1}, M_{2} be two A modules. A map $f: M_{1} \rightarrow M_{2}$ is called an A-module homomorphism or (A-homomorphism, for short) if f is an $M V$-homomorphism and (H4): $f(a x)=a f(x)$, for every $x \in M_{1}$ and $a \in A$.

Definition 2.12. [6] Let A be a $P M V$-algebra and M be an A-module. Then, an ideal $N \subseteq M$ is called an A-ideal of M if (I4) ax $\in N$, for every $a \in A$ and $x \in N$.

Definition 2.13. [7] Let M be an A-module and N be a proper A ideal of M. Then, N is called a prime A-ideal of M, if $a m \in N$ implies that $m \in N$ or $a \in(N: M)$, for any $a \in A$ and $m \in M$, where $(N: M)=\{a \in A: a M \subseteq N\}$. Moreover, the set of all prime A-ideals of M is denoted by $\operatorname{Spec}(M)$.

Note. From now onwards, A denotes a $P M V$-algebra.

3. Some results on prime A-ideals in $M V$-modules

In this section, we state and prove some conditions to obtain a prime A-ideal in $M V$-modules.

Example 3.1. Let $A=\{0,1,2,3\}$ and the operations " \oplus " and "." on A are defined as follows:

\oplus	0	1	2	3
0	0	1	2	3
1	1	1	3	3
2	2	3	2	3
3	3	3	3	3

.	0	1	2	3
0	0	0	0	0
1	0	1	0	1
2	0	0	2	2
3	0	1	2	3

Consider $0^{\prime}=3,1^{\prime}=2,2^{\prime}=1$ and $3^{\prime}=0$. Then, it is easy to show that $\left(A, \oplus,{ }^{\prime}, ., 0\right)$ is a $P M V$-algebra and $\left(A, \oplus,^{\prime}, 0\right)$ is an $M V$-algebra. Now, let the operation $\bullet: A \times A \longrightarrow A$ be defined by $a \bullet b=a . b$, for every $a, b \in A$. It is easy to show that A is an $M V$-module on A and $I=\{0,1\}, J=\{0,2\}$ are prime A-ideals of $A .\{0\}$ is not a prime A-ideal of A. Note that $1 \bullet 2=0$, but $2 \notin\{0\}$ and $1 \notin(\{0\}: A)=\{0\}$.

Proposition 3.2. Let M be an A-module and N, L be A-ideals of M. Then;
(i) $(N: M)=\{a \in A: a M \subseteq N\}$ is an ideal of A,
(ii) $(N: m)$ is an ideal of A, for every $m \in M$,
(iii) N is a prime A-ideal of M if and only if $(N: m)=(N: M)$, where $m \notin N$.

Proof. (i) It is clear that $0 \in(N: M)$. Let $\alpha, \beta \in(N: M)$. Then, $\alpha m, \beta m \in N$, for every $m \in N$. Since $\beta m \leq(\alpha m)^{\prime} \oplus \beta m$, by Lemma 2.3(i), we get $(\alpha m) \odot(\beta m)^{\prime}=\left((\alpha m)^{\prime} \oplus \beta m\right)^{\prime} \leq(\beta m)^{\prime}$ and so $(\alpha m) \odot(\beta m)^{\prime}+\beta m$ is defined, where " + " is the partial addition on M. Similarly, $\alpha \odot \beta^{\prime}+\beta$ is defined, too. Also, since $\alpha \odot \beta^{\prime} \leq \beta^{\prime}$, by Lemma $2.10(d)$ and (g), we have $\left(\alpha \odot \beta^{\prime}\right) m \leq \beta^{\prime} m \leq(\beta m)^{\prime}$ and so $\left(\alpha \odot \beta^{\prime}\right) m+\beta m$ is defined. Now, $\alpha \leq \alpha \vee \beta$ implies that $\alpha m \leq(\alpha \vee \beta) m$ and similarly, $\beta m \leq(\alpha \vee \beta) m$. Then, $\alpha m \vee \beta m \leq(\alpha \vee \beta) m$ and so

$$
\begin{aligned}
(\alpha m) \odot(\beta m)^{\prime}+\beta m & =\alpha m \vee \beta m \leq(\alpha \vee \beta) m=\left(\alpha \odot \beta^{\prime} \oplus \beta\right) m \\
& =\left(\alpha \odot \beta^{\prime}+\beta\right) m=\left(\alpha \odot \beta^{\prime}\right) m+\beta m .
\end{aligned}
$$

