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MOST RESULTS ON A-IDEALS IN MV -MODULES

S. SAIDI GORAGHANI∗, AND R. A. BORZOOEI

Abstract. In the present paper, by considering the notion of MV
-modules which is the structure that naturally correspond to lu-
modules over lu-rings, we prove some results on prime A-ideals and
state some conditions to obtain a prime A-ideal in MV -modules.
Also, we state some conditions that an A-ideal is not prime and
investigate conditions that K ⊆

∪n
i=1 Ki implies K ⊆ Kj , where

K,K1, · · · ,Kn are A-ideals of A-module M and 1 ≤ j ≤ n.

1. Introduction

MV -algebras were defined by C. C. Chang [2, 3] as algebras cor-
responding to the  Lukasiewicz infinite valued propositional calculus.
These algebras have appeared in the literature under different names
and polynomially equivalent presentation: CN -algebras, Wajsberg al-
gebras, bounded commutative BCK-algebras and bricks. It is discov-
ered that MV -algebras are naturally related to the Murray-Von Neu-
mann order of projections in operator algebras on Hilbert spaces and
that they play an interesting role as invariants of approximately finite-
dimensional C∗-algebras. They are also naturally related to Ulam

,
s

searching games with lies. MV -algebras admit a natural lattice reduct
and hence a natural order structure. Many important properties can
be derived from the fact, established by Chang, that non-trivial MV -
algebras are sub-direct products of MV -chains, that is, totally ordered
MV -algebras. To prove this fundamental result, Chang introduced
the notion of prime ideal in an MV -algebra. A product MV -algebra
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(or PMV -algebra, for short) is an MV -algebra which has an associa-
tive binary operation “.”. It satisfies an extra property which will be
explained in Preliminaries section. During last years, PMV -algebras
were considered and their equivalence with a certain class of l-rings
with strong unit was proved. It seems quite natural to introduce mod-
ules over such algebras, generalizing the divisible MV -algebras and the
MV -algebras obtained from Riesz spaces and to prove natural equiva-
lence theorems. Hence, the notion of MV -modules was introduced as
an action of a PMV -algebra over an MV -algebra by A. Di Nola [6].
Recently, Forouzesh, Eslami and Borumand Saeid [7] defined prime A-
ideals in MV -modules. Since MV -modules are in their infancy, stating
and opening of any subject in this field can be useful. Hence, in this
paper, we study prime A-ideals and state some conditions to obtain a
prime A-ideal (or no prime A-ideal) in MV -modules. Also, in special
case, we prove that if K ⊆

∪n
i=1Ki, then K ⊆ Kj, where K,K1, . . . , Kn

are A-ideals of A-module M and 1 ≤ j ≤ n. In fact, our results in this
paper gives new insights to anyone who is interested in studying and
development of MV -modules.

2. Preliminaries

In this section, we review related lemmas and theorems that we will
use in the next sections.

Definition 2.1. [4] An MV-algebra is a structure M = (M,⊕,′ , 0) of
type (2, 1, 0) such that
(MV 1) (M,⊕, 0) is an abelian monoid,
(MV 2) (a′)′ = a,
(MV 3) 0′ ⊕ a = 0′,
(MV 4) (a′ ⊕ b)′ ⊕ b = (b′ ⊕ a)′ ⊕ a,
If we define the constant 1 = 0′ and operations ⊙ and ⊖ by a ⊙ b =
(a′ ⊕ b′)′, a⊖ b = a⊙ b′, then
(MV 5) (a⊕ b) = (a′ ⊙ b′)′,
(MV 6) a⊕ 1 = 1,
(MV 7) (a⊖ b) ⊕ b = (b⊖ a) ⊕ a,
(MV 8) a⊕ a′ = 1,
for every a, b ∈ M . It is clear that (M,⊙, 1) is an abelian monoid. Now,
if we define auxiliary operations ∨ and ∧ on M by a ∨ b = (a⊙ b′) ⊕ b
and a∧b = a⊙(a′⊕b), for every a, b ∈ M , then (M,∨,∧, 0) is a bounded
distributive lattice. An MV -algebra M is a Boolean algebra if and only
if the operation “ ⊕ ” is idempotent, i.e., a ⊕ a = a, for every a ∈ M .
In every MV -algebra M , the following conditions are equivalent: (i)
a′ ⊕ b = 1, (ii) a⊙ b′ = 0, (iii) b = a⊕ (b⊖ a), (iv) ∃c ∈ M such that
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a⊕ c = b, for every a, b ∈ M . For any two elements a, b of MV -algebra
M , a ≤ b if and only if a, b satisfy in the above equivalent conditions
(i)− (iv). An ideal of MV -algebra M is a subset I of M , satisfying the
following conditions: (I1) 0 ∈ I, (I2) x ≤ y and y ∈ I imply that x ∈ I,
(I3) x⊕y ∈ I, for every x, y ∈ I. A proper ideal I of M is a prime ideal
if and only if x⊖y ∈ I or y⊖x ∈ I, for every x, y ∈ M . A proper ideal I
of M is a maximal ideal of M if and only if no proper ideal of M strictly
contains I. In MV -algebra M , the distance function d : M ×M → M
is defined by d(x, y) = (x⊖y)⊕ (y⊖x) which satisfies (i) d(x, y) = 0 if
and only if x = y, (ii) d(x, y) = d(y, x), (iii) d(x, z) ≤ d(x, y)⊕ d(y, z),
(iv) d(x, y) = d(x′, y′), (v) d(x⊕ z, y ⊕ t) ≤ d(x, y) ⊕ d(z, t), for every
x, y, z, t ∈ M . Let I be an ideal of MV -algebra M . Then, we denote
x ∼ y (x ≡I y) if and only if d(x, y) ∈ I, for every x, y ∈ M . So, ∼ is
a congruence relation on M . Denote the equivalence class containing
x by x