By Lemma $2.5(i v)$, we have $\alpha m \odot(\beta m)^{\prime} \leq\left(\alpha \odot \beta^{\prime}\right) m$. If we set $\alpha \oplus \beta$ instead of α, then by Lemma $2.10(g)$, we get $(\alpha \oplus \beta) m \odot(\beta m)^{\prime} \leq$ $\left((\alpha \oplus \beta) \odot \beta^{\prime}\right) m=\left(\alpha \wedge \beta^{\prime}\right) m \leq \alpha m$. Since
$(\alpha \oplus \beta) m=(\alpha \oplus \beta) m \vee \beta m=(\alpha \oplus \beta) m \odot(\beta m)^{\prime} \oplus \beta m \leq \alpha m \oplus \beta m \in N$, hence $\alpha \oplus \beta \in(N: M)$. Now, let $\alpha \leq \beta$ and $\beta \in(N: M)$. Then, by Lemma $2.10(g)$, we have $\alpha m \leq \beta m \in N$ and so $\alpha m \in N$, for every $m \in M$. It means that $\alpha \in(N: M)$.
(ii) By (i), the proof is clear.
(iii) By (i) and (ii), the proof is straight forward.

Lemma 3.3. Let M be a unitary A-module and $m \in M$. Then;

$$
\begin{aligned}
I_{m}= & \left\{\sum_{i=1}^{k} t_{i} m: \sum_{i=1}^{k} t_{i} m \leq n m, \text { for some } n, k \in \mathbb{N} \cup\{0\},\right. \\
& \text { where } \left.t_{i} \in A \text { and } t_{1} m+\cdots+t_{k} m \text { is defined }\right\}
\end{aligned}
$$

is an A-ideal of M.
Proof. (I_{1}) It is clear that $0 \in I_{m}$.
$\left(I_{2}\right)$ Let $x \leq \sum_{i=1}^{k} t_{i} m \in I_{m}$, for some $x \in M$. Then, $x=1 x \leq$ $\sum_{i=1}^{k} t_{i} m \leq n m \in I_{m}$, where $n \geq 0$ and so $x \in I_{m}$.
$\left(I_{3}\right)$ Let $\sum_{i=1}^{k} t_{i} m, \sum_{i=1}^{w} s_{i} m \in I_{m}$. Then, there exist $n_{1}, n_{2} \geq 0$ such that $\sum_{i=1}^{k} t_{i} m \leq n_{1} m$ and $\sum_{i=1}^{w} s_{i} m \leq n_{2} m$ and so

$$
\begin{aligned}
\sum_{i=1}^{k+w} c_{i} m & =\sum_{i=1}^{\sum_{i}} t_{i} m \oplus \sum_{i=1}^{w} s_{i} m \leq n_{1} m \oplus n_{2} m=\underbrace{m \oplus \cdots \oplus m}_{n_{1} \text { times }} \\
& \oplus \underbrace{m \oplus \cdots \oplus m}_{n_{2} \text { times }}=\left(n_{1}+n_{2}\right) m
\end{aligned}
$$

where

$$
c_{i}=\left\{\begin{array}{cc}
t_{i} & 1 \leq i \leq k \\
s_{i-k} & k+1 \leq i \leq k+w
\end{array}\right.
$$

It means that $\sum_{i=1}^{k} t_{i} m \oplus \sum_{i=1}^{w} s_{i} m \in I_{m}$.
$\left(I_{4}\right)$ Let $a \in A$ and $\sum_{i=1}^{k} t_{i} m \in I_{m}$. Then, there exists $n \geq 0$ such that $\sum_{i=1}^{k} t_{i} m \leq n m$. Since $\sum_{i=1}^{k} t_{i} m \leq n m=\underbrace{m \oplus \cdots \oplus m}_{n \text { times }}$, by Lemma 2.10(f) and (h), hence

$$
a\left(\sum_{i=1}^{k} t_{i} m\right) \leq a(m \oplus \cdots \oplus m) \leq \underbrace{a m \oplus \cdots \oplus a m}_{n \text { times }}
$$

By Lemma 2.10(k), since $(a m)^{\prime} \oplus m=a^{\prime} m \oplus m^{\prime} \oplus m=1$, and $a m \leq m$, so $a\left(\sum_{i=1}^{k} t_{i} m\right) \leq \underbrace{m \oplus \cdots \oplus m}_{n \text { times }}=n m$. It results that $\sum_{i=1}^{k}\left(a . t_{i}\right) m=$ $\sum_{i=1}^{k} a\left(t_{i} m\right) \in I_{m}$.