I
and M

I
= {x

I
: x ∈ M}. Then, (M

I
,⊕,′ , 0

I
) is an MV -algebra,

where (x
I
)′ = x′

I
and x

I
⊕ y

I
= x⊕y

I
, for all x, y ∈ M . Let M and K be two

MV -algebras. A mapping f : M → K is called an MV -homomorphism
if (H1) f(0) = 0, (H2) f(x⊕y) = f(x)⊕f(y) and (H3) f(x′) = (f(x))′,
for every x, y ∈ M . If f is one to one (resp. onto), then f is called an
MV -monomorphism (resp. epimorphism) and if f is onto and one to
one, then f is called an MV -isomorphism (see [6]).

Proposition 2.2. [4] Let M be an MV -algebra and z ∈ M . Then the
principal ideal generated by z is denoted by ⟨z⟩ and ⟨z⟩ = {x ∈ M :
nz = z ⊕ · · · ⊕ z︸ ︷︷ ︸

n times

≥ x, for some n ≥ 0}.

Lemma 2.3. [4] In every MV -algebra M , the natural order “ ≤ ” has
the following properties:

(i) x ≤ y if and only if y′ ≤ x′,
(ii) if x ≤ y, then x⊕ z ≤ y ⊕ z, for every z ∈ M .

Definition 2.4. [5] In MV -algebra M , a partial addition is defined as
following:
x + y is defined iff x ≤ y′ and in this case, x + y = x ⊕ y, for any
x, y ∈ M .

Lemma 2.5. [6] In MV -algebra M ,

(i) x + 0 = x,
(ii) if x + y = z, then y = x′ ⊙ z,

(iii) if z + x = z + y, then x = y,
(iv) if z + x ≤ z + y, then x ≤ y, where “ + ” is the partial addition

on M .
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Definition 2.6. [5] A product MV -algebra (or PMV -algebra, for short)
is a structure A = (A,⊕, .,′ , 0), where (A,⊕,′ , 0) is an MV -algebra and
“.” is a binary associative operation on A such that the following prop-
erty is satisfied: if x + y is defined, then x.z + y.z and z.x + z.y are
defined and (x + y).z = x.z + y.z, z.(x + y) = z.x + z.y, for every
x, y, z ∈ A, where “ + ” is the partial addition on A. A unity for the
product is an element e ∈ A such that e.x = x.e = x, for every x ∈ A.
If A has a unity for product, then A is called a unital PMV -algebra. A
PMV -homomorphism is an MV -homomorphism which also commutes
with the product operation.

Lemma 2.7. [5] If A is a unital PMV -algebra, then;

(i) the unity for product is e = 1,
(ii) x.y ≤ x ∧ y, for every x, y ∈ A.

Lemma 2.8. [5] Let A be a PMV -algebra. Then, 1.a = a and a ≤ b
implies that a.c ≤ b.c and c.a ≤ c.b, for any a, b, c ∈ A.