Notation. For A-module M, non-empty subset I of A and A-ideal N of M, we let $I N=\{x m: x \in I, m \in N\}$.

Definition 3.4. A $P M V$-algebra A is called commutative, if $x . y=y . x$, for every $x, y \in A$.

Example 3.5. In Example 3.1, A is a commutative $P M V$-algebra.
Theorem 3.6. Let A be commutative $M V$-algebra, M be a unitary A-module, N be a proper A-ideal of M and $x \oplus x=x$, for every $x \in A$. Then, N is a prime A-ideal of M if and only if for every ideal I of A and A-ideal D of $M, I D \subseteq N$ implies that $I \subseteq(N: M)$ or $D \subseteq N$.

Proof. (\Rightarrow) Let N be a prime A-ideal of M, I be an ideal of A and D be an A-ideal of M such that $I D \subseteq N$. We will show that $I \subseteq(N: M)$ or $D \subseteq N$. Let $I \nsubseteq(N: M)$ and $D \nsubseteq N$. Then, there exist $x \in A$ and $d \in D$ such that $x M \nsubseteq N$ and $d \notin N$. On the other hand, $I D \subseteq N$ implies that $x d \in N$. Since N is a prime A-ideal of M and $d \notin N$, $x M \subseteq N$, which is a contradiction.
(\Leftarrow) For every ideal I of A and A-ideal D of M, let $I D \subseteq N$ implies that $I \subseteq(N: M)$ or $D \subseteq N$. Then suppose that there exist $x \in A$ and $m \in M$ such that $x m \in N$ and $m \notin N$. By Proposition 2.2 and Lemma 3.3, let $I=\langle x\rangle$ and $D=I_{m}$. Then for $y \in I$, by Proposition 2.2 , there exists $n \geq 0$ such that $y \leq n x$ and so $y \ominus n x=0$. Hence,

$$
\begin{aligned}
y m & =(y \ominus 0) m=(y \ominus(y \ominus n x)) m=\left(y \odot\left(y \odot(n x)^{\prime}\right)^{\prime}\right) m \\
& =\left(y \odot\left(y^{\prime} \oplus n x\right)\right) m=(y \wedge n x) m
\end{aligned}
$$

By Lemma $2.10(\mathrm{~g})$, since $y \wedge n x \leq n x$ and $x \oplus x=x$, we get

$$
y m=(y \wedge n x) m \leq(n x) m=(\underbrace{x \oplus x \oplus \cdots \oplus x}_{n \text { times }}) m=x m \in N .
$$

Hence, $y m \in N$ and then we get $I D=\left\{y\left(\sum_{i=1}^{k} t_{i} m\right): y, t_{i} \in A\right\}=$ $\left\{\sum_{i=1}^{k} t_{i}(y m): y, t \in A\right\} \subseteq N$ and so $I \subseteq(N: M)$ or $D \subseteq N$. Since $m \notin N$, hence $I \subseteq(N: M)$ and so $x M \subseteq N$. Therefore, N is a prime A-ideal of M.

Definition 3.7. Let M be an A-module. Then M is called a Boolean A-module if $a x \oplus a y \leq a(x \oplus y)$, for every $a \in A$ and $x, y \in M$.

Example 3.8. If A is a Boolean algebra, then every A-module M is a Boolean A-module.