Definition 2.9. [6] Let A = (A,⊕, .,′ , 0) be a PMV -algebra, M =
(M,⊕,′ , 0) be an MV -algebra and the operation Φ : A×M −→ M be
defined by Φ(a,m) = am, which satisfies the following axioms:

(AM1) if x + y is defined in M , then ax + ay is defined in M and
a(x + y) = ax + ay,

(AM2) if a + b is defined in A, then ax + bx is defined in M and
(a + b)x = ax + bx,

(AM3) (a.b)x = a(bx), for every a, b ∈ A and x, y ∈ M .

Then M is called a (left) MV -module over A or briefly an A-module.
We say that M is a unitary MV -module if A has a unity 1A for the
product and

(AM4) 1Ax = x, for every x ∈ M .

Lemma 2.10. [6] Let A be a PMV -algebra and M be an A-module.
Then;

(a) 0x = 0,
(b) a0 = 0,
(c) ax′ ≤ (ax)′,
(d) a′x ≤ (ax)′,
(e) (ax)′ = a′x + (1x)′,
(f) x ≤ y implies that ax ≤ ay,
(g) a ≤ b implies that ax ≤ bx,
(h) a(x⊕ y) ≤ ax⊕ ay,
(i) d(ax, ay) ≤ ad(x, y),
(j) if x ≡I y, then ax ≡I ay, where I is an ideal of A,
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(k) if M is a unitary MV -module, then (ax)′ = a′x + x′, for every
a, b ∈ A and x, y ∈ M .

Definition 2.11. [6] Let A be a PMV -algebra and M1, M2 be two A-
modules. A map f : M1 → M2 is called an A-module homomorphism
or ( A-homomorphism, for short) if f is an MV -homomorphism and
(H4): f(ax) = af(x), for every x ∈ M1 and a ∈ A.

Definition 2.12. [6] Let A be a PMV -algebra and M be an A-module.
Then, an ideal N ⊆ M is called an A-ideal of M if (I4) ax ∈ N , for
every a ∈ A and x ∈ N .

Definition 2.13. [7] Let M be an A-module and N be a proper A-
ideal of M . Then, N is called a prime A-ideal of M , if am ∈ N implies
that m ∈ N or a ∈ (N : M), for any a ∈ A and m ∈ M , where
(N : M) = {a ∈ A : aM ⊆ N}. Moreover, the set of all prime A-ideals
of M is denoted by Spec(M).

Note. From now onwards, A denotes a PMV -algebra.

3. Some results on prime A-ideals in MV -modules

In this section, we state and prove some conditions to obtain a prime
A-ideal in MV−modules.

Example 3.1. Let A = {0, 1, 2, 3} and the operations “ ⊕ ” and “.”
on A are defined as follows:

⊕ 0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

. 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

Consider 0′ = 3, 1′ = 2, 2′ = 1 and 3′ = 0. Then, it is easy to show
that (A,⊕,′ , ., 0) is a PMV -algebra and (A,⊕,′ , 0) is an MV -algebra.
Now, let the operation • : A × A −→ A be defined by a • b = a.b, for
every a, b ∈ A. It is easy to show that A is an MV -module on A and
I = {0, 1}, J = {0, 2} are prime A-ideals of A. {0} is not a prime
A-ideal of A. Note that 1•2 = 0, but 2 /∈ {0} and 1 /∈ ({0} : A) = {0}.

Proposition 3.2. Let M be an A-module and N,L be A-ideals of M .
Then;

(i) (N : M) = {a ∈ A : aM ⊆ N} is an ideal of A,
(ii) (N : m) is an ideal of A, for every m ∈ M ,

(iii) N is a prime A-ideal of M if and only if (N : m) = (N : M),
where m /∈ N .
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Proof. (i) It is clear that 0 ∈ (N : M). Let α, β ∈ (N : M). Then,
αm, βm ∈ N , for every m ∈ N . Since βm ≤ (αm)′ ⊕ βm, by
Lemma 2.3(i), we get (αm) ⊙ (βm)′ = ((αm)′ ⊕ βm)′ ≤ (βm)′ and
so (αm) ⊙ (βm)′ + βm is defined, where “ + ” is the partial addition
on M . Similarly, α ⊙ β′ + β is defined, too. Also, since α ⊙ β′ ≤ β′,
by Lemma 2.10 (d) and (g), we have (α⊙ β′)m ≤ β′m ≤ (βm)′ and so
(α⊙β′)m+βm is defined. Now, α ≤ α∨β implies that αm ≤ (α∨β)m
and similarly, βm ≤ (α ∨ β)m. Then, αm ∨ βm ≤ (α ∨ β)m and so

(αm) ⊙ (βm)′ + βm = αm ∨ βm ≤ (α ∨ β)m = (α⊙ β′ ⊕ β)m

= (α⊙ β′ + β)m = (α⊙ β′)m + βm.