Proposition 3.9. [1, 10] Let M be a Boolean A-module.
(i) If I is an A-ideal of M, then $\frac{M}{I}$ is an A-module.
(ii) If N and K are two A-ideals of M such that $N \subseteq K$, then $\frac{K}{N}=\left\{\frac{k}{N}: k \in K\right\}$ is an A-ideal of $\frac{M}{N}$.
Proposition 3.10. Let M be a Boolean A-module and N be an A-ideal of M. Then P is a prime A-ideal of M if and only if $\frac{P}{N}$ is a prime A-ideal of $\frac{M}{N}$, where $N \subseteq P$.
Proof. (\Rightarrow) Let P be a prime A-ideal of M. By Proposition 3.9, $\frac{M}{N}$ is an A-module and $\frac{P}{N}$ is an A-ideal of $\frac{M}{N}$. Let $x \frac{m}{N} \in \frac{P}{N}$, where $x \in A$ and $m \in M$. Then there exists $q \in P$ such that $\frac{x m}{N}=\frac{q}{N}$ and so $d(x m, q) \in N \subseteq P$. Since $x m=d(x m, 0) \leq d(x m, q) \oplus d(q, 0) \in P$, $x m \in P$ and so $x \in(P: M)$ or $m \in P$. It results that $x \frac{M}{N} \subseteq \frac{P}{N}$ or $\frac{m}{N} \in \frac{P}{N}$. Therefore, $\frac{P}{N}$ is a prime A-ideal of $\frac{M}{N}$.
(\Leftarrow) The proof is straight forward.
Lemma 3.11. Consider A as A-module. Let I be an ideal of A and P be a prime A-ideal of A containing I. Then $\frac{P}{I}$ is a prime A-ideal of $\frac{A}{I}$.
Proof. Note that if the operation $\bullet: A \times \frac{A}{I} \rightarrow \frac{A}{I}$ is defined by $x \bullet \frac{y}{I}=\frac{x . y}{I}$, for any $x, y \in A$, then $\frac{A}{I}$ is an A-module. By Proposition 3.9, $\frac{P}{I}$ is an A-ideal of $\frac{A}{I}$, and it is easy to show that $\frac{P}{I}$ is a prime A-ideal of $\frac{A}{I}$.
Lemma 3.12. Let M_{1} and M_{2} be two A-modules, $\Phi: M_{1} \rightarrow M_{2}$ be an MV-homomorphism and N be a prime A-ideal of M_{2} such that $\phi\left(M_{1}\right) \nsubseteq N$. Then, $\phi^{-1}(N)$ is a prime A-ideal of M_{1}.

Proof. The proof is straight forward.
Notation. If M_{1} and M_{2} are two $M V$-algebras, then $\operatorname{hom}\left(M_{1}, M_{2}\right)$ denotes the set of all $M V$-homomorphisms from M_{1} to M_{2}.
Theorem 3.13. Let M be an A-module, $\operatorname{rad}(A)$ be the intersection of all prime A-ideals of A as A-module and $\operatorname{hom}\left(M, \frac{A}{\operatorname{rad}(A)}\right) \neq 0$. Then M contains a prime A-ideal.
Proof. Since $\operatorname{hom}\left(M, \frac{A}{\operatorname{rad}(A)}\right) \neq 0$, then there exists an $M V$-homomorphism $\phi: M \rightarrow \frac{A}{\operatorname{rad}(A)}$ such that $\phi(m)=\frac{a}{\operatorname{rad}(A)} \neq \frac{0}{\operatorname{rad}(A)}$, for some $m \in M$ and $a \in A$. Hence, $a \notin \operatorname{rad}(A)$ and then there exists a prime A-ideal P of M such that $a \notin P$. Since $\frac{a}{\operatorname{rad}(A)} \notin \frac{P}{\operatorname{rad}(A)}, \phi(M) \nsubseteq \frac{P}{\operatorname{rad}(A)}$. Therefore, by Lemmas 3.11 and $3.12, \phi^{-1}\left(\frac{P}{\operatorname{rad}(A)}\right)$ is a prime A-ideal of M.

4. Most results on A-ideals in $M V$-modules

In this section, we obtain some conditions that an A-ideal is not prime. Also, we investigate if K, K_{1}, \ldots, K_{n} are A-ideals of A-module M such that $K \subseteq \bigcup_{i=1}^{n} K_{i}$, then $K \subseteq K_{j}$, for some $1 \leq j \leq n$.
Definition 4.1. Let M be an A-module and K, K_{1}, \ldots, K_{n} be A-ideals of M. Then, $\bigcup_{i=1}^{n} K_{i}$ is called an efficient covering of K, if $K \subseteq \bigcup_{i=1}^{n} K_{i}$ and $K \nsubseteq \bigcup_{j \neq i=1}^{n} K_{i}$, for every $1 \leq j \leq n$. Moreover, $K=\bigcup_{i=1}^{n} K_{i}$ is called an efficient union, if $K \neq \bigcup_{j \neq i=1}^{n} K_{i}$, for every $1 \leq j \leq n$.
Example 4.2. Let $A=M=\{0,1,2,3\}$ and the operations " \oplus " and "'" be defined on M as follows:

\oplus	0	1	2	3
0	0	1	2	3
1	1	1	2	3
2	2	2	2	3
3	3	3	3	3

$$
\begin{array}{l|llll}
\prime & 0 & 1 & 2 & 3 \\
\hline & 3 & 2 & 1 & 0
\end{array} .
$$

Also, for every $a, b \in A$,

$$
a . b=\left\{\begin{array}{ll}
0 & a \neq y \\
x & a=b
\end{array} .\right.
$$

Then, it is easy to show that $\left(M, \oplus,{ }^{\prime}, 0\right)$ is an $M V$-algebra and $\left(A, \oplus,{ }^{\prime}\right.$, $., 0)$ is a $P M V$-algebra. Now, let the operation $\bullet: A \times M \longrightarrow M$ be defined by $a \bullet b=a . b$, for every $a \in A$ and $b \in M$. It is easy to see that M is an A-module and $K_{1}=\{0,1\}, K_{2}=\{0,2\}, K=\{0,1,2\}$ are A-ideals of M. Also, $K_{1} \cup K_{2}$ is an efficient covering of K and it is an efficient union.

Lemma 4.3. Let M be an A-module, K, K_{1}, \ldots, K_{n} be A-ideals of M and $K=\bigcup_{i=1}^{n} K_{i}$ be an efficient union of A-ideals of M, where $n>1$. Then, $\bigcap_{j \neq i=1}^{n} K_{i}=\bigcap_{i=1}^{n} K_{i}$, for every $1 \leq j \leq n$.
Proof. Without loss of generality, let $j=1$ and $a \in \bigcap_{i=2}^{n} K_{i}$. Since K has an efficient covering, then there exists $b \in K$ such that $b \notin \bigcup_{i=2}^{n} K_{i}$. Now, if $a \oplus b \in \bigcup_{i=2}^{n} K_{i}$, then there exists $2 \leq t \leq n$ such that $a \oplus b \in K_{t}$.