By Lemma 2.5 (iv), we have αm⊙ (βm)′ ≤ (α⊙ β′)m. If we set α⊕ β
instead of α, then by Lemma 2.10 (g), we get (α ⊕ β)m ⊙ (βm)′ ≤
((α⊕ β) ⊙ β′)m = (α ∧ β′)m ≤ αm. Since

(α⊕β)m = (α⊕β)m∨βm = (α⊕β)m⊙(βm)′⊕βm ≤ αm⊕βm ∈ N,

hence α ⊕ β ∈ (N : M). Now, let α ≤ β and β ∈ (N : M). Then,
by Lemma 2.10(g), we have αm ≤ βm ∈ N and so αm ∈ N , for every
m ∈ M . It means that α ∈ (N : M).
(ii) By (i), the proof is clear.
(iii) By (i) and (ii), the proof is straight forward. □
Lemma 3.3. Let M be a unitary A-module and m ∈ M . Then;

Im = {
k∑

i=1

tim :
k∑

i=1

tim ≤ nm, for some n, k ∈ N ∪ {0},

where ti ∈ A and t1m + · · · + tkm is defined }
is an A-ideal of M .

Proof. (I1) It is clear that 0 ∈ Im.

(I2) Let x ≤
∑k

i=1 tim ∈ Im, for some x ∈ M . Then, x = 1x ≤∑k
i=1 tim ≤ nm ∈ Im, where n ≥ 0 and so x ∈ Im.

(I3) Let
∑k

i=1 tim,
∑w

i=1 sim ∈ Im. Then, there exist n1, n2 ≥ 0 such

that
∑k

i=1 tim ≤ n1m and
∑w

i=1 sim ≤ n2m and so

k+w∑
i=1

cim =
k∑

i=1

tim⊕
w∑
i=1

sim ≤ n1m⊕ n2m = m⊕ · · · ⊕m︸ ︷︷ ︸
n1 times

⊕ m⊕ · · · ⊕m︸ ︷︷ ︸
n2 times

= (n1 + n2)m,

where

ci =

{
ti 1 ≤ i ≤ k

si−k k + 1 ≤ i ≤ k + w
,
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It means that
∑k

i=1 tim⊕
∑w

i=1 sim ∈ Im.

(I4) Let a ∈ A and
∑k

i=1 tim ∈ Im. Then, there exists n ≥ 0 such that∑k
i=1 tim ≤ nm. Since

∑k
i=1 tim ≤ nm = m⊕ · · · ⊕m︸ ︷︷ ︸

n times

, by Lemma

2.10(f) and (h), hence

a(
k∑

i=1

tim) ≤ a(m⊕ · · · ⊕m) ≤ am⊕ · · · ⊕ am︸ ︷︷ ︸
n times

.

By Lemma 2.10(k), since (am)′⊕m = a′m⊕m′⊕m = 1, and am ≤ m

, so a(
∑k

i=1 tim) ≤ m⊕ · · · ⊕m︸ ︷︷ ︸
n times

= nm. It results that
∑k

i=1(a.ti)m =∑k
i=1 a(tim) ∈ Im. □
Notation. For A-module M , non-empty subset I of A and A-ideal

N of M , we let IN = {xm : x ∈ I,m ∈ N}.

Definition 3.4. A PMV -algebra A is called commutative, if x.y = y.x,
for every x, y ∈ A.

Example 3.5. In Example 3.1, A is a commutative PMV -algebra.

Theorem 3.6. Let A be commutative MV−algebra, M be a unitary
A-module, N be a proper A-ideal of M and x⊕x = x, for every x ∈ A.
Then, N is a prime A-ideal of M if and only if for every ideal I of A
and A-ideal D of M , ID ⊆ N implies that I ⊆ (N : M) or D ⊆ N .