Since $b \leq a \oplus b \in K_{t}$, hence $b \in K_{t}$, which is a contradiction. Hence, $a \oplus b \in K-\bigcup_{i=2}^{n} K_{i}$ and so $a \oplus b \in K_{1}$. Since $a \leq a \oplus b \in K_{1}$, we get $a \in K_{1}$ and then $a \in \bigcap_{i=1}^{n} K_{i}$. It results that $\bigcap_{i=2}^{n} K_{i} \subseteq \bigcap_{i=1}^{n} K_{i}$, and therefore $\bigcap_{i=2}^{n} K_{i}=\bigcap_{i=1}^{n} K_{i}$.
Theorem 4.4. (Prime avoidance of A-ideals) Let M be a unitary A module and K, K_{1}, \ldots, K_{n} be A-ideals of M. (i) If $K \subseteq \bigcup_{i=1}^{n} K_{i}$ is an efficient covering of K and $\left(K_{t}: M\right) \nsubseteq\left(K_{j}: M\right)$, for any $j \neq t$, where $1 \leq j, t \leq n$, then K_{j} is not a prime A-ideal of M, for every $1 \leq j \leq n$.
(ii) If $K \subseteq \bigcup_{i=1}^{n} K_{i}$, at most two of K_{i} 's are not prime and (K_{i} : $M) \nsubseteq\left(K_{j}: M\right)$, where $n \geq 3, j \neq i$ and $1 \leq i, j \leq n$, then there exists $1 \leq j \leq n$ such that $K \subseteq K_{j}$.
Proof. (i) We first show that $K=\bigcup_{i=1}^{n}\left(K \cap K_{i}\right)$ is an efficient union of K. Since $K \subseteq \bigcup_{i=1}^{n} K_{i}$ is an efficient covering of K, then there exists $a \in K$ such that $a \notin \bigcup_{j \neq i=1}^{n} K_{i}$, for any $j \neq i$, where $1 \leq$ $j \leq n$. Hence, $a \notin K_{i}$ and so $a \notin K \cap K_{i}$, for any $i \neq j$. It then follows that $a \notin \bigcup_{j \neq i=1}^{n}\left(K \cap K_{i}\right)$ and so $K \neq \bigcup_{j \neq i=1}^{n}\left(K \cap K_{i}\right)$. Hence, $K=\bigcup_{i=1}^{n}\left(K \cap K_{i}\right)$ is an efficient union of K. Let j be a constant number, where $1 \leq j \leq n$. If $i \neq j$, then $\left(K_{i}: M\right) \nsubseteq\left(K_{j}: M\right)$ and so there exists $a_{i} \in\left(K_{i}: M\right)-\left(K_{j}: M\right)$, where $1 \leq i \leq n$. We set $a=a_{1} \cdot a_{2} \ldots . a_{j-1} \cdot a_{j+1} \ldots . a_{n}$. Since A is unital, by Lemma 2.7 ($i i$), we have $a \leq a_{i}$, where $1 \leq i \leq n$. Since $a \leq a_{i} \in\left(K_{i}: M\right), a \in\left(K_{i}: M\right)$, for any $i \neq j$. Now, we show that K_{j} is not a prime A-ideal of M. Since $K=\bigcup_{i=1}^{n}\left(K \cap K_{i}\right)$ is an efficient union of K, there exists $x \in K-K_{j}$ and so by Lemma 4.3, we get $a x \in \bigcap_{j \neq i=1}^{n}\left(K \cap K_{i}\right)=\bigcap_{i=1}^{n}\left(K \cap K_{i}\right) \subseteq$ K_{j}. If K_{j} is a prime A-ideal, then $x \in K_{j}$ or $a \in\left(K_{j}: M\right)$, which in any of two cases is a contradiction. Therefore, K_{j} is not a prime A-ideal of M, for every $1 \leq j \leq n$.
(ii) We have $K \subseteq \bigcup_{i=1}^{n} K_{i}$. Let $K \subseteq \bigcup_{t=1}^{m} K_{i_{t}}$ be an efficient covering of K, where $1 \leq m \leq n$ and $m \neq 2$. If $m>2$, then at least one of the $K_{i_{t}}$'s is prime A-ideal of M and so by (i), that is a contradiction. Hence, $m=1$ and therefore $K \subseteq K_{j}$, for some $1 \leq j \leq n$.
Example 4.5. By Example 4.2, we have $\left(K_{1}: M\right)=\{0,1\}$ and $\left(K_{2}\right.$: $M)=\{0,2\}$. It is clear that $\left(K_{1}: M\right) \nsubseteq\left(K_{2}: M\right)$ and $\left(K_{2}: M\right) \nsubseteq$ $\left(K_{1}: M\right)$. Note that K_{1} and K_{2} are not prime A-ideals of M. For example, $2.3=0 \in K_{1}$, but $3 \notin K_{1}$ and $2 \notin\left(K_{1}: M\right)$.

Note.Now, we want to state a different shape of the theorem of "prime avoidance of A-ideals". Let K, K_{1}, \ldots, K_{n} be A-ideals of M and $m_{1}+K_{1}, \cdots, m_{n}+K_{n}$ be cosets in M, for $m_{i} \in M$, where $1 \leq i \leq n$. We say $\bigcup_{i=1}^{n}\left(m_{i}+K_{i}\right)$ is an efficient covering of K, if $K \subseteq \bigcup_{i=1}^{n}\left(m_{i}+K_{i}\right)$
and $K \nsubseteq \bigcup_{j \neq i=1}^{n}\left(m_{i}+K_{i}\right)$, for every $1 \leq j \leq n$. Moreover, $K=$ $\bigcup_{i=1}^{n}\left(m_{i}+K_{i}\right)$ is an efficient union, if $K \neq \bigcup_{j \neq i=1}^{n}\left(m_{i}+K_{i}\right)$, for every $1 \leq j \leq n$.

Lemma 4.6. Let M be an A-module, N be an A-ideal of M and $m \oplus$ $N=\{m \oplus n: n \in N\}$. Then, $m \oplus N=N$, where $m \in M$ and $m \leq n$, for every $0 \neq n \in N$.

Proof. Since $m \leq n \in N$, by $\left(I_{2}\right)$, we get $m \in N$ and so $m \oplus N \subseteq N$. Since $n^{\prime} \leq n^{\prime} \oplus m$, by Lemma $2.3(i)$, we have $\left(n^{\prime} \oplus m\right)^{\prime} \leq n \in N$ and hence $\left(n^{\prime} \oplus m\right)^{\prime} \in N$. Now, by $(M V 4)$, we have

$$
n=n \oplus 0=n \oplus 1^{\prime}=n \oplus\left(m^{\prime} \oplus n\right)^{\prime}=m \oplus\left(n^{\prime} \oplus m\right)^{\prime} \in m \oplus N
$$

for every $n \in N$ and then $N \subseteq m \oplus N$. Therefore, $m \oplus N=N$.
Lemma 4.7. Let M be an A-module, K, K_{1}, \ldots, K_{n} be A-ideals of M and $K \subseteq \bigcup_{i=1}^{n}\left(K_{i}+m_{i}\right)$ be an efficient covering of K, where $n \geq 2$ and $m_{i} \leq k_{i}$, for every $0 \neq k_{i} \in K_{i}, 1 \leq i \leq n$ and " + " is the partial addition on M. Then $K \cap\left(\bigcap_{j \neq i=1}^{n} K_{i}\right) \subseteq K_{j}$, but $K \nsubseteq K_{j}$, for any $1 \leq j \leq n$.

Proof. Without loss of generality, we accept $j=1$. Let $a \in K \cap \bigcap_{i=2}^{n} K_{i}$ and $b \in K-\bigcup_{i=2}^{n}\left(K_{i}+m_{i}\right)$. Then, $b \in K_{1}+m_{1}$. If there exits $j \geq 2$ such that $a+b \in K_{j}+m_{j}$, then $a \in K_{j}$ implies that $b \in K_{j}+m_{j}$, which is a contradiction. Hence, $a+b \in K-\bigcup_{i=2}^{n}\left(K_{j}+m_{j}\right)$ and so $a+b \in K_{1}+m_{1}$. It then results that $a+b=k_{1}+m_{1}$, for some $k_{1} \in K_{1}$. On the other hand, $b=k+m_{1}$, for some $k \in K_{1}$. Then, $a+k+m_{1}=k_{1}+m_{1}$ and so by Lemma 2.5 (iii), we get $a+k=k_{1}$. By Lemma 2.5 (ii), we have $a=k^{\prime} \odot k_{1}=\left(k_{1}^{\prime} \oplus k\right)^{\prime}$. Since $k_{1}^{\prime} \leq k_{1}^{\prime} \oplus k,\left(k_{1}^{\prime} \oplus k\right)^{\prime} \leq k_{1} \in K_{1}$ so $a=\left(k_{1}^{\prime} \oplus k\right)^{\prime} \in K_{1}$. Hence, $K \cap\left(\bigcap_{i \neq 1} K_{i}\right) \subseteq K_{1}$. Now, let there exists $1 \leq j \leq n$ such that $K \subseteq K_{j}$. If $m_{j} \in K_{j}$, then by Lemma 4.6, we have $K \subseteq K_{j}=K_{j}+m_{j}$, which is a contradiction. Which the fact that $\bigcup_{i=1}^{n}\left(K_{i}+m_{i}\right)$ is an efficient covering of K. If $m_{j} \notin K_{j}$, then we will show that $K \cap\left(K_{j}+m_{j}\right)=\emptyset$. Let $x \in K \cap\left(K_{j}+m_{j}\right)$. Then there exists $k_{j} \in K_{j}$ such that $x=k_{j}+m_{j} \in K \subseteq K_{j}$. Since $m_{j} \leq k_{j}+m_{j}$, then $m_{j} \in K_{j}$, which is a contradiction. Hence, $K \cap\left(K_{j}+m_{j}\right)=\emptyset$ and so $K \subseteq \bigcup_{i \neq j}^{n}\left(K_{i}+m_{i}\right)$, which is a contradiction. Which the fact that $\bigcup_{i=1}^{n}\left(K_{i}+m_{i}\right)$ is an efficient covering of K. Therefore, $K \nsubseteq K_{j}$, for any $1 \leq j \leq n$.

Theorem 4.8. Let M be an A-module, K, K_{1}, \ldots, K_{n} be A-ideals of M and $K+m \subseteq \bigcup_{i=1}^{n} K_{i}$ be an efficient covering of $K+m$ and $\left(K_{j}\right.$: $M) \nsubseteq\left(K_{t}: M\right)$, for every $j \neq t$, where $1 \leq j, t \leq n$ and $m \in M$. Then K_{j} is not a prime A-ideal of M, for every $1 \leq j \leq n$.