Proof. (⇒) Let N be a prime A-ideal of M , I be an ideal of A and D
be an A-ideal of M such that ID ⊆ N . We will show that I ⊆ (N : M)
or D ⊆ N . Let I ⊈ (N : M) and D ⊈ N . Then, there exist x ∈ A and
d ∈ D such that xM ⊈ N and d /∈ N . On the other hand, ID ⊆ N
implies that xd ∈ N . Since N is a prime A-ideal of M and d /∈ N ,
xM ⊆ N , which is a contradiction.
(⇐) For every ideal I of A and A-ideal D of M , let ID ⊆ N implies
that I ⊆ (N : M) or D ⊆ N . Then suppose that there exist x ∈ A
and m ∈ M such that xm ∈ N and m /∈ N . By Proposition 2.2 and
Lemma 3.3, let I = ⟨x⟩ and D = Im. Then for y ∈ I, by Proposition
2.2, there exists n ≥ 0 such that y ≤ nx and so y ⊖ nx = 0. Hence,

ym = (y ⊖ 0)m = (y ⊖ (y ⊖ nx))m = (y ⊙ (y ⊙ (nx)′)′)m

= (y ⊙ (y′ ⊕ nx))m = (y ∧ nx)m.

By Lemma 2.10 (g), since y ∧ nx ≤ nx and x⊕ x = x, we get

ym = (y ∧ nx)m ≤ (nx)m = (x⊕ x⊕ · · · ⊕ x︸ ︷︷ ︸
n times

)m = xm ∈ N.
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Hence, ym ∈ N and then we get ID = {y(
∑k

i=1 tim) : y, ti ∈ A} =

{
∑k

i=1 ti(ym) : y, t ∈ A} ⊆ N and so I ⊆ (N : M) or D ⊆ N . Since
m /∈ N , hence I ⊆ (N : M) and so xM ⊆ N . Therefore, N is a prime
A-ideal of M . □
Definition 3.7. Let M be an A-module. Then M is called a Boolean
A-module if ax⊕ ay ≤ a(x⊕ y), for every a ∈ A and x, y ∈ M .

Example 3.8. If A is a Boolean algebra, then every A-module M is a
Boolean A-module.

Proposition 3.9. [1, 10] Let M be a Boolean A-module.

(i) If I is an A-ideal of M , then M
I

is an A-module.
(ii) If N and K are two A-ideals of M such that N ⊆ K, then

K
N

= { k
N

: k ∈ K} is an A-ideal of M
N
.

Proposition 3.10. Let M be a Boolean A-module and N be an A-ideal
of M . Then P is a prime A-ideal of M if and only if P

N
is a prime

A-ideal of M
N
, where N ⊆ P .

Proof. (⇒) Let P be a prime A-ideal of M . By Proposition 3.9, M
N

is

an A-module and P
N

is an A-ideal of M
N

. Let xm
N

∈ P
N

, where x ∈ A
and m ∈ M . Then there exists q ∈ P such that xm

N
= q

N
and so

d(xm, q) ∈ N ⊆ P . Since xm = d(xm, 0) ≤ d(xm, q) ⊕ d(q, 0) ∈ P ,
xm ∈ P and so x ∈ (P : M) or m ∈ P . It results that xM

N
⊆ P

N
or

m
N

∈ P
N

. Therefore, P
N

is a prime A-ideal of M
N

.
(⇐) The proof is straight forward. □
Lemma 3.11. Consider A as A-module. Let I be an ideal of A and P
be a prime A-ideal of A containing I. Then P

I
is a prime A-ideal of A

I
.

Proof. Note that if the operation • : A×A
I
→ A

I
is defined by x• y

I
= x.y

I
,

for any x, y ∈ A, then A
I

is an A-module. By Proposition 3.9, P
I

is an

A-ideal of A
I

, and it is easy to show that P
I

is a prime A-ideal of A
I

. □
Lemma 3.12. Let M1 and M2 be two A-modules, Φ : M1 → M2 be
an MV -homomorphism and N be a prime A-ideal of M2 such that
ϕ(M1) ⊈ N . Then, ϕ−1(N) is a prime A-ideal of M1.

Proof. The proof is straight forward. □
Notation. If M1 and M2 are two MV -algebras, then hom(M1,M2)

denotes the set of all MV -homomorphisms from M1 to M2.

Theorem 3.13. Let M be an A-module, rad(A) be the intersection of
all prime A-ideals of A as A-module and hom(M, A

rad(A)
) ̸= 0. Then M

contains a prime A-ideal.
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Proof. Since hom(M, A
rad(A)

) ̸= 0, then there exists an MV−homomor-

phism ϕ : M → A
rad(A)

such that ϕ(m) = a
rad(A)

̸= 0
rad(A)

, for some

m ∈ M and a ∈ A. Hence, a /∈ rad(A) and then there exists a prime
A-ideal P of M such that a /∈ P . Since a

rad(A)
/∈ P

rad(A)
, ϕ(M) ⊈ P

rad(A)
.