Proof. By Lemma 4.7, we have $K \cap\left(\bigcap_{j \neq i=1}^{n} K_{i}\right) \subseteq K_{j}$ and $K \nsubseteq K_{j}$, for every $1 \leq j \leq n$. Let $I=\left(\bigcap_{j \neq i=1}^{n} K_{i}: M\right)$. Then, $I K \subseteq K \cap$ $\left(\bigcap_{j \neq i=1}^{n} K_{i}\right) \subseteq K_{j}$. Now, let K_{j} be a prime A-ideal of M. Then, $K \subseteq K_{j}$ or $I M \subseteq K_{j}$. Since $K \nsubseteq K_{j}, I \subseteq\left(K_{j}: M\right)$. On the other hand, $I=\left(\bigcap_{j \neq i=1}^{n} K_{i}: M\right)=\bigcap_{j \neq i=1}\left(K_{i}: M\right) \subseteq\left(K_{j}: M\right)$, for every $i \neq j$. Hence, there exists $i \neq j$ such that $\left(K_{i}: M\right) \subseteq\left(K_{j}: M\right)$, which is a contradiction. Therefore, K_{i} is not a prime A-ideal of M, for every $1 \leq i \leq n$.

5. Conclusions

Our results in this paper about the A-ideals of $M V$-modules gives new insights for anyone who is interested in studying and development of ideals in $M V$-modules. One can study of ideals in $M V$-modules and obtain some new methods to study and characterize the A-ideals of $M V$-modules. Furthermore, one can define another types of A-ideals in $M V$-modules and study many other subjects in this field.

Acknowledgments

The authors wish to thank referee for some very helpful comments in improving several aspects of this paper.

References

1. R. A. Borzooei and S. Saidi Goraghani, Free MV-modules, J. Intell. Fuzzy Systems 31(1) (2016), 151-161.
2. C. C. Chang, Algebric analysis of many-valued logic, Trans. Amer. Math. Soc. 88 (1958), 467-490.
3. C. C. Chang, A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80.
4. R. Cignoli, M. L. D' Ottaviano, and D. Mundici, Algebric foundation of Manyvalued reasoning, Kluwer Academic, Dordrecht, 2000.
5. A. Di Nola and A. Dvurečenskij, Product MV-algebras, Multiple-Valued Logics 6 (2001), 193-215.
6. A. Di Nola, P. Flondor and I. Leustean, MV-modules, J. Algebra. 267 (2003), 21-40.
7. F. Forouzesh, E. Eslami and A. Borumand Saeid, On prime A-ideals in $M V$ modules, U. P. B. Sci. Bull. 76 (2014), 181-198.
8. T. Kroupa, Conditional probability on $M V$-algebras, Fuzzy Sets and Systems 149 (2005), 369-381.
9. S. Saidi Goraghani and R. A. Borzooei, Prime --Ideals and Fuzzy Prime --Ideals in PMV-algebras, Ann. Fuzzy Math. Inform. 12 (2016), 527-538.
10. S. Saidi Goraghani and R. A. Borzooei, Results on prime ideals in $P M V$ algebras and MV-modules, Italian J. Pure Appl. Math., to appear.

Simin Saidi Goraghani

Department of Mathematics, University of Farhangian, Tehran, Iran.
Email: siminsaidi@yahoo.com
Rajab Ali Borzooei
Department of Mathematics, University of Shahid Beheshti, Tehran, Iran.
Email: borzooei@sbu.ac.ir

Journal of Algebraic Systems

MOST RESULTS ON A-IDEALS IN $M V$-MODULES

S. SAIDI GORAGHANI, R. A. BORZOOEI

$$
\begin{aligned}
& \text { نتايجى بيشتر روى A-ايدهآلهها در MV -مدولها } \\
& \text { سيمين سعيدى گراغانى' }
\end{aligned}
$$

 غيراول بيان و براى A - ايدمآله مىدهيم كه از

كلمات كليدى: MV-جبر، MV-مدول، A-ايدهآل اول.

[^0]: MSC(2010): Primary: 06F35; Secondary: 06D35, 16D80
 Keywords: $M V$-algebra, $M V$-module, Prime A-ideal. Received: 18 February 2016, Accepted: 1 March 2017.
 *Corresponding author.