Therefore, by Lemmas 3.11 and 3.12, ϕ−1( P
rad(A)

) is a prime A-ideal of

M . □

4. Most results on A-ideals in MV -modules

In this section, we obtain some conditions that an A-ideal is not
prime. Also, we investigate if K,K1, . . . , Kn are A-ideals of A-module
M such that K ⊆

∪n
i=1Ki, then K ⊆ Kj, for some 1 ≤ j ≤ n.

Definition 4.1. Let M be an A-module and K,K1, . . . , Kn be A-ideals
of M . Then,

∪n
i=1 Ki is called an efficient covering of K, if K ⊆

∪n
i=1Ki

and K ⊈
∪n

j ̸=i=1Ki, for every 1 ≤ j ≤ n. Moreover, K =
∪n

i=1Ki is

called an efficient union, if K ̸=
∪n

j ̸=i=1 Ki, for every 1 ≤ j ≤ n.

Example 4.2. Let A = M = {0, 1, 2, 3} and the operations “ ⊕ ” and
“′” be defined on M as follows:

⊕ 0 1 2 3
0 0 1 2 3
1 1 1 2 3
2 2 2 2 3
3 3 3 3 3

′ 0 1 2 3
3 2 1 0

.

Also, for every a, b ∈ A,

a.b =

{
0 a ̸= y
x a = b

.

Then, it is easy to show that (M,⊕,′ , 0) is an MV -algebra and (A,⊕,′ ,
., 0) is a PMV -algebra. Now, let the operation • : A ×M −→ M be
defined by a • b = a.b, for every a ∈ A and b ∈ M . It is easy to see
that M is an A-module and K1 = {0, 1}, K2 = {0, 2}, K = {0, 1, 2}
are A-ideals of M . Also, K1 ∪K2 is an efficient covering of K and it is
an efficient union.

Lemma 4.3. Let M be an A-module, K,K1, . . . , Kn be A-ideals of M
and K =

∪n
i=1Ki be an efficient union of A-ideals of M , where n > 1.

Then,
∩n

j ̸=i=1Ki =
∩n

i=1Ki, for every 1 ≤ j ≤ n.

Proof. Without loss of generality, let j = 1 and a ∈
∩n

i=2Ki. Since K
has an efficient covering, then there exists b ∈ K such that b /∈

∪n
i=2Ki.

Now, if a⊕b ∈
∪n

i=2Ki, then there exists 2 ≤ t ≤ n such that a⊕b ∈ Kt.
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Since b ≤ a ⊕ b ∈ Kt, hence b ∈ Kt, which is a contradiction. Hence,
a⊕ b ∈ K −

∪n
i=2 Ki and so a⊕ b ∈ K1. Since a ≤ a⊕ b ∈ K1, we get

a ∈ K1 and then a ∈
∩n

i=1Ki. It results that
∩n

i=2Ki ⊆
∩n

i=1Ki, and
therefore

∩n
i=2Ki =

∩n
i=1Ki. □

Theorem 4.4. (Prime avoidance of A-ideals) Let M be a unitary A-
module and K,K1, . . . , Kn be A-ideals of M . (i) If K ⊆

∪n
i=1Ki is

an efficient covering of K and (Kt : M) ⊈ (Kj : M), for any j ̸= t,
where 1 ≤ j, t ≤ n, then Kj is not a prime A-ideal of M , for every
1 ≤ j ≤ n.
(ii) If K ⊆

∪n
i=1 Ki, at most two of Ki

,s are not prime and (Ki :
M) ⊈ (Kj : M), where n ≥ 3, j ̸= i and 1 ≤ i, j ≤ n, then there exists
1 ≤ j ≤ n such that K ⊆ Kj.

Proof. (i) We first show that K =
∪n

i=1(K ∩Ki) is an efficient union
of K. Since K ⊆

∪n
i=1Ki is an efficient covering of K, then there

exists a ∈ K such that a /∈
∪n

j ̸=i=1Ki, for any j ̸= i, where 1 ≤
j ≤ n. Hence, a /∈ Ki and so a /∈ K ∩ Ki, for any i ̸= j. It then
follows that a /∈

∪n
j ̸=i=1(K ∩Ki) and so K ̸=

∪n
j ̸=i=1(K ∩Ki). Hence,

K =
∪n

i=1(K ∩ Ki) is an efficient union of K. Let j be a constant
number, where 1 ≤ j ≤ n. If i ̸= j, then (Ki : M) ⊈ (Kj : M) and
so there exists ai ∈ (Ki : M) − (Kj : M), where 1 ≤ i ≤ n. We set
a = a1.a2. . . . .aj−1.aj+1. . . . .an. Since A is unital, by Lemma 2.7 (ii), we
have a ≤ ai, where 1 ≤ i ≤ n. Since a ≤ ai ∈ (Ki : M), a ∈ (Ki : M),
for any i ̸= j. Now, we show that Kj is not a prime A-ideal of M . Since
K =

∪n
i=1(K ∩Ki) is an efficient union of K, there exists x ∈ K −Kj

and so by Lemma 4.3, we get ax ∈
∩n

j ̸=i=1(K ∩Ki) =
∩n

i=1(K ∩Ki) ⊆
Kj. If Kj is a prime A-ideal, then x ∈ Kj or a ∈ (Kj : M), which
in any of two cases is a contradiction. Therefore, Kj is not a prime
A-ideal of M , for every 1 ≤ j ≤ n.
(ii) We have K ⊆

∪n
i=1Ki. Let K ⊆

∪m
t=1Kit be an efficient covering

of K, where 1 ≤ m ≤ n and m ̸= 2. If m > 2, then at least one of
the Kit

,s is prime A-ideal of M and so by (i), that is a contradiction.
Hence, m = 1 and therefore K ⊆ Kj, for some 1 ≤ j ≤ n. □
Example 4.5. By Example 4.2, we have (K1 : M) = {0, 1} and (K2 :
M) = {0, 2}. It is clear that (K1 : M) ⊈ (K2 : M) and (K2 : M) ⊈
(K1 : M). Note that K1 and K2 are not prime A-ideals of M . For
example, 2.3 = 0 ∈ K1, but 3 /∈ K1 and 2 /∈ (K1 : M).

Note.Now, we want to state a different shape of the theorem of
”prime avoidance of A−ideals”. Let K,K1, . . . , Kn be A-ideals of M
and m1+K1, · · · ,mn+Kn be cosets in M , for mi ∈ M , where 1 ≤ i ≤ n.
We say

∪n
i=1(mi+Ki) is an efficient covering of K, if K ⊆

∪n
i=1(mi+Ki)
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and K ⊈
∪n

j ̸=i=1(mi + Ki), for every 1 ≤ j ≤ n. Moreover, K =∪n
i=1(mi + Ki) is an efficient union, if K ̸=

∪n
j ̸=i=1(mi + Ki), for every

1 ≤ j ≤ n.

Lemma 4.6. Let M be an A-module, N be an A-ideal of M and m⊕
N = {m⊕ n : n ∈ N}. Then, m⊕N = N , where m ∈ M and m ≤ n,
for every 0 ̸= n ∈ N .

Proof. Since m ≤ n ∈ N , by (I2), we get m ∈ N and so m ⊕ N ⊆ N .
Since n′ ≤ n′ ⊕m, by Lemma 2.3 (i), we have (n′ ⊕m)′ ≤ n ∈ N and
hence (n′ ⊕m)′ ∈ N . Now, by (MV 4), we have

n = n⊕ 0 = n⊕ 1′ = n⊕ (m′ ⊕ n)′ = m⊕ (n′ ⊕m)′ ∈ m⊕N,

for every n ∈ N and then N ⊆ m⊕N . Therefore, m⊕N = N . □
Lemma 4.7. Let M be an A-module, K,K1, . . . , Kn be A-ideals of M
and K ⊆

∪n
i=1(Ki + mi) be an efficient covering of K, where n ≥ 2

and mi ≤ ki, for every 0 ̸= ki ∈ Ki, 1 ≤ i ≤ n and “ + ” is the partial
addition on M . Then K ∩ (

∩n
j ̸=i=1Ki) ⊆ Kj, but K ⊈ Kj, for any

1 ≤ j ≤ n.

Proof. Without loss of generality, we accept j = 1. Let a ∈ K∩
∩n

i=2Ki

and b ∈ K−
∪n

i=2(Ki+mi). Then, b ∈ K1+m1. If there exits j ≥ 2 such
that a+ b ∈ Kj +mj, then a ∈ Kj implies that b ∈ Kj +mj, which is a
contradiction. Hence, a+b ∈ K−

∪n
i=2(Kj+mj) and so a+b ∈ K1+m1.

It then results that a + b = k1 + m1, for some k1 ∈ K1. On the other
hand, b = k + m1, for some k ∈ K1. Then, a + k + m1 = k1 + m1

and so by Lemma 2.5 (iii), we get a + k = k1. By Lemma 2.5 (ii), we
have a = k′ ⊙ k1 = (k′

1 ⊕ k)′. Since k′
1 ≤ k′

1 ⊕ k, (k′
1 ⊕ k)′ ≤ k1 ∈ K1

so a = (k′
1 ⊕ k)′ ∈ K1. Hence, K ∩ (

∩
i̸=1Ki) ⊆ K1. Now, let there

exists 1 ≤ j ≤ n such that K ⊆ Kj. If mj ∈ Kj, then by Lemma 4.6,
we have K ⊆ Kj = Kj + mj, which is a contradiction. Which the fact
that

∪n
i=1(Ki + mi) is an efficient covering of K. If mj /∈ Kj, then we

will show that K ∩ (Kj +mj) = ∅. Let x ∈ K ∩ (Kj +mj). Then there
exists kj ∈ Kj such that x = kj + mj ∈ K ⊆ Kj. Since mj ≤ kj + mj,
then mj ∈ Kj, which is a contradiction. Hence, K ∩ (Kj + mj) = ∅
and so K ⊆

∪n
i̸=j(Ki + mi), which is a contradiction. Which the fact

that
∪n

i=1(Ki + mi) is an efficient covering of K. Therefore, K ⊈ Kj,
for any 1 ≤ j ≤ n. □
Theorem 4.8. Let M be an A-module, K,K1, . . . , Kn be A-ideals of
M and K + m ⊆

∪n
i=1Ki be an efficient covering of K + m and (Kj :

M) ⊈ (Kt : M), for every j ̸= t, where 1 ≤ j, t ≤ n and m ∈ M . Then
Kj is not a prime A-ideal of M , for every 1 ≤ j ≤ n.
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Proof. By Lemma 4.7, we haveK ∩ (
∩n

j ̸=i=1Ki) ⊆ Kj and K ⊈ Kj,

for every 1 ≤ j ≤ n. Let I = (
∩n

j ̸=i=1Ki : M). Then, IK ⊆ K ∩
(
∩n

j ̸=i=1Ki) ⊆ Kj. Now, let Kj be a prime A-ideal of M . Then,

K ⊆ Kj or IM ⊆ Kj. Since K ⊈ Kj, I ⊆ (Kj : M). On the other
hand, I = (

∩n
j ̸=i=1Ki : M) =

∩
j ̸=i=1(Ki : M) ⊆ (Kj : M), for every

i ̸= j. Hence, there exists i ̸= j such that (Ki : M) ⊆ (Kj : M), which
is a contradiction. Therefore, Ki is not a prime A-ideal of M , for every
1 ≤ i ≤ n. □

5. Conclusions

Our results in this paper about the A−ideals of MV−modules gives
new insights for anyone who is interested in studying and development
of ideals in MV−modules. One can study of ideals in MV−modules
and obtain some new methods to study and characterize the A−ideals
of MV−modules. Furthermore, one can define another types of A−ideals
in MV−modules and study many other subjects in this field.
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MV-مدول ها در A-ایده آل ها روی بیشتر نتایجی
برزویی٢ علی رجب و گراغانی١ سعیدی سیمین

ایران٢ تهران، بهشتی، شهید دانشگاه ایران١، تهران، فرهنگیان، دانشگاه

-lu با متناظر ساختاری طبیعی طور به که MV-مدول ها گرفتن نظر در با شده، ارائه مقاله در
یافتن برای را شرایطی و کرده ثابت اول A-ایده آل های روی را نتایجی است، lu-حلقه ها روی مدول ها
A-ایده آل یک داشتن برای را شرایط همچنین می کنیم. بیان MV-مدول ها در اول A-ایده آل های
قرار بررسی مورد را شرایطی M A-مدول از K,K١, . . . , Kn A-ایده آل های برای و بیان غیراول

.١ ≤ j ≤ n که جایی ،K ⊆ Kj شود نتیجه K ⊆ ∪n
i=١ Ki از که می دهیم

اول. A-ایده آل MV-مدول، MV-جبر، کلیدی: کلمات

١
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